WO2024021159A1 - 爆裂波球囊导管 - Google Patents

爆裂波球囊导管 Download PDF

Info

Publication number
WO2024021159A1
WO2024021159A1 PCT/CN2022/111106 CN2022111106W WO2024021159A1 WO 2024021159 A1 WO2024021159 A1 WO 2024021159A1 CN 2022111106 W CN2022111106 W CN 2022111106W WO 2024021159 A1 WO2024021159 A1 WO 2024021159A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
catheter
catheter body
burst wave
piezoelectric
Prior art date
Application number
PCT/CN2022/111106
Other languages
English (en)
French (fr)
Inventor
肖杨
Original Assignee
深圳高性能医疗器械国家研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳高性能医疗器械国家研究院有限公司 filed Critical 深圳高性能医疗器械国家研究院有限公司
Publication of WO2024021159A1 publication Critical patent/WO2024021159A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1025Connections between catheter tubes and inflation tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22027Features of transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/109Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0238General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer

Definitions

  • the present application relates to the technical field of medical devices, and more specifically, to a burst wave balloon catheter.
  • Vascular interventional catheters are the main equipment for diagnosis and treatment of vascular diseases (such as vascular calcification, vascular stenosis, vascular occlusion, etc.) using vascular interventional technology.
  • vascular interventional catheters including microcatheters, guiding catheters, balloon catheters, intermediate catheters, etc.
  • the main interventional treatments for calcified lesions include: 1 Simple balloon dilatation angioplasty (Percutaneous angioplasty) transluminal balloon catheter angioplasty (PTCA), which expands the lumen through balloon expansion, but cannot improve vascular compliance.
  • PTCA percutaneous angioplasty
  • the incidence of dissection is high, the incidence of postoperative restenosis is high, the balloon expansion pressure is greater than 16 atm, and unexpanded calcified lesions are not Applicable;
  • 2 Cutting balloon Coring Balloon angioplasty (SBA), by expanding the balloon, makes one or more metal blades embedded in the balloon catheter come into contact with the blood vessel wall, and cut the plaque on the blood vessel wall into gaps, thus making it more efficient than traditional balloon angioplasty. More controllable dilation of vascular lumen.
  • CTRA 3Coronary atherectomy trartsluminal rotational atherectomy
  • the incidence rate is relatively high, mainly including distal embolism, slow blood flow, no reflow, rotational head incarceration, guide wire breakage, and vascular perforation, etc., which does not improve the postoperative restenosis rate; 4 Excimer laser plaque ablation Excimer laser coronary atherectomy (ELCA), the laser acts on the tissue in a pulsed manner, destroying molecular bonds through photochemical action, generating heat energy through photothermal action, and generating kinetic energy through photomechanical action, which can break down calcified plaques into tiny particles.
  • ELCA Excimer laser plaque ablation Excimer laser coronary atherectomy
  • Intravascular shock wave calcification fragmentation uses the hydroelectric effect to place a fluid-filled balloon in the calcified area and apply a voltage electric field between the electrodes in the balloon. The electrode discharge causes the liquid to rapidly vaporize and expand, causing the balloon to rapidly expand and move towards the calcified area.
  • the calcified area conducts shock waves to fracture superficial and deep calcified plaques in blood vessels without damaging the surrounding soft tissue, effectively expanding the vascular cavity and improving the compliance of the blood vessels.
  • the shock wave indirectly generated by the hydroelectric effect has the following shortcomings: first, it is difficult to accurately control the conduction area, the direction of the impact force, and the uniformity; second, the impact force attenuates exponentially with distance. When the single impact pressure of the balloon reaches about 50 atm, thousands of volts of voltage and hundreds of amperes of current need to be applied between the electrodes. Such high-voltage electricity can easily cause the balloon to rupture, and there is a risk of high-voltage electricity leakage; Section 2 Third, the scope of action of the shock wave is small, the particle size of the calcified plaque fragmented by the shock wave is large, and the degree of improvement in vascular compliance is limited.
  • the purpose of this application is to propose a burst wave balloon catheter, which aims to solve the problem that existing interventional treatment devices for calcified lesions are difficult to control accurately, and the particle size of the lesion after fragmentation is large, and the improvement effect of blood vessel compliance is limited. The problem.
  • this application provides a burst wave balloon catheter including a catheter body, a tip, a balloon, a piezoelectric transducer, a catheter seat and a connecting wire;
  • the end of the catheter body close to the operator is the proximal end, and the end of the catheter body used to enter the blood vessel is the distal end.
  • the balloon is disposed at the distal end of the catheter body, and the catheter body penetrates the balloon.
  • the piezoelectric transducer is arranged outside the catheter body, and the piezoelectric transducer is located inside the balloon;
  • the tip is disposed at the distal end of the catheter body
  • the outer wall of the conduit body is provided with a groove extending longitudinally along the conduit body, and the connecting wire is accommodated in the groove;
  • the piezoelectric transducer sequentially includes a first electrode layer, a piezoelectric material layer and a second electrode layer;
  • the catheter seat is disposed at the proximal end of the catheter body
  • One end of the connecting wire is electrically connected to the piezoelectric transducer.
  • the piezoelectric transducer is used to vibrate to generate a burst wave.
  • the burst wave is conducted to the vascular lesion through the balloon.
  • the material of the piezoelectric material layer is a piezoelectric single crystal, a polycrystalline piezoelectric ceramic, a polymer piezoelectric material or a polymer-piezoelectric ceramic composite material;
  • the first electrode layer and the second electrode layer are respectively metal conductive layers.
  • the burst wave balloon catheter is provided with a guide wire
  • the catheter body is provided with mutually independent guide wire chambers and filling chambers
  • the proximal end of the catheter body is connected to the catheter seat
  • the catheter seat is provided with a guidewire interface, a conductor interface and a liquid injection interface.
  • the guidewire interface is connected to the guidewire cavity
  • the liquid injection interface is connected to the filling cavity
  • the filling cavity is connected to the filling cavity.
  • the balloons are connected; the guide wire enters from the guide wire interface and is accommodated in the guide wire cavity, and the guide wire guides the movement of the catheter body; the injection interface is used to supply The sound-guiding fluid enters, and the sound-guiding fluid enters the balloon along the filling cavity to expand the balloon; the wire interface is used for the connecting wire to enter.
  • the piezoelectric transducer is a circular tubular transducer sleeved on the catheter body;
  • the piezoelectric transducer is a sheet transducer attached outside the catheter.
  • the number of the piezoelectric transducers is multiple.
  • the piezoelectric transducers are electrically connected in parallel.
  • the burst wave balloon catheter further includes a marking ring, the marking ring is sleeved on the catheter body, and the marking ring is located in the balloon.
  • the piezoelectric transducer provides radial pressure to the inner peripheral wall of the blood vessel.
  • the burst wave balloon catheter further includes an insulating layer, the insulating layer is disposed between the connecting wire and the piezoelectric transducer, and the insulating layer connects the connecting wire to Sealed within said groove.
  • the burst wave includes a plurality of pulse waves
  • the pulse wave includes a plurality of consecutive simple harmonic vibration cycles
  • the frequency of the pulse wave is 100 kHz ⁇ 9.9 MHz
  • the duration of the pulse wave is The time is 10 ⁇ s ⁇ 500 ⁇ s
  • the repetition frequency of the pulse wave is 20 Hz ⁇ 1000 Hz
  • the peak sound pressure of the burst wave is less than 20 MPa.
  • a tip is provided at the distal end of the catheter body to facilitate the entry of the balloon and the catheter body into the blood vessel, and a groove for accommodating the connecting wire is provided on the outer wall of the catheter , avoid connecting wires from occupying volume, reduce the diameter of the catheter body, and make the catheter body pass through the coronary arteries and peripheral blood vessels more effectively.
  • the piezoelectric transducer includes a first electrode layer, a piezoelectric material layer and a second electrode layer in sequence.
  • Figure 1 is a schematic structural diagram of a burst wave balloon catheter according to a specific embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a piezoelectric transducer according to a specific embodiment of the present application.
  • Figure 3 is a waveform diagram of a burst wave generated by a specific embodiment of the present application.
  • FIG. 4 is a waveform diagram of a pulse wave in the burst wave shown in FIG. 3 .
  • Figure 5 is a waveform diagram of a single shock wave.
  • Figure 6 is a schematic structural diagram of a burst wave generator according to a specific embodiment of the present application.
  • a burst wave balloon catheter 10 includes a catheter body 110 , a tip, a balloon 120 , a piezoelectric transducer 300 , a catheter hub 100 and a connecting wire 400 .
  • the end of the catheter body 110 close to the operator is the proximal end
  • the end of the catheter body 110 used to enter the blood vessel is the distal end.
  • the balloon 120 is disposed at the distal end of the catheter body 110 , and the catheter body 110 penetrates the balloon 120
  • the piezoelectric transducer 300 is arranged outside the catheter body 110
  • the piezoelectric transducer 300 is located inside the balloon 120
  • the piezoelectric transducer 300 is arranged outside the catheter body 110 and is located inside the balloon 120, so that piezoelectric transducer
  • the device 300 is combined with the balloon 120, and the balloon 120 is used to fully fit the inner and surrounding walls of the blood vessel, so that the repeated mechanical force of the burst wave acts on the vascular disease area.
  • the tip is disposed at the distal end of the catheter body 110 for entering the blood vessel.
  • the tip material can be made of a relatively hard polymer material or a metal material, with a smooth surface and elasticity to ensure that the tip For a smooth transition from the main body to the balloon 120, preferably, the tip is made of metal material.
  • Metal material has higher strength and its supporting force is much higher than that of polymeric materials.
  • the tip can be made of nitinol, gold, silver, platinum or copper.
  • connection method between the tip, the catheter body 110 and the balloon 120 can be glue bonding, heat welding or laser welding, so that the tip, the catheter body 110 and the balloon 120 can be better connected and the welding firmness can be improved. properties to avoid falling off during use.
  • the outer wall of the catheter body 110 is provided with a groove 116 extending longitudinally along the catheter body 110.
  • the connecting wire 400 is accommodated in the groove 116 to reduce the diameter of the catheter body 110 and facilitate entry into the blood vessel.
  • the piezoelectric transducer 300 along the radial direction away from the catheter body 110, the piezoelectric transducer 300 includes a first electrode layer, a piezoelectric material layer and a second electrode layer in sequence.
  • the first electrode layer and the second electrode layer are respectively A layer of piezoelectric material provides power.
  • the catheter adapter 100 is disposed at the proximal end of the catheter body 110 to facilitate the operator's use.
  • one end of the connecting wire 400 is electrically connected to the piezoelectric transducer 300.
  • the piezoelectric transducer 300 is used to vibrate to generate a burst wave.
  • the burst wave is conducted to the vascular lesion through the balloon 120, so that the burst wave It can accurately apply pressure to vascular lesions.
  • the connecting wire 400 is made of conductive material, such as gold, silver, platinum or copper.
  • the piezoelectric transducer 300 can generate burst waves, which are sequentially conducted to the inner and surrounding walls of the blood vessel through the sound-guiding fluid and the balloon 120, and apply repeated mechanical force to the intravascular lesions until the lesions are crushed. Since a tip is provided at the distal end of the catheter body 110 to facilitate the entry of the balloon 120 and the catheter body 110 into the blood vessel, and a groove 116 for accommodating the connecting wire 400 is provided on the outer wall of the catheter body 110 to avoid connection The wire 400 occupies a volume and reduces the diameter of the catheter body 110 so that the catheter body 110 passes through the coronary arteries and peripheral blood vessels more effectively. Furthermore, the piezoelectric transducer 300 includes a first electrode layer, a piezoelectric material layer and a second electrode layer in sequence. .
  • the tip is a short tapered hard head with a smooth surface, and the outer diameter increases from the distal end to the proximal end, which is helpful for blocking the narrow lesion area and reducing the damage of the catheter to the blood vessels.
  • the outer diameter and thickness of the tip gradually increase from the end entering the blood vessel to the end connected to the catheter body 110.
  • the outer diameter of the end entering the blood vessel is between 0.3 mm and 1.0 mm, and the outer diameter of the end connected to the catheter body 110 is 0.4 mm.
  • the inner diameter is between 0.2 mm ⁇ 0.9 mm, the inner diameter remains unchanged from the distal end to the proximal end, and the length is 5 mm ⁇ 15 mm, and the thickness is between 0.1 mm and 0.5 mm.
  • the outer diameter of the end entering the blood vessel can be set to 0.3 mm, 0.5 mm or 1.0 mm; the outer diameter of the end connected to the conduit body 110 can be set to 0.4 mm, 0.8 mm or 1.2 mm; inner diameter can be set to 0.2 mm, 0.5 mm or 0.9 mm; the length can be set to 5 mm, 10 mm or 15 mm; the thickness can be set to 0.1 mm, 0.3 mm or 0.5 mm.
  • the burst wave balloon catheter 10 also includes a burst wave generator 200.
  • the burst wave generator 200 is disposed at the proximal end of the catheter body 110.
  • the burst wave generator 200 is electrically connected to the piezoelectric transducer 300 through the connecting wire 400.
  • the wave generator 200 is used to generate an electrical signal of the burst wave, and the piezoelectric transducer 300 converts the electrical signal into a burst wave.
  • the material of the piezoelectric material layer is a piezoelectric single crystal, a polycrystalline piezoelectric ceramic, a polymer piezoelectric material or a polymer-piezoelectric ceramic composite material.
  • the piezoelectric material layer According to its unique piezoelectric effect, it can realize the mutual conversion of electrical signals and acoustic signals.
  • the piezoelectric material layer of this application is composed of piezoelectric ceramic columns randomly arranged in a polymer (specifically, epoxy resin) to form a 1-3 type piezoelectric composite material. After the polymer is cured, the piezoelectric ceramic columns are formed perpendicular to the ceramic columns. Cut in the direction to prepare 1-3 type piezoelectric composite material layers of required thickness. The random distribution of piezoelectric ceramic columns can well suppress its transverse vibration mode and increase its longitudinal electromechanical conversion efficiency.
  • the first electrode layer and the second electrode layer are respectively metal conductive layers, which respectively provide power for the piezoelectric material layer.
  • the material of the first electrode layer and the second electrode layer metal conductive layer can be: Gold, silver, platinum, copper, etc.
  • the piezoelectric transducer 300 of the present application is made of type 1-3 piezoelectric composite material, which is a composite composed of piezoelectric ceramic columns embedded in resin. It has high electroacoustic performance and is easy to form. mechanical properties.
  • the advantage of using the piezoelectric transducer 300 to generate burst waves is that the acoustic-to-electrical conversion is basically lossless.
  • the voltage used to generate burst waves is only a few hundred volts and the current is only a few amperes, making it safer to use.
  • the burst wave balloon catheter 10 is provided with a guide wire 130
  • the catheter body 110 is provided with mutually independent guide wire lumens 114 and filling chambers 115 .
  • the end is connected to the catheter seat 100.
  • the catheter seat 100 is provided with a guidewire interface 112, a wire interface 113 and a liquid injection interface 111.
  • the guidewire interface 112 is connected to the guidewire cavity 114, and the liquid injection interface 111 is connected to the filling cavity 115.
  • the filling cavity 115 is connected with the balloon 120; the guide wire 130 enters from the guide wire interface 112 and is accommodated in the guide wire cavity 114.
  • the guide wire 130 guides the movement of the catheter body 110; the liquid injection interface 111 is used for the entry of sound guide liquid. , the sound-guiding fluid enters the balloon 120 along the filling cavity 115 to expand the balloon 120; the wire interface 113 is used for the connecting wire 400 to enter.
  • the inside of the guidewire lumen 114 can be coated with an oily coating; the outside of the distal end of the catheter body 110 can be coated with a hydrophilic coating.
  • the catheter adapter 100 is provided at the proximal end of the catheter body 110.
  • the catheter body 110 is provided with double cavities.
  • the double chambers are the guidewire chamber 114 and the filling chamber 115.
  • the catheter adapter 100 is provided with three inner cavities.
  • the cavity is connected to the guide wire cavity 114 and the filling cavity 115 of the catheter body 110.
  • the three inner cavities are used to transport liquids, wear the guide wire 130 and wear the connecting wire 400.
  • This split design is easy to process and easy to damage. Replace parts when necessary.
  • the material of the catheter seat 100 can be polycarbonate or polyurethane; the material of the catheter body can be polyimide, polyetheretherketone, polyethylene, PEBA (polyether block amide), PET (polyterephthalene). Ethylene glycol formate), FEP (fluorinated ethylene propylene copolymer), PTFE (polytetrafluoroethylene) and other insulating materials.
  • a catheter reinforcement is provided between the catheter body 110 and the catheter seat 100.
  • the catheter reinforcement is a tapered tube design.
  • the catheter reinforcement includes a first side and a second side.
  • the first side is used to connect the catheter body 110
  • the second side is used to connect the catheter body 110 and the catheter seat 100.
  • the two sides are connected to the catheter seat 100.
  • the diameter of the catheter body 110 is smaller than the diameter of the catheter seat 100.
  • the diameter of the first side is adapted to the diameter of the catheter body 110, and the diameter of the second side is adapted to the diameter of the catheter seat 100. Since the diameter of the catheter body 110 is smaller, It is convenient for the catheter body 110 to enter the blood vessel.
  • the catheter seat 100 has a larger diameter and is easier to operate during use.
  • the catheter reinforcement can provide axial protection for the joint of the catheter body 110 and extend the service life of the catheter body 110.
  • the material of the catheter reinforcement may be polyimide or polyolefin.
  • the distal end of the catheter body 110 is placed in the blood vessel, the guide wire 130 guides the movement of the catheter body 110, and the balloon 120 is guided to the vascular lesion area, and then the liquid adding syringe 500 is used to inject the liquid into the blood vessel from the liquid filling interface 111
  • the sound-guiding fluid is injected, and the sound-guiding fluid enters the balloon 120 along the filling cavity 115, causing the balloon 120 to inflate and fully fit the inner and peripheral walls of the blood vessel.
  • the burst wave is sequentially transmitted to the inner and peripheral walls of the blood vessel through the sound-guiding fluid and the balloon 120, toward the inner and peripheral walls of the blood vessel.
  • Vascular lesions exert pressure.
  • the sound-guiding fluid may be physiological saline or a mixture of physiological saline and contrast agent.
  • the balloon 120 is designed with a single-layer or double-layer structure. Before filling, the balloon 120 reduces the outer diameter through regular folding, making the outer surface more regular and smooth.
  • the minimum outer diameter of the balloon 120 after folding is 0.5 mm ⁇ 1.0 mm; the diameter of the balloon 120 after being filled with sound-conducting fluid is 2 mm ⁇ 6 mm.
  • the minimum outer diameter after folding can be set to 0.5 mm, 0.8 mm or 1.0 mm; the diameter of the balloon 120 after being filled with sound-conducting fluid can be set to 2 mm, 3 mm or 6 mm, and the balloon 120 can fully fit the blood vessel.
  • the burst wave generated by the piezoelectric transducer 300 can pass through the sound-guiding fluid and the balloon 120 without loss or low loss.
  • the surface is sprayed with a polymer material coating to make the surface of the balloon 120 smoother and more easily pass through narrow lesion areas.
  • the piezoelectric transducer 300 is a circular tubular transducer set on the catheter body 110 , or the piezoelectric transducer 300 is affixed to the catheter body 110 .
  • the sheet transducer outside 110, the circular tubular transducer can be set outside the catheter body 110, the sheet transducer can be attached outside the catheter body 110, the number of circular tubular transducers or sheet transducers They are all at least one, specifically, they can be one or more than two.
  • this application can control the active area by designing the shape, structure and layout of the piezoelectric transducer 300 .
  • the piezoelectric transducer 300 is a circular tubular transducer sleeved on the conduit body 110.
  • the circular tubular transducer has a large contact area with the wall surface of the conduit body 110, and is easy and stable to install.
  • the inner diameter of the circular tube can be 0.5 mm ⁇ 3 mm
  • the outer diameter can be 1 mm ⁇ 5 mm
  • the tube length can be 1 mm ⁇ 10 mm
  • the inner diameter of the piezoelectric transducer 300 is set to 0.5 mm, 1 mm, 2 mm or 3 mm
  • the outer diameter of the piezoelectric transducer 300 is set to 1 mm, 2 mm, 3 mm, 4 mm or 5 mm
  • the tube length of the piezoelectric transducer 300 is set to 1 mm , 3 mm, 5 mm, 7 mm or 10 mm, so that the piezoelectric transducer 300 is regarded as an approximate point source, which facilitates precise control of the vibration pressure size, direction and action area of each piezoelectric transducer 300.
  • the number of piezoelectric transducers 300 is multiple. When the number of piezoelectric transducers 300 is more than two, not only can the acoustic impedance be reduced, but the acoustic impedance can also be reduced.
  • the signal of each piezoelectric transducer 300 is regulated separately.
  • the magnitude of the force is controlled by adjusting the emission energy of each piezoelectric transducer 300.
  • the particle size of calcified debris is controlled by adjusting the emission frequency of the piezoelectric transducer 300. size to meet the needs of treating different degrees of vascular calcification.
  • the signal amplitude range that generates the burst wave is 20 V ⁇ 500 V
  • the frequency range is 100 k ⁇ 10 MHz
  • the peak pressure is less than 20 MPa
  • the duty cycle range is 0.1% ⁇ 10%
  • the pulse duration range is 10 ⁇ s ⁇ 500 ⁇ s
  • repetition frequency range is 20 Hz ⁇ 1000 Hz.
  • FIGS. 1 to 5 please refer to FIGS. 1 to 5 .
  • the piezoelectric transducers 300 are electrically connected in parallel.
  • the multiple parallel transducers are The synthetic focus area can effectively cover all calcified lesions in blood vessels.
  • this application uses the KLM transmission line model to design the multi-layer structural materials and device parameters of the ultrasonic area array transducer.
  • the KLM model uses concentrated parameters to represent the electrical characteristics of the piezoelectric element, and uses the transmission line method to represent the mechanical characteristics of the mechanical structure. Electrical components, matching layers, backings and other structures can be connected in series in the form of transmission lines to describe the overall performance of the transducer and reveal the influence and role of each part.
  • the acoustic impedance Z 0 , capacitance C 0 , inductance X 1 , and the coupling coefficient ⁇ between the circuit end and the acoustic end are defined as follows:
  • is the density of the piezoelectric material
  • C is the particle velocity
  • A is the area of the piezoelectric crystal
  • d is the thickness
  • is the dielectric constant of the material
  • h is the piezoelectric constant.
  • Z a is the equivalent impedance from terminal C to terminals D and B in the model:
  • the KLM model represents each physical quantity of the transducer in the form of a transmission line, and uses mathematical formulas to express the relationship between the various quantities of the transducer.
  • the transducer is designed and optimized using YPiezoCAD software based on the KLM model.
  • the burst wave balloon catheter 10 further includes a marking ring 140.
  • the marking ring 140 is sleeved on the catheter body 110.
  • the marking ring 140 is located in the balloon 120.
  • the marking ring 140 140 is used to locate the position of the balloon 120 in the blood vessel.
  • a marking ring 140 is provided at both ends of the balloon 120 and outside the piezoelectric transducer 300 for X-ray imaging and accurate positioning of the balloon during surgery. 120 area of effect.
  • the marking ring 140 is embedded in the catheter body 110 to reduce the outer diameter of the working section of the burst wave balloon catheter 10 .
  • the marking ring 140 may be an X-ray opaque metal ring, and specifically may be made of metal materials such as gold, platinum, molybdenum, tungsten, or platinum-iridium alloy.
  • the piezoelectric transducer 300 provides radial pressure to the inner peripheral wall of the blood vessel so that the burst wave energy generated by the piezoelectric transducer 300 can act on the lesion.
  • the burst wave balloon catheter 10 further includes an insulating layer 117 .
  • the insulating layer 117 is disposed between the connecting wire 400 and the piezoelectric transducer 300 .
  • the insulating layer 117 will connect the wire. 400 is sealed in the groove 116, and the insulating layer 117 is set outside the conduit body 110, so that the four connecting wires 400 distributed outside the conduit body 110 are all sealed in the groove 116.
  • the thickness of the insulating layer 117 is between 0.05 mm and 1 mm.
  • the thickness of the insulating layer 117 can be set to 0.05 mm, 0.08 mm or 1 mm.
  • the burst wave includes multiple pulse waves
  • the pulse wave includes multiple consecutive simple harmonic vibration cycles
  • the frequency of the pulse wave is 100 kHz ⁇ 10 MHz
  • the duration of the pulse wave is 10 ⁇ s ⁇ 500 ⁇ s
  • the repetition frequency of the pulse wave is 25 Hz ⁇ 1000 Hz
  • the peak sound pressure of the burst wave is less than 20 MPa. It can provide repeated mechanical force to directly act on the diseased area in the blood vessel without producing thermal effects and without damaging the surrounding soft tissue and balloon 120.
  • the burst wave that is transmitted to the diseased area can directly act on the diseased area and break the diseased area into tiny pieces. Particles.
  • the shock wave used in the shock wave fragmentation technique in the prior art is a pressure wave.
  • a single shock wave only includes one vibration cycle.
  • the shock wave decays exponentially over time.
  • the voltage that generates the shock wave is at least Kilovolts, current at least several hundred amps, there is a risk of high-voltage electrical leakage.
  • the instantaneous maximum impact force of the shock wave is large, which can easily damage devices and blood vessels.
  • the particle size of the diseased blocks broken by the shock wave is larger than that of the burst wave, which can easily cause secondary clogged. Therefore, the burst wave of the present application can also be safer and more effective in distinguishing fragmented lesions than shock waves.
  • the burst wave generator 200 includes a pulse waveform generation module 210 , a connector module 220 and a transducer matching module 230 .
  • the transducer matching module 230 is signal-connected to the pulse waveform respectively.
  • the connector module 220 has a high-voltage pulse signal terminal and is connected to the piezoelectric transducer 300 through the high-voltage pulse signal terminal.
  • the pulse waveform generation module 210 supports multi-channel waveform transmission and can correspond to multiple piezoelectric transducers 300.
  • the timing and waveform parameters of each channel can be independently controlled.
  • the excitation sequence control is completed by a programmable logic device (FPGA).
  • the basic parameters of the pulses, including frequency, number, duty cycle, repetition frequency, etc., can be programmed and controlled;
  • the connector module 220 is provided with a high-voltage pulse signal terminal, and passes the high-voltage
  • the pulse signal end is connected to the wire interface 113 of the conduit body 110 to provide the piezoelectric transducer 300 to emit pulse signals to generate burst waves.
  • the transducer matching module 230 includes an inductor, a capacitor, and a resistor, matches the output resistance to 50 ohms, and is connected to the connector module 220 for signals.
  • the burst wave generator 200 also includes a power amplification module 240, which is connected to the pulse waveform generation module 210 and the transducer matching module 230 respectively; the power amplification module 240 includes a gain control module and a field effect transistor, and is used for Amplify the signal sent by the pulse wave generating module.
  • the power amplification module 240 amplifies the amplitude of the signal generated by the receiving front-end pulse waveform generation module 210, and then sends it to the power metal-oxide semiconductor field effect transistor for power amplification.
  • the two signals are connected to the programmable logic device and Under its control, the amplified waveform is output to the impedance matching circuit and conducted to the piezoelectric transducer 300 to generate a burst wave.
  • the burst wave generator 200 further includes an operation control module 250.
  • the operation control module 250 is connected with signals to the pulse waveform generation module 210 and the connector module 220 respectively, and is used to control the startup or shutdown of the pulse waveform generation module 210.
  • the operation control module 250 can be an operating handle or a foot pedal, and is connected to a programmable logic device with signals.
  • the key instructions can be compiled, and the pulse waveform generation module 210 can be controlled accordingly through the control signal to implement the corresponding function. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种爆裂波球囊导管(10),包括导管体(110)、尖端、球囊(120)、压电换能器(300)、导管座(100)和连接导线(400);导管体(110)分为近端和远端,球囊(120)设于导管体(110)远端,导管体(110)贯穿球囊(120),压电换能器(300)设于导管体(110)和球囊(120)之间;尖端设于导管体(110)远端端部;导管体(110)外壁设有凹槽(116);压电换能器(300)沿远离导管体(110)的径向方向依次包括第一电极层、压电材料层、第二电极层;导管座(100)设于导管体(110)近端端部,导管座(100)设置有三个内腔分别为导丝通道,充盈通道和导线通道,三个内腔与导管体(110)内设置的双腔相连通;连接导线(400)设于导管体(110)外壁设置的凹槽(116)内,与压电换能器(300)电连接,压电换能器(300)可产生爆裂波,爆裂波通过球囊(120)传导至血管钙化病变处,粉碎钙化病灶,改善血管顺应性。

Description

爆裂波球囊导管 技术领域
本申请涉及医疗器械技术领域,更具体地,涉及一种爆裂波球囊导管。
背景技术
血管介入导管是血管疾病(例如血管钙化、血管狭窄、血管闭塞等)采用血管介入技术进行诊疗的主要器械,血管介入导管种类繁多,包括微导管、导引导管、球囊导管、中间导管等。
技术问题
目前钙化病变的介入治疗方法主要有:①单纯球囊扩张血管成形术(Percutaneous transluminal balloon catheter angioplasty, PTCA),通过球囊膨胀扩张管腔,但无法改善血管顺应性,夹层发生率高,术后再狭窄发生率高,球囊扩张压力大于16 atm,未扩张的钙化病变不适用;②切割球囊(Scoring balloon angioplasty, SBA),通过扩张球囊,使得镶嵌在球囊导管上的一条或多条金属刀片与血管壁接触,并将血管壁上的斑块切开缝隙,从而比传统球囊血管成形术更可控地扩张血管腔。但压力过高会导致刀片嵌顿难以收回或球囊破裂,只适用于轻中度钙化病变;③斑块旋磨术(Coronary trartsluminal rotational atherectomy,CTRA),使用超高速旋转的转头将管腔内粥样硬化斑块、钙化组织碾磨成极细的微粒,从而将阻塞的管腔斑块消除,但操作复杂,并发症发生率较高,主要有远端栓塞、慢血流、无复流、旋磨头嵌顿、导丝断裂以及血管穿孔等,不改善术后再狭窄率;④准分子激光斑块消蚀成形术(Excimer laser coronary atherectomy, ELCA),激光以脉冲方式作用于组织,通过光化学作用破坏分子键,光热学作用产生热能,光机械作用产生动能,可将钙化斑块裂解为微小颗粒,但应对中膜钙化、偏心钙化结节、深层重度钙化存在局限性;⑤血管内冲击波钙化碎裂术(Shock wave intravascular lithotripsy, SIVL),利用液电效应,将充满液体的球囊放置钙化区域并在球囊内的电极之间施加电压电场,电极放电使液体迅速汽化、膨胀,引起球囊急速扩张,向钙化区域传导冲击波,压裂血管内浅表与深层的钙化斑块,而不损害周围的软组织,有效扩张血管腔,改善血管的顺应性。但利用液电效应间接产生的冲击波,具有以下缺点:第一,难以精准控制传导区域、产生冲击力的方向以及均匀一致性;第二,冲击力随距离而发生指数级衰减,要想使作用于球囊的单次冲击压达50 atm左右时,则需在电极之间施加上千伏电压以及几百安电流,如此高压电易导致球囊破裂,且存在高压电漏电风险;第三,冲击波作用范围较小,冲击波碎裂钙化斑块的粒径较大,血管顺应性的改善程度受到一定限制。
因此,现有钙化病变的介入治疗装置,难以精准控制,且病变块碎裂后粒径大,血管的顺应性改善效果受限。
技术解决方案
本申请的目的在于提出了一种爆裂波球囊导管,旨在解决现有的钙化病变的介入治疗装置,难以精准控制,且病变块碎裂后粒径大,血管的顺应性改善效果受限的问题。
为解决上述技术问题,本申请提供了一种爆裂波球囊导管包括导管体、尖端、球囊、压电换能器、导管座和连接导线;
所述导管体靠近操作者的一端为近端,所述导管体用于进入血管的一端为远端,所述球囊设置于所述导管体的远端,所述导管体贯穿所述球囊,所述压电换能器设置于所述导管体外,所述压电换能器位于所述球囊内;
所述尖端设置于所述导管体远端的端部;
所述导管体的外壁设有沿所述导管体纵向延伸的凹槽,所述连接导线容纳于所述凹槽内;
沿远离所述导管体的径向方向,所述压电换能器依次包括第一电极层、压电材料层和第二电极层;
所述导管座设置于所述导管体近端的端部;
所述连接导线的一端与所述压电换能器电连接,所述压电换能器用于振动产生爆裂波,所述爆裂波通过所述球囊传导至血管病变处。
在其中一种实施例中,所述压电材料层的材料为压电单晶体、多晶体压电陶瓷、高分子压电材料或聚合物-压电陶瓷复合材料;
所述第一电极层和所述第二电极层分别为金属导电层。
在其中一种实施例中,所述爆裂波球囊导管设置有导引导丝,所述导管体内设有互相独立的导丝腔和充盈腔,所述导管体的近端连接所述导管座,所述导管座设有导丝接口、导线接口和注液接口,所述导丝接口与所述导丝腔相连通,所述注液接口与所述充盈腔相连通,所述充盈腔与所述球囊相连通;所述导引导丝从所述导丝接口进入并容纳于所述导丝腔,所述导引导丝对所述导管体的移动进行导向;所述注液接口用于供导声液进入,所述导声液沿所述充盈腔进入所述球囊,使所述球囊膨胀;所述导线接口用于供所述连接导线进入。
在其中一种实施例中,所述压电换能器为套设于所述导管体上的圆管状换能器;
或者所述压电换能器为贴设于所述导管体外的片状换能器。
在其中一种实施例中,所述压电换能器的数量为多个。
在其中一种实施例中,当所述压电换能器的数量为多个时,各所述压电换能器之间以并联方式电连接。
在其中一种实施例中,所述爆裂波球囊导管还包括标记环,所述标记环套设于所述导管体上,所述标记环位于所述球囊内。
在其中一种实施例中,所述压电换能器向血管内周围壁提供径向压力。
在其中一种实施例中,所述爆裂波球囊导管还包括绝缘层,所述绝缘层设置于所述连接导线和所述压电换能器之间,所述绝缘层将所述连接导线密封于所述凹槽内。
在其中一种实施例中,所述爆裂波包括多个脉冲波,所述脉冲波包括连续多个简谐振动周期,所述脉冲波的频率为100 kHz~9.9 MHz,所述脉冲波的持续时间为10 μs~500 μs,脉冲波的重复频率为20 Hz~1000 Hz,所述爆裂波的峰值声压小于20 MPa。
有益效果
实施本申请实施例,将具有如下有益效果:
实施本申请的爆裂波球囊导管,由于在导管体的远端的端部设置有尖端,以便于球囊和导管体进入到血管内,且在导管体外壁设置用于容纳连接导线的凹槽,避免连接导线占用体积,降低导管体直径,使导管体更有效穿过冠脉和外周血管,进一步的,压电换能器依次包括第一电极层、压电材料层和第二电极层,通过产生爆破波碎裂钙化病变块,容易精准控,病变块碎裂后粒径小,有效改善血管的顺应性。本申请为血管钙化病变介入治疗提供了新工具。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本申请一具体实施例的爆裂波球囊导管的结构示意图。
图2是本申请一具体实施例的压电换能器的结构示意图。
图3是本申请一具体实施例产生的爆裂波的波形图。
图4是图3所示的爆裂波中的脉冲波的波形图。
图5是单次冲击波的波形图。
图6是本申请一具体实施例的爆裂波发生器的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1至图5,一实施例的爆裂波球囊导管10包括导管体110、尖端、球囊120、压电换能器300、导管座100和连接导线400。
在本实施例中,导管体110靠近操作者的一端为近端,导管体110用于进入血管的一端为远端,球囊120设置于导管体110的远端,导管体110贯穿球囊120,压电换能器300设置于导管体110外,压电换能器300位于球囊120内,压电换能器300设置于导管体110外且位于球囊120内,使压电换能器300与球囊120相结合,利用球囊120充分贴合血管内周围壁,使爆裂波的重复机械力作用于血管病变区域。
在本实施例中,尖端设置于导管体110远端的端部,用于进入血管,具体的,尖端材料可由材质较硬的高分子聚合材料或金属材料制造,表面平滑,具有弹性,保证尖端主体到球囊120的平滑过渡,优选的,尖端由金属材料制造,金属材料具有较高的强度,支撑力远高于高分子聚合材料。尖端可以由镍钛合金、金、银、铂或铜制成。
进一步的,尖端、导管体110和球囊120之间的连接方式可为胶水粘结、热焊接或激光焊接,使尖端、导管体110和球囊120三者能够更好地连接,提高焊接牢固性,避免在使用中出现脱落。
在本实施例中,导管体110的外壁设有沿导管体110纵向延伸的凹槽116,连接导线400容纳于凹槽116内,减小导管体110的直径,便于进入血管内。
在本实施例中,沿远离导管体110的径向方向,压电换能器300依次包括第一电极层、压电材料层和第二电极层,第一电极层和第二电极层分别为压电材料层提供电源。
在本实施例中,导管座100设置于导管体110近端的端部,便于操作者使用。
在本实施例中,连接导线400的一端与压电换能器300电连接,压电换能器300用于振动产生爆裂波,爆裂波通过球囊120传导至血管病变处,以使爆裂波可精准的向血管病变施加压力。具体的,连接导线400由导电材料制成,如金、银、铂或铜。
使用时,压电换能器300可以产生爆裂波,爆裂波依次经导声液、球囊120传导至血管内周围壁,向血管内病变施加重复机械力,直至粉碎病变。由于,在导管体110的远端的端部设置有尖端,以便于球囊120和导管体110进入到血管内,且在导管体110外壁设置用于容纳连接导线400的凹槽116,避免连接导线400占用体积,降低导管体110直径,使导管体110更有效穿过冠脉和外周血管,进一步的,压电换能器300依次包括第一电极层、压电材料层和第二电极层。
进一步的,尖端为短锥形硬头,表面光滑,外径由远端至近端递增,有利于通过堵塞狭窄的病变区域,减少导管对血管的损伤。优选的,尖端由进入血管的一端至与导管体110连接的一端外径和厚度递增,进入血管一端的外径为0.3 mm ~ 1.0 mm之间,与导管体110连接一端的外径为0.4 mm ~ 1.2 mm之间,内径为0.2 mm ~ 0.9 mm之间,内径由远端至近端保持不变,长度为5 mm ~ 15 mm之间,厚度为0.1 mm ~ 0.5 mm之间,具体的,进入血管一端的外径可以设置为0.3 mm、0.5 mm或1.0 mm;与导管体110连接一端的外径可以设置为0.4 mm、0.8 mm或1.2 mm;内径可以设置为0.2 mm、0.5 mm或0.9 mm;长度可以设置为5 mm、10 mm或15 mm;厚度可以设置为0.1 mm、0.3 mm或0.5 mm。
具体的,爆裂波球囊导管10还包括爆裂波发生器200,爆裂波发生器200设置于导管体110的近端,爆裂波发生器200通过连接导线400电连接压电换能器300,爆裂波发生器200用于产生所述爆裂波的电信号,压电换能器300将所述电信号转换为爆裂波。
在一实施例中,请参阅图1至图5,压电材料层的材料为压电单晶体、多晶体压电陶瓷、高分子压电材料或聚合物-压电陶瓷复合材料,压电材料层根据其特有的压电效应,可实现电信号与声信号的互相转换。
具体的,本申请的压电材料层为压电陶瓷柱随机排列于聚合物(具体为环氧树脂)中制成1-3型压电复合材料,聚合物固化后,在垂直于陶瓷柱的方向切割制备成所需厚度的1-3型压电复合材料层。压电陶瓷柱的随机分布可以很好地抑制其横向振动模式,增大其纵向机电转换效率。
在本实施例中,第一电极层和第二电极层分别为金属导电层,分别为压电材料层提供电源,具体的,第一电极层和第二电极层金属导电层的材料具体可以为金、银、铂、铜等。
可以理解的是,本申请的压电换能器300采用1-3型压电复合材料制造,其为压电陶瓷柱嵌在树脂里组成的复合物,具有很高的电声性能和容易成型的机械特性。采用压电换能器300产生爆裂波的优点还在于,声电转化基本无损耗,产生爆裂波的电压仅为几百伏,电流仅为几安,使用更安全。
在一实施例中,请参阅图1至图5,爆裂波球囊导管10设置有导引导丝130,导管体110内设有互相独立的导丝腔114和充盈腔115,导管体110的近端连接导管座100,导管座100设有导丝接口112、导线接口113和注液接口111,导丝接口112与导丝腔114相连通,注液接口111与充盈腔115相连通,充盈腔115与球囊120相连通;导引导丝130从导丝接口112进入并容纳于导丝腔114,导引导丝130对导管体110的移动进行导向;注液接口111用于供导声液进入,导声液沿充盈腔115进入球囊120,使球囊120膨胀;导线接口113用于供连接导线400进入。其中,导丝腔114内部可涂覆油性涂层;导管体110远端外部可涂覆亲水涂层。
具体的,导管座100设置于导管体110的近端,导管体110内设置有双腔,双腔分别为导丝腔114和充盈腔115,导管座100内设置有三个内腔,三个内腔与导管体110的导丝腔114和充盈腔115相连通,三个内腔分别用于输送液体,穿设导引导丝130和穿设连接导线400,这种分体式设计便于加工,以及损坏时更换零件。优选的,导管座100的材料可为聚碳酸酯、聚氨酯;导管本体的材料可以为聚酰亚胺、聚醚醚酮、聚乙烯、PEBA(聚醚嵌段酰胺)、PET(聚对苯二甲酸乙二醇酯)、FEP(氟化乙烯丙烯共聚物)、PTFE(聚四氟乙烯)等绝缘材料。
进一步的,导管体110和导管座100之间设置有导管加强件,导管加强件为锥形管设计,导管加强件包括第一侧和第二侧,第一侧用于连接导管体110,第二侧连接导管座100,导管体110直径小于导管座100直径,第一侧直径与导管体110相适配,第二侧直径与导管座100直径相适配,由于导管体110直径较小,便于导管体110进入血管内,导管座100直径较大,便于使用时操作,导管加强件可以为导管体110接头处提供轴向保护,延长导管体110的使用寿命。优选的,导管加强件材料可为聚酰亚胺、聚烯烃。
可以理解的是,将导管体110的远端置于血管中,导引导丝130对导管体110的移动进行导向,引导球囊120到达血管病变区域,然后使用加液注射器500从注液接口111注入导声液,导声液沿充盈腔115进入球囊120,使球囊120膨胀,充分贴合血管内周围壁,爆裂波依次经导声液、球囊120传导至血管内周围壁,向血管病变施加压力。具体的,导声液可以为生理盐水或生理盐水和造影剂的混合物。
进一步的,球囊120为单层或双层结构设计,未充液前,球囊120通过规整的折叠来减小外径,使外表面更加规则光滑,球囊120折叠后最小外径为0.5 mm ~ 1.0 mm;球囊120充盈导声液扩张后直径为2 mm ~ 6 mm之间。具体的,折叠后最小外径可以设置为0.5 mm、0.8 mm或1.0 mm;球囊120充盈导声液扩张后直径可以设置为2 mm、3 mm或6 mm,球囊120能充分贴合血管壁,压电换能器300产生的爆裂波可无损耗或低损耗的通过导声液和球囊120,具体的,表面喷涂高分子材料涂层,使球囊120表面变得更光滑,更容易通过狭窄的病变区域。
在一实施例中,请参阅图1至图5,压电换能器300为套设于所述导管体110上的圆管状换能器,或者压电换能器300为贴设于导管体110外的片状换能器,圆管状换能器可以套设于导管体110外,片状换能器可以贴设于导管体110外,圆管状换能器或片状换能器的数量均至少为一个,具体的,可以为一个或两个以上。
进一步的,本申请可通过设计压电换能器300的形状结构和布局来控制作用区域。优选的,压电换能器300为套设于所述导管体110上的圆管状换能器,圆管状换能器与导管体110的壁面贴合接触面积大,且安装方便、稳定。具体的,圆管状内径可以为0.5 mm ~ 3 mm,外径可以为1 mm ~ 5 mm,管长可以为1 mm ~ 10 mm,进一步的,压电换能器300的内径设置为0.5 mm、1 mm、2 mm或3 mm;压电换能器300的外径设置为1 mm、2 mm、3 mm、4 mm或5 mm;压电换能器300的管长设置为1 mm、3 mm、5 mm、7 mm或10 mm,以将压电换能器300视为近似点源,便于精准控制各压电换能器300的振动压力大小、方向和作用区域。
在一实施例中,请参阅图1至图5,压电换能器300的数量为多个,当压电换能器300的数量为两个以上时,不仅可以降低声阻抗,还可以对每个压电换能器300的信号分别进行调控,通过调节各压电换能器300的发射能量来控制作用力的大小,通过调节压电换能器300的发射频率来控制钙化碎片粒径的大小,以满足治疗不同程度血管钙化病变需求。
具体的,产生爆裂波的信号幅度范围为20 V ~ 500 V,频率范围为100 k ~10 MHz,峰值压强小于20 MPa,占空比范围为0.1% ~ 10%,脉冲持续时间范围为10 μs ~ 500 μs,重复频率范围为20 Hz ~ 1000 Hz。
在一实施例中,请参阅图1至图5,当压电换能器300的数量为多个时,各压电换能器300之间以并联方式电连接,多个并联换能器的合成作用焦域能有效覆盖血管内全部钙化病变区域。
具体的,本申请采用KLM传输线模型设计超声面阵换能器的多层叠结构材料和器件等参数,KLM模型用集中参数表示压电元件的电特性,用传输线方式表示机械结构的力学特性,压电元件、匹配层、背衬等结构可以通过传输线的形式串联,描述换能器的整体性能,揭示各部分的影响和作用。模型中声阻抗Z 0、电容C 0、电感X 1,电路端和声学端的耦合系数∅定义如下:
上式中ρ为压电材料的密度,C为质点速度,A为压电晶体的面积,d为厚度,ε为材料的介电常数,h为压电常数。模型A端输入阻抗为:
Z a是模型中从C端到D和B两端的等效阻抗:
其中Z 1和Z 2分别为背衬和匹配层阻抗。通过KLM模型以传输线的方式表示换能器的各个物理量,以数学式来表示换能器各个量之间的关系。采用基于KLM模型的YPiezoCAD软件对换能器进行设计和优化。
在一实施例中,请参阅图1至图5,爆裂波球囊导管10还包括标记环140,标记环140套设于导管体110上,标记环140位于所述球囊120内,标记环140用于定位球囊120在血管中的位置,具体的在球囊120的两端以及压电换能器300的外侧分别设置一标记环140,用于X射线显影,术中精确定位球囊120的作用区域。优选的,将标记环140嵌入导管体110内,减小爆裂波球囊导管10工作段的外径。标记环140可以为不透X射线的金属环,具体可以为金、铂、钼、钨或铂铱合金等金属材料制造。
在一实施例中,请参阅图1至图5,压电换能器300向血管内周围壁提供径向压力,以便于压电换能器300产生的爆裂波能量可以作用于病变。
在一实施例中,请参阅图1至图5,爆裂波球囊导管10还包括绝缘层117,绝缘层117设置于连接导线400和压电换能器300之间,绝缘层117将连接导线400密封于凹槽116内,绝缘层117套设于导管体110外,将分布于导管体110外的四根连接导线400均密封于凹槽116内。具体的,绝缘层117的厚度为0.05 mm ~ 1 mm之间,优选的,绝缘层117的厚度可以设置为0.05 mm、0.08 mm或1 mm。
在一实施例中,请参阅图1至图5,爆裂波包括多个脉冲波,脉冲波包括连续多个简谐振动周期,脉冲波的频率为100 kHz ~ 10 MHz,脉冲波的持续时间为10 μs ~ 500 μs,脉冲波的重复频率为25 Hz ~ 1000 Hz,爆裂波的峰值声压小于20 MPa。能提供重复机械力直接作用于血管内病变区域,且不产生热效应,不损伤周围的软组织和球囊120,被传导至病变区域的爆裂波,能够直接作用于病变区域,使病变区域裂解为微小颗粒。
具体的,现有技术中的冲击波碎裂术所使用的冲击波是压力波,如图5所示,单次冲击波仅包括一个振动周期,冲击波随时间延长呈指数级衰减,产生冲击波的电压至少上千伏,电流至少几百安,存在高压电漏电风险,冲击波的瞬时最高冲击力较大,易损伤装置和血管,冲击波破碎的病变块的粒径相比爆裂波更大,易导致二次堵塞。因此,本申请的爆裂波相比冲击波,也可更安全、更有效的碎裂病变区别。
在一实施例中,请参阅图1至图6,爆裂波发生器200包括脉冲波形发生模块210、连接器模块220和换能器匹配模块230,换能器匹配模块230分别信号连接于脉冲波形发生模块210和连接器模块220,连接器模块220具有高压脉冲信号端,并通过高压脉冲信号端连接于压电换能器300。
在本实施例中,脉冲波形发生模块210支持多通道波形发送,可对应多个压电换能器300,每个通道的时序和波形参数均可独立控制。激励时序控制由可编程逻辑器件(FPGA)完成,脉冲的基本参数包括频率、个数、占空比、重复频率等都可以进行编程控制;连接器模块220设置有高压脉冲信号端,并通过高压脉冲信号端与导管体110的导线接口113连接,以提供压电换能器300发射脉冲信号产生爆裂波。具体地,换能器匹配模块230包括电感、电容、电阻,将输出电阻匹配到50欧姆,并与连接器模块220信号连接。
进一步地,爆裂波发生器200还包括功率放大模块240,功率放大模块240分别连接于脉冲波形发生模块210和换能器匹配模块230;功率放大模块240包括增益控制模块和场效应晶体管,并用于放大脉冲波发生模块发出的信号。
在本实施例中,功率放大模块240由接收前端脉冲波形发生模块210产生的信号进行幅度放大,再送至功率金属-氧化物半导体场效应晶体管进行功率放大,二者信号连接于可编程逻辑器件并受其控制,放大后的波形输出给阻抗匹配电路,并传导至压电换能器300生成爆裂波。
在一实施例中,爆裂波发生器200还包括操作控制模块250,操作控制模块250分别信号连接于脉冲波形发生模块210和连接器模块220,并用于控制脉冲波形发生模块210的启动或关闭。
具体地,操作控制模块250可以为操作手柄或脚踏板,并信号连接于可编程逻辑器件,使用时可以将按键指令进行编译,通过控制信号对脉冲波形发生模块210进行相应控制以实现对应功能。

Claims (10)

  1. 一种爆裂波球囊导管,其特征在于,包括导管体、尖端、球囊、压电换能器、导管座和连接导线;
    所述导管体靠近操作者的一端为近端,所述导管体用于进入血管的一端为远端,所述球囊设置于所述导管体的远端,所述导管体贯穿所述球囊,所述压电换能器设置于所述导管体外,所述压电换能器位于所述球囊内;
    所述尖端设置于所述导管体远端的端部;
    所述导管体的外壁设有沿所述导管体纵向延伸的凹槽,所述连接导线容纳于所述凹槽内;
    沿远离所述导管体的径向方向,所述压电换能器依次包括第一电极层、压电材料层和第二电极层;
    所述导管座设置于所述导管体近端的端部;
    所述连接导线的一端与所述压电换能器电连接,所述压电换能器用于振动产生爆裂波,所述爆裂波通过所述球囊传导至血管病变处。
  2. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述压电材料层的材料为压电单晶体、多晶体压电陶瓷、高分子压电材料或聚合物-压电陶瓷复合材料;
    所述第一电极层和所述第二电极层分别为金属导电层。
  3. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述爆裂波球囊导管设置有导引导丝,所述导管体内设有互相独立的导丝腔和充盈腔,所述导管体的近端连接所述导管座,所述导管座设有导丝接口、导线接口和注液接口,所述导丝接口与所述导丝腔相连通,所述注液接口与所述充盈腔相连通,所述充盈腔与所述球囊相连通;所述导引导丝从所述导丝接口进入并容纳于所述导丝腔,所述导引导丝对所述导管体的移动进行导向;所述注液接口用于供导声液进入,所述导声液沿所述充盈腔进入所述球囊,使所述球囊膨胀;所述导线接口用于供所述连接导线进入。
  4. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述压电换能器为套设于所述导管体上的圆管状换能器;
    或者所述压电换能器为贴设于所述导管体外的片状换能器。
  5. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述压电换能器的数量为多个。
  6. 根据权利要求5所述的爆裂波球囊导管,其特征在于,当所述压电换能器的数量为多个时,各所述压电换能器之间以并联方式电连接。
  7. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述爆裂波球囊导管还包括标记环,所述标记环套设于所述导管体上,所述标记环位于所述球囊内。
  8. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述压电换能器向血管内周围壁提供径向压力。
  9. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述爆裂波球囊导管还包括绝缘层,所述绝缘层设置于所述连接导线和所述压电换能器之间,所述绝缘层将所述连接导线密封于所述凹槽内。
  10. 根据权利要求1所述的爆裂波球囊导管,其特征在于,所述爆裂波包括多个脉冲波,所述脉冲波包括连续多个简谐振动周期,所述脉冲波的频率为100 kHz~10 MHz,所述脉冲波的持续时间为10 μs~500 μs,脉冲波的重复频率为25 Hz~1000 Hz,所述爆裂波的峰值声压小于20 MPa。
PCT/CN2022/111106 2022-07-26 2022-08-09 爆裂波球囊导管 WO2024021159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210885918.3 2022-07-26
CN202210885918.3A CN115154858A (zh) 2022-07-26 2022-07-26 爆裂波球囊导管

Publications (1)

Publication Number Publication Date
WO2024021159A1 true WO2024021159A1 (zh) 2024-02-01

Family

ID=83496783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111106 WO2024021159A1 (zh) 2022-07-26 2022-08-09 爆裂波球囊导管

Country Status (2)

Country Link
CN (1) CN115154858A (zh)
WO (1) WO2024021159A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116392203B (zh) * 2023-06-06 2023-09-22 上海佳沐垚医疗科技有限公司 一种震波导管、电极连接结构及控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180153568A1 (en) * 2016-12-06 2018-06-07 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
CN110811762A (zh) * 2019-08-08 2020-02-21 谱创医疗科技(上海)有限公司 冲击波增强型药物输送导管
CN111790046A (zh) * 2020-07-31 2020-10-20 深圳市赛禾医疗技术有限公司 一种压力波球囊导管
CN113332570A (zh) * 2021-07-02 2021-09-03 苏州中荟医疗科技有限公司 一种球囊导管及冲击波发生系统
CN215228134U (zh) * 2021-03-30 2021-12-21 南京友德邦医疗科技有限公司 一种超声治疗血管钙化病变的医疗器械
CN113877044A (zh) * 2021-11-03 2022-01-04 上海微创旋律医疗科技有限公司 医疗装置
CN114027926A (zh) * 2021-10-28 2022-02-11 嘉兴嘉创智医疗设备有限公司 血管内钙化斑块冲击断裂装置
CN114533198A (zh) * 2022-02-24 2022-05-27 上海蓝帆博元医疗科技有限公司 一种冲击波球囊导管装置以及医疗设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103505798B (zh) * 2013-09-30 2015-09-09 上海魅丽纬叶医疗科技有限公司 表面有沟槽的消融导管
CN112168157B (zh) * 2020-09-25 2022-12-16 杭州未名信科科技有限公司 肺动脉漂浮导管及其制备方法
CN112156323A (zh) * 2020-10-09 2021-01-01 郑永昌 肝门静脉导管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180153568A1 (en) * 2016-12-06 2018-06-07 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
CN110811762A (zh) * 2019-08-08 2020-02-21 谱创医疗科技(上海)有限公司 冲击波增强型药物输送导管
CN111790046A (zh) * 2020-07-31 2020-10-20 深圳市赛禾医疗技术有限公司 一种压力波球囊导管
CN215228134U (zh) * 2021-03-30 2021-12-21 南京友德邦医疗科技有限公司 一种超声治疗血管钙化病变的医疗器械
CN113332570A (zh) * 2021-07-02 2021-09-03 苏州中荟医疗科技有限公司 一种球囊导管及冲击波发生系统
CN114027926A (zh) * 2021-10-28 2022-02-11 嘉兴嘉创智医疗设备有限公司 血管内钙化斑块冲击断裂装置
CN113877044A (zh) * 2021-11-03 2022-01-04 上海微创旋律医疗科技有限公司 医疗装置
CN114533198A (zh) * 2022-02-24 2022-05-27 上海蓝帆博元医疗科技有限公司 一种冲击波球囊导管装置以及医疗设备

Also Published As

Publication number Publication date
CN115154858A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US11266817B2 (en) Cavitation catheter
US11071557B2 (en) Catheter for creating pulse wave within vasculature
US20230011207A1 (en) System for treating thrombus in body lumens
US5611807A (en) Ultrasonic angioplasty balloon catheter
WO2023072154A1 (zh) 电极球囊导管
EP2938386B1 (en) Drug delivery via mechanical vibration balloon
US6024718A (en) Intraluminal directed ultrasound delivery device
WO2023160505A1 (zh) 一种冲击波球囊导管装置以及医疗设备
CN214907695U (zh) 一种压力波球囊导管及医疗器械
CN112971914B (zh) 一种血管内灌注冲击波碎石导管系统
CN114642477B (zh) 血管钙化斑块切割设备
WO2024021159A1 (zh) 爆裂波球囊导管
JP2022520176A (ja) 末梢血管組織改変装置及びその使用方法
CN114027926A (zh) 血管内钙化斑块冲击断裂装置
CN216167694U (zh) 电极球囊导管
CN219021398U (zh) 一种集成脉冲聚焦超声的压力波球囊导管
CN116492011B (zh) 冲击波球囊导管
CN112472968A (zh) 一种超声刻痕导管
CN114916992A (zh) 一种集成脉冲聚焦超声的压力波球囊导管及其使用方法
WO2024000633A1 (zh) 治疗闭塞性病变的前向爆裂波发生系统
CN116942246A (zh) 用于血管成形术的爆裂波发生方法及爆裂波发生系统
US20240099773A1 (en) Lithotripsy balloon catheter
CN117297712A (zh) 电极球囊导管
CN115778487A (zh) 一种可用于靶向治疗的冲击波球囊导管及导管系统
AU2021396315A1 (en) Lesion crossing shock wave catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952603

Country of ref document: EP

Kind code of ref document: A1