WO2024019180A1 - タファミジス又はその塩の製造方法 - Google Patents

タファミジス又はその塩の製造方法 Download PDF

Info

Publication number
WO2024019180A1
WO2024019180A1 PCT/JP2023/027059 JP2023027059W WO2024019180A1 WO 2024019180 A1 WO2024019180 A1 WO 2024019180A1 JP 2023027059 W JP2023027059 W JP 2023027059W WO 2024019180 A1 WO2024019180 A1 WO 2024019180A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
formula
compound represented
tafamidis
manufacturing
Prior art date
Application number
PCT/JP2023/027059
Other languages
English (en)
French (fr)
Inventor
博 吉野
祐一 城
由 木村
Original Assignee
白鳥製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白鳥製薬株式会社 filed Critical 白鳥製薬株式会社
Publication of WO2024019180A1 publication Critical patent/WO2024019180A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals

Definitions

  • the present invention relates to a method for producing Tafamidis or a salt thereof. More specifically, the present invention relates to a method for producing Tafamidis or a salt thereof and a synthetic intermediate thereof.
  • Tafamidis meglumine is a drug whose indication is to suppress the progression of peripheral neuropathy in transthyretin-type familial amyloid polyneuropathy and to treat transthyretin-type cardiac amyloidosis. It has been added in recent years, and demand is expected to increase.
  • Patent Documents 1 and 2 A method of obtaining a benzoxazole derivative by cyclization in the presence of a benzoxazole is known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 A method of obtaining a benzoxazole derivative by cyclization in the presence of a benzoxazole is known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 A method of obtaining a benzoxazole derivative by cyclization in the presence of a benzoxazole is known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 have the problem of requiring complicated purification because side reactions tend to occur during amidation and selectivity and yield are low.
  • 3-hydroxy-4-aminobenzoic acid was expensive, leading to high costs.
  • Patent Document 1 it is necessary to methyl esterify the carboxy group derived from 3-hydroxy-4-aminobenzoic acid for purification, and column purification is performed that is difficult to industrialize.
  • the method described in Patent Document 1 requires a liquid volume of 187 v/w
  • the method described in Patent Document 2 requires a liquid volume of 170 v/w, resulting in poor production efficiency.
  • [2-Hydroxy-4-carboxyphenyl]-3,5-dichlorobenzamide has poor filterability, making industrialization even more difficult.
  • Non-Patent Document 1 when N-(2-bromo-5-nitrophenyl)benzamide is cyclized (C-O coupling reaction) to obtain a benzoxazole derivative, bis(1,5-cyclooctadiene)diiridium(I ) It has been proposed to use dichloride (hereinafter also simply referred to as an iridium catalyst) as a catalyst (Non-Patent Document 1).
  • Non-Patent Document 1 methyl 2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylate (Methyl 2-(3) , 5-dichlorophenyl)benzo[d]oxazole-6-carboxylate) (methyl ester of Tafamidis) was obtained in a yield of 52%.
  • Non-Patent Document 1 N-(2-bromo-5-nitrophenyl)cinnamamide (N- (2-Bromo-5-nitrophenyl)cinnamamide), and when the above iridium catalyst was used, the benzoxazole derivative was produced in a yield of 74% without producing any by-products (de-brominated product). %. However, when a copper iodide catalyst was used, the yield of the benzoxazole derivative remained at 24%, and the production of a large amount of by-products (debrominated products) was confirmed (61%). Therefore, iridium catalysts were considered to be more useful than copper catalysts such as copper iodide catalysts in increasing the efficiency of cyclization by C—O coupling reactions.
  • An object of the present invention is to provide a method that can produce Tafamidis or a salt thereof in high yield.
  • the present inventors conducted intensive studies on the cyclization reaction of N-[2-halo-4-(alkoxycarbonyl)phenyl]-3,5-dichlorobenzamide using various catalysts, and found that copper halide, carboxylic acid N-[2-halo-4-(alkoxycarbonyl)phenyl]-3,5-dichlorobenzamide in the presence of one or more copper catalysts selected from copper, copper sulfate, and copper oxide, a base, and an amine ligand.
  • the present invention was completed by surprisingly discovering that tafamidis or a salt thereof can be produced in high yield and at low cost by a method including a cyclization step of cyclizing.
  • the present invention provides the following ⁇ 1> to ⁇ 14>.
  • ⁇ 1> In the presence of one or more copper catalysts selected from copper halides, copper carboxylates, copper sulfates, and copper oxides, a base, and an amine ligand, a compound represented by the following formula (1) is fused into a ring.
  • a method for producing tafamidis or a salt thereof (hereinafter also referred to as the production method of the present invention), which includes a cyclization step to obtain a compound represented by the following formula (2).
  • R 1 represents a linear or branched alkyl group
  • X represents a halogen atom
  • R 1 has the same meaning as above.
  • ⁇ 2> Further includes an amidation step in which the compound represented by the following formula (3) and the compound represented by the following formula (4) are subjected to an amidation reaction in the presence of a base, and the compound represented by the following formula (1) is ) is used in the cyclization step, the manufacturing method according to ⁇ 1>.
  • R 1 has the same meaning as above.
  • ⁇ 4> Further includes an esterification step in which a compound represented by the following formula (11) and a compound represented by the following formula (12) are subjected to a dehydration condensation reaction, and the compound represented by the formula (4) obtained in the step is The manufacturing method according to ⁇ 2>, wherein a compound is used in the amidation step.
  • R 1 has the same meaning as above.
  • ⁇ 5> The production method according to any one of ⁇ 1> to ⁇ 4>, further comprising a hydrolysis step of ester hydrolysis of the compound represented by formula (2) obtained in the cyclization step.
  • ⁇ 7> The manufacturing method according to any one of ⁇ 1> to ⁇ 5>, wherein one or more copper catalysts selected from copper halides, copper carboxylates, and copper sulfates are used as the copper catalyst.
  • ⁇ 8> The manufacturing method according to any one of ⁇ 1> to ⁇ 5>, wherein copper halide is used as the copper catalyst.
  • ⁇ 9> The manufacturing method according to ⁇ 8>, wherein one or more copper halides selected from copper(I) iodide, copper(I) bromide, and copper(I) chloride are used as the copper halide.
  • ⁇ 10> The production method according to any one of ⁇ 1> to ⁇ 9>, wherein an amine ligand selected from monovalent amine ligands and diamine ligands is used as the amine ligand.
  • ⁇ 11> The manufacturing method according to any one of ⁇ 1> to ⁇ 10>, wherein X is a chlorine atom or a bromine atom.
  • R 1 represents a linear or branched alkyl group
  • X represents a fluorine atom, a bromine atom or an iodine atom.
  • Tafamidis or a salt thereof can be produced in high yield and at low cost.
  • the specific compound of the present invention is useful as a synthetic intermediate for Tafamidis or a salt thereof.
  • the production method of the present invention is produced by the following formula (1) in the presence of one or more copper catalysts selected from copper halides, copper carboxylates, copper sulfates, and copper oxides, a base, and an amine ligand. (hereinafter also referred to as compound (1)) to obtain a compound represented by the following formula (2) (hereinafter also referred to as compound (2)). It is.
  • the cyclization step in the production method of the present invention is less likely to cause side reactions and can quantitatively produce highly pure compound (2), so the production method of the present invention is an industrially excellent production method. .
  • the cyclization step in the production method of the present invention requires a small amount of liquid (the maximum amount of liquid until separation of the product), making it easy to downsize the production equipment required to produce tafamidis.
  • R 1 represents a linear or branched alkyl group
  • X represents a halogen atom
  • R 1 has the same meaning as above.
  • R 1 represents a linear or branched alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 12, more preferably 1 to 8, still more preferably 1 to 4, particularly preferably 1 to 2, from the viewpoint of availability and reaction efficiency.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. Among these, methyl group and ethyl group are preferred, and ethyl group is more preferred.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom a chlorine atom
  • a bromine atom a bromine atom
  • an iodine atom examples include chlorine atom, bromine atom, and iodine atom.
  • chlorine atom, bromine atom, and iodine atom are preferred, and chlorine atom and bromine atom are more preferred.
  • Examples of compound (1) include N-[2-bromo-4-(methoxycarbonyl)phenyl]-3,5-dichlorobenzamide, N-[2-bromo-4-(ethoxycarbonyl)phenyl]-3, 5-dichlorobenzamide, N-[2-bromo-4-(n-propoxycarbonyl)phenyl]-3,5-dichlorobenzamide, N-[2-bromo-4-(isopropoxycarbonyl)phenyl]-3,5 -dichlorobenzamide, N-[2-chloro-4-(methoxycarbonyl)phenyl]-3,5-dichlorobenzamide, N-[2-chloro-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide, N-[2-chloro-4-(n-propoxycarbonyl)phenyl]-3,5-dichlorobenzamide, N-[2-chloro-4-(isopropoxycarbonyl)phenyl]
  • the cyclization step uses one or more copper catalysts selected from copper halides, copper carboxylates, copper sulfates, and copper oxides.
  • this copper catalyst By using this copper catalyst, the cyclization reaction can proceed with high efficiency.
  • one or more copper catalysts selected from copper halides, copper carboxylates, and copper sulfates are preferred.
  • the above-mentioned copper catalysts include copper (I) iodide, copper (II) iodide, copper (I) bromide, copper (II) bromide, and copper (I) chloride.
  • copper(II) chloride copper(I) acetate, copper(II) acetate, copper trifluoroacetate, copper pentafluoropropionate, copper oxalate, copper(I) sulfate, copper(II) sulfate, copper(I) oxide ) and copper(II) oxide, preferably one or more selected from copper(I) iodide, copper(II) iodide, copper(I) bromide, copper(II) bromide, copper(I) chloride, More preferably one or more selected from copper (II) chloride, copper (I) acetate, copper (II) acetate, copper (I) sulfate, copper (II) sulfate, copper (I) oxide, and copper (II) oxide.
  • copper(I) iodide More preferably, one or more selected from copper(I) iodide, copper(I) bromide, copper(I) chloride, copper(I) acetate, copper(II) sulfate, and copper(II) oxide;
  • copper (I) bromide copper (I) chloride, copper acetate and copper (II) sulfate are more preferred, and copper (I) iodide is particularly preferred.
  • the amount of one or more copper catalysts selected from copper halides, copper carboxylates, copper sulfates, and copper oxides is usually in the range of 0.1 to 500 mol per 100 mol of compound (1). From the viewpoint of reaction efficiency and production cost, the amount is preferably in the range of 0.5 to 100 mol, more preferably in the range of 1 to 50 mol.
  • the base used in the cyclization step is preferably an inorganic base.
  • bases include alkali metal carbonates such as potassium carbonate, sodium carbonate, and lithium carbonate; alkali metal hydrogen carbonates such as potassium hydrogen carbonate, sodium hydrogen carbonate, and lithium hydrogen carbonate; alkalis such as sodium hydroxide and potassium hydroxide; Examples include metal hydroxides.
  • the bases may be used alone or in combination of two or more.
  • the amount of the base used in the cyclization step is preferably in the range of 10 to 1000 mol, more preferably in the range of 100 to 750 mol, particularly preferably in the range of 100 to 750 mol, based on 100 mol of compound (1), from the viewpoint of reaction efficiency and production cost. ranges from 200 to 500 moles.
  • Examples of the amine ligand used in the cyclization step include monovalent amine ligands such as ethanolamine; tetramethylethylenediamine, N,N'-dimethylethylenediamine, N,N'-dicyclohexylethylenediamine, and 2,2'- Bipyridine, 1,10-phenanthroline, 2,9-diphenyl-1,10-phenanthroline, ethylenediamine, N,N,N',N'-tetramethyl-1,3-propanediamine, 2,2'-bi[2 -oxazoline], 1,2-cyclohexanediamine, N,N'-di-tert-butylethylenediamine, ethylenebis(diethylamine), and N,N'-diphenylethylenediamine.
  • monovalent amine ligands such as ethanolamine; tetramethylethylenediamine, N,N'-dimethylethylenediamine, N,N'-dicyclohexylethylened
  • diamine ligands are preferred from the viewpoint of reaction efficiency and manufacturing cost.
  • the amine ligands may be used alone or in combination of two or more.
  • the amount of amine ligand used in the cyclization step is preferably in the range of 0.1 to 1000 mol, more preferably 0.5 to 1000 mol, based on 100 mol of compound (1), from the viewpoint of reaction efficiency and production cost.
  • the range is 200 mol, particularly preferably from 1 to 100 mol.
  • the cyclization step is preferably carried out in the presence of a solvent, more preferably in the presence of an organic solvent, from the viewpoint of reaction efficiency and production cost.
  • organic solvents include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; aliphatic hydrocarbon solvents such as propane, n-butane, isobutane, n-pentane, isopentane, and n-hexane; methylene chloride, and ethylene chloride.
  • ether solvents such as diethyl ether, dibutyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, dioxane
  • ester solvents such as ethyl acetate, N,N -dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide and the like.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably in the range of 150 to 5,000 parts by weight, more preferably in the range of 300 to 3,000 parts by weight, based on 100 parts by weight of compound (1).
  • the reaction temperature in the cyclization step is usually from room temperature to the boiling point of the solvent, preferably from 50° C. to the boiling point of the solvent.
  • the reaction time of the cyclization step is usually 0.1 to 72 hours, preferably 1 to 48 hours.
  • the cyclization step can be carried out in a batch, semi-continuous or continuous manner.
  • Compound (1) also includes a compound represented by the following formula (3) (hereinafter also referred to as compound (3)) and a compound represented by the following formula (4) (hereinafter also referred to as compound (4)). It is preferable to obtain the compound by an amidation step of carrying out an amidation reaction in the presence of a base.
  • the amidation process proceeds quantitatively, the required liquid volume (maximum liquid volume until separation of the product) can be suppressed, and the post-processing is simple. , higher yield and lower cost can be achieved.
  • compound (4) can be produced, for example, in a halogenation step in which a compound represented by the following formula (5) (hereinafter also referred to as compound (5)) is subjected to a halogenation reaction, or a compound represented by the following formula (11) (hereinafter also referred to as compound (11)) and a compound represented by the following formula (12) (hereinafter also referred to as compound (12)) through a dehydration condensation reaction.
  • the halogenation process proceeds quantitatively, the required liquid volume (maximum liquid volume until separation of the product) can be suppressed, and the post-processing is simple, and compound (4) can be obtained in the halogenation process. Accordingly, it is possible to further increase the yield and reduce the cost.
  • a commercially available product may be used, or one prepared with reference to a known method may be used.
  • R 1 has the same meaning as above.
  • R 1 has the same meaning as above.
  • halogenation process examples include methyl 4-aminobenzoate, ethyl 4-aminobenzoate, n-propyl 4-aminobenzoate, and isopropyl 4-aminobenzoate.
  • Compound (5) is available at low cost, and by obtaining compound (4) through the halogenation step, the cost can be significantly reduced.
  • the halogenation step is preferably carried out in the presence of a halogenating agent.
  • halogenating agents include bromine (Br 2 ), hydrogen bromide, N-bromosuccinimide, tetrabutylammonium tribromide, dibromoisocyanuric acid (DBI), 1,3-dibromo-5,5-dimethylhydantoin, etc.
  • Chlorinating agents such as chlorine (Cl 2 ), thionyl chloride, N-chlorosuccinimide; Fluorinating agents such as fluorine (F 2 ); Iodine (I 2 ), iodine chloride (ICl), 1,3-diiodo- Examples include iodinating agents such as 5,5-dimethylhydantoin and N-iodosuccinimide.
  • the halogenating agents may be used alone or in combination of two or more.
  • the amount of the halogenating agent to be used is preferably in the range of 80 to 120 mol, more preferably in the range of 90 to 110 mol, particularly preferably 95 to 110 mol, based on 100 mol of compound (5). ⁇ 105 moles.
  • the halogenation step is preferably carried out in the presence of a solvent, more preferably carried out in the presence of an organic solvent.
  • organic solvents include ether solvents such as diethyl ether, dibutyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, and dioxane; amide solvents such as N,N-dimethylformamide; methylene chloride, ethylene chloride, dichloromethane, and chloroform.
  • halogenated hydrocarbon solvents such as; nitrile solvents such as acetonitrile; monovalent lower alcohol solvents such as methanol and ethanol.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably in the range of 100 to 2,000 parts by weight, more preferably in the range of 250 to 1,000 parts by weight, per 100 parts by weight of compound (5).
  • the reaction temperature in the halogenation step is usually -15°C to the boiling point of the solvent, preferably 0 to 50°C.
  • the reaction time of the halogenation step is usually 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • Examples of compound (11) include 4-amino-3-chlorobenzoic acid, 4-amino-3-bromobenzoic acid, 4-amino-3-iodobenzoic acid, and 4-amino-3-fluorobenzoic acid. Can be mentioned.
  • Examples of the compound (12) include monohydric lower alcohols (specifically, monohydric alcohols having 1 to 4 carbon atoms) such as methanol, ethanol, n-propanol, and isopropanol.
  • the amount of compound (12) to be used is preferably in the range of 90 to 50,000 mol, more preferably in the range of 100 to 10,000 mol, per 100 mol of compound (11), from the viewpoint of reaction efficiency and production cost.
  • the esterification step is preferably carried out in the presence of an esterification catalyst.
  • the esterification catalyst include inorganic acids such as sulfuric acid and phosphoric acid; inorganic oxides such as tin oxide and zinc oxide; and alcoholates.
  • the esterification catalysts may be used alone or in combination of two or more.
  • the amount of the esterification catalyst used in the esterification step is preferably in the range of 10 to 1000 mol, more preferably in the range of 50 to 300 mol, based on 100 mol of compound (11), from the viewpoint of reaction efficiency and production cost. be.
  • this esterification step can be carried out without using a solvent other than compound (12), but it is possible to carry out this esterification step without using a solvent other than compound (12).
  • Further solvents may be used.
  • solvents other than compound (12) include ether solvents, halogenated hydrocarbon solvents, and nitrile solvents similar to those used in the halogenation step.
  • the reaction temperature in the esterification step is usually 35° C. to the boiling point of the solvent.
  • the reaction time of the esterification step is usually 0.1 to 36 hours, preferably 0.5 to 12 hours.
  • Examples of compound (4) include methyl 4-amino-3-chlorobenzoate, methyl 4-amino-3-bromobenzoate, methyl 4-amino-3-iodobenzoate, and 4-amino-3-chlorobenzoate.
  • Examples of the halogen atom represented by Y include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, from the viewpoint of reaction efficiency and suppression of by-products, chlorine atom, bromine atom, and iodine atom are preferred, and chlorine atom and bromine atom are more preferred.
  • Examples of the compound (3) include 3,5-dichlorobenzoic acid chloride, 3,5-dichlorobenzoic acid bromide, and 3,5-dichlorobenzoic acid iodide.
  • the amount of compound (3) to be used is preferably in the range of 70 to 1000 mol, more preferably in the range of 90 to 500 mol, particularly preferably in the range of 90 to 500 mol, per 100 mol of compound (4).
  • the amount ranges from 100 to 200 moles.
  • Examples of the base used in the amidation step include tertiary amine bases, alkali metal carbonates such as potassium carbonate and sodium carbonate; and alkali metal hydroxides such as potassium hydroxide and sodium hydroxide.
  • tertiary amine bases are preferred.
  • Such bases include pyridine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, N-methylmorpholine, and the like.
  • the bases may be used alone or in combination of two or more.
  • the amount of the base used in the amidation step is preferably in the range of 70 to 1000 mol, more preferably in the range of 90 to 500 mol, particularly preferably in the range of 90 to 500 mol, based on 100 mol of compound (4), from the viewpoint of reaction efficiency and production cost. ranges from 100 to 200 moles.
  • the amidation step is preferably carried out in the presence of a solvent, and more preferably carried out in the presence of an organic solvent.
  • organic solvents include ether solvents such as diethyl ether, dibutyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, and dioxane; halogenated hydrocarbon solvents such as methylene chloride, ethylene chloride, dichloromethane, and chloroform; acetonitrile, etc. Nitrile solvents; ester solvents such as ethyl acetate; aromatic hydrocarbon solvents such as benzene, toluene, and xylene.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably in the range of 150 to 3,000 parts by weight, more preferably in the range of 300 to 1,000 parts by weight, per 100 parts by weight of compound (4).
  • the reaction temperature in the amidation step is usually 3°C to the boiling point of the solvent, preferably 10 to 30°C.
  • the reaction time of the amidation step is usually 0.1 to 36 hours, preferably 0.5 to 12 hours.
  • R 1 in formula (1) has the same meaning as above, and is preferably a methyl group or an ethyl group, more preferably an ethyl group.
  • the production method of the present invention preferably further includes a hydrolysis step of ester hydrolyzing the compound (2) obtained in the cyclization step.
  • a hydrolysis step of ester hydrolyzing the compound (2) obtained in the cyclization step By performing such a hydrolysis step, tafamidis represented by the following formula (6) is obtained.
  • Hydrolysis is preferably carried out in the presence of a base.
  • the base used in the hydrolysis step is preferably an inorganic base such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, or cesium hydroxide.
  • the bases may be used alone or in combination of two or more.
  • the amount of the base used in the hydrolysis step is preferably in the range of 70 to 750 mol, more preferably in the range of 90 to 500 mol, particularly preferably in the range of 90 to 500 mol, based on 100 mol of compound (2), from the viewpoint of reaction efficiency and production cost. ranges from 100 to 200 moles.
  • the amount of water used in the hydrolysis step is preferably in the range of 75 to 2000 parts by mass, more preferably in the range of 100 to 800 parts by mass, based on 100 parts by mass of compound (2), from the viewpoint of reaction efficiency and production cost. It is.
  • an organic solvent miscible with water may be used together with water.
  • organic solvents include ether solvents such as diethyl ether, dibutyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, and dioxane; nitrile solvents such as acetonitrile; and monohydric lower alcohol solvents such as methanol and ethanol. Examples include solvents.
  • the solvents may be used alone or in combination of two or more.
  • the reaction temperature in the hydrolysis step is usually 10°C to the boiling point of the solvent, preferably 20 to 70°C.
  • the reaction time of the hydrolysis step is usually 1 to 96 hours, preferably 3 to 48 hours.
  • the salt of Tafamidis can be obtained according to a conventional method.
  • tafamidis (6) inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide; methylamine, ethylamine, meglumine, ethanolamine, diethanolamine, dicyclohexylamine, benzylamine, etc. It can be obtained by a salt formation process in which the salt is brought into contact with an organic base.
  • the amount of the base used in the salt formation step is preferably in the range of 70 to 750 mol, more preferably in the range of 90 to 500 mol, particularly preferably in the range of 90 to 500 mol, per 100 mol of tafamidis (6). ranges from 100 to 300 moles. It is preferable that the salt forming step is carried out in the presence of a solvent.
  • solvents examples include ether solvents such as diethyl ether, dibutyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, and dioxane; nitrile solvents such as acetonitrile; ester solvents such as ethyl acetate; monovalent solvents such as methanol and ethanol. Examples include lower alcohol solvents; water and the like.
  • the solvents may be used alone or in combination of two or more.
  • the reaction temperature in the salt forming step is usually -10°C to the boiling point of the solvent, preferably 0 to 30°C.
  • the reaction time of the salt forming step is usually 0.1 to 96 hours, preferably 1 to 48 hours.
  • the Tafamidis (6) obtained in the above-mentioned hydrolysis process can be isolated and purified and then subjected to the salt production process, or the solution of Tafamidis (6) obtained in the hydrolysis process can be used as it is for salt production. It can also be subjected to a process.
  • reaction products obtained in each of the above steps may be purified by separation means such as distillation, extraction, crystallization, and washing.
  • Tafamidis or a salt thereof can be produced in high yield and at low cost.
  • the amount of liquid required in the cyclization step (the maximum amount of liquid until separation of the product) is small, making it easy to downsize the production equipment required to produce tafamidis.
  • the production method of the present invention is suitable for the amidation step and/or the halogenation step. Even in cases where tafamidis is included, it is easy to downsize the production equipment required to produce tafamidis.
  • Example 1 (Synthesis of Tafamidis) (1) Synthesis of ethyl 4-amino-3-bromobenzoate 200 g (1.21 mol) of ethyl 4-aminobenzoate was dissolved in 1000 mL of tetrahydrofuran and stirred at an external temperature of 0°C. Thereafter, 218 g (1.22 mol) of N-bromosuccinimide was added and stirred for 1 hour. To this reaction solution, 1000 mL of water and 1000 mL of ethyl acetate were added to separate the layers, and the organic layer was washed with 1000 mL of saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the filtered solid was dried under reduced pressure at an external temperature of 50°C to obtain 3.17 g (10.3 mmol, yield 87%, total yield 80% from ethyl 4-aminobenzoate) of tafamidis as a slightly yellowish white solid. .
  • Example 2 (Synthesis of Tafamidis) In 50 mL of toluene, 0.28 g (2.4 mmol) of N,N,N',N'-tetramethylethylenediamine, 0.17 g (1.2 mmol) of copper(I) bromide, (1) of Example 1 and ( 5.00 g (12.0 mmol) of N-[2-bromo-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide obtained by the same operation as in 2), and 4.97 g (36.0 mmol) of potassium carbonate. 0 mmol) was added thereto, and the mixture was stirred overnight at an external temperature of 110°C.
  • Example 1 (4) the same operation as in Example 1 (4) was performed to obtain tafamidis in a yield of 87% (total yield from ethyl 4-aminobenzoate 78%) as a slightly yellowish white solid.
  • the obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 3 Synthesis of Tafamidis
  • Example 1 (4) the same operation as in Example 1 (4) was performed to obtain tafamidis as a grayish white solid in a yield of 87% (total yield from ethyl 4-aminobenzoate 78%).
  • the obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 4 Synthesis of Tafamidis
  • Toluene 0.28 g (2.4 mmol) of N,N,N',N'-tetramethylethylenediamine, 0.19 g (1.2 mmol) of copper(II) sulfate, (1) and (2) of Example 1 ), 5.00 g (12.0 mmol) of N-[2-bromo-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide, 4.97 g (36.0 mmol) of potassium carbonate. ) and stirred at an external temperature of 110°C for 5 hours.
  • Example 1 (4) the same operation as in Example 1 (4) was performed to obtain tafamidis as a slightly yellowish white solid in a yield of 90% (total yield from ethyl 4-aminobenzoate 80%).
  • the obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 5 Synthesis of Tafamidis
  • 0.28 g (2.4 mmol) of N,N,N',N'-tetramethylethylenediamine, 0.10 g (1.2 mmol) of copper(II oxide), (1) and (2) of Example 1 5.00 g (12.0 mmol) of N-[2-bromo-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide, 4.97 g (36.0 mmol) of potassium carbonate. ) and stirred at an external temperature of 110°C for 24 hours. The reaction conversion rate at this time was 93%.
  • Example 1 The crystals were dried under reduced pressure at an external temperature of 50°C to obtain 2.87 g (8.5 mmol, yield 71%) of ethyl 2-(3,5-dichlorophenyl)-1,3-benzoxazole-6-carboxylate as a white solid. Obtained. Next, the same operation as in Example 1 (4) was performed to obtain tafamidis in a yield of 97% (total yield from ethyl 4-aminobenzoate 64%) as a slightly yellowish white solid. The obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 6 Synthesis of Tafamidis
  • Example 1 (4) the same operation as in Example 1 (4) was performed to obtain tafamidis in a yield of 93% (total yield from ethyl 4-aminobenzoate 86%) as a slightly yellowish white solid.
  • the obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 7 (Synthesis of Tafamidis) (1) Synthesis of ethyl 4-amino-3-iodobenzoate A mixture of 1 g (3.8 mmol) of 4-amino-3-iodobenzoic acid, 10 mL of ethanol, and 0.48 g (4.9 mmol) of concentrated sulfuric acid was heated for 5 hours. The mixture was refluxed and concentrated under reduced pressure. 10 mL of saturated sodium bicarbonate solution was added to this concentrate, and the solid was collected by filtration. The filtered solid was dried under reduced pressure at an external temperature of 50°C to obtain 0.77 g (2.6 mmol, yield 69%) of ethyl 4-amino-3-iodobenzoate as a slightly yellowish white solid.
  • Example 1 (4) the same operation as in Example 1 (4) was performed to obtain tafamidis as a slightly yellowish white solid in a yield of 93% (total yield from 4-amino-3-iodobenzoic acid 34%).
  • the obtained spectral data matched the spectral data described in Example 1 (4).
  • Example 8 Synthesis of Tafamidis meglumine
  • Tafamidis was synthesized according to the method described in Japanese Patent Publication No. 2006-511612. (1) That is, in 200 mL of tetrahydrofuran, 2.00 g (13.1 mmol) of 4-amino-3-hydroxybenzoic acid, 3.10 g (39.2 mmol) of pyridine, and 2.74 g (13.1 mmol) of 3,5-dichlorobenzoyl chloride. After refluxing for 1 hour, the reaction mixture was concentrated under reduced pressure. The obtained N-[2-hydroxy-4-carboxyphenyl]-3,5-dichlorobenzamide was used in the next step without purification.
  • Test example 1 The maximum liquid volume (mL) for obtaining 1 g of Tafamidis in each step of the methods of Examples 1 to 7 and Comparative Example 1 was estimated by rough calculation. In the halogenation process and cyclization process, the liquid volume reaches its maximum immediately before separation, so the liquid volume immediately before separation is roughly estimated as the maximum liquid volume, and in the esterification process, amidation process, and hydrolysis process, the liquid volume is the maximum immediately before separation. Since the liquid volume is maximum at , the liquid volume immediately before filtration was estimated as the maximum liquid volume. The specific gravity of the liquid was assumed to be 1 g/mL, and the solid was estimated as a liquid with a specific gravity of 1 g/mL.
  • Example 1 Furthermore, a method for estimating the maximum liquid volume (mL) for obtaining 1 g of tafamidis in each step will be described below using Example 1 as an example.
  • the hydrolysis process had the largest liquid volume, and the liquid volume was 52 mL.
  • the "maximum value" of the maximum liquid volume in the process was recorded as 52 mL.
  • the total liquid volume in the hydrolysis step of Example 1 was approximately 164.49 mL. Breakdown: Tetrahydrofuran (64 mL) + water (16 mL) + ethyl 2-(3,5-dichlorophenyl)-1,3-benzoxazole-6-carboxylate (approx. 3.99 mL) + lithium hydroxide monohydrate (approx. .70mL) + water (48mL) + 1mol/L hydrochloric acid (32mL) The amount of Tafamidis obtained through this hydrolysis step was 3.17 g, and the maximum liquid volume for obtaining 1 g of Tafamidis in the hydrolysis step of Example 1 was 164.49 ⁇ 3.17 ⁇ 52 mL.
  • the total liquid volume in the cyclization step of Example 1 was approximately 145.48 mL. Breakdown: Toluene (50 mL) + N,N,N',N'-tetramethylethylenediamine (approximately 0.28 mL) + copper(I) iodide (approximately 0.23 mL) + N-[2-bromo-4-(ethoxycarbonyl) ) phenyl]-3,5-dichlorobenzamide (about 5.00 mL) + potassium carbonate (about 4.97 mL) + 10% ammonium chloride aqueous solution (25 mL) + tetrahydrofuran (60 mL)
  • the amount of ethyl 2-(3,5-dichlorophenyl)-1,3-benzoxazole-6-carboxylate obtained by this cyclization step was 3.99 g, which is the amount of ethyl 2-(3,5-dichlorophenyl)-1,
  • the amount of ethyl -(3,5-dichlorophenyl)-1,3-benzoxazole-6-carboxylate is 3.99 ⁇ 3.17 ⁇ 1.26 g. Therefore, the maximum liquid volume to obtain 1 g of tafamidis in the cyclization step of Example 1 is 145.48 ⁇ 3.99 ⁇ 1.26 ⁇ 46 mL.
  • the total liquid volume in the amidation step of Example 1 was approximately 7690 mL. Breakdown: Ethyl 4-amino-3-bromobenzoate (approximately 290 mL) + tetrahydrofuran (2900 mL) + pyridine (approximately 141 mL) + tetrahydrofuran (580 mL) + 3,5-dichlorobenzoyl chloride (approximately 299 mL) + water (3480 mL) The amount of N-[2-bromo-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide obtained by this amidation step was 460 g, and the amount of N-[ The amount of 2-bromo-4-(ethoxycarbonyl)phenyl]-3,5-dichlorobenzamide is 5.00 ⁇ 3.99 ⁇ 1.26 ⁇ 1.58 g. Therefore, the maximum liquid volume to obtain 1 g of tafamidis in the amidation step
  • the total liquid volume in the halogenation step of Example 1 was approximately 3418 mL. Breakdown: Ethyl 4-aminobenzoate (approximately 200 mL) + tetrahydrofuran (1000 mL) + N-bromosuccinimide (approximately 218 mL) + water (1000 mL) + ethyl acetate (1000 mL) The amount of ethyl 4-amino-3-bromobenzoate obtained by this halogenation step was 297 g, and the amount of ethyl 4-amino-3-bromobenzoate required to obtain 1 g of tafamidis was 290 g. ⁇ 460 ⁇ 1.58 ⁇ 0.99g. Therefore, the maximum liquid volume for obtaining 1 g of tafamidis in the halogenation step of Example 1 is 3418 ⁇ 297 ⁇ 0.99 ⁇ 11 mL.
  • an iridium catalyst was considered to be more useful than a copper catalyst such as a copper iodide catalyst (Tetrahedron Letters 2019, 60, 151082), when one or more copper catalysts selected from copper halides, copper carboxylates, copper sulfates, and copper oxides, bases, and amine ligands are used, significant yields can be obtained as described above. It is surprising that there was an improvement in the rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

タファミジス又はその塩を高収率で製造できる方法を提供すること。 ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下で、下記式(1)で表される化合物を環化させて下記式(2)で表される化合物を得る環化工程を含む、タファミジス又はその塩の製造方法。 〔式(1)中、 R1は、直鎖状又は分岐鎖状のアルキル基を示し、 Xは、ハロゲン原子を示す。〕 〔式(2)中、R1は、前記と同義である。〕

Description

タファミジス又はその塩の製造方法
 本発明は、タファミジス又はその塩の製造方法に関する。より詳細には、タファミジス又はその塩の製造方法及びその合成中間体に関する。
 タファミジスメグルミンは、トランスサイレチン型家族性アミロイドポリニューロパチーの末梢神経障害の進行抑制、トランスサイレチン型心アミロイドーシスを効能又は効果とする医薬であり、トランスサイレチンアミロイドーシスによる心筋症が効能又は効果として近年追加され需要増大が予測されている。
 タファミジスメグルミンの製造方法としては、例えば、3,5-ジクロロ安息香酸クロリドと3-ヒドロキシ-4-アミノ安息香酸とをピリジン存在下でアミド化し、得られたアミド化合物をp-トルエンスルホン酸存在下で環化してベンゾオキサゾール誘導体を得る方法が知られている(特許文献1、2)。
 しかしながら、特許文献1~2に記載の方法は、アミド化のときに副反応が生じやすく選択率及び収率が低いため、煩雑な精製が必要という問題があった。また、3-ヒドロキシ-4-アミノ安息香酸が高価でありコスト高となるという問題もあった。特に、特許文献1に記載の方法では精製を行うために3-ヒドロキシ-4-アミノ安息香酸由来のカルボキシ基をメチルエステル化する必要があり、工業化が困難なカラム精製を行っている。また、特許文献1に記載の方法については187v/wもの、特許文献2に記載の方法については、170v/wもの液量をそれぞれ必要とするため生産効率が悪く、また、中間体のN-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドのろ過性が悪いため、工業化は更に困難であった。
 一方、N-(2-ブロモ-5-ニトロフェニル)ベンズアミドを環化(C-Oカップリング反応)してベンゾオキサゾール誘導体を得るときに、ビス(1,5-シクロオクタジエン)ジイリジウム(I)ジクロリド(以下、単にイリジウム触媒ともいう)を触媒として用いることが提案されている(非特許文献1)。さらに当該非特許文献1には、当該イリジウム触媒を用いて48時間環化反応させることにより、2-(3,5-ジクロロフェニル)ベンゾ[d]オキサゾール-6-カルボン酸メチル(Methyl 2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylate)(タファミジスのメチルエステル)を収率52%で得たことが記載されている。
特表2006-511612号公報 特開2021-517118号公報
Tetrahedron Letters 2019,60,151082
 上記非特許文献1においては、上記イリジウム触媒(0.01mmol)、ヨウ化銅触媒((CuI)0.20mmol)をそれぞれ用いて、N-(2-ブロモ-5-ニトロフェニル)シンナムアミド(N-(2-Bromo-5-nitrophenyl)cinnamamide)の環化反応を行っており、上記イリジウム触媒を用いた場合に、副生成物(脱ブロモ化物)を生成させることなく、ベンゾオキサゾール誘導体を収率74%で得ている。
 しかしながら、ヨウ化銅触媒を用いた場合には、ベンゾオキサゾール誘導体の収率は24%に留まり、しかも副生成物(脱ブロモ化物)の生成が大量に確認されていた(61%)。そのため、C-Oカップリング反応による環化を効率化する上においては、イリジウム触媒が、ヨウ化銅触媒のような銅触媒よりも有用と考えられていた。
 また、本発明者らが検討した結果、上記イリジウム触媒は、N-(2-ブロモ-5-ニトロフェニル)ベンズアミドを効率よく環化させるものの、N-[2-ブロモ-4-(メトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドのような、アルコキシカルボニルフェニル基を分子内に有するタファミジスの合成中間体を基質とした場合には、環化の収率が不充分という問題があることがわかった。
 本発明の課題は、タファミジス又はその塩を高収率で製造できる方法を提供することにある。
 本発明者らはN-[2-ハロ-4-(アルコキシカルボニル)フェニル]-3,5-ジクロロベンズアミドの環化反応について種々の触媒を使用して鋭意検討した結果、ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下でN-[2-ハロ-4-(アルコキシカルボニル)フェニル]-3,5-ジクロロベンズアミドを環化させる環化工程を含む方法によって、驚くべきことに、タファミジス又はその塩を高収率且つ低コストで製造できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の<1>~<14>を提供するものである。
 <1> ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下で、下記式(1)で表される化合物を環化させて下記式(2)で表される化合物を得る環化工程を含む、タファミジス又はその塩の製造方法(以下、本発明の製造方法とも称する)。
Figure JPOXMLDOC01-appb-C000008
〔式(1)中、
 R1は、直鎖状又は分岐鎖状のアルキル基を示し、
 Xは、ハロゲン原子を示す。〕
Figure JPOXMLDOC01-appb-C000009
〔式(2)中、R1は、前記と同義である。〕
 <2> 下記式(3)で表される化合物と下記式(4)で表される化合物とを塩基存在下でアミド化反応させるアミド化工程を更に含み、当該工程で得られた式(1)で表される化合物を前記環化工程に用いる、<1>に記載の製造方法。
Figure JPOXMLDOC01-appb-C000010
〔式(3)中、Yは、ハロゲン原子を示す。〕
Figure JPOXMLDOC01-appb-C000011
〔式(4)中、R1及びXは、前記と同義である。〕
 <3> 下記式(5)で表される化合物をハロゲン化反応させるハロゲン化工程を更に含み、当該工程で得られた式(4)で表される化合物を前記アミド化工程に用いる、<2>に記載の製造方法。
Figure JPOXMLDOC01-appb-C000012
〔式(5)中、R1は、前記と同義である。〕
 <4> 下記式(11)で表される化合物と下記式(12)で表される化合物とを脱水縮合反応させるエステル化工程を更に含み、当該工程で得られた式(4)で表される化合物を前記アミド化工程に用いる、<2>に記載の製造方法。
Figure JPOXMLDOC01-appb-C000013
〔式(11)中、Xは、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000014
〔式(12)中、R1は、前記と同義である。〕
 <5> 前記環化工程で得られた式(2)で表される化合物をエステル加水分解する加水分解工程を更に含む、<1>~<4>のいずれかに記載の製造方法。
 <6> 前記銅触媒として、ヨウ化銅(I)、ヨウ化銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅、硫酸銅(I)、硫酸銅(II)、酸化銅(I)及び酸化銅(II)から選ばれる1種以上を用いる、<1>~<5>のいずれかに記載の製造方法。
 <7> 前記銅触媒として、ハロゲン化銅、カルボン酸銅及び硫酸銅から選ばれる1種以上の銅触媒を用いる、<1>~<5>のいずれかに記載の製造方法。
 <8> 前記銅触媒として、ハロゲン化銅を用いる、<1>~<5>のいずれかに記載の製造方法。
 <9> 前記ハロゲン化銅として、ヨウ化銅(I)、臭化銅(I)及び塩化銅(I)から選ばれる1種以上のハロゲン化銅を用いる、<8>に記載の製造方法。
 <10> 前記アミン配位子として、1価アミン配位子及びジアミン配位子から選ばれるアミン配位子を用いる、<1>~<9>のいずれかに記載の製造方法。
 <11> Xが、塩素原子又は臭素原子である、<1>~<10>のいずれかに記載の製造方法。
 <12> 下記式(1)で表される化合物(以下、本発明の特定化合物とも称する)。
Figure JPOXMLDOC01-appb-C000015
〔式(1)中、
 R1は、直鎖状又は分岐鎖状のアルキル基を示し、
 Xは、フッ素原子、臭素原子又はヨウ素原子を示す。〕
 <13> R1が、エチル基である、<12>に記載の化合物。
 <14> Xが、臭素原子又はヨウ素原子である、<12>又は<13>に記載の化合物。
 本発明によれば、タファミジス又はその塩を高収率且つ低コストで製造できる。
 本発明の特定化合物は、タファミジス又はその塩の合成中間体として有用である。
 本発明の製造方法は、ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下で、下記式(1)で表される化合物(以下、化合物(1)とも称する)を環化させて下記式(2)で表される化合物(以下、化合物(2)とも称する)を得る環化工程を含むことを特徴とするものである。本発明の製造方法における環化工程は、副反応が生じにくく、定量的に高純度な化合物(2)を製造できるため、本発明の製造方法によれば工業的に非常に優れた製法である。また、本発明の製造方法における環化工程は必要液量(生成物の分離までに最大となる液量)が小さく、タファミジスを製造するために必要な製造設備をコンパクト化しやすい。
Figure JPOXMLDOC01-appb-C000016
〔式(1)中、
 R1は、直鎖状又は分岐鎖状のアルキル基を示し、
 Xは、ハロゲン原子を示す。〕
Figure JPOXMLDOC01-appb-C000017
〔式(2)中、R1は、前記と同義である。〕
 (環化工程)
 式(1)中、R1は、直鎖状又は分岐鎖状のアルキル基を示す。アルキル基の炭素数は、入手容易性、反応効率の観点から、好ましくは1~12、より好ましくは1~8、更に好ましくは1~4、特に好ましくは1~2である。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。これらの中でも、メチル基、エチル基が好ましく、エチル基がより好ましい。
 Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、反応効率及び副生成物抑制の観点から、塩素原子、臭素原子、ヨウ素原子が好ましく、塩素原子、臭素原子がより好ましい。
 化合物(1)としては、例えば、N-[2-ブロモ-4-(メトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ブロモ-4-(n-プロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ブロモ-4-(イソプロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-クロロ-4-(メトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-クロロ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-クロロ-4-(n-プロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-クロロ-4-(イソプロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ヨード-4-(メトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ヨード-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ヨード-4-(n-プロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド、N-[2-ヨード-4-(イソプロポキシカルボニル)フェニル]-3,5-ジクロロベンズアミド等が挙げられる。
 環化工程は、ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒を用いるものである。この銅触媒を用いることによって、高効率で環化反応を進行させることができる。これらの中では、反応効率及び副生成物抑制の観点から、ハロゲン化銅、カルボン酸銅及び硫酸銅から選ばれる1種以上の銅触媒が好ましい。
 上記銅触媒としては、反応効率及び副生成物抑制の観点から、ヨウ化銅(I)、ヨウ化銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅、硫酸銅(I)、硫酸銅(II)、酸化銅(I)及び酸化銅(II)から選ばれる1種以上が好ましく、ヨウ化銅(I)、ヨウ化銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)、硫酸銅(I)、硫酸銅(II)、酸化銅(I)及び酸化銅(II)から選ばれる1種以上がより好ましく、ヨウ化銅(I)、臭化銅(I)、塩化銅(I)、酢酸銅(I)、硫酸銅(II)及び酸化銅(II)から選ばれる1種以上が更に好ましく、ヨウ化銅(I)、臭化銅(I)、塩化銅(I)、酢酸銅及び硫酸銅(II)から選ばれる1種以上が更に好ましく、ヨウ化銅(I)が特に好ましい。
 ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒の使用量は、化合物(1)100モルに対して、通常0.1~500モルの範囲であるが、反応効率や製造コストの観点から、好ましくは0.5~100モルの範囲、より好ましくは1~50モルの範囲である。
 環化工程で用いる塩基としては、無機塩基が好ましい。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸リチウム等のアルカリ金属炭酸塩;炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム等のアルカリ金属炭酸水素塩;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物等が挙げられる。塩基は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 環化工程における塩基の使用量は、反応効率や製造コストの観点から、化合物(1)100モルに対して、好ましくは10~1000モルの範囲、より好ましくは100~750モルの範囲、特に好ましくは200~500モルの範囲である。
 環化工程で用いるアミン配位子としては、例えば、エタノールアミン等の1価アミン配位子;テトラメチルエチレンジアミン、N,N'-ジメチルエチレンジアミン、N,N'-ジシクロヘキシルエチレンジアミン、2,2'-ビピリジン、1,10-フェナントロリン、2,9-ジフェニル-1,10-フェナントロリン、エチレンジアミン、N,N,N',N'-テトラメチル-1,3-プロパンジアミン、2,2'-ビ[2-オキサゾリン]、1,2-シクロヘキサンジアミン、N,N'-ジtert-ブチルエチレンジアミン、エチレンビス(ジエチルアミン)、N,N'-ジフェニルエチレンジアミン等のジアミン配位子が挙げられる。1価アミン配位子、ジアミン配位子の中では、反応効率や製造コストの観点から、ジアミン配位子が好ましい。アミン配位子は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 これらの中でも、反応効率や製造コストの観点から、テトラメチルエチレンジアミン、N,N'-ジメチルエチレンジアミン、N,N'-ジシクロヘキシルエチレンジアミン、2,2'-ビピリジン、1,10-フェナントロリン、2,9-ジフェニル-1,10-フェナントロリン、エチレンジアミン、エタノールアミン、N,N,N',N'-テトラメチル-1,3-プロパンジアミン、2,2'-ビ[2-オキサゾリン]、1,2-シクロヘキサンジアミンが好ましく、テトラメチルエチレンジアミン、N,N'-ジメチルエチレンジアミン、N,N'-ジシクロヘキシルエチレンジアミン、2,2'-ビピリジン、1,10-フェナントロリン、2,9-ジフェニル-1,10-フェナントロリンがより好ましい。
 環化工程におけるアミン配位子の使用量は、反応効率や製造コストの観点から、化合物(1)100モルに対して、好ましくは0.1~1000モルの範囲、より好ましくは0.5~200モルの範囲、特に好ましくは1~100モルの範囲である。
 環化工程は、反応効率や製造コストの観点から、溶媒存在下で行うのが好ましく、有機溶媒存在下で行うのがより好ましい。
 有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン等の脂肪族炭化水素系溶媒;塩化メチレン、塩化エチレン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒の他、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。溶媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 溶媒の使用量は、化合物(1)100質量部に対して、好ましくは150~5000質量部の範囲、より好ましくは300~3000質量部の範囲である。
 環化工程の反応温度は、通常常温~溶媒沸点、好ましくは50℃~溶媒沸点である。
 環化工程の反応時間は、通常0.1~72時間、好ましくは1~48時間である。
 また、環化工程は、バッチ法、半連続法又は連続法で実施することができる。
 また、化合物(1)は、下記式(3)で表される化合物(以下、化合物(3)とも称する)と下記式(4)で表される化合物(以下、化合物(4)とも称する)とを塩基存在下でアミド化反応させるアミド化工程によって得るのが好ましい。アミド化工程は、定量的に進行し必要液量(生成物の分離までに最大となる液量)を抑えることもでき且つ後処理も簡便であり、このようにしてアミド化工程で得ることによって、更に高収率化及び低コスト化できる。
 また、化合物(4)は、例えば、下記式(5)で表される化合物(以下、化合物(5)とも称する)をハロゲン化反応させるハロゲン化工程、又は下記式(11)で表される化合物(以下、化合物(11)とも称する)と下記式(12)で表される化合物(以下、化合物(12)とも称する)とを脱水縮合反応させるエステル化工程によって得ることができる。
 ハロゲン化工程は、定量的に進行し必要液量(生成物の分離までに最大となる液量)を抑えることもでき且つ後処理も簡便であり、ハロゲン化工程で化合物(4)を得ることによって、更に高収率化及び低コスト化できる。また、化合物(3)は、市販品を使用しても、公知の方法を参考にして調製したものを使用してもよい。
Figure JPOXMLDOC01-appb-C000018
〔式(3)中、Yは、ハロゲン原子を示す。〕
Figure JPOXMLDOC01-appb-C000019
〔式(4)中、R1及びXは、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000020
〔式(5)中、R1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000021
〔式(11)中、Xは、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000022
〔式(12)中、R1は、前記と同義である。〕
 ここで、ハロゲン化工程、エステル化工程、アミド化工程について詳細に説明する。
 (ハロゲン化工程)
 化合物(5)としては、例えば、4-アミノ安息香酸メチル、4-アミノ安息香酸エチル、4-アミノ安息香酸n-プロピル、4-アミノ安息香酸イソプロピル等が挙げられる。化合物(5)は安価に入手可能であり、ハロゲン化工程で化合物(4)を得ることによって、大幅に低コスト化できる。
 ハロゲン化工程は、ハロゲン化剤存在下で行うのが好ましい。
 ハロゲン化剤としては、臭素(Br2)、臭化水素、N-ブロモスクシンイミド、テトラブチルアンモニウムトリブロミド、ジブロモイソシアヌル酸(DBI)、1,3-ジブロモ-5,5-ジメチルヒダントイン等の臭素化剤;塩素(Cl2)、塩化チオニル、N-クロロスクシンイミド等の塩素化剤;フッ素(F2)等のフッ素化剤;ヨウ素(I2)、塩化ヨウ素(ICl)、1,3-ジヨード-5,5-ジメチルヒダントイン、N-ヨードスクシンイミド等のヨウ素化剤等が挙げられる。ハロゲン化剤は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 ハロゲン化剤の使用量は、反応効率や製造コストの観点から、化合物(5)100モルに対して、好ましくは80~120モルの範囲、より好ましくは90~110モルの範囲、特に好ましくは95~105モルの範囲である。
 ハロゲン化工程は、反応効率や製造コストの観点から、溶媒存在下で行うのが好ましく、有機溶媒存在下で行うのがより好ましい。
 有機溶媒としては、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;N,N-ジメチルホルムアミド等のアミド系溶媒;塩化メチレン、塩化エチレン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;アセトニトリル等のニトリル系溶媒;メタノール、エタノール等の1価の低級アルコール系溶媒等が挙げられる。溶媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 溶媒の使用量は、化合物(5)100質量部に対して、好ましくは100~2000質量部の範囲、より好ましくは250~1000質量部の範囲である。
 ハロゲン化工程の反応温度は、通常-15℃~溶媒沸点、好ましくは0~50℃である。
 ハロゲン化工程の反応時間は、通常0.1~24時間、好ましくは0.5~12時間である。
 (エステル化工程)
 化合物(11)としては、例えば、4-アミノ-3-クロロ安息香酸、4-アミノ-3-ブロモ安息香酸、4-アミノ-3-ヨード安息香酸、4-アミノ-3-フルオロ安息香酸等が挙げられる。
 化合物(12)としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等の1価の低級アルコール(具体的には、炭素数1~4の1価アルコール)が挙げられる。
 化合物(12)の使用量は、反応効率や製造コストの観点から、化合物(11)100モルに対して、好ましくは90~50000モルの範囲、より好ましくは100~10000モルの範囲である。
 エステル化工程は、エステル化触媒存在下で行うのが好ましい。
 エステル化触媒としては、例えば、硫酸、リン酸等の無機酸;酸化スズ、酸化亜鉛等の無機酸化物;アルコラート等が挙げられる。エステル化触媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 エステル化工程におけるエステル化触媒の使用量は、反応効率や製造コストの観点から、化合物(11)100モルに対して、好ましくは10~1000モルの範囲、より好ましくは50~300モルの範囲である。
 化合物(12)は基質だけでなく溶媒としても作用するため、化合物(12)以外の溶媒を使用しなくても本エステル化工程は実施可能であるが、化合物(12)とともに化合物(12)以外の溶媒を更に使用してもよい。このような化合物(12)以外の溶媒としては、ハロゲン化工程と同様のエーテル系溶媒、ハロゲン化炭化水素系溶媒、ニトリル系溶媒が挙げられる。
 エステル化工程の反応温度は、通常35℃~溶媒沸点である。
 エステル化工程の反応時間は、通常0.1~36時間、好ましくは0.5~12時間である。
 (アミド化工程)
 化合物(4)としては、例えば、4-アミノ-3-クロロ安息香酸メチル、4-アミノ-3-ブロモ安息香酸メチル、4-アミノ-3-ヨード安息香酸メチル、4-アミノ-3-クロロ安息香酸エチル、4-アミノ-3-ブロモ安息香酸エチル、4-アミノ-3-ヨード安息香酸エチル、4-アミノ-3-クロロ安息香酸n-プロピル、4-アミノ-3-ブロモ安息香酸n-プロピル、4-アミノ-3-ヨード安息香酸n-プロピル、4-アミノ-3-クロロ安息香酸イソプロピル、4-アミノ-3-ブロモ安息香酸イソプロピル、4-アミノ-3-ヨード安息香酸イソプロピル等が挙げられる。
 Yで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、反応効率及び副生成物抑制の観点から、塩素原子、臭素原子、ヨウ素原子が好ましく、塩素原子、臭素原子がより好ましい。
 化合物(3)としては、例えば、3,5-ジクロロ安息香酸クロリド、3,5-ジクロロ安息香酸ブロミド、3,5-ジクロロ安息香酸ヨージド等が挙げられる。
 化合物(3)の使用量は、反応効率や製造コストの観点から、化合物(4)100モルに対して、好ましくは70~1000モルの範囲、より好ましくは90~500モルの範囲、特に好ましくは100~200モルの範囲である。
 アミド化工程で用いる塩基としては、第3級アミン系塩基の他、炭酸カリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩;水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物が挙げられる。この中でも、第3級アミン系塩基が好ましい。このような塩基としては、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン等が挙げられる。塩基は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 アミド化工程における塩基の使用量は、反応効率や製造コストの観点から、化合物(4)100モルに対して、好ましくは70~1000モルの範囲、より好ましくは90~500モルの範囲、特に好ましくは100~200モルの範囲である。
 アミド化工程は、反応効率や製造コストの観点から、溶媒存在下で行うのが好ましく、有機溶媒存在下で行うのがより好ましい。
 有機溶媒としては、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;塩化メチレン、塩化エチレン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;アセトニトリル等のニトリル系溶媒;酢酸エチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。溶媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 溶媒の使用量は、化合物(4)100質量部に対して、好ましくは150~3000質量部の範囲、より好ましくは300~1000質量部の範囲である。
 アミド化工程の反応温度は、通常3℃~溶媒沸点、好ましくは10~30℃である。
 アミド化工程の反応時間は、通常0.1~36時間、好ましくは0.5~12時間である。
 また、このアミド化工程で得られる化合物(1)のうち、Xがフッ素原子、臭素原子又はヨウ素原子(好ましくは臭素原子又はヨウ素原子)を示すものは新規化合物である。この化合物は、タファミジス又はその塩の合成中間体として有用である。
 なお、式(1)中のR1は前記と同義であり、好ましくはメチル基、エチル基、より好ましくはエチル基である。
 また、本発明の製造方法としては、環化工程で得られた化合物(2)をエステル加水分解する加水分解工程を更に含むものが好ましい。このような加水分解工程を行うことによって、下記式(6)で表されるタファミジスが得られる。
Figure JPOXMLDOC01-appb-C000023
 (加水分解工程)
 加水分解は、塩基存在下で行うのが好ましい。
 加水分解工程で用いる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム等の無機塩基が好ましい。塩基は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 加水分解工程における塩基の使用量は、反応効率や製造コストの観点から、化合物(2)100モルに対して、好ましくは70~750モルの範囲、より好ましくは90~500モルの範囲、特に好ましくは100~200モルの範囲である。
 加水分解工程における水の使用量は、反応効率や製造コストの観点から、化合物(2)100質量部に対して、好ましくは75~2000質量部の範囲、より好ましくは100~800質量部の範囲である。
 なお、水とともに水と混和する有機溶媒を用いてもよい。このような有機溶媒としては、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;メタノール、エタノール等の1価の低級アルコール系溶媒等が挙げられる。溶媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 加水分解工程の反応温度は、通常10℃~溶媒沸点、好ましくは20~70℃である。
 加水分解工程の反応時間は、通常1~96時間、好ましくは3~48時間である。
 また、タファミジスの塩は、常法に従って得ることができる。例えば、タファミジス(6)に、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム等の無機塩基;メチルアミン、エチルアミン、メグルミン、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、ベンジルアミン等の有機塩基を接触させる造塩工程により得ることができる。
 造塩工程における塩基の使用量は、反応効率や製造コストの観点から、タファミジス(6)100モルに対して、好ましくは70~750モルの範囲、より好ましくは90~500モルの範囲、特に好ましくは100~300モルの範囲である。
 造塩工程は溶媒存在下で行うことが好ましい。溶媒としては、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;酢酸エチル等のエステル系溶媒;メタノール、エタノール等の1価の低級アルコール系溶媒;水等が挙げられる。溶媒は、1種を単独で使用しても2種以上を組み合わせて使用してもよい。
 造塩工程の反応温度は、通常-10℃~溶媒沸点、好ましくは0~30℃である。
 造塩工程の反応時間は、通常0.1~96時間、好ましくは1~48時間である。
 また、前述の加水分解工程で得られたタファミジス(6)を単離精製後に造塩工程に供することもできるし、加水分解工程で得られたタファミジス(6)の溶液のまま、続けて造塩工程に供することもできる。
 なお、上記各工程で得られる反応生成物を、蒸留、抽出、結晶化、洗浄等の分離手段で精製してもよい。
 そして、本発明の製造方法によれば、タファミジス又はその塩を高収率且つ低コストで製造できる。また、環化工程における必要液量(生成物の分離までに最大となる液量)が小さく、タファミジスを製造するために必要な製造設備をコンパクト化しやすい。
 また、上記アミド化工程及び上記ハロゲン化工程における必要液量(生成物の分離までに最大となる液量)も小さいため、本発明の製造方法は、上記アミド化工程及び/又は上記ハロゲン化工程を含む場合であっても、タファミジスを製造するために必要な製造設備をコンパクト化しやすい。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1 (タファミジスの合成)
 (1) 4-アミノ-3-ブロモ安息香酸エチルの合成
 4-アミノ安息香酸エチル200g(1.21mol)をテトラヒドロフラン1000mLに溶解させ、外温0℃で撹拌した。その後、N-ブロモスクシンイミド218g(1.22mol)を加え、1時間攪拌した。この反応液に水1000mL、酢酸エチル1000mLを加え分液し、有機層を飽和食塩水1000mLで洗浄後、無水硫酸ナトリウムで脱水し、減圧濃縮した。濃縮物に酢酸エチル460mL、n-ヘプタン1500mLを加え、外温0℃で1時間攪拌後、析出した固体をろ取した。ろ取した固体を外温40℃で減圧乾燥し、4-アミノ-3-ブロモ安息香酸エチル297g(1.22mol、収率100%)を微黄白色固体として得た。
1H-NMR(DMSO):δ/ppm= 1.28 (t, 3H, J=7.2Hz), 4.22 (q, 2H, J=6.8Hz), 6.19 (s, 2H), 6.80 (d, 1H, J=8.4Hz), 7.65 (dd, 1H, J=2.0, 8.4Hz), 7.89 (d, 1H, J=2.0Hz)
 (2) N-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドの合成
 上記で得た4-アミノ-3-ブロモ安息香酸エチル290g(1.19mol)をテトラヒドロフラン2900mLに溶解させ、ピリジン141g(1.79mol)を加えた。次いで、テトラヒドロフラン580mLに溶解させた3,5-ジクロロベンゾイルクロリド299g(1.42mol)を滴下し、外温15℃で19.5時間攪拌した。反応液に水3480mLを加え、外温0℃で1時間攪拌後、析出した固体をろ取した。ろ取した固体を外温50℃で減圧乾燥し、N-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド460g(1.10mol、収率93%)を白色固体として得た。
1H-NMR(DMSO):δ/ppm= 1.34 (t, 3H, J=7.2Hz), 4.34 (q, 2H, J=7.2Hz), 7.75 (d, 1H, J=8.4Hz), 7.93 (t, 1H, J=1.6Hz), 8.01 (dd, 1H, J=1.6, 7.6Hz), 8.01 (d, 2H, J=2.0Hz), 8.21 (1H, d, J=1.6Hz), 10.48 (1H, s)
 (3) 2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチルの合成
 トルエン50mLに、N,N,N',N'-テトラメチルエチレンジアミン0.28g(2.4mmol)、ヨウ化銅(I)0.23g(1.2mmol)、上記で得たN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド5.00g(12.0mmol)、炭酸カリウム4.97g(36.0mmol)を加え、外温110℃で5時間攪拌した。この反応液に10%塩化アンモニウム水溶液25mL、テトラヒドロフラン60mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル3.99g(11.9mmol、収率99%)を淡黄色固体として得た。
1H-NMR(DMSO):δ/ppm= 1.44 (t, 3H, J=7.2Hz), 4.43 (q, 2H, J=7.2Hz), 7.55 (t, 1H, J=2.0), 7.80 (d, 1H, J=8.4Hz), 8.13 (dd, 1H, J=2.0, 8.8Hz), 8.15 (d, 1H, J=2.0Hz), 8.29 (d, 1H, J=1.2Hz)
 (4) タファミジスの合成
 テトラヒドロフラン64mLと水16mLの混液に、上記で得た2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル3.99g(11.9mmol)と水酸化リチウム一水和物0.70g(16.6mmol)を加え、外温40℃で一晩攪拌した。反応液を冷却後、水48mL、1mol/L塩酸32mLを加え、析出した固体をろ取した。ろ取した固体を外温50℃で減圧乾燥し、タファミジス3.17g(10.3mmol、収率87%、4-アミノ安息香酸エチルからの総収率80%)を微黄白色固体として得た。
1H-NMR(DMSO):δ/ppm= 7.91 (d, 1H, J=8.4Hz), 7.94 (t, 1H, J=2.0Hz), 8.03 (dd, 1H, 1.2,8.0Hz), 8.13 (d, 2H, J=2.0Hz), 8.26 (d, 1H, J=0.8Hz), 13.28 (br-s, 1H)
実施例2 (タファミジスの合成)
 トルエン50mLに、N,N,N',N'-テトラメチルエチレンジアミン0.28g(2.4mmol)、臭化銅(I)0.17g(1.2mmol)、実施例1の(1)及び(2)と同様の操作を行って得たN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド5.00g(12.0mmol)、炭酸カリウム4.97g(36.0mmol)を加え、外温110℃で一晩攪拌した。この反応液に10%塩化アンモニウム水溶液25mL、テトラヒドロフラン60mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル3.88g(11.5mmol、収率96%)を淡黄色固体として得た。得られたスペクトルデータは、実施例1(3)に記載のスペクトルデータと一致した。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率87%(4-アミノ安息香酸エチルからの総収率78%)で微黄白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例3 (タファミジスの合成)
 トルエン50mLに、N,N,N',N'-テトラメチルエチレンジアミン0.28g(2.4mmol)、酢酸銅(I)0.15g(1.2mmol)、実施例1の(1)及び(2)と同様の操作を行って得たN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド5.00g(12.0mmol)、炭酸カリウム4.97g(36.0mmol)を加え、外温110℃で5時間攪拌した。この反応液に10%塩化アンモニウム水溶液25mL、テトラヒドロフラン60mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル3.89g(11.6mmol、収率96%)を灰黄色固体として得た。得られたスペクトルデータは実施例1(3)に記載のスペクトルデータと一致した。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率87%(4-アミノ安息香酸エチルからの総収率78%)で灰白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例4 (タファミジスの合成)
 トルエン50mLに、N,N,N',N'-テトラメチルエチレンジアミン0.28g(2.4mmol)、硫酸銅(II)0.19g(1.2mmol)、実施例1の(1)及び(2)と同様の操作を行って得たN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド5.00g(12.0mmol)、炭酸カリウム4.97g(36.0mmol)を加え、外温110℃で5時間攪拌した。この反応液に10%塩化アンモニウム水溶液25mL、テトラヒドロフラン60mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル3.89g(11.6mmol、収率96%)を淡黄色固体として得た。得られたスペクトルデータは実施例1(3)に記載のスペクトルデータと一致した。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率90%(4-アミノ安息香酸エチルからの総収率80%)で微黄白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例5 (タファミジスの合成)
 トルエン50mLに、N,N,N',N'-テトラメチルエチレンジアミン0.28g(2.4mmol)、酸化銅(II)0.10g(1.2mmol)、実施例1の(1)及び(2)と同様の操作を行って得たN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド5.00g(12.0mmol)、炭酸カリウム4.97g(36.0mmol)を加え、外温110℃で24時間攪拌した。このときの反応転化率は93%であった。この反応液に10%塩化アンモニウム水溶液25mL、テトラヒドロフラン60mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮した。濃縮物に酢酸エチル100mLを加え、外温80℃で溶解させた後、室温まで冷却し、析出した結晶をろ取した。結晶を外温50℃で減圧乾燥し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル2.87g(8.5mmol、収率71%)を白色固体として得た。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率97%(4-アミノ安息香酸エチルからの総収率64%)で微黄白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例6 (タファミジスの合成)
 N-ブロモスクシンイミドをN-クロロスクシンイミドに変更する以外は実施例1の(1)及び(2)と同様の操作を行うことで、N-[2-クロロ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドを得た。
 トルエン10mLに、N,N,N',N'-テトラメチルエチレンジアミン0.19g(1.61mmol)、酢酸銅(I)0.10g(0.8mmol)、上記で得たN-[2-クロロ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド1.00g(2.7mmol)、炭酸カリウム1.11g(8.1mmol)を加え、外温110℃で22時間攪拌した。この反応液に10%塩化アンモニウム水溶液5mL、テトラヒドロフラン12mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル0.91g(2.7mmol、収率100%)を淡黄色固体として得た。得られたスペクトルデータは実施例1(3)に記載のスペクトルデータと一致した。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率93%(4-アミノ安息香酸エチルからの総収率86%)で微黄白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例7 (タファミジスの合成)
 (1) 4-アミノ-3-ヨード安息香酸エチルの合成
 4-アミノ-3-ヨード安息香酸1g(3.8mmol)とエタノール10mLと濃硫酸0.48g(4.9mmol)の混合物を5時間加熱還流し、減圧濃縮した。この濃縮物に飽和重曹水10mLを加え、固体をろ取した。ろ取した固体を外温50℃で減圧乾燥し、4-アミノ-3-ヨード安息香酸エチル0.77g(2.6mmol、収率69%)を微黄白色固体として得た。
1H-NMR(CDCl3):δ/ppm= 1.38 (t, 3H, J=7.2Hz), 4.33 (q, 2H, J=7.2Hz), 4.53 (br-s, 2H), 6.72 (d, 1H, J=8.4Hz), 7.84 (dd, 1H, J=2.0, 8.4Hz), 8.35 (d, 1H, J=1.6Hz)
 (2) N-[2-ヨード-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドの合成
 上記で得た4-アミノ-3-ヨード安息香酸エチル0.7g(2.4mmol)をテトラヒドロフラン7mLに溶解させ、ピリジン0.29g(3.6mmol)を加えた。次いで、テトラヒドロフラン1.4mLに溶解させた3,5-ジクロロベンゾイルクロリド0.6g(2.9mmol)を滴下し、外温20℃で5時間攪拌した。反応液に酢酸エチル11.9mLを加え分液し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、濃縮物に酢酸エチル5.6mLを加え、室温下で1時間撹拌後、固体をろ取した。ろ取した固体を外温40℃で減圧乾燥し、N-[2-ヨード-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド0.71g(1.5mol、収率64%)を白色固体として得た。
1H-NMR(CDCl3):δ/ppm= 1.34 (t, 3H, J=7.2Hz), 4.34 (q, 2H, J=7.2Hz), 7.63 (d, 1H, J=8.4Hz), 7.86 (d, 1H, J=1.6Hz), 7.93 (t, 1H, J=1.6Hz), 8.00-8.03 (m, 3H), 8.43 (d, 1H, J=2.0Hz), 8.57 (s, 1H)
 (3) 2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチルの合成
 トルエン6mLに、N,N,N’,N’-テトラメチルエチレンジアミン30.0mg(0.26mmol)、ヨウ化銅(I)24.6mg(0.13mmol)、上記で得たN-[2-ヨード-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド600mg(1.29mmol)、炭酸カリウム536mg(3.88mmol)を加え、外温110℃で30時間攪拌した。この反応液に10%塩化アンモニウム水溶液3mL、テトラヒドロフラン7.2mLを加え分液し、有機層を10%塩化アンモニウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水、減圧濃縮し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル360mg(1.07mmol、収率83%)を淡黄色固体として得た。得られたスペクトルデータは実施例1(3)に記載のスペクトルデータと一致した。
 次いで、実施例1(4)と同様の操作を行い、タファミジスを収率93%(4-アミノ-3-ヨード安息香酸からの総収率34%)で微黄白色固体として得た。得られたスペクトルデータは、実施例1(4)に記載のスペクトルデータと一致した。
実施例8 (タファミジスメグルミンの合成)
 実施例1で得たタファミジス1.00g(3.25mmol)に、2-プロパノール20mL、水5.5mL、N-メチル-D-グルカミン0.63g(3.25mmol)を加え、外温80℃で1時間攪拌した。その後混液を内温10℃に冷却し、析出した固体をろ取した。ろ取した固体を外温50℃で減圧乾燥し、タファミジスメグルミン1.26g(2.50mmol、収率77%)を白色固体として得た。
1H-NMR(DMSO):δ/ppm= 2.55 (s, 3H), 2.91-3.06 (m, 2H), 3.41-3.55 (m, 3H), 3.60 (dd, 1H, J=3.2, 10.4Hz), 3.71 (dd, 1H, J=1.2,4.8Hz), 3.94 (m, 1H), 7.77 (d, 1H, J=8.4Hz), 7.92 (t, 1H, J=2.0Hz), 8.03 (dd, 1H, J=1.2,8.4Hz), 8.15 (d, 2H, J=2.0Hz), 8.19(s, 1H)
比較例1 (タファミジスの合成)
 特表2006-511612号公報に記載の方法に準じて、タファミジスを合成した。
 (1)すなわち、テトラヒドロフラン200mLに、4-アミノ-3-ヒドロキシ安息香酸2.00g(13.1mmol)、ピリジン3.10g(39.2mmol)、3,5-ジクロロベンゾイルクロリド2.74g(13.1mmol)を加え、1時間還流し、反応混合物を減圧濃縮した。得られたN-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドは精製することなく次の段階に使用した。
 (2)上記で得られたN-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドの濃縮物に、キシレン330mL、p-トルエンスルホン酸1水和物24.9g(131mmol)を加え、外温140℃で14時間撹拌した。反応液を冷却後、1mol/L水酸化ナトリウム水溶液131mL(131mmol)を加え、有機層を分離した。水層に1mol/L塩酸を加えpH2とし、酢酸エチル200mLで4回抽出した。有機層を合わせ、無水硫酸で脱水、減圧濃縮し、タファミジス2.31g(7.5mmol、収率57.2%)を赤白色固体として得た。比較例1の方法では、収率が不充分だった。
試験例1
 実施例1~7、比較例1の方法の各工程におけるタファミジス1gを得るための最大液量(mL)を、概算により見積もった。ハロゲン化工程及び環化工程は、分液直前で液量が最大となるため、分液直前の液量を最大液量として概算し、エステル化工程、アミド化工程及び加水分解工程は、ろ過直前で液量が最大となるため、ろ過直前の液量を最大液量として概算した。なお、液体の比重は1g/mLとみなし、固体は比重1g/mLの液体とみなして概算した。
 また、各工程におけるタファミジス1gを得るための最大液量のうち、最も液量が大きいものを「最大値」として記録した。
 各工程におけるタファミジス1gを得るための最大液量や上記「最大値」の値が小さいほど、タファミジスを製造するために必要な製造設備をコンパクト化しやすいといえる。結果を表1に示す。
 また、各工程におけるタファミジス1gを得るための最大液量(mL)の概算方法を、実施例1を例に挙げて以下に説明する。また、実施例1においては、ハロゲン化工程、アミド化工程、環化工程及び加水分解工程のうち最も液量が大きくなったのが加水分解工程であり、その液量は52mLであったため、各工程における最大液量のうち「最大値」は52mLと記録した。
 実施例1の加水分解工程における総液量は、概ね164.49mLである。内訳:テトラヒドロフラン(64mL)+水(16mL)+2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル(約3.99mL)+水酸化リチウム一水和物(約0.70mL)+水(48mL)+1mol/L塩酸(32mL)
 そして、この加水分解工程によって得られたタファミジスは3.17gであり、実施例1の加水分解工程におけるタファミジス1gを得るための最大液量は、164.49÷3.17≒52mLである。
 実施例1の環化工程における総液量は、概ね145.48mLである。内訳:トルエン(50mL)+N,N,N’,N’-テトラメチルエチレンジアミン(約0.28mL)+ヨウ化銅(I)(約0.23mL)+N-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド(約5.00mL)+炭酸カリウム(約4.97mL)+10%塩化アンモニウム水溶液(25mL)+テトラヒドロフラン(60mL)
 そして、この環化工程によって得られた2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチルの量は3.99gであり、タファミジス1gを得るために必要な2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチルの量は、3.99÷3.17≒1.26gである。
 したがって、実施例1の環化工程におけるタファミジス1gを得るための最大液量は、145.48÷3.99×1.26≒46mLである。
 実施例1のアミド化工程における総液量は、概ね7690mLである。内訳:4-アミノ-3-ブロモ安息香酸エチル(約290mL)+テトラヒドロフラン(2900mL)+ピリジン(約141mL)+テトラヒドロフラン(580mL)+3,5-ジクロロベンゾイルクロリド(約299mL)+水(3480mL)
 そして、このアミド化工程によって得られたN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドの量は460gであり、タファミジス1gを得るために必要なN-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミドの量は、5.00÷3.99×1.26≒1.58gである。
 したがって、実施例1のアミド化工程におけるタファミジス1gを得るための最大液量は、7690÷460×1.58≒26mLである。
 実施例1のハロゲン化工程における総液量は、概ね3418mLである。 内訳:4-アミノ安息香酸エチル(約200mL)+テトラヒドロフラン(1000mL)+N-ブロモスクシンイミド(約218mL)+水(1000mL)+酢酸エチル(1000mL)
 そして、このハロゲン化工程によって得られた4-アミノ-3-ブロモ安息香酸エチルの量は297gであり、タファミジス1gを得るために必要な4-アミノ-3-ブロモ安息香酸エチルの量は、290÷460×1.58≒0.99gである。
 したがって、実施例1のハロゲン化工程におけるタファミジス1gを得るための最大液量は、3418÷297×0.99≒11mLである。
Figure JPOXMLDOC01-appb-T000024



 表1に示すとおり、実施例1~7の方法で製造することによって、タファミジスを製造するために必要な製造設備をコンパクト化できる。
比較例2 (2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチルの合成)
 ジメチルスルホキシド12mLに、N-[2-ブロモ-4-(エトキシカルボニル)フェニル]-3,5-ジクロロベンズアミド4g(9.6mmol)、ビス(1,5-シクロオクタジエン)ジイリジウム(I)ジクロリド0.064g(0.12mmol)、酢酸カリウム2.82g(29mmol)を加え、外温100℃で48時間攪拌した。このときの反応転化率は51%であった。この反応液に水20mLを加え、酢酸エチル60mLとテトラヒドロフラン20mLの混液で抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水し、減圧濃縮した。濃縮物をカラムクロマトグラフィーで精製し、2-(3,5-ジクロロフェニル)-1,3-ベンゾオキサゾール-6-カルボン酸エチル1.08g(2.6mmol、収率34%)を淡黄色固体として得た。比較例2の方法では、収率が不充分だった。
 上記のとおり、ビス(1,5-シクロオクタジエン)ジイリジウム(I)ジクロリドの存在下で化合物(1)の環化を行った場合(比較例2)における環化工程の収率は34%であった。
 これに対して、ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下で化合物(1)の環化を行った場合(実施例1~7)における環化工程の収率は71~100%であった。ここで、このようなC-Oカップリング反応による環化を効率化する上においては、イリジウム触媒が、ヨウ化銅触媒のような銅触媒よりも有用と考えられていたものであるところ(Tetrahedron Letters 2019,60,151082)、ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子を用いた場合に上記のようにして大幅な収率の改善がみられたことは意外なことである。
参考例1 (N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドの合成)
 特開2021-517118号公報に記載のアミド化反応を参考にして、N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドを合成した。
 すなわち、テトラヒドロフラン74mLに、4-アミノ-3-ヒドロキシ安息香酸2.00g(13.1mmol)、ピリジン1.20g(15.2mmol)を加え、氷塩浴で-12℃まで冷却した。テトラヒドロフラン12mLに溶解させた3,5-ジクロロベンゾイルクロリド2.68g(12.8mmol)を加え、温度を室温に変えて40分間撹拌した。反応液に0.2mol/L塩酸258mLを加え、沈殿物をろ取し、外温50℃で減圧乾燥した。得られた固体に0.5mol/L水酸化ナトリウム水溶液98mLを加え、室温下で撹拌し、ろ過により不溶物をろ別した。溶液をジクロロメタン48mLで洗浄し、水層に1mol/L塩酸を加えpHを2~3とした。沈殿物をろ取し、外温50℃で減圧乾燥した。得られた固体に1-ブタノール122mLを加え、外温120℃で7時間還流加熱した後、外温70℃で一晩撹拌し、固体をろ取した。得られた固体を外温50℃で減圧乾燥し、N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミド2.64g(8.1mmol、収率61.8%)を淡黄色固体として得た。
参考例2 (N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドの合成)
 特開2021-517118号公報に記載のアミド化反応を参考にして、N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドを合成した。
 すなわち、4-アミノ-3-ヒドロキシ安息香酸2.00g(13.1mmol)をテトラヒドロフラン36mLと水4mLの混液に溶解させ、3,5-ジクロロベンゾイルクロリド3.28g(15.7mmol)を加え、室温で1時間撹拌した。この混合物にトリエチルアミン1.59g(15.7mmol)を加え、室温で2時間撹拌し、0.1mol/L塩酸300mLを加え、沈殿物をろ取した。得られた固体に0.5mol/L水酸化ナトリウム水溶液を加え室温下で撹拌し、ろ過により不溶物をろ別した。溶液をジクロロメタン100mLで洗浄し、水層に1mol/L塩酸30mL、アセトニトリル130mLを加え、沈殿物をろ取し、外温50℃で減圧乾燥し、N-[2-ヒドロキシ-4-カルボキシフェニル]-3,5-ジクロロベンズアミドを灰白色固体として得た。収率は、特開2021-517118号公報の記載と同様に、約65%程度であった。

Claims (11)

  1.  ハロゲン化銅、カルボン酸銅、硫酸銅及び酸化銅から選ばれる1種以上の銅触媒と塩基とアミン配位子との存在下で、下記式(1)で表される化合物を環化させて下記式(2)で表される化合物を得る環化工程を含む、タファミジス又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、
     R1は、直鎖状又は分岐鎖状のアルキル基を示し、
     Xは、ハロゲン原子を示す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、R1は、前記と同義である。〕
  2.  下記式(3)で表される化合物と下記式(4)で表される化合物とを塩基存在下でアミド化反応させるアミド化工程を更に含み、当該工程で得られた式(1)で表される化合物を前記環化工程に用いる、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、Yは、ハロゲン原子を示す。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式(4)中、R1及びXは、前記と同義である。〕
  3.  下記式(5)で表される化合物をハロゲン化反応させるハロゲン化工程を更に含み、当該工程で得られた式(4)で表される化合物を前記アミド化工程に用いる、請求項2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    〔式(5)中、R1は、前記と同義である。〕
  4.  下記式(11)で表される化合物と下記式(12)で表される化合物とを脱水縮合反応させるエステル化工程を更に含み、当該工程で得られた式(4)で表される化合物を前記アミド化工程に用いる、請求項2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    〔式(11)中、Xは、前記と同義である。〕
    Figure JPOXMLDOC01-appb-C000007
    〔式(12)中、R1は、前記と同義である。〕
  5.  前記環化工程で得られた式(2)で表される化合物をエステル加水分解する加水分解工程を更に含む、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記銅触媒として、ヨウ化銅(I)、ヨウ化銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅、硫酸銅(I)、硫酸銅(II)、酸化銅(I)及び酸化銅(II)から選ばれる1種以上を用いる、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記銅触媒として、ハロゲン化銅、カルボン酸銅及び硫酸銅から選ばれる1種以上の銅触媒を用いる、請求項1~5のいずれか1項に記載の製造方法。
  8.  前記銅触媒として、ハロゲン化銅を用いる、請求項1~5のいずれか1項に記載の製造方法。
  9.  前記ハロゲン化銅として、ヨウ化銅(I)、臭化銅(I)及び塩化銅(I)から選ばれる1種以上のハロゲン化銅を用いる、請求項8に記載の製造方法。
  10.  前記アミン配位子として、1価アミン配位子及びジアミン配位子から選ばれるアミン配位子を用いる、請求項1~9のいずれか1項に記載の製造方法。
  11.  Xが、塩素原子又は臭素原子である、請求項1~10のいずれか1項に記載の製造方法。
PCT/JP2023/027059 2022-07-22 2023-07-24 タファミジス又はその塩の製造方法 WO2024019180A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022117566 2022-07-22
JP2022-117566 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019180A1 true WO2024019180A1 (ja) 2024-01-25

Family

ID=89617971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027059 WO2024019180A1 (ja) 2022-07-22 2023-07-24 タファミジス又はその塩の製造方法

Country Status (1)

Country Link
WO (1) WO2024019180A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517118A (ja) * 2018-03-13 2021-07-15 アザド ファーマ アーゲー タファミジスを合成するための新たな経路及び新たな多形体
WO2021152623A1 (en) * 2020-01-27 2021-08-05 Dr. Reddy’S Laboratories Limited Improved processes for the preparation of tafamidis and its meglumine salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517118A (ja) * 2018-03-13 2021-07-15 アザド ファーマ アーゲー タファミジスを合成するための新たな経路及び新たな多形体
WO2021152623A1 (en) * 2020-01-27 2021-08-05 Dr. Reddy’S Laboratories Limited Improved processes for the preparation of tafamidis and its meglumine salt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI YAJIE; ZHOU QIFAN; DU FANGYU; FU YANG; DU YANG; FANG TING; CHEN GUOLIANG: "Iridium-catalyzed intramolecular CN and CO/S cross-coupling reactions: Preparation of benzoazole derivatives", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 60, no. 40, 26 August 2019 (2019-08-26), Amsterdam , NL , XP085829588, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2019.151082 *

Similar Documents

Publication Publication Date Title
JP4828863B2 (ja) (z)−1−フェニル−1−(n,n−ジエチルアミノカルボニル)−2−フタルイミドメチルシクロプロパンの製造方法
JP5102002B2 (ja) アセナピン合成中間体の製造方法
JP5689321B2 (ja) 2−アミノ−4−トリフルオロメチルピリジン類の製造方法
WO2007105793A1 (ja) イソ尿素類のニトロ化方法
JP2017025014A (ja) ベンゾオキサゾール化合物の製造方法
WO2024019180A1 (ja) タファミジス又はその塩の製造方法
JP7311520B2 (ja) スルフェントラゾンの合成のための方法
JP2003335735A (ja) パーフルオロイソプロピルアニリン類の製造方法
JP2023532362A (ja) フェニルイソオキサゾリン系化合物の製造方法
KR101109942B1 (ko) 방향족 불포화 화합물의 제조 방법
WO2016199688A1 (ja) カーバメート化合物の製造方法
CN111556861A (zh) 茉莉酸酯化合物的制备方法
JP4258658B2 (ja) アセチレン化合物の製造方法
KR20060136357A (ko) 방향족 불포화 화합물의 제조 방법
JP7266139B1 (ja) 芳香族ビスエーテル化合物の製造方法
JP2018062513A (ja) スルホンアミド化合物の製造方法
JP4297837B2 (ja) フッ化フェニレンジアミンの製造方法
JP6809485B2 (ja) 酸ハライド溶液の製造方法、及びモノエステル化合物の製造方法
JP2003528846A (ja) N−ブチリル−4−アミノ−3−メチル−安息香酸メチルエステルの製法および新規化合物n−(4−ブロモ−2−メチルフェニル)−ブタンアミド
JP3135659B2 (ja) ペルフルオロ−オキシアジリジンの製造法
WO2023082149A1 (en) Process and intermediates for preparation of isofetamid
JP5763313B2 (ja) 2−(1−ベンゾチオフェン−5−イル)エタノールの製造法
JP4956760B2 (ja) 3−ブロモ安息香酸またはそのアルキルエステルの製造方法
WO2008010578A1 (fr) Procédé de fabrication d'un dérivé du styrène
JP2023111473A (ja) 脱水縮合をともなう環化反応による環化生成物の製造方法、および1,3,4-置換-ピラゾール-5-カルボン酸エステル類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843103

Country of ref document: EP

Kind code of ref document: A1