WO2024014543A1 - ホットスタンプ用アルミめっき鋼板 - Google Patents
ホットスタンプ用アルミめっき鋼板 Download PDFInfo
- Publication number
- WO2024014543A1 WO2024014543A1 PCT/JP2023/026113 JP2023026113W WO2024014543A1 WO 2024014543 A1 WO2024014543 A1 WO 2024014543A1 JP 2023026113 W JP2023026113 W JP 2023026113W WO 2024014543 A1 WO2024014543 A1 WO 2024014543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- compound
- surface treatment
- treatment film
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 143
- 239000010959 steel Substances 0.000 title claims abstract description 143
- 150000001875 compounds Chemical class 0.000 claims abstract description 200
- 238000004381 surface treatment Methods 0.000 claims abstract description 135
- 238000007747 plating Methods 0.000 claims abstract description 66
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 26
- 229910000680 Aluminized steel Inorganic materials 0.000 claims description 69
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 17
- 239000010439 graphite Substances 0.000 claims description 17
- 239000013078 crystal Substances 0.000 abstract description 29
- 239000010410 layer Substances 0.000 description 61
- 239000002585 base Substances 0.000 description 52
- 230000000694 effects Effects 0.000 description 42
- 238000010438 heat treatment Methods 0.000 description 40
- 238000000034 method Methods 0.000 description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 31
- 239000000126 substance Substances 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- 238000005260 corrosion Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- 229920005749 polyurethane resin Polymers 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- -1 fluororesins Polymers 0.000 description 5
- 238000010422 painting Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 239000012756 surface treatment agent Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- PZKRHHZKOQZHIO-UHFFFAOYSA-N [B].[B].[Mg] Chemical compound [B].[B].[Mg] PZKRHHZKOQZHIO-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910000500 β-quartz Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000007974 melamines Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 150000003682 vanadium compounds Chemical class 0.000 description 2
- 239000003021 water soluble solvent Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
Definitions
- the present invention relates to an aluminized steel sheet for hot stamping.
- This application claims priority based on Japanese Patent Application No. 2022-113179 filed in Japan on July 14, 2022, the contents of which are incorporated herein.
- hot stamping method also called hot pressing method, hot pressing method, high temperature pressing method, or die quenching method.
- the material to be formed is heated to a high temperature to transform it into a structure called austenite (austenitization), the steel plate that has been softened by heating is pressed and formed, and then cooled after forming.
- austenite austenitization
- the material since the material is once heated to a high temperature to soften it, the material can be easily pressed. Furthermore, the mechanical strength of the material can be increased due to the hardening effect caused by cooling after molding. Therefore, by this hot stamping method, a molded article having good shape fixability and high mechanical strength can be obtained.
- Patent Document 1 discloses a technique for manufacturing a molded product that can be used as an automobile member by processing an alloyed hot-dip galvanized steel sheet by a hot stamping method.
- Patent Document 2 and Patent Document 3 disclose a technique for speeding up the heating time to a desired temperature by applying a film mainly composed of an organic substance such as a carbon pigment to an aluminized steel sheet.
- the hot stamping method described in Patent Document 1 requires heating the steel plate to be processed to 700 to 1000°C. Therefore, it was necessary to secure time to heat the steel plate to a desired temperature, and productivity was not sufficiently improved. Furthermore, in the aluminized steel sheets described in Patent Documents 2 and 3, the carbon pigments contained in the coating on the steel sheets are all organic substances, so the aluminized steel sheets are heated to a high temperature range of 750°C or higher. All of these organic substances disappear. Therefore, even in the techniques described in Patent Document 2 and Patent Document 3, the improvement in productivity was insufficient.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide an aluminized steel sheet for hot stamping that can further improve the productivity of hot stamping members.
- the present inventors conducted extensive studies. As a result, when manufacturing a hot stamping member using an aluminized steel plate for hot stamping, it is possible to increase the heating rate when the steel plate is heated to a desired temperature (for example, Ac3 point or higher), and the heating time can be increased. It was discovered that this can contribute to improving productivity.
- a desired temperature for example, Ac3 point or higher
- the surface treatment film provided on the plating layer contains 70% of the acicular compound
- acicular compounds X1 acicular compounds X2 whose smallest angle among the angles formed by a straight line parallel to the major axis and the surface of the aluminized layer is 0 degrees or more and 40 degrees or less. It has been found that the temperature increase rate can be greatly increased and productivity can be improved as a result.
- the gist of the present invention which was completed based on this knowledge, is as follows.
- the aluminized steel sheet for hot stamping includes a base steel plate, an aluminized layer provided on at least one surface of the base steel plate, and an aluminum plated layer provided on the aluminized layer.
- the surface treatment film contains an acicular compound X, and the ratio of the major axis to the minor axis of the acicular compound , and the proportion of the acicular compound X1 having a hexagonal crystal structure is 70% or more in terms of number %, and among the acicular compound X1, a straight line parallel to the major axis and the surface of the aluminized layer
- the proportion of needle-shaped compounds X2 whose smallest angle is 0 degrees or more and 40 degrees or less is 70% or more in terms of number %.
- the content R of the acicular compound X1 may be 2% or more and 60% or less in volume %.
- the carbon concentration of the acicular compound X1 may be 90% by mass or more.
- the content R of the acicular compound X1 is measured at 10 points, and the maximum content is R1, and the minimum content is When R2 is R2, the ratio R1/R2 of R1 to R2 may be 2.0 or less.
- the acicular compound X1 may be graphite.
- the surface treatment film may contain a resin.
- FIG. 1 is a schematic cross-sectional view of an aluminized steel plate for hot stamping according to an embodiment of the present invention.
- FIG. 3 is a diagram showing the short axis and long axis of a needle-like compound.
- FIG. 1 is a schematic cross-sectional view of an aluminized steel plate for hot stamping according to an embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of an aluminized steel plate for hot stamping according to an embodiment of the present invention.
- the aluminized steel sheet for hot stamping according to the embodiment of the present invention (hereinafter also referred to as "aluminum-plated steel sheet for HS") is suitable for manufacturing a hot stamping member using the aluminized steel sheet for HS. It is possible to increase the rate of temperature rise when heating a steel plate. That is, by using the aluminized steel sheet for HS of this embodiment, which can increase the temperature increase rate during heating, it is possible to improve the productivity of hot stamping members.
- the aluminized steel sheet for hot stamping of this embodiment is coated with a surface treatment film containing an acicular compound, and the aluminum plating layer is formed on the aluminized steel sheet. It has on at least one surface of the plated steel plate.
- an aluminized steel sheet for HS obtained by applying a surface treatment film containing a predetermined acicular compound described later to at least one surface of a plated steel sheet on which an aluminized layer is formed as described above. It is possible to increase the rate of temperature rise when heating.
- the surface treatment film may be formed on both surfaces of the plated steel sheet on which the aluminized layer is formed, or may be formed only on one surface. Further, the surface treatment film may be formed on the entire surface of the plated steel sheet on which the aluminized layer is formed, or may be formed on a part of the surface, but from the viewpoint of further improving the productivity of hot stamping parts. Preferably, the surface treatment film is provided on the entire surface of the plated steel sheet on which the aluminized layer is formed.
- the type of steel plate serving as the base material is not particularly limited.
- the base steel plate include various hot-rolled steel plates and cold-rolled steel plates.
- the plated steel plate constituting the aluminized steel plate for hot stamping of this embodiment has a plating layer on at least one surface of such a base steel plate.
- Examples of the plated steel plate include steel plates coated with hot-dip aluminum plating.
- the plating layer of this embodiment is not limited to hot-dip aluminum plating as long as it can be applied to hot stamping.
- the temperature increase rate during hot stamp heating can be increased.
- the productivity of the hot-stamped member can be further improved.
- FIG. 1 shows a schematic cross-sectional view of the surface portion of one of the surfaces of the aluminized steel sheet for hot stamping according to the present embodiment.
- FIG. 1 is a schematic diagram for explanation, and the dimensions and distribution state of the surface treatment film 13, aluminum plating layer 12, needle-like inclusions X (X1), etc. do not necessarily represent a preferred embodiment. Moreover, it is not limited to the dimensions and distribution state shown in FIG.
- the dimensions and dimensional ratios of the base steel sheet, the aluminized layer, and the surface treatment film can be arbitrarily designed depending on the desired characteristics of the aluminized steel sheet for hot stamping.
- the aluminized steel plate 10 for hot stamping includes, for example, a base steel plate 11 and an aluminum plating layer 12 provided on at least one surface of the base steel plate 11. , and a surface treatment film 13 provided on the aluminum plating layer 12.
- the surface treatment film 13 contains the acicular compound X.
- the surface on the side to which the surface treatment film 13 is applied (that is, the surface of the surface treatment film 13) has a high emissivity. Therefore, the temperature increase rate during hot stamp heating is high, and as a result, the productivity of the hot stamp member can be further improved.
- the acicular compound X contained in the surface treatment film 13 contains an acicular compound X1 having a ratio of the major axis to the minor axis of 4 or more and 50 or less and a hexagonal crystal structure.
- the surface treatment film 13 according to the present embodiment may further contain a binder component, various additives, etc., if necessary.
- the surface treatment film 13 according to the present embodiment may not contain silica or may contain silica within a certain range.
- by adjusting the content of the acicular compound in the surface treatment film 13, the thickness of the surface treatment film 13, etc. it is possible to improve the temperature rise rate during hot stamp heating. Become.
- the constituent elements of the surface treatment film 13 will be explained in detail.
- the surface treatment film 13 is applied further above the aluminum plating layer 12 applied to one or both sides of the base steel plate 11.
- the acicular compound X exists within the surface treatment film 13. That is, the surface treatment film 13 contains the acicular compound X.
- the proportion of the acicular compound X1 and the proportion of the acicular compound X2 in the surface treatment film 13 are important, and it is necessary to specify the content (content rate) of the acicular compound X in the surface treatment film 13. There isn't.
- the content (content rate) of the acicular compound X in the surface treatment film 13 may be 0.5% or more, 1% or more, or 2% or more in volume %, or Alternatively, the content (content rate) of the acicular compound X1 in the surface treatment film 13 may be specified (without specifying the content of the acicular compound X in the surface treatment film 13). Note that the volume % of the acicular compound X in the surface treatment film 13 can be measured according to the method for measuring the volume % of the acicular compound X1 in the surface treatment film 13, which will be described later.
- the ratio of the major axis to the minor axis of the acicular compound X1 having a hexagonal crystal structure included in the surface treatment film 13 according to the present embodiment is 4 or more and 50 or less.
- the lower limit of the ratio is preferably 6 or more, more preferably 8 or more.
- the upper limit of the ratio is preferably 30 or less, more preferably 20 or less.
- hexagonal crystals tend to have anisotropy and can form needle-like compounds.
- other orthorhombic and monoclinic compounds there are few that fall within the above range of the ratio of the major axis to the minor axis.
- Hexagonal compounds absorb heat from the surroundings quickly. The reason for this is not clear, but in hexagonal compounds, the unit cell axis lengths are the same in all three directions, while two of the three axis angles are 90 degrees and the remaining one is 120 degrees. It is thought that this is because it is possible to absorb heat (especially radiant heat) from the surroundings three-dimensionally. On the other hand, in other crystal systems, all the axial angles are 90 degrees, so there is a possibility that radiant heat cannot be widely absorbed.
- the acicular compound X1 contained in the surface treatment film 13 according to this embodiment has a hexagonal crystal system. However, not all needle-like compounds need to be hexagonal, and needle-like compounds of other crystal systems may be included. However, from the viewpoint of improving heat absorption, the ratio of hexagonal acicular compound X1 to all acicular compounds contained in the film (ratio of acicular compound X1 to acicular compound X) is 70% by number. % or more. All of the acicular compounds may be hexagonal.
- the ratio of the long axis to the short axis of the acicular compound X1 is too small, a sufficient surface area per unit volume of the acicular compound X1 may not be ensured, and the heat absorption efficiency during heating may become insufficient. As a result, the temperature increase rate when heating the aluminized steel sheet cannot be sufficiently improved, and productivity may be degraded.
- the ratio of the major axis to the minor axis of the acicular compound X1 to be 4 or more, the surface area per unit volume of the acicular compound X1 becomes large, and it is possible to efficiently absorb radiant heat from the heating atmosphere. As a result, the temperature increase rate of the aluminized steel sheet during hot stamping can be increased.
- the ratio of the long axis to the short axis of the acicular compound X1 is too large, absorption of radiant heat by other acicular compounds existing in the vicinity of the acicular compound X1 may be hindered. As a result, the rate of temperature increase when heating the aluminized steel sheet cannot be sufficiently improved, and productivity may be degraded.
- the ratio of the long axis to the short axis of the needle compound can be efficiently absorbed, and as a result, the rate of temperature rise of the aluminized steel sheet during hot stamping can be increased.
- the needle-like compound such as a hexagonal system
- the crystal structure can be identified from the electron diffraction image of Compound X.
- the TEM observation sample is prepared by FIB processing using a focused ion beam device (“FIB NB 5000” manufactured by Hitachi High-Technologies).
- the acceleration voltage during processing is 40 kV.
- the observation plane is a cross section perpendicular to the rolling direction of the steel plate (so-called C cross section), and the observation position is adjusted so as to be perpendicular to the cross section during observation.
- the temperature increase rate of the aluminized steel sheet for hot stamping can be improved by including in the film the acicular compound X1, which has a ratio of the major axis to the minor axis of 4 or more and 50 or less. .
- the short axis and long axis can be determined by the following procedure.
- the shorter side and the longer side are The sides are defined as the short axis and long axis, respectively.
- needle-like compounds with a C concentration in the range of 0 to 10% by mass are treated as one needle-like compound that has a different contrast from the surroundings and is continuous in a TEM image. It is determined to be compound X.
- the ratio of the major axis to the minor axis is 4 or more and 50 or less, and among the hexagonal acicular compound X1, a straight line parallel to the major axis and the surface of the plating layer 12
- the proportion of needle-like compounds X2 whose smallest angle ⁇ is 0 degrees or more and 40 degrees or less is 70% or more in number %. If the smallest angle ⁇ between a straight line parallel to the long axis of the needle-like compound X1 and the surface of the plating layer exceeds 40 degrees, absorption of radiant heat will be insufficient and the temperature increase rate will not increase.
- the ratio of the acicular compound X2 whose angle ⁇ is 0 degrees or more and 40 degrees or less out of the acicular compound X1 must be sufficiently increased. It is effective to increase The proportion of the acicular compounds X2 may be 100% (that is, the angle ⁇ of all the acicular compounds X1 is 0 degrees or more and 40 degrees or less).
- the angle ⁇ in this embodiment can be measured from a TEM image obtained by observing the above-mentioned TEM observation sample (film thickness x 50 ⁇ m x (sample thickness) approximately 100 nm).
- the smallest angle ⁇ among the angles between a straight line parallel to the long axis of the acicular compound X1 and the plating surface is defined as the angle ⁇ that is perpendicular to the plating surface and This can be said to be the smaller angle among the angles formed by the straight line A and the line of intersection B between the plane Z and the plating surface within the plane Z including the straight line A.
- the proportion of the acicular compound X1 is determined by the following method. Any 10 needle-like compounds X from among those determined to be needle-like compounds is selected, and from among the 10, the number ratio (number %) of needle-shaped compounds X1 having a ratio of the major axis to the minor axis of 4 or more and 50 or less and a hexagonal crystal structure is determined. Specifically, 10 compounds are arbitrarily selected from among those determined to be needle-shaped compounds If there are seven acicular compounds X1 having the structure, the proportion of the acicular compounds X1 in the region is 70%.
- the proportion (number %) of the acicular compounds X1 in the surface treatment film 13 is calculated.
- the proportion of needle-like compound X2 is determined by the following method. Select any 40 acicular compounds X1 from those determined to be acicular compounds X1 by the above method using the TEM observation sample (film thickness x 50 ⁇ m x 100 nm thickness), and , the number ratio (number %) of needle-like compounds X2 whose angle ⁇ satisfies the range of 0 degrees to 40 degrees is determined.
- 40 compounds are arbitrarily selected from those determined to be acicular compounds X, and if there are 30 acicular compounds
- the proportion of compound X2 is 75%.
- the proportion (number %) of the acicular compound X2 in the surface treatment film 13 is calculated.
- the acicular compound X1 contained in the surface treatment film 13 has a hexagonal crystal structure as described above. That is, the needle-like compound X1 is not an amorphous compound represented by carbon black, but a crystalline compound.
- the acicular compound X1 it is not possible to sufficiently improve the temperature increase rate during hot stamping, and it may also be difficult to ensure the adhesion of the surface treatment film.
- Compounds with a hexagonal crystal structure include lanthanum silicate, magnesium diboride, beryllium oxide (beryllium), zinc oxide, graphite (C), ⁇ -quartz, needle nickelite (NiS), and wurtzite (ZnS). and so on.
- the temperature increase rate during hot stamping is improved by including a compound with a hexagonal crystal structure in the film, it is effective against infrared rays with a wavelength of 1 to 10 ⁇ m, which is particularly effective in absorbing radiant heat.
- One possible reason may be that there are many active bonds.
- a base treatment film 14 may be provided below the surface treatment film 13 (between the surface treatment film 13 and the aluminum plating layer 12). By doing so, the adhesion of the upper surface treatment film 13 to the aluminum plating layer 12 can be improved.
- the base treatment film 14 is a film containing elements such as carbon, oxygen, hydrogen, nitrogen, silicon, and sodium, such as a silane coupling agent, and an acicular-shaped film having a hexagonal crystal structure is provided on the upper layer.
- a surface treatment film 13 containing a compound Note that FIG. 3 is merely a schematic diagram for explanation, and the dimensions and distribution of the surface treatment film 13, base treatment film 14, aluminum plating layer 12, needle-like inclusions X (X1), etc. do not necessarily correspond to the preferred implementation. It does not show the form, and is not limited to the dimensions and distribution state of FIG. 3.
- a film 15 may be provided on the upper layer of the surface treatment film 13.
- the film 15 include resin films such as polyester resins and polyurethane resins that do not contain or contain only trace amounts of inorganic components such as silicon and metals.
- resin films such as polyester resins and polyurethane resins that do not contain or contain only trace amounts of inorganic components such as silicon and metals.
- FIG. 4 is merely a schematic diagram for explanation, and the dimensions and distribution states of the film 15, surface treatment film 13, base treatment film 14, aluminum plating layer 12, needle-like inclusions X (X1), etc. This does not represent a preferred embodiment, and is not limited to the dimensions and distribution shown in FIG.
- the surface treatment film 13 can contain various binder components and additives in addition to the above-mentioned acicular compound. It is preferable that the surface treatment film 13 contains, for example, a resin and a pigment. In addition to these components, the surface treatment film 13 may also contain additives such as a leveling agent, an antifoaming agent, a coloring agent, a viscosity modifier, and an ultraviolet absorber. Note that the coating liquid for forming the surface treatment film 13 is preferably obtained by dispersing or dissolving each of the above components in water or a solvent.
- specific methods for applying the surface treatment film 13 include methods such as painting and laminating, but are not limited to these methods.
- the surface treatment film 13 may be applied only to one side of the steel plate, or may be applied to both sides of the steel plate.
- the surface treatment film 13 When applying the surface treatment film 13 to the entire surface of the aluminum plating layer 12 by painting, first, for example, an acicular compound having a ratio of the major axis to the minor axis of 4 to 50 and a hexagonal crystal structure is applied. Prepare an organic or inorganic treatment solution containing Thereafter, the surface treatment film 13 is applied by applying a treatment liquid to the entire surface of the aluminum plating layer 12 using a roll coater, curtain coater, inkjet, etc., and then drying volatile components in the treatment liquid. In particular, inkjet coating is preferred because the film thickness can be changed continuously.
- Patent Document 2 when the surface treatment film contains organic substances such as carbon pigments, when the plated steel sheet is heated to a high temperature range (for example, 750°C or higher), all of these organic substances disappear. There was a problem.
- the present inventors have discovered that in the case of the surface treatment film 13 according to the present embodiment, it is possible to heat the organic compounds to a high temperature range without disappearing the organic compounds other than the acicular compound X1 having a hexagonal crystal structure. .
- the aluminized steel sheet 10 for hot stamping according to the present embodiment With the surface treatment film 13 having the characteristics described above, it is possible to improve the rate of temperature rise during hot stamping. Therefore, by using the hot stamping aluminized steel sheet 10 according to this embodiment as a raw material, it is possible to improve the productivity of the hot stamping material.
- the characteristic substance (acicular compound) contained in the surface treatment film 13 will be described in more detail below.
- the content R of the acicular compound X1 having a hexagonal crystal structure in the surface treatment film 13 is 0.5% by volume or more, or It is preferably 1% by volume or more.
- the content R is preferably 2% by volume or more, more preferably 5% by volume or more, and even more preferably 10% by volume or more. It is preferable that the content R is 60% by volume or less.
- the content R is preferably 40% by volume or less, more preferably 20% by volume or less.
- the content R is the volume ratio (volume %) of the acicular compound X1 in the surface treatment film 13 in the TEM image, and can be determined by the following procedure. Calculating the volume of each needle-like compound X1 from the dimensions of each needle-like compound X1 in the TEM observation region (for example, the short axis corresponding to the diameter of needle-like compound X1 and the long axis corresponding to the length of needle-like compound X1), The volume fraction of the needle-like compound X1 is calculated by dividing the total volume by the volume of the observation region (viewing area x thickness). Such measurements are repeated 10 times, and the average of the volume ratios over 10 fields of view is defined as the content ratio R.
- the short axis of the acicular compound X1 contained in the surface treatment film 13 is preferably 20 nm or more.
- the thickness of the surface treatment film 13 may vary locally due to the roughness or waviness of the base steel plate, or the difference in rate at which volatile components such as water in the treatment liquid evaporate during film formation.
- it is preferable that the short axis of the acicular compound X1 is 20 nm or more because the surface treatment film 13 can efficiently absorb radiant heat.
- the short axis of the needle-like compound X1 is preferably 2 ⁇ m or less.
- the short axis is preferably 30 nm or more, 60 nm or more, or 1 ⁇ m or less, 700 nm or less, or 500 nm or less.
- the long axis of the acicular compound X1 contained in the surface treatment film 13 is 80 nm or more. It is preferable that the long axis of the acicular compound X1 is 80 nm or more because the surface treatment film 13 can efficiently absorb radiant heat, similar to the reason for the short axis described above. It is preferable that the long axis of the needle-like compound X1 is 100 ⁇ m or less.
- the major axis is preferably 150 nm or more, 300 nm or more, or 50 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
- the carbon concentration of the acicular compound X1 is 90% by mass or more. By having a carbon concentration of 90% by mass or more, even if the temperature rises during hot stamping, it is possible to delay the disappearance of the acicular compound It can also be maintained. Furthermore, when the carbon concentration of the acicular compound X1 is 90% by mass or more, the reaction between the acicular compound X1 and oxygen in the atmosphere becomes an exothermic reaction, so that the temperature increase rate can be further accelerated. It is preferable that the carbon concentration is 90% by mass or more. Note that the carbon concentration can be determined from the EDS measurement value.
- the spectrum of characteristic X-rays during electron beam irradiation is measured, and the detected intensity for each energy is calculated.
- the element constituting the acicular compound can be identified from the energy value, and the concentration of the element can be calculated from the detected intensity.
- the original concentration of carbon and the like constituting the acicular compound X1 can be analyzed.
- the carbon concentration of the acicular compound X1 determined in this manner is preferably 100% by mass or less. When the carbon concentration is 100% by mass or less, it is expected that the exothermic reaction will proceed and the temperature increase rate will be further accelerated.
- the compound in the surface treatment film has an acicular shape
- the surface area per unit volume of the compound is large. Therefore, when the aluminized steel sheet according to the present embodiment is heated to produce a hot-stamped member, heat can be efficiently absorbed throughout the surface treatment film by radiation of electromagnetic waves from the heating atmosphere. In addition, heat can be efficiently absorbed by heat conduction through contact with heated atmospheric gas. As a result, it becomes possible to heat the entire surface treatment film evenly and quickly.
- the form of the compound in the film should be acicular with a ratio of the major axis to the minor axis of 4 or more and 50 or less, and such acicular compound X1 should be added to the surface treatment film. It is effective to have it dispersed throughout.
- the degree of dispersion of the acicular compound X1 is calculated using the data obtained when measuring the proportion of the acicular compound X1 described above. Specifically, when measuring the ratio of needle-like compound X1 mentioned above, the task of measuring the ratio of needle-like compound X1 among arbitrary ten needle-like compounds The maximum value of the ratio (content rate) is set as R1, and the minimum value of the ratio (content rate) is set as R2. Then, the ratio of R1 to R2 (R1/R2) is defined as the degree of dispersion of the acicular compound X1.
- R1/R2 is preferably 2.0 or less.
- R1/R2 may be 2.5 or less or 2.3 or less, or may be 1.8 or less or 1.6 or less.
- R1/R2 is influenced by the time required to reach 60° C. during drying after coating in the manufacturing method of this embodiment. Specifically, by adjusting the arrival time to 10.0 seconds or less, R1/R2 can be controlled within the above range. From the definition of R1/R2, the lower limit of R1/R2 is 1.0.
- the acicular compound X1 contained in the surface treatment film 13 is graphite.
- the amount of film components decreases after hot stamp heating, and the performance after hot stamping, such as post-painting adhesion, can be maintained.
- the decomposition time is slow because there are few functional groups.
- carbon black which is a similar carbon-based compound, has a relatively large number of functional groups, so it has the characteristic that decomposition and oxidation reactions easily occur from an early stage.
- graphite By setting the content of graphite in the surface treatment film 13 to 5.0% by volume or more, the emissivity of the aluminized steel sheet can be increased and the rate of temperature increase can be increased.
- the content of graphite in the surface treatment film 13 is more preferably 8.0% by volume or more. By setting the content of graphite in the surface treatment film 13 to 8.0% by volume or more, it becomes possible to further increase the temperature increase rate.
- graphite refers to a material having a carbon concentration (C concentration) of 85% by mass or more.
- the content of graphite in the surface treatment film is preferably 30.0% by volume or less.
- the content of graphite is the above-mentioned content of acicular compound X1, except for the limitation that the C concentration is 85% or more when measuring the proportion (content) of acicular compound It can be determined by the same method as R.
- the content of the binder component that can be contained in the surface treatment film 13 according to the present embodiment is preferably 40% by volume or more based on the total volume of the surface treatment film 13 in order to ensure film adhesion.
- Various known resins can be used as the binder component.
- the resin is not particularly limited. Examples include polymer compounds obtained by hydrolyzing and polycondensing polyurethane resins, polyester resins, acrylic resins, epoxy resins, fluororesins, polyamide resins, polyolefin resins, and silane coupling agents. Examples of the resin include resins obtained by crosslinking these resins with a butylated melamine resin, a methylated melamine resin, a butylmethyl mixed melamine resin, a urea resin, an isocyanate resin, or a crosslinking agent component of a mixed system thereof. Further examples include electron beam curable resins and ultraviolet ray curable resins. Among these, as the binder resin, any one or more of polyester resin, epoxy resin, acrylic resin, and urethane resin is preferable. These binder resins may be used alone or in combination of two or more.
- the polyurethane resin is preferably a polyether-based polyurethane resin. This is because using a polyether-based polyurethane resin can prevent hydrolysis caused by acids and alkalis compared to a polyester-based polyurethane resin, and it is harder than a polycarbonate-based polyurethane resin. This is because by suppressing the formation of a brittle film, adhesion during processing and corrosion resistance of the processed portion can be ensured.
- the content of polyurethane resin by creating a calibration curve showing the relationship between the content and the intensity of characteristic absorption using samples whose content is known in advance, it is possible to The content can be determined from the strength.
- the surface treatment film 13 according to this embodiment may contain a leveling agent, a water-soluble solvent, a metal stabilizer, and an etching inhibitor as additives when preparing a treatment solution before film formation, within a range that does not impair the effects of the present invention. It is possible to contain various additives such as.
- leveling agent examples include nonionic or cationic surfactants such as polyethylene oxide or polypropylene oxide adducts, acetylene glycol compounds, and the like.
- water-soluble solvents examples include alcohols such as ethanol, isopropyl alcohol, t-butyl alcohol, and propylene glycol; cellosolves such as ethylene glycol monobutyl ether and ethylene glycol monoethyl ether; esters such as ethyl acetate and butyl acetate; Examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone.
- alcohols such as ethanol, isopropyl alcohol, t-butyl alcohol, and propylene glycol
- cellosolves such as ethylene glycol monobutyl ether and ethylene glycol monoethyl ether
- esters such as ethyl acetate and butyl acetate
- ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone.
- metal stabilizer examples include chelate compounds such as EDTA (ethylenediaminetetraacetic acid) and DTPA (diethylenetriaminepentaacetic acid).
- EDTA ethylenediaminetetraacetic acid
- DTPA diethylenetriaminepentaacetic acid
- etching inhibitor examples include amine compounds such as ethylenediamine, triethylenepentamine, guanidine, and pyrimidine.
- the surface treatment film 13 according to this embodiment does not need to contain silica, or may contain silica within a certain range. More specifically, in the surface treatment film 13 according to this embodiment, the silica content may be 0 to 0.3 g/m 2 . If silica is contained in an amount exceeding 0.3 g/m 2 , the temperature increase effect cannot be expected and the cost becomes high, which is not preferable from an economic point of view. Further, since silica is a substance with low electrical conductivity, if the silica is contained in an amount exceeding 0.3 g/m 2 , it is not preferable in terms of weldability after hot stamping.
- the silica content of the surface treatment film is more preferably 0.10 g/m 2 or less, and still more preferably 0.05 g/m 2 or less.
- the average thickness of the surface treatment film 13 containing the above components is preferably, for example, 0.5 to 15.0 ⁇ m. If the average thickness of the surface treatment film 13 is smaller than 0.5 ⁇ m, the rate of temperature increase during hot stamping cannot be sufficiently increased. On the other hand, if the average thickness of the surface treatment film 13 exceeds 15.0 ⁇ m, the effect of accelerating the temperature increase rate during hot stamping is saturated, but the production cost increases, which is economically disadvantageous. Furthermore, if an attempt is made to increase the thickness of the surface treatment film 13, it will take time to dry after applying the treatment agent during the formation of the surface treatment film 13, resulting in a decrease in productivity.
- the average thickness of the surface treatment film is more preferably 1.0 ⁇ m or more or 2.0 ⁇ m or more, and 12 ⁇ m or less, 10 ⁇ m or less, or 7.0 ⁇ m or less.
- a base treatment film 14 (chemical conversion treatment layer) may be provided between the surface treatment film 13 and the aluminum plating layer 12 in order to improve the adhesion of the surface treatment film 13.
- the base treatment film 14 may contain one or more selected from resins, silane coupling agents, zirconium compounds, silica, phosphoric acid and its salts, fluorides, and vanadium compounds. Including these substances further improves the film formability after application of the chemical conversion treatment agent for the base treatment film 14, the barrier properties (denseness) of the film against corrosion factors such as moisture and corrosive ions, and the adhesion of the film to the plating surface. etc., contributing to raising the level of corrosion resistance of the film.
- the base treatment film 14 contains one or more of a silane coupling agent and a zirconium compound, a crosslinked structure will be formed in the film and the bond with the plating surface will be strengthened, which will improve the adhesion of the film. Barrier properties can be improved. Furthermore, if the base treatment film 14 contains any one or more of silica, phosphoric acid and its salts, fluoride, and vanadium compounds, a precipitated film or a passive film may be formed on the plating surface or the base steel sheet surface as an inhibitor. By forming this, corrosion resistance can be improved.
- the amount of the base treatment film 14 deposited on one side of the plating layer is preferably 10 to 1000 mg/m 2 in terms of solid content. If it is less than 10 mg/m 2 , sufficient processing adhesion and corrosion resistance will not be ensured, and if it exceeds 1000 mg/m 2 , processing adhesion may deteriorate.
- the amount of the base treatment film 14 deposited on one side of the plated steel sheet is more preferably 20 to 800 mg/m 2 , and even more preferably 50 to 600 mg/m 2 .
- the aluminized steel plate 10 for hot stamping has an aluminum plating layer 12 on at least a portion of the base steel plate 11 and the surface treatment film 13 on at least one surface of the base steel plate 11 .
- the corrosion resistance after painting after hot stamping can be further improved.
- the presence of the aluminum plating layer 12 can prevent iron scale from being generated due to heating during hot stamping. Iron scale contaminates heating furnaces and adheres to rolls used for conveyance, resulting in a burden on manufacturing. Therefore, when iron scale is generated, a process such as shot blasting is required to remove the iron scale, which is not economically preferable.
- the base steel plate 11 of the aluminized steel plate 10 for hot stamping will be explained.
- the base steel plate 11 is not particularly limited as long as it is a steel plate that can be suitably used for hot stamping.
- the chemical composition is expressed in mass %, C: 0.03-0.60%, Si: 0.01-0.60%, Mn: 0.50-3.00%, P: 0.050% or less, S: 0.020% or less, Al: 0.100% or less, Ti: 0.01 to 0.10%, B: 0.0001 to 0.0100%, N: 0.010% or less, Cr: 0-1.00%, Ni: 0-2.00%, Cu: 0 to 1.000%, Mo: 0-1.00%, V: 0-1.00%, Nb: 0 to 1.00%, Sn: 0-1.00%, W: 0-1.00%, Ca: 0-0.010%, REM: 0 to 0.30%, The remainder: Fe and impurities such as steel plate can be exemplified.
- examples of the form of the base material steel plate 11 include steel plates such as hot-rolled steel plates and cold-rolled steel plates.
- the chemical composition of the base steel plate will be explained in detail below.
- the expression “%” means “mass %” unless otherwise specified.
- [C:0.03-0.60%] C is contained to ensure the desired mechanical strength.
- the C content is preferably 0.03% or more.
- the C content is more preferably 0.20% or more.
- the C content is preferably 0.60% or less.
- the C content is more preferably 0.40% or less.
- Si is one of the strength-enhancing elements that improves mechanical strength, and like C, it is contained in order to ensure the desired mechanical strength.
- the Si content is preferably 0.01% or more.
- the Si content is more preferably 0.10% or more.
- Si is also an easily oxidizable element, a Si content of 0.60% or less prevents a decrease in wettability during hot-dip Al plating due to the influence of Si oxide formed on the surface layer of the steel sheet. It is possible to suppress the occurrence of non-plating. Therefore, the Si content is preferably 0.60% or less.
- the Si content is more preferably 0.40% or less.
- Mn is one of the reinforcing elements that strengthens steel, and is also one of the elements that improves hardenability. Furthermore, Mn is an element effective in preventing hot embrittlement caused by S, which is one of the impurities. These effects can be sufficiently obtained when the Mn content is 0.50% or more. Therefore, in order to ensure the above effect, the Mn content is preferably 0.50% or more. The Mn content is more preferably 0.80% or more. On the other hand, since Mn is an austenite-forming element, when the Mn content is 3.00% or less, the residual austenite phase does not increase too much, and a decrease in strength is suppressed. Therefore, the Mn content is preferably 3.00% or less. The Mn content is more preferably 1.50% or less.
- P is an impurity contained in steel.
- the P content is preferably 0.050% or less, and it is preferable to reduce the P content as much as possible. If necessary, the P content may be set to 0.045% or less or 0.040% or less.
- the lower limit of the P content is 0%, but the lower limit may be set to 0.001% or 0.005%.
- S is an impurity contained in steel.
- the S content is 0.020% or less, it is possible to suppress S contained in the steel plate from forming sulfides and reducing the toughness of the steel plate, and it is possible to suppress a decrease in delayed fracture resistance of the steel plate. Therefore, the S content is preferably 0.020% or less, and it is preferable to reduce the S content as much as possible. If necessary, the S content may be 0.015% or less or 0.010% or less.
- the lower limit of the S content is 0%, but the lower limit may be set to 0.001% or 0.002%.
- Al 0.100% or less
- Al is generally used for the purpose of deoxidizing steel.
- the Al content is 0.100% or less, the increase in the Ac3 point of the steel sheet is suppressed, so the heating temperature required to ensure the hardenability of the steel during hot stamping can be reduced, and hot stamping production Highly desirable. Therefore, the Al content of the steel plate is preferably 0.100% or less, more preferably 0.050% or less, and still more preferably 0.010% or less.
- Ti 0.01 to 0.10%
- Ti is one of the strength-enhancing elements.
- the Ti content is preferably 0.01% or more.
- the Ti content is more preferably 0.03% or more.
- the Ti content is preferably 0.10% or less.
- the Ti content is more preferably 0.08% or less.
- [B:0.0001-0.0100%] B acts during hardening and has the effect of improving strength.
- the B content is preferably 0.0001% or more.
- the B content is more preferably 0.0010% or more.
- the B content is preferably 0.0100% or less.
- the B content is more preferably 0.0040% or less.
- N is an impurity contained in steel.
- the N content is 0.010% or less, formation of nitrides due to N contained in the steel plate is suppressed, and a decrease in toughness of the steel plate can be suppressed.
- B is contained in the steel sheet, the N contained in the steel sheet is prevented from combining with B and reducing the amount of solid solution B, and the decrease in the hardenability improvement effect of B can be suppressed. Therefore, the N content is preferably 0.010% or less, and more preferably the N content is as low as possible.
- the base steel plate of the hot stamping steel plate according to the present embodiment further includes an optional element selected from the group consisting of Cr, Mo, Ni, Cu, Mo, V, Nb, Sn, W, Ca, and REM. It may contain one or more elements. The lower limit of the content of these elements is 0%.
- Cr 0-1.00%
- Cr is an element that improves the hardenability of steel sheets.
- the Cr content is preferably 0.01% or more.
- the Cr content is preferably 1.00% or less. If necessary, the Cr content may be set to 0.70% or less or 0.50% or less.
- Ni is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening. In order to fully exhibit this effect, it is preferable that the Ni content be 0.10% or more. On the other hand, when the Ni content is 2.00% or less, the above-mentioned effects can be sufficiently obtained and economical efficiency can be improved. Therefore, the Ni content, if included, is preferably 2.00% or less. If necessary, the Ni content may be set to 1.20% or less, 0.80% or less, or 0.50% or less.
- Cu is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening. Additionally, Cu improves pitting corrosion resistance in a corrosive environment. In order to fully exhibit this effect, the Cu content is preferably 0.100% or more. On the other hand, by having a Cu content of 1.000% or less, the above-mentioned effects can be sufficiently obtained and economical efficiency can be improved. Therefore, the Cu content, if included, is preferably 1.000% or less. If necessary, the Cu content may be 0.600% or less, 0.400% or less, or 0.200% or less.
- Mo is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening. In order to fully exhibit this effect, it is preferable that the Mo content is 0.10% or more. On the other hand, when the Mo content is 1.00% or less, economical efficiency can be improved while fully obtaining the above effects. Therefore, the Mo content, if included, is preferably 1.00% or less. If necessary, the Mo content may be set to 0.60% or less, 0.40% or less, or 0.20% or less.
- V is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening.
- the V content is preferably 0.10% or more.
- the V content is preferably 1.00% or less. If necessary, the V content may be set to 0.60% or less, 0.40% or less, or 0.20% or less.
- Nb is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening.
- the Nb content is preferably 0.01% or more.
- the Nb content is preferably 1.00% or less. If necessary, the Nb content may be set to 0.50% or less, 0.20% or less, or 0.10% or less.
- Sn is an element that improves pitting corrosion resistance in a corrosive environment.
- the Sn content is preferably 0.01% or more.
- the Sn content is preferably 1.00% or less. If necessary, the Sn content may be set to 0.40% or less, 0.10% or less, or 0.05% or less.
- W is an element that improves the hardenability of steel and makes it possible to stably ensure the strength of the steel plate member after hardening. Moreover, W improves pitting corrosion resistance in a corrosive environment. In order to fully exhibit this effect, the W content is preferably 0.01% or more. On the other hand, when the W content is 1.00% or less, the above effects can be sufficiently obtained and economical efficiency can be improved. Therefore, the W content, if included, is preferably 1.00% or less. If necessary, the W content may be set to 0.60% or less, 0.40% or less, or 0.20% or less.
- Ca is an element that has the effect of making inclusions in steel finer and improving toughness and ductility after quenching.
- the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
- the Ca content is preferably 0.010% or less, more preferably 0.004% or less. If necessary, the Ca content may be set to 0.008% or less, 0.006% or less, or 0.0004% or less.
- REM 0-0.30%
- the REM content is preferably 0.001% or more, more preferably 0.002% or more.
- the REM content when included is preferably 0.30% or less, more preferably 0.20% or less.
- the Ca content may be set to 0.10% or less, 0.05% or less, or 0.02% or less.
- REM refers to a total of 17 elements including Sc, Y, and lanthanoids, and the content of REM above refers to the total content of these elements.
- REM is added to molten steel using, for example, a Fe-Si-REM alloy, which includes, for example, Ce, La, Nd, Pr.
- the base steel plate 11 may contain impurities that are mixed in during the manufacturing process, etc., to the extent that the effects of the present invention are not impaired.
- impurities include Zn (zinc) and Co (cobalt).
- the portion to which the surface treatment film 13 has been applied is heated to a temperature of about 1000 MPa or more by heating and quenching using a hot stamping method, for example. It can be a hot stamped member with tensile strength. Further, in the hot stamping method, press working can be performed in a softened state at high temperature, so that molding can be easily performed.
- the manufacturing method of the aluminized steel sheet for hot stamping according to the present embodiment is not particularly limited as long as it has the above-described configuration.
- the following manufacturing method is one example for manufacturing the aluminized steel sheet for hot stamping according to the present embodiment, and is a preferred example of the method for manufacturing the aluminized steel sheet for hot stamping according to the present embodiment.
- the base steel plate to be subjected to aluminization is not particularly limited as long as it is a steel plate that can be suitably used in hot stamping.
- Examples of the form of the base material steel plate include steel plates such as hot-rolled steel plates and cold-rolled steel plates.
- the aluminized steel plate for hot stamping preferably has an aluminized layer on at least a portion of the base steel plate and the surface treatment film on one or both sides of the base steel plate.
- the corrosion resistance after painting after hot stamping can be further improved.
- the presence of the aluminum plating layer can prevent iron scale from forming due to heating during hot stamping. Iron scale contaminates heating furnaces and adheres to rolls used for conveyance, resulting in a burden on manufacturing. Therefore, when iron scale is generated, a process such as shot blasting is required to remove the iron scale, which is not economically preferable.
- compositions constituting such an aluminum plating layer include aluminum plating, Al--Si plating, Al--Si--Mg, Al--Si--Ca plating, and the like.
- the chemical composition (average chemical composition) of the aluminum plating layer is, in mass %, Al: 85.0 to 95.0%, Si: 2.0 to 15.0%, Fe: 1 to 15.0%, Cr: 0% or more and less than 1.0%, Mo: 0% or more and less than 1.0%, Zn: 0% or more and less than 1.0%, V: 0% or more and less than 1.0%, Ti: 0% or more and 1 Less than .0%, Sn: 0% or more and less than 1.0%, Ni: 0% or more and less than 1.0%, Cu: 0% or more and less than 1.0%, W: 0% or more and less than 1.0%, Bi
- the plating layer may contain: 0% or more and less than 1.0%, Mg: 0% or more and less than 1.0%, and Ca: 0% or more and less than 1.0%, with the remainder being impurities.
- the Al content in the aluminized layer is less than 85.0%, the corrosion resistance after hot stamping (corrosion resistance in the hot stamped molded product) will deteriorate. Therefore, the Al content is preferably 85.0% or more. The Al content is more preferably 88.0% or more. On the other hand, if the Al content in the aluminum plating layer exceeds 95.0%, plating adhesion may deteriorate. Therefore, the Al content is preferably 95.0% or less. The Al content is more preferably 92.0% or less.
- the Si content in the aluminum plating layer is less than 2.0%, plating adhesion may deteriorate. Therefore, the Si content is preferably 2.0% or more.
- the Si content is more preferably 3.0% or more, still more preferably 4.0% or more.
- the Si content in the aluminum plating layer exceeds 15.0%, plating adhesion may deteriorate. Therefore, the Si content is preferably 15.0% or less.
- the Si content is more preferably 13.0% or less.
- the Fe content is preferably 1.0% or more and 15.0% or less.
- the chemical composition of the aluminized layer can be measured by a fluorescent X-ray method based on JIS K 0119:2008. That is, using a sample in which the content of the target element is known, the relationship between the X-ray intensity and the content is determined in advance. From the calibration curve created based on this, the content of each element, that is, the chemical composition of the unknown sample can be determined.
- the amount of plating deposited is preferably 10 g/m 2 to 120 g/m 2 per side. If it is less than 10 g/m 2 , iron scale may be generated during the hot stamping process if there are defects in the plating layer. On the other hand, if it exceeds 120 g/m 2 , the cost becomes high and it is not economical. Preferably, it is 30 g/m 2 to 100 g/m 2 . Further, methods for forming the aluminum plating layer include hot-dip plating, electroplating, physical vapor deposition, chemical vapor deposition, etc., but are not particularly limited.
- the method for producing the surface treatment film is not particularly limited, but examples include a method of mixing each film-forming component, stirring with a disper, applying the dissolved or dispersed surface treatment agent on the plating layer, and then drying. .
- a compound having a hexagonal crystal structure in which the ratio of the major axis to the minor axis is 4 or more and 50 or less is used.
- Compounds with a hexagonal crystal structure include lanthanum silicate, magnesium diboride, beryllium oxide (beryllium), zinc oxide, graphite (C), ⁇ -quartz, needle nickelite (NiS), and wurtzite (ZnS). and so on.
- graphite (C) having a carbon concentration of 90% by mass A surface treatment film is manufactured using a surface treatment agent in which these raw materials are dispersed in a solvent (for example, water or a solvent).
- the ratio of the major axis to the minor axis of the compound to be used is unknown, if necessary, conduct a preliminary test to confirm that a surface treatment film containing the acicular compound with the desired ratio of the major axis to the minor axis can be obtained. You may check.
- the short axis is 20 nm or more
- the ratio of the long axis/breadth axis is 4 to 50
- the proportion of the needle-like compound Among them, in order to make the proportion of the needle-shaped compound X2 whose angle ⁇ is 0 degrees or more and 40 degrees or less in number % to 70% or more, the sodium hydroxide aqueous solution or ammonium water should be adjusted to a pH of 11.0 or more. It is effective to continue stirring the solution at a temperature of 30 to 50°C for 1 to 7 days.
- the ratio of major axis/breadth axis is 4 to 50. It becomes possible to sufficiently increase the proportion of the acicular compound X1 and the proportion of the acicular compound X2 whose angle ⁇ is in the range of 0 degrees or more and 40 degrees or less (for example, 70% or more by number).
- the treatment solution When using a treatment solution in which raw materials are dispersed in water or a solvent (such as acetone), the treatment solution is applied to a base material such as a steel plate that has been provided with a plating layer in advance, and the water or solvent is sufficiently dried before TEM observation.
- a base material such as a steel plate that has been provided with a plating layer in advance
- the water or solvent is sufficiently dried before TEM observation.
- confirm in advance that the short axis is 20 nm or more and that the ratio of the long axis to the short axis is 4 to 50.
- the smaller angle ⁇ between the intersection of a straight line parallel to the major axis and a straight line parallel to the surface of the plating layer is 0 degrees or more and 40 degrees or less.
- the method for producing the surface treatment agent is not particularly limited, but includes, for example, a method in which each film-forming component is mixed, stirred with a disper, and dissolved or dispersed.
- a known hydrophilic solvent or the like may be added as necessary.
- An acid, alkali, etc. may be added to the chemical conversion treatment agent for the base treatment film 14 to adjust the pH within a range that does not impair its performance.
- a surface treatment agent is applied to a plated steel sheet, and the coating film is heated and dried.
- the method of applying the chemical conversion treatment agent is not particularly limited, and generally known coating methods such as roll coating, air spray, airless spray, and dipping can be used.
- the heat drying temperature is preferably 50 to 250°C. If the temperature is less than 50° C., the evaporation rate of water is slow and sufficient film-forming properties cannot be obtained, so that the anti-corrosion ability may be insufficient. If the temperature exceeds 250°C, the alkyl moiety of the organic silane coupling agent may undergo denaturation due to thermal decomposition or the like, resulting in a decrease in adhesion and corrosion resistance.
- the heating temperature is more preferably 70 to 160°C.
- the heating drying method is not particularly limited, and examples thereof include hot air, induction heating, near-infrared rays, direct flame, and the like alone or in combination.
- Various hot-stamped members such as frame parts for automobiles, can be manufactured using an aluminized steel sheet for hot-stamping that has been provided with the above-mentioned surface treatment film over at least one surface thereof.
- a surface treatment film is applied to the entire surface of at least one of the metal materials, such as a coiled steel plate.
- the aluminized steel plate for hot stamping according to the present embodiment is then obtained by performing various processing such as cutting and punching with a press.
- the aluminized steel sheet for hot stamping according to the present embodiment can also be obtained by applying a surface treatment film to a steel sheet that has been cut or punched using a press. Furthermore, by partially reducing the thickness of the surface treatment film, it becomes easier to conduct electricity and improve spot weldability, for example, in applications where a plurality of steel plates are welded before hot stamping.
- a steel plate for hot stamping that has been provided with a surface treatment film as described above is hot stamped.
- the heating device include an electric heating furnace, a gas heating furnace, a far-infrared furnace, and a normal heating device equipped with an infrared heater.
- the surface on which the emissivity is increased by applying a surface treatment film has a large heat transfer effect due to radiation, so the temperature rise rate is fast. Therefore, the temperature is rapidly raised to a temperature equal to or higher than the Ac3 point at which the metal structure transforms into an austenite phase.
- specific heating conditions are not particularly limited, and the heating device and the like to be used may be appropriately controlled.
- the heated steel plate is formed and cooled.
- the portion where the temperature of the steel material is raised to the Ac3 point temperature or higher at which the metallographic structure transforms into an austenite phase is quenched and increases in strength. Thereby, it is possible to obtain a hot stamp member whose strength is improved by quenching.
- a steel plate with high mechanical strength meaning various properties related to mechanical deformation and fracture such as tensile strength, yield point, elongation, reduction of area, hardness, impact value, fatigue strength, etc.
- the chemical composition of the base steel plate before plating used in the hot stamping steel plate shown in the following examples is shown in Table 1 below.
- a surface treatment film was applied to base steel plates (steel Nos. S1 to S10) having the chemical compositions shown in Table 1. More specifically, for each base material steel plate, a steel plate with a width of 100 mm x a length of 200 mm and a plate thickness of 1.6 mm was prepared, hot-dipped in an Al-10% Si plating bath, and then a surface treatment film was applied over the entire surface of both sides. Granted.
- the notation "-" in Table 1 means that the corresponding element content is 0% in significant figures (values up to the smallest digit) specified in this embodiment.
- the conditions shown in Table 2 were used for the manufacturing method of the treatment liquid. That is, a powder or dispersion of lanthanum silicate, magnesium diboride, beryllium oxide, zinc oxide, ⁇ -quartz, graphite, or zirconium oxide was used as a solute in water or a solvent, and the product was aged at a predetermined pH, temperature, and stirring time. After that, it was applied to an aluminized steel plate using a roll coater. During drying in a hot air oven, the time required to reach 60°C was controlled by the wind speed and the temperature inside the oven. Furthermore, production No. In A9, acetone was used as an additive to the treatment liquid.
- production No. for A14 to A16 (corresponding to codes B14 to B16 in Table 3), a liquid in which the binder component is dispersed is applied to the surface of the Al-10% Si plated steel plate using a roll coater, and dried to form a surface treatment film.
- Manufacturing No. In A14 an aqueous treatment liquid to which a SiO 2 compound was added as a binder component was used, and production No. A15 uses acrylic resin, manufacturing No. In A16, liquids in which polyurethane resins were dispersed were used. The thickness of the surface treatment film was within the range of 1.0 to 10 ⁇ m.
- the underline in Table 2 indicates that the manufacturing conditions are outside the range of suitable manufacturing conditions of this embodiment.
- thermocouple was connected to the center of the steel plate that had been given a surface treatment film, so that the temperature at each location could be measured. Then, the steel plate was heated in an electric heating furnace with a set temperature of 920°C, and when the coated steel plate reached 910°C, the steel plate was taken out from the heating furnace. A hot-stamped member was obtained by rapidly cooling the steel plate using a flat mold.
- the temperature increase rate and adhesion of the surface treatment film on the area to which the surface treatment film was applied were investigated.
- the evaluation method for each evaluation item was as follows.
- Heating rate heating characteristics
- the temperature increase rate of each steel plate was calculated and evaluated from the temperature change obtained from the thermocouple provided on each steel plate and the heating time in the electric heating furnace. Specifically, the average temperature increase rate from room temperature to 910° C. was calculated, and evaluation was performed based on the following evaluation criteria, and a score of “2” or higher was considered to be a pass.
- (Rating) 5 Temperature increase rate of 5.0°C/s or more 4: Temperature increase rate of 4.5°C/s or more and less than 5.0°C/s 3: Temperature increase rate of 4.0°C/s or more and less than 4.5°C/s 2: Temperature increase rate of 3.5°C/s or more and less than 4.0°C/s 1: Temperature increase rate of 2.0°C/s or more and less than 3.5°C/s
- B1 to B19 are invention examples, and b1 to b12 are comparative examples.
- the particle sizes of the needle-like compounds were all 20 nm to 400 nm.
- Invention Examples B1 to B19 needle-shaped crystal structures having a hexagonal crystal structure and having a length/breadth ratio of 4 to 50 with respect to all needle-shaped compounds (including needle-shaped compounds with a ratio of less than 4 and more than 50) are used.
- the proportion (number %) of compound X1 is 70% or more, and the proportion (number %) of acicular compound X2 whose angle ⁇ with the surface of the surface treatment film is 0 to 40 degrees among the acicular compounds Met.
- the ratings of these temperature increase rates (temperature increase characteristics) were 2 or higher.
- Comparative Example b1 the compound used was inappropriate, and the proportion (number %) of needle-shaped compound Met. Furthermore, in Comparative Example b2, the compound used was inappropriate and the crystal structure was not hexagonal. In Comparative Example b3, the compound used was inappropriate, and the proportion (number %) of needle-like compound X2 was less than 70%. In Comparative Example b4, the compound used was carbon black, and the compound used was inappropriate. In Comparative Examples b5 and b8, the proportion (number %) of needle-like compound X1 and the proportion (number %) of needle-like compound X2 were less than 70%.
- Comparative Examples b6, b7, b9, and b10 to b12 at least the compound used was inappropriate, and the ratio of major axis/minor axis of needle-like compound X1 was out of the range of 4 to 50.
- the proportion of needle-like compound X1 or the proportion of needle-like compound X2 was low, and the rating of the temperature increase rate was 1.
- the content R is 2 In Invention Examples B7 to B12, the temperature increase rate improved to 3 from 60%.
- an aluminized steel sheet for hot stamping that can further improve the productivity of hot stamping members, so it has high industrial applicability.
- Aluminized steel sheet for hot stamping 11 Base material steel sheet 12 Aluminum plating layer 13 Surface treatment film 14 Base treatment film 15 Film
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
このホットスタンプ用アルミめっき鋼板は、母材鋼板と、母材鋼板の少なくとも一方の面の上に設けられたアルミめっき層と、アルミめっき層の上に設けられた表面処理皮膜とを有し、表面処理皮膜は、針状化合物Xを含有し、針状化合物Xのうち、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1の割合が、個数%で、70%以上であり、針状化合物X1のうち、長径と平行な直線と、アルミめっき層の表面に平行な直線との交点における角度の内、小さい方の角度が0度以上40度以下である針状化合物X2の割合が、個数%で、70%以上である。
Description
本発明は、ホットスタンプ用アルミめっき鋼板に関する。
本願は、2022年07月14日に、日本に出願された特願2022-113179号に基づき優先権を主張し、その内容をここに援用する。
本願は、2022年07月14日に、日本に出願された特願2022-113179号に基づき優先権を主張し、その内容をここに援用する。
近年、環境保護及び地球温暖化の防止のために、化学燃料の消費を抑制する要請が高まっており、この要請は、様々な製造業に対して影響を与えている。例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではなく、車体の軽量化などによる燃費の向上等が求められている。しかしながら、自動車に関しては、単に車体の軽量化を実現することは安全性の低下につながる可能性があるので、製品品質上望ましくない。
そのため、車体の軽量化を行う場合には、安全性を確保した上で適切に実施される必要がある。
そのため、車体の軽量化を行う場合には、安全性を確保した上で適切に実施される必要がある。
自動車の構造の多くは、鉄、特に鋼板により形成されている。そのため、鋼板の重量を低減することが、車体の軽量化にとって効果的である。また、このような鋼板に対する重量低減の要請は、自動車製造業のみならず、様々な製造業でも同様になされている。このような要請に対し、単に鋼板の重量を低減するのであれば、鋼板の板厚を薄くすることが考えられる。しかしながら、鋼板の板厚を薄くすることは、構造物の強度の低下につながる。そのため、近年では、鋼板の機械的強度を高めることにより、それ以前に使用されていた従来の鋼板より薄くしても、鋼板によって構成される構造物の機械的強度を維持又は高めることが可能な鋼板について、研究開発が行われている。
一般的に、高い機械的強度を有する材料は、曲げ加工等の成形加工において、形状凍結性が低下する傾向を示す。そのため、高い機械的強度を有する材料を複雑な形状に加工する場合、加工そのものが困難となる。このような成形性についての問題を解決する手段の一つとして、いわゆる「ホットスタンプ法(熱間プレス法、ホットプレス法、高温プレス法、もしくはダイクエンチ法とも呼ばれる。)」が挙げられる。
ホットスタンプ法では、成形対象である材料を高温に加熱してオーステナイトと呼ばれる組織に変態(オーステナイト化)させ、加熱により軟化した鋼板に対してプレス加工を行って成形し、成形後に冷却する。このホットスタンプ法によれば、材料を一旦高温に加熱して軟化させるので、その材料を容易にプレス加工することができる。更に、成形後の冷却による焼入れ効果により、材料の機械的強度を高めることができる。従って、このホットスタンプ法により、良好な形状凍結性と高い機械的強度とを有した成形品を得ることができる。
例えば、特許文献1には、合金化溶融亜鉛めっき鋼板をホットスタンプ法により加工することで、自動車部材として利用可能な成形品を製造する技術が開示されている。
また、特許文献2および特許文献3には、炭素顔料などの有機物を主体とする皮膜をアルミめっき鋼板上に付与することで所望の温度まで加熱するための時間を早める技術が開示されている。
また、特許文献2および特許文献3には、炭素顔料などの有機物を主体とする皮膜をアルミめっき鋼板上に付与することで所望の温度まで加熱するための時間を早める技術が開示されている。
ここで、特許文献1に記載のホットスタンプ法は、加工対象である鋼板を700~1000℃に加熱することが必要である。そのため、鋼板を所望の温度まで加熱するための時間を確保しなければならず、生産性の向上は不十分であった。
また、特許文献2及び特許文献3に記載のアルミめっき鋼板では、鋼板上の皮膜に含有される炭素顔料などがいずれも有機物であるため、アルミめっき鋼板が750℃以上の高温域に加熱されると、これら有機物はいずれも消失してしまう。そのため、特許文献2及び特許文献3に記載の技術においても、生産性の向上は不十分であった。
また、特許文献2及び特許文献3に記載のアルミめっき鋼板では、鋼板上の皮膜に含有される炭素顔料などがいずれも有機物であるため、アルミめっき鋼板が750℃以上の高温域に加熱されると、これら有機物はいずれも消失してしまう。そのため、特許文献2及び特許文献3に記載の技術においても、生産性の向上は不十分であった。
本発明は、上記問題に鑑みてなされたものであり、ホットスタンプ部材の生産性をより向上させることが可能なホットスタンプ用アルミめっき鋼板を提供することを目的とする。
上記課題を解決するために、本発明者らは鋭意検討した。その結果、ホットスタンプ用アルミめっき鋼板を用いてホットスタンプ部材を製造する際、鋼板が所望の温度(例えば、Ac3点以上)まで加熱される際の昇温速度を増加させることができれば、加熱時間の短縮を図ることができ、生産性の向上に寄与できることを知見した。具体的には、めっき層上に設けられる表面処理皮膜中に、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1を70%含み、かつ、針状化合物X1のうち、長径と平行な直線と、前記アルミめっき層の表面のなす角度の内、最も小さい角度が0度以上40度以下である針状化合物X2を70%以上含むことにより、昇温速度を大きく増加させ、その結果生産性を向上できることができることを知見した。
かかる知見に基づき完成された本発明の要旨は、以下の通りである。
かかる知見に基づき完成された本発明の要旨は、以下の通りである。
[1]本発明の一態様にかかるホットスタンプ用アルミめっき鋼板は、母材鋼板と、前記母材鋼板の少なくとも一方の面の上に設けられたアルミめっき層と、前記アルミめっき層の上に設けられた表面処理皮膜とを有するホットスタンプ用アルミめっき鋼板において、前記表面処理皮膜は、針状化合物Xを含有し、前記針状化合物Xのうち、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1の割合が、個数%で、70%以上であり、前記針状化合物X1のうち、長径と平行な直線と、前記アルミめっき層の表面のなす角度の内、最も小さい角度が0度以上40度以下である針状化合物X2の割合が、個数%で、70%以上である。
[2]上記[1]に記載のホットスタンプ用アルミめっき鋼板は、前記針状化合物X1の含有率Rが、体積%で、2%以上60%以下であってもよい。
[3]上記[1]または[2]に記載のホットスタンプ用アルミめっき鋼板は、前記針状化合物X1の炭素濃度が、90質量%以上であってもよい。
[4]上記[1]~[3]の何れかにに記載のホットスタンプ用アルミめっき鋼板は、前記針状化合物X1の含有率Rを10箇所測定し、最大含有率をR1、最小含有率をR2とした場合、R2に対するR1の比率R1/R2が2.0以下であってもよい。
[5]上記[1]~[4]の何れかに記載のホットスタンプ用アルミめっき鋼板は、前記針状化合物X1が、グラファイトであってもよい。
[6]上記[1]~[5]の何れかに記載のホットスタンプ用アルミめっき鋼板は、前記表面処理皮膜が、樹脂を含有してもよい。
本発明の上記態様によれば、ホットスタンプ部材の生産性をより向上させることが可能なホットスタンプ用鋼板を提供できる。
以下に、本発明の好適な実施の形態について詳細に説明する。なお、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
(ホットスタンプ用アルミめっき鋼板)
本発明の実施形態に係るホットスタンプ用アルミめっき鋼板(以下、「HS用アルミめっき鋼板」とも称する。)は、HS用アルミめっき鋼板を用いてホットスタンプ部材を製造するにあたって、かかるHS用アルミめっき鋼板を加熱する際の昇温速度を速めることを可能とする。すなわち、加熱時の昇温速度を大きくできる本実施形態のHS用アルミめっき鋼板を用いることで、ホットスタンプ部材の生産性を向上させることが可能となる。
HS用アルミめっき鋼板を加熱する際の昇温速度の向上を実現するために、本実施形態のホットスタンプ用アルミめっき鋼板は、針状化合物を含有する表面処理皮膜を、アルミめっき層の形成されためっき鋼板の少なくとも一方の表面に有する。本実施形態では、上記のようにアルミめっき層の形成されためっき鋼板の少なくとも一方の表面に後述する所定の針状化合物を含有する表面処理皮膜を付与することにより、得られるHS用アルミめっき鋼板が加熱される際の昇温速度を速めることができる。なお、表面処理皮膜は、アルミめっき層の形成されためっき鋼板の両面に形成されてもよく、一方の表面だけであってもよい。また、表面処理皮膜は、アルミめっき層の形成されためっき鋼板の表面全面に形成されてもよく、当該表面の一部であってもよいが、ホットスタンプ部材の生産性をより向上させる観点からは、表面処理皮膜はアルミめっき層の形成されためっき鋼板の表面全面に設けられることが好ましい。
本発明の実施形態に係るホットスタンプ用アルミめっき鋼板(以下、「HS用アルミめっき鋼板」とも称する。)は、HS用アルミめっき鋼板を用いてホットスタンプ部材を製造するにあたって、かかるHS用アルミめっき鋼板を加熱する際の昇温速度を速めることを可能とする。すなわち、加熱時の昇温速度を大きくできる本実施形態のHS用アルミめっき鋼板を用いることで、ホットスタンプ部材の生産性を向上させることが可能となる。
HS用アルミめっき鋼板を加熱する際の昇温速度の向上を実現するために、本実施形態のホットスタンプ用アルミめっき鋼板は、針状化合物を含有する表面処理皮膜を、アルミめっき層の形成されためっき鋼板の少なくとも一方の表面に有する。本実施形態では、上記のようにアルミめっき層の形成されためっき鋼板の少なくとも一方の表面に後述する所定の針状化合物を含有する表面処理皮膜を付与することにより、得られるHS用アルミめっき鋼板が加熱される際の昇温速度を速めることができる。なお、表面処理皮膜は、アルミめっき層の形成されためっき鋼板の両面に形成されてもよく、一方の表面だけであってもよい。また、表面処理皮膜は、アルミめっき層の形成されためっき鋼板の表面全面に形成されてもよく、当該表面の一部であってもよいが、ホットスタンプ部材の生産性をより向上させる観点からは、表面処理皮膜はアルミめっき層の形成されためっき鋼板の表面全面に設けられることが好ましい。
本実施形態に係るホットスタンプ用アルミめっき鋼板において、母材となる鋼板(母材鋼板)の種類は、特に限定されるものではない。母材鋼板としては、例えば、各種の熱延鋼板、冷延鋼板を挙げることができる。本実施形態のホットスタンプ用アルミめっき鋼板を構成するめっき鋼板は、このような母材鋼板の少なくとも一方の表面の上にめっき層を備えるものである。めっき鋼板として、例えば、溶融アルミニウムめっきなどが施された鋼板が挙げられる。ただし、ホットスタンプに適用できるのであれば、本実施形態のめっき層は、溶融アルミニウムめっきに限定されるものではない。
従来、自動車用骨格部品などとして用いられる鋼板の多くは、熱延鋼板や冷延鋼板、又は、アルミニウムや亜鉛等のめっきが施されためっき鋼板であった。これら従来の鋼板は、放射率が低いために、輻射加熱に対する昇温速度は低い。
本実施形態のホットスタンプ用アルミめっき鋼板では、めっき層の少なくとも一方の表面に、後述する所定の表面処理皮膜を付与することで、ホットスタンプ加熱時の昇温速度を高めることができる。具体的には、所定の表面処理皮膜を有するHS用アルミめっき鋼板を加熱し、加熱後のHS用アルミめっき鋼板をホットスタンプすることにより、ホットスタンプ部材の生産性をより向上させることができる。
<表面処理皮膜>
図1は、本実施形態に係るホットスタンプ用アルミめっき鋼板の表面のうち一方の面の表面部の断面模式図を示す。なお、図1は説明のための模式図であり、表面処理皮膜13、アルミめっき層12および針状介在物X(X1)などの寸法や分布状態は、必ずしも好適な実施形態を示したものではなく、かつ、図1の寸法や分布状態に限定されるものではない。母材鋼板、アルミめっき層および表面処理膜の各寸法ならびに寸法比率、などはホットスタンプ用アルミめっき鋼板の所望の特性に応じて任意に設計可能である。
図1は、本実施形態に係るホットスタンプ用アルミめっき鋼板の表面のうち一方の面の表面部の断面模式図を示す。なお、図1は説明のための模式図であり、表面処理皮膜13、アルミめっき層12および針状介在物X(X1)などの寸法や分布状態は、必ずしも好適な実施形態を示したものではなく、かつ、図1の寸法や分布状態に限定されるものではない。母材鋼板、アルミめっき層および表面処理膜の各寸法ならびに寸法比率、などはホットスタンプ用アルミめっき鋼板の所望の特性に応じて任意に設計可能である。
図1に示すにように、本実施形態に係るホットスタンプ用アルミめっき鋼板10は、例えば、母材鋼板11と、母材鋼板11の少なくとも一方の面の上に設けられたアルミめっき層12と、アルミめっき層12の上に設けられた表面処理皮膜13とを有する。表面処理皮膜13は、針状化合物Xを含有する。本実施形態に係るホットスタンプ用アルミめっき鋼板10において、表面処理皮膜13が付与された側の表面(つまり、表面処理皮膜13の表面)は、放射率が高い。そのため、ホットスタンプ加熱時の昇温速度が大きく、結果、ホットスタンプ部材の生産性をより向上させることができる。
<<針状化合物>>
表面処理皮膜13に含まれる針状化合物Xは、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1を含有する。
本実施形態に係る表面処理皮膜13は、必要に応じて、バインダー成分や各種の添加剤等を更に含有してもよい。また、本実施形態に係る表面処理皮膜13は、シリカを含有していなくともよいし、ある範囲内でシリカを含有していてもよい。さらに本実施形態では、表面処理皮膜13中における針状化合物の含有量や、表面処理皮膜13の膜厚等を調整することで、ホットスタンプ加熱時昇温速度の向上を実現することが可能となる。
以下、表面処理皮膜13の構成要件について詳述する。
表面処理皮膜13に含まれる針状化合物Xは、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1を含有する。
本実施形態に係る表面処理皮膜13は、必要に応じて、バインダー成分や各種の添加剤等を更に含有してもよい。また、本実施形態に係る表面処理皮膜13は、シリカを含有していなくともよいし、ある範囲内でシリカを含有していてもよい。さらに本実施形態では、表面処理皮膜13中における針状化合物の含有量や、表面処理皮膜13の膜厚等を調整することで、ホットスタンプ加熱時昇温速度の向上を実現することが可能となる。
以下、表面処理皮膜13の構成要件について詳述する。
表面処理皮膜13は、図1に示すように、母材鋼板11の片面または両面に付与されたアルミめっき層12のさらに上に付与される。針状化合物Xは、表面処理皮膜13内に、存在している。つまり、表面処理被膜13は、針状化合物Xを含有している。後述するように、表面処理被膜13中の針状化合物X1の割合および針状化合物X2の割合が重要であり、表面処理被膜13中の針状化合物Xの含有量(含有率)を規定する必要はない。しかしながら、必要に応じて、表面処理被膜13中の針状化合物Xの含有量(含有率)は、体積%で、0.5%以上、1%以上または2%以上であってもよく、若しくは、(表面処理被膜13中の針状化合物Xの含有量を規定せず)表面処理被膜13中の針状化合物X1の含有量(含有率)を規定してもよい。なお、表面処理被膜13中の針状化合物Xの体積%は、後述の表面処理被膜13中の針状化合物X1の体積%の測定方法に準じて、測定することができる。
本実施形態に係る表面処理皮膜13に含まれる六方晶系の結晶構造を有する針状化合物X1の短径に対する長径の比率は4以上50以下である。当該比率の下限は、好ましくは6以上、より好ましくは8以上である。また当該比率の上限は、好ましくは30以下、より好ましくは20以下である。
一般的に、結晶構造には、結晶を対称性によって分類した結晶系が、立方晶系、正方晶系、六方晶系、斜方晶系、単斜晶系、三斜晶系の6種類ある。対称性は、立方晶系が最も高い。結晶系は化合物の形状に影響を与えやすく、立方晶系の化合物では、対称性が高いため3次元の各軸方向に等方的に成長しやすい。一方、六方晶系では、異方性を持ちやすく、針状化合物を形成することができる。他の斜方晶系や単斜晶系等の化合物では、上記の短径に対する長径の比率の範囲内に入るものは少ない。
六方晶系の化合物では周囲からの熱吸収が速い。この理由は定かではないが、六方晶系の化合物では、単位格子の軸の長さが3方向とも同じである一方、3つの軸角のうち2つが90度で、残りの1つが120度であるために、3次元的に周囲からの熱(特に輻射熱)を吸収することができるためと考えられる。一方、他の結晶系では、軸角すべてが90度であるために、広く輻射熱を吸収することができない可能性がある。
一般的に、結晶構造には、結晶を対称性によって分類した結晶系が、立方晶系、正方晶系、六方晶系、斜方晶系、単斜晶系、三斜晶系の6種類ある。対称性は、立方晶系が最も高い。結晶系は化合物の形状に影響を与えやすく、立方晶系の化合物では、対称性が高いため3次元の各軸方向に等方的に成長しやすい。一方、六方晶系では、異方性を持ちやすく、針状化合物を形成することができる。他の斜方晶系や単斜晶系等の化合物では、上記の短径に対する長径の比率の範囲内に入るものは少ない。
六方晶系の化合物では周囲からの熱吸収が速い。この理由は定かではないが、六方晶系の化合物では、単位格子の軸の長さが3方向とも同じである一方、3つの軸角のうち2つが90度で、残りの1つが120度であるために、3次元的に周囲からの熱(特に輻射熱)を吸収することができるためと考えられる。一方、他の結晶系では、軸角すべてが90度であるために、広く輻射熱を吸収することができない可能性がある。
本実施形態に係る表面処理皮膜13に含まれる針状化合物X1は六方晶系である。ただし、全ての針状化合物が六方晶系である必要はなく、他の晶系の針状化合物が含まれていてもよい。ただし、熱吸収の向上の観点から、皮膜中に含まれる全針状化合物に対する六方晶系の針状化合物X1の割合(針状化合物Xに対する針状化合物X1の割合)は、個数%で、70%以上とする。全針状化合物が六方晶系であってもよい。
針状化合物X1の短径に対する長径の比率が小さすぎると、針状化合物X1の単位体積あたりの表面積を十分に確保できず、加熱時の熱の吸収効率が不十分となるおそれがある。その結果、アルミめっき鋼板を加熱する際の昇温速度を十分に向上させることができず、生産性が劣る場合がある。本実施形態では、針状化合物X1の短径に対する長径の比率を4以上とすることで、針状化合物X1の単位体積あたりの表面積が大きくなり、加熱雰囲気からの輻射熱を効率よく吸収することができ、その結果、ホットスタンプ時のアルミめっき鋼板の昇温速度を速くすることができる。一方、針状化合物X1の短径に対する長径の比率が過度に大きいと、その針状化合物X1の近傍に存在する他の針状化合物による輻射熱の吸収が妨げられるおそれがある。その結果、結果、アルミめっき鋼板を加熱する際の昇温速度を十分に向上させることができず、生産性が劣る場合がある。本実施形態では、針状化合物X1の短径に対する長径の比率を50以下とすることで、他の近傍に存在する他の針状化合物の輻射熱の吸収の妨害を抑制できるため、皮膜全体において熱を効率よく吸収することができ、その結果、ホットスタンプ時のアルミめっき鋼板の昇温速度を速くすることができる。
ここで、表面処理皮膜13における針状化合物Xの結晶系、及び短径に対する長径の比率は、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分析(Energy Dispersive X-ray Spectroscopy:EDS)及び電子線回折を用いた表面処理皮膜の断面分析により、測定することが可能である。
具体的には、皮膜断面を観察面として、皮膜の膜厚×50μm×(試料の厚さ)約100nmのTEM観察試料を観察して得られるTEM像から針状化合物Xを選定し、当該針状化合物Xの電子線回折像から六方晶系などの結晶構造を特定できる。なお、TEM観察試料は、集束イオンビーム装置(「FIB NB 5000」日立ハイテクノロジーズ製)を用いて、FIB加工にて作製する。加工時の加速電圧は40kVとする。また、観察面は、鋼板の圧延方向と垂直な断面(いわゆるC断面)とし、観察位置は、観察時に前記断面と直交するよう調整する。
ここで、本実施形態における「針状化合物X」とは、一方向にのみ大きく成長した化合物であって、EDS分析で炭素濃度の比率が±5質量%に収まる連続した化合物を1つの化合物と見なし、かつ、その化合物の短径と長径の比率において、短径に対する長径の比率が2以上のものを針状化合物Xとする。かかる針状化合物Xのうち、短径に対する長径の比率が4以上50以下である針状化合物X1を皮膜中に含有させることにより、ホットスタンプ用アルミめっき鋼板の昇温速度を向上させることができる。
ここで、本実施形態における「針状化合物X」とは、一方向にのみ大きく成長した化合物であって、EDS分析で炭素濃度の比率が±5質量%に収まる連続した化合物を1つの化合物と見なし、かつ、その化合物の短径と長径の比率において、短径に対する長径の比率が2以上のものを針状化合物Xとする。かかる針状化合物Xのうち、短径に対する長径の比率が4以上50以下である針状化合物X1を皮膜中に含有させることにより、ホットスタンプ用アルミめっき鋼板の昇温速度を向上させることができる。
短径と長径は、図2に示すように、以下の手順により求めることができる。
まず、針状化合物XのTEM像において、周囲とコントラストの異なる、かつEDS分析でC濃度が±5質量%に収まる連続したものを1つの針状化合物Xと判定する。次いで、図2の(a)~(c)に示す当該粒子に外接する長方形のうち、面積が最も小さくなる長方形(図2の場合は、(a))において、短い方の辺と長い方の辺をそれぞれ短径と長径と定義する。なお、例えば、C濃度が0~10質量%の範囲内にある針状化合物は、上述のC濃度に関する要件を満たすため、TEM像において周囲とコントラストの異なりかつ連続したものを、ひとつの針状化合物Xと判定する。
まず、針状化合物XのTEM像において、周囲とコントラストの異なる、かつEDS分析でC濃度が±5質量%に収まる連続したものを1つの針状化合物Xと判定する。次いで、図2の(a)~(c)に示す当該粒子に外接する長方形のうち、面積が最も小さくなる長方形(図2の場合は、(a))において、短い方の辺と長い方の辺をそれぞれ短径と長径と定義する。なお、例えば、C濃度が0~10質量%の範囲内にある針状化合物は、上述のC濃度に関する要件を満たすため、TEM像において周囲とコントラストの異なりかつ連続したものを、ひとつの針状化合物Xと判定する。
また、本実施形態に係る表面処理皮膜13において、短径に対する長径の比率が4以上50以下で、かつ六方晶系の針状化合物X1のうち、長径と平行な直線と、めっき層12の表面のなす角度の内、最も小さい角度αが0度以上40度以下である針状化合物X2の割合(針状化合物X1に対する針状化合物X2の割合)が、個数%で、70%以上である。針状化合物X1の長径と平行な直線と、めっき層表面のなす角度のうち最も小さい角度αが40度を超えると輻射熱の吸収が不足し、昇温速度が大きくならない。これは、角度αが40度を超えた場合、赤外光をはじめとする電磁波が針状化合物X1に吸収されずに輻射率の低いアルミめっきに到達し、反射してしまうためであると推定される。そのため、HS用アルミめっき鋼板の昇温速度を高めるためには、表面処理皮膜13において、針状化合物X1のうち、角度αが0度以上40度以下である針状化合物X2の割合を十分に高めることが有効である。針状化合物X2の割合は100%(つまり、全針状化合物X1の角度αが0度以上40度以下)であってもよい。なお、本実施形態における角度αは、上述したTEM観察試料(皮膜の膜厚×50μm×(試料の厚さ)約100nm)を観察して得られるTEM像から測定することができる。
なお、針状化合物X1の長径と平行な直線とめっき表面のなす角度のうち最も小さい角度αとは、針状化合物X1の長径と平行な直線を直線Aと定義する場合、めっき表面に垂直かつ直線Aを含む面Z内において、前記面Zとめっき表面との交線Bと前記直線Aがなす角度の中で、小さい方の角度ということができる。
なお、針状化合物X1の長径と平行な直線とめっき表面のなす角度のうち最も小さい角度αとは、針状化合物X1の長径と平行な直線を直線Aと定義する場合、めっき表面に垂直かつ直線Aを含む面Z内において、前記面Zとめっき表面との交線Bと前記直線Aがなす角度の中で、小さい方の角度ということができる。
針状化合物X1の割合は、以下の方法によって求められる。
上述したTEM観察試料(皮膜の膜厚×50μm×(試料の厚さ)約100nm)を用いた上述の方法により、針状化合物Xと判定されたものの中から任意の10個の針状化合物Xを選び、その10個の中から、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1の個数割合(個数%)を求める。具体的には、針状化合物Xと判定されたものの中から任意に10個を選び、その10個の中で、そのうち短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1が7個あれば、当該領域の針状化合物X1の割合は70%とする。このような測定を10回繰返し、得られた針状化合物X1の割合を平均することで、表面処理皮膜13における針状化合物X1の割合(個数%)を算出する。
針状化合物X2の割合は、以下の方法によって求められる。
上述したTEM観察試料(皮膜の膜厚×50μm×厚み100nm)を用いた上述の方法により、針状化合物X1と判定されたものの中から任意の40個の針状化合物X1を選び、その中で、角度αが0度以上40度以下を満足する針状化合物X2の個数割合(個数%)を求める。具体的には、針状化合物Xと判定されたものの中から任意に40個を選び、角度αが0度以上40度以下を満足する針状化合物X2が30個あれば、当該領域の針状化合物X2の割合は75%とする。この測定により、表面処理皮膜13における針状化合物X2の割合(個数%)を算出する。
上述したTEM観察試料(皮膜の膜厚×50μm×(試料の厚さ)約100nm)を用いた上述の方法により、針状化合物Xと判定されたものの中から任意の10個の針状化合物Xを選び、その10個の中から、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1の個数割合(個数%)を求める。具体的には、針状化合物Xと判定されたものの中から任意に10個を選び、その10個の中で、そのうち短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1が7個あれば、当該領域の針状化合物X1の割合は70%とする。このような測定を10回繰返し、得られた針状化合物X1の割合を平均することで、表面処理皮膜13における針状化合物X1の割合(個数%)を算出する。
針状化合物X2の割合は、以下の方法によって求められる。
上述したTEM観察試料(皮膜の膜厚×50μm×厚み100nm)を用いた上述の方法により、針状化合物X1と判定されたものの中から任意の40個の針状化合物X1を選び、その中で、角度αが0度以上40度以下を満足する針状化合物X2の個数割合(個数%)を求める。具体的には、針状化合物Xと判定されたものの中から任意に40個を選び、角度αが0度以上40度以下を満足する針状化合物X2が30個あれば、当該領域の針状化合物X2の割合は75%とする。この測定により、表面処理皮膜13における針状化合物X2の割合(個数%)を算出する。
ここで、表面処理皮膜13に含まれる針状化合物X1は、上記のとおり、六方晶系の結晶構造を有する。つまり、針状化合物X1は、カーボンブラックに代表される非晶質の化合物ではなく、結晶性の化合物である。針状化合物X1として非晶質の化合物を適用した場合には、ホットスタンプ時の昇温速度を十分に向上させることができない上、表面処理皮膜の密着性の確保も困難となる場合がある。
六方晶系の結晶構造を有する化合物としては、ランタンシリケート、二ホウ化マグネシウム、酸化ベリリウム(ベリリア)、酸化亜鉛、グラファイト(C)、β-石英、針ニッケル鉱(NiS)、ウルツ鉱(ZnS)などがある。
六方晶系の結晶構造を有する化合物を皮膜中に含有させることでホットスタンプ時の昇温速度が向上する理由は定かではないものの、輻射熱の吸収に特に有効である波長1~10μmの赤外線に対して活性な結合が数多く存在することが一因である可能性が考えられる。
六方晶系の結晶構造を有する化合物としては、ランタンシリケート、二ホウ化マグネシウム、酸化ベリリウム(ベリリア)、酸化亜鉛、グラファイト(C)、β-石英、針ニッケル鉱(NiS)、ウルツ鉱(ZnS)などがある。
六方晶系の結晶構造を有する化合物を皮膜中に含有させることでホットスタンプ時の昇温速度が向上する理由は定かではないものの、輻射熱の吸収に特に有効である波長1~10μmの赤外線に対して活性な結合が数多く存在することが一因である可能性が考えられる。
図3に示すように、表面処理皮膜13の下層に(表面処理皮膜13とアルミめっき層12との間に)、下地処理皮膜14を設けてもよい。こうすることで、上層側の表面処理皮膜13のアルミめっき層12に対する密着性を向上させることができる。この場合、下地処理皮膜14として、例えばシランカップリング剤などの炭素、酸素、水素、窒素、ケイ素、ナトリウムなどの元素を含む皮膜があり、その上層に、六方晶系の結晶構造を有する針状化合物を含有する表面処理皮膜13がある。なお、図3は説明のための単なる模式図であり、表面処理皮膜13、下地処理被膜14、アルミめっき層12および針状介在物X(X1)などの寸法や分布状態は、必ずしも好適な実施形態を示したものではなく、かつ、図3の寸法や分布状態に限定されるものではない。
また、表面処理皮膜13の耐食性をさらに高める目的で、表面処理被膜13の上層に皮膜15があってもよい。皮膜15としては、ケイ素や金属などの無機成分を含まない、あるいは微量であるポリエステル樹脂やポリウレタン樹脂などの樹脂皮膜が挙げられる。皮膜15として樹脂皮膜がある場合は、図4に示すように、アルミめっき層12の上に下地処理皮膜14があり、その上に表面処理皮膜13があり、表面処理皮膜13の上に樹脂被膜があることが好ましい。なお、図4は説明のための単なる模式図であり、被膜15、表面処理皮膜13、下地処理被膜14、アルミめっき層12および針状介在物X(X1)などの寸法や分布状態は、必ずしも好適な実施形態を示したものではなく、かつ、図4の寸法や分布状態に限定されるものではない。
本実施形態に係る表面処理皮膜13には、上記針状化合物以外に、各種のバインダー成分や添加剤を含有させることができる。表面処理皮膜13は、例えば、樹脂、顔料を含むことが好ましい。表面処理皮膜13には、これらの成分以外にも、レベリング剤、消泡剤、着色剤、粘度調整剤、紫外線吸収剤等の添加剤を含んでもよい。なお、表面処理皮膜13を形成するための塗布液は、水又は溶剤に、上記各成分を分散又は溶解して得られることが好ましい。
本実施形態において、表面処理皮膜13を付与する具体的な手法としては、塗装およびラミネートなどの方法が挙げられるが、これらの手法に限定されるものではない。表面処理皮膜13は、鋼板の一方の面のみに付与されてもよいし、鋼板の両面に付与されてもよい。
塗装によりアルミめっき層12表面の全面に表面処理皮膜13を付与する際には、まず、例えば短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物を含む有機系もしくは無機系の処理液を準備する。その後、処理液をアルミめっき層12表面の全面にロールコーター、カーテンコーター、インクジェット等で塗装した後に、処理液中の揮発成分を乾燥させることによって、表面処理皮膜13が付与される。特にインクジェットによる塗装は、膜厚を連続的に変更できるため好ましい。
ここで、従来(例えば、特許文献2等)では、表面処理皮膜に炭素顔料などの有機物を含む場合、めっき鋼板が高温域(例えば750℃以上)に加熱されると、これら有機物はいずれも消失してしまう問題があった。しかし、本発明者らは、本実施形態に係る表面処理皮膜13の場合、六方晶系の結晶構造を有する針状化合物X1を除く有機系化合物を消失させることなく高温域まで加熱できることを見出した。このように有機物を消失させることなく高温域まで加熱できるメカニズムは定かではないが、皮膜中に含まれる針状化合物の短径に対する長径の比率を適正化することで、処理液として用いる有機物を高温域でも耐えうる構造に変化させたのではと推察される。
ここで、従来(例えば、特許文献2等)では、表面処理皮膜に炭素顔料などの有機物を含む場合、めっき鋼板が高温域(例えば750℃以上)に加熱されると、これら有機物はいずれも消失してしまう問題があった。しかし、本発明者らは、本実施形態に係る表面処理皮膜13の場合、六方晶系の結晶構造を有する針状化合物X1を除く有機系化合物を消失させることなく高温域まで加熱できることを見出した。このように有機物を消失させることなく高温域まで加熱できるメカニズムは定かではないが、皮膜中に含まれる針状化合物の短径に対する長径の比率を適正化することで、処理液として用いる有機物を高温域でも耐えうる構造に変化させたのではと推察される。
本実施形態に係るホットスタンプ用アルミめっき鋼板10は、上記のような特徴を有する表面処理皮膜13を備えることで、ホットスタンプ時の昇温速度を向上させることができる。そのため、本実施形態に係るホットスタンプ用アルミめっき鋼板10を素材として用いることで、ホットスタンプ材の生産性を向上させることができる。
上記のような表面処理皮膜13の実現にあたって、特徴的な、表面処理皮膜13が含有する物質(針状化合物)について、以下、より詳細に説明する。
[針状化合物X1の含有率R]
アルミめっき層12の表面のうち、表面処理皮膜13の付与された側において、表面処理皮膜13における六方晶系の結晶構造を有する針状化合物X1の含有率Rは、0.5体積%以上または1体積%以上であることが好ましい。含有率Rを1体積%以上とすることで、ホットスタンプ時の昇温速度を十分に速くすることが可能となる。含有率Rは、好ましくは2体積%以上であり、より好ましくは5体積%以上であり、さらにより好ましくは10体積%以上である。含有率Rは60体積%以下であることが好ましい。60体積%以下とすることで表面処理皮膜13のバインダー成分と基材であるアルミめっき層12の表面との電気的な引力を確保することができ、密着性を高めることが可能となる。含有率Rは、好ましくは40体積%以下であり、より好ましくは20体積%以下である。
アルミめっき層12の表面のうち、表面処理皮膜13の付与された側において、表面処理皮膜13における六方晶系の結晶構造を有する針状化合物X1の含有率Rは、0.5体積%以上または1体積%以上であることが好ましい。含有率Rを1体積%以上とすることで、ホットスタンプ時の昇温速度を十分に速くすることが可能となる。含有率Rは、好ましくは2体積%以上であり、より好ましくは5体積%以上であり、さらにより好ましくは10体積%以上である。含有率Rは60体積%以下であることが好ましい。60体積%以下とすることで表面処理皮膜13のバインダー成分と基材であるアルミめっき層12の表面との電気的な引力を確保することができ、密着性を高めることが可能となる。含有率Rは、好ましくは40体積%以下であり、より好ましくは20体積%以下である。
尚、含有率Rは、TEM像において表面処理皮膜13に占める針状化合物X1の体積率(体積%)であり、以下の手順により求めることができる。TEM観察領域中の個々の針状化合物X1の寸法(例えば、針状化合物X1の直径にあたる短径および針状化合物X1の長さにあたる長径)から、個々の針状化合物X1の体積を算出し、その体積の合計を観察領域の体積(視野面積×厚さ)で除して、針状化合物X1の体積率を算出する。このような測定を10回繰返し、その体積率の10視野の平均を含有率Rとする。
[針状化合物X1の短径]
表面処理皮膜13に含有される針状化合物X1の短径は20nm以上であることが好ましい。母材鋼板の粗度やうねり、あるいは、皮膜形成時に処理液中の水などの揮発性成分の揮発する速度差等により、表面処理皮膜13の厚みが局所的に異なる場合がある。この場合、針状化合物X1の短径が20nm以上であることで、表面処理皮膜13で輻射熱を効率良く吸収できるため好ましい。針状化合物X1の短径は2μm以下であることが好ましい。2μm以下であることで、ホットスタンプ後の溶接時に、基材のアルミめっき鋼板と電極との接触点が確保しやすくなり、スポット溶接性を高めることができる。短径は、30nm以上または60nm以上、もしくは、1μm以下、700nm以下または500nm以下が好ましい。
表面処理皮膜13に含有される針状化合物X1の短径は20nm以上であることが好ましい。母材鋼板の粗度やうねり、あるいは、皮膜形成時に処理液中の水などの揮発性成分の揮発する速度差等により、表面処理皮膜13の厚みが局所的に異なる場合がある。この場合、針状化合物X1の短径が20nm以上であることで、表面処理皮膜13で輻射熱を効率良く吸収できるため好ましい。針状化合物X1の短径は2μm以下であることが好ましい。2μm以下であることで、ホットスタンプ後の溶接時に、基材のアルミめっき鋼板と電極との接触点が確保しやすくなり、スポット溶接性を高めることができる。短径は、30nm以上または60nm以上、もしくは、1μm以下、700nm以下または500nm以下が好ましい。
[針状化合物X1の長径]
表面処理皮膜13に含有される針状化合物X1の長径は80nm以上であることが好ましい。針状化合物X1の長径が80nm以上であることで、上記短径の理由と同様に、表面処理皮膜13で輻射熱を効率良く吸収できるため好ましい。針状化合物X1の長径は100μm以下であることが好ましい。長径が100μm以下であることで、上記短径の理由と同様に、ホットスタンプ後の溶接時に、基材のアルミめっき鋼板と電極との接触点が確保しやすくなり、スポット溶接性を高めることができるため好ましい。長径は、150nm以上または300nm以上、もしくは、50μm以下、20μm以下または10μm以下が好ましい。
表面処理皮膜13に含有される針状化合物X1の長径は80nm以上であることが好ましい。針状化合物X1の長径が80nm以上であることで、上記短径の理由と同様に、表面処理皮膜13で輻射熱を効率良く吸収できるため好ましい。針状化合物X1の長径は100μm以下であることが好ましい。長径が100μm以下であることで、上記短径の理由と同様に、ホットスタンプ後の溶接時に、基材のアルミめっき鋼板と電極との接触点が確保しやすくなり、スポット溶接性を高めることができるため好ましい。長径は、150nm以上または300nm以上、もしくは、50μm以下、20μm以下または10μm以下が好ましい。
[針状化合物X1の炭素濃度]
針状化合物X1の炭素濃度が90質量%以上であることがより好ましい。炭素濃度が90質量%以上であることで、ホットスタンプ時に温度が上昇しても、分解などにより皮膜から針状化合物X1が消失することを遅らせることができ、熱を吸収する機能を高い温度領域においても維持することができる。さらに、針状化合物X1の炭素濃度が90質量%以上であると、針状化合物X1と雰囲気中の酸素との反応が、発熱反応となるため、昇温速度をより速めることができる。炭素濃度は90質量%以上であることが好ましい。なお、炭素濃度は、EDSの測定値から求めることができる。すなわち、電子線照射時の特性X線のスペクトルを測定し、エネルギーごとの検出強度を算出する。エネルギーの値から針状化合物を構成する元素を特定し、検出強度から当該元素の濃度を算出することができる。このような方法で、針状化合物X1を構成する炭素等の元の濃度を分析することができる。このようにして求めた針状化合物X1の炭素濃度は100質量%以下であることが好ましい。炭素濃度が100質量%以下であることで、上記発熱反応が進行して昇温速度をより速める効果が期待される。
針状化合物X1の炭素濃度が90質量%以上であることがより好ましい。炭素濃度が90質量%以上であることで、ホットスタンプ時に温度が上昇しても、分解などにより皮膜から針状化合物X1が消失することを遅らせることができ、熱を吸収する機能を高い温度領域においても維持することができる。さらに、針状化合物X1の炭素濃度が90質量%以上であると、針状化合物X1と雰囲気中の酸素との反応が、発熱反応となるため、昇温速度をより速めることができる。炭素濃度は90質量%以上であることが好ましい。なお、炭素濃度は、EDSの測定値から求めることができる。すなわち、電子線照射時の特性X線のスペクトルを測定し、エネルギーごとの検出強度を算出する。エネルギーの値から針状化合物を構成する元素を特定し、検出強度から当該元素の濃度を算出することができる。このような方法で、針状化合物X1を構成する炭素等の元の濃度を分析することができる。このようにして求めた針状化合物X1の炭素濃度は100質量%以下であることが好ましい。炭素濃度が100質量%以下であることで、上記発熱反応が進行して昇温速度をより速める効果が期待される。
[針状化合物X1の分散度]
表面処理皮膜中の化合物の形態が針状である場合では化合物の単位体積あたりの表面積が大きい。そのため、本実施形態に係るアルミめっき鋼板を加熱し、ホットスタンプ部材を製造する際、加熱雰囲気からの電磁波による輻射によって、表面処理皮膜全体に熱を効率よく吸収させることができる。加えて、加熱された雰囲気ガスとの接触による熱伝導によっても、熱を効率よく吸収することができる。その結果、表面処理皮膜の全体をムラなく迅速に加熱することが可能となる。このような効果を得るためには、皮膜中の化合物の形態を、短径に対する長径の比率が4以上50以下である針状とするとともに、このような針状化合物X1を表面処理皮膜内の全体に分散して存在させることが効果的である。
表面処理皮膜中の化合物の形態が針状である場合では化合物の単位体積あたりの表面積が大きい。そのため、本実施形態に係るアルミめっき鋼板を加熱し、ホットスタンプ部材を製造する際、加熱雰囲気からの電磁波による輻射によって、表面処理皮膜全体に熱を効率よく吸収させることができる。加えて、加熱された雰囲気ガスとの接触による熱伝導によっても、熱を効率よく吸収することができる。その結果、表面処理皮膜の全体をムラなく迅速に加熱することが可能となる。このような効果を得るためには、皮膜中の化合物の形態を、短径に対する長径の比率が4以上50以下である針状とするとともに、このような針状化合物X1を表面処理皮膜内の全体に分散して存在させることが効果的である。
針状化合物X1の分散度は、前述の針状化合物X1の割合の測定時のデータを利用して算出する。具体的には、前述の針状化合物X1の割合の測定時には、任意の10個の針状化合物Xの中の針状化合物X1の割合を測定する作業を、10回繰り返すが、その10個の割合(含有率)の最大値をR1とし、その割合(含有率)の最小値をR2とする。そして、R2に対するR1の比率(R1/R2)を針状化合物X1の分散度とする。本実施形態では、R1/R2が2.0以下となるように、針状化合物X1を皮膜中に分散させることで、ホットスタンプ用アルミめっき鋼板の昇温速度をより向上させることができる。R1/R2が2.0を超えると輻射熱の吸収にばらつきが出るため、昇温速度を向上する効果にもばらつきが生じる懸念がある。このため、R1/R2は、2.0以下とすることが好ましい。R1/R2は、2.5以下または2.3以下としてもよく、1.8以下または1.6以下としてもよい。なお、R1/R2は、本実施形態の製造方法のうち、塗布後の乾燥時の60℃までの到達時間に影響される。具体的には、当該到達時間を10.0秒以下に調整することで、R1/R2を上記範囲内に制御できる。R1/R2は、R1/R2の定義から、その下限は1.0である。
[針状化合物X1の構成]
表面処理皮膜13に含有される針状化合物X1はグラファイトであることが好ましい。表面処理皮膜13中にグラファイトを含有する場合、ホットスタンプ加熱後には、皮膜成分が少なくなり、塗装後密着性等のホットスタンプ後の性能を維持することができる。
グラファイトの場合、官能基が少ないため分解が起きる時間が遅い。一方、類似の炭素系化合物であるカーボンブラックは官能基が比較的多いため、早い時間から分解及び酸化反応が起こりやすい特徴がある。
表面処理皮膜13に含有される針状化合物X1はグラファイトであることが好ましい。表面処理皮膜13中にグラファイトを含有する場合、ホットスタンプ加熱後には、皮膜成分が少なくなり、塗装後密着性等のホットスタンプ後の性能を維持することができる。
グラファイトの場合、官能基が少ないため分解が起きる時間が遅い。一方、類似の炭素系化合物であるカーボンブラックは官能基が比較的多いため、早い時間から分解及び酸化反応が起こりやすい特徴がある。
表面処理皮膜13中のグラファイトの含有量を5.0体積%以上とすることにより、アルミめっき鋼板の放射率を高めることができ、昇温速度を速くすることができる。表面処理皮膜13中のグラファイトの含有量は、8.0体積%以上であることが更に好ましい。表面処理皮膜13中のグラファイトの含有量を8.0体積%以上とすることで、より一層昇温速度を速めることが可能となる。
ここで、本実施形態でいう「グラファイト」とは、炭素濃度(C濃度)が85質量%以上であるものと指す。
ここで、本実施形態でいう「グラファイト」とは、炭素濃度(C濃度)が85質量%以上であるものと指す。
一方、表面処理皮膜13中のグラファイトの含有量を40.0体積%以下とすることにより、放射率を高める効果を十分に得つつ、皮膜コストの上昇を抑制できる。表面処理皮膜中のグラファイトの含有量は、30.0体積%以下であることが好ましい。表面処理皮膜13中のグラファイトの含有量を30.0体積%以下とすることにより、皮膜コストをより一層抑制することが可能となる。
グラファイトの含有率は、針状化合物Xの中の針状化合物X1の割合(含有率)の測定時に、C濃度が85%以上という限定を加える以外は、前述の上記針状化合物X1の含有率Rとおなじ方法により求めることができる。
グラファイトの含有率は、針状化合物Xの中の針状化合物X1の割合(含有率)の測定時に、C濃度が85%以上という限定を加える以外は、前述の上記針状化合物X1の含有率Rとおなじ方法により求めることができる。
<<バインダー成分(樹脂)>>
本実施形態に係る表面処理皮膜13に含有されうるバインダー成分の含有量は、表面処理皮膜13の全体積に対して、40体積%以上であることが皮膜密着性を確保する上で好ましい。
バインダー成分として、公知の各種の樹脂を用いることが可能である。
本実施形態に係る表面処理皮膜13に含有されうるバインダー成分の含有量は、表面処理皮膜13の全体積に対して、40体積%以上であることが皮膜密着性を確保する上で好ましい。
バインダー成分として、公知の各種の樹脂を用いることが可能である。
樹脂は、特に限定されるものではない。例えば、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂、シランカップリング剤を加水分解・縮重合して得られるポリマー化合物が挙げられる。樹脂としては、これら樹脂を、ブチル化メラミン樹脂、メチル化メラミン樹脂、ブチルメチル混合メラミン樹脂、尿素樹脂、イソシアネート樹脂、又はこれらの混合系の架橋剤成分により架橋させた樹脂も挙げられる。また、電子線硬化型樹脂、紫外線硬化型樹脂なども挙げられる。これらの中でも、バインダー樹脂としては、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、および、ウレタン樹脂のいずれか一つ以上が好ましい。これらのバインダー樹脂は単独でも、2種以上を混合して用いてもよい。
なお、バインダー成分として例えばポリウレタン樹脂を用いる場合、ポリウレタン樹脂は、ポリエーテル系のポリウレタン樹脂であることが好ましい。ポリエーテル系のポリウレタン樹脂を用いることで、ポリエステル系のポリウレタン樹脂と比較して、酸やアルカリによる加水分解の発生を防止することができるからであり、ポリカーボネート系のポリウレタン樹脂と比較して、硬くて脆い皮膜の形成を抑制することで、加工時の密着性や加工部の耐食性を担保することができるからである。
ポリウレタン樹脂が含有されているか否かは、赤外分光法により得られる赤外吸収スペクトルにおいて、3330cm-1(N-H伸縮)、1730cm-1(C=O伸縮)、1530cm-1(C-N)、1250cm-1(C-O)の特性吸収が観測されるか否かに基づいて、判断することができる。また、ポリウレタン樹脂の含有量についても、予め含有量が既知のサンプルを用いて、含有量と特性吸収の強度との関係を示した検量線を作成しておくことで、得られた特性吸収の強度から含有量を特定することができる。
また、上記のポリウレタン樹脂以外の樹脂についても、各樹脂に特有の官能基に由来する特性吸収に着目することで、上記ポリウレタン樹脂と同様に、含有の有無及び含有量を判断することが可能である。
樹脂を分散又は溶解させる処理液中の成分としては、水や溶剤を用いることが可能である。
樹脂を分散又は溶解させる処理液中の成分としては、水や溶剤を用いることが可能である。
<<添加剤>>
本実施形態に係る表面処理皮膜13には、本発明の効果を損なわない範囲で、皮膜形成前の処理液作製時の添加剤として、レベリング剤、水溶性溶剤、金属安定化剤、エッチング抑制剤等といった各種の添加剤を含有させることが可能である。
本実施形態に係る表面処理皮膜13には、本発明の効果を損なわない範囲で、皮膜形成前の処理液作製時の添加剤として、レベリング剤、水溶性溶剤、金属安定化剤、エッチング抑制剤等といった各種の添加剤を含有させることが可能である。
レベリング剤としては、ノニオン系又はカチオン系の界面活性剤として、例えば、ポリエチレンオキサイド又はポリプロピレンオキサイド付加物や、アセチレングリコール化合物等が挙げられる。
水溶性溶剤としては、例えば、エタノール、イソプロピルアルコール、t-ブチルアルコール及びプロピレングリコール等のアルコール類、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル等のセロソルブ類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン類等が挙げられる。
金属安定化剤としては、例えば、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)等のキレート化合物が挙げられる。
エッチング抑制剤としては、例えば、エチレンジアミン、トリエチレンペンタミン、グアニジン及びピリミジン等のアミン化合物類が挙げられる。
なお、上記のバインダー成分や添加剤の含有量についても、針状化合物の場合と同様にして、測定することが可能である。
<<シリカ>>
本実施形態に係る表面処理皮膜13は、先だって言及したように、シリカを含有していなくともよく、ある範囲内でシリカを含有していてもよい。より詳細には、本実施形態に係る表面処理皮膜13において、シリカの含有量は、0~0.3g/m2であってもよい。シリカを0.3g/m2を超えて含有する場合、温度上昇効果が望めない一方で高コストとなるため、経済性の点で好ましくない。また、シリカは電気伝導性が低い物質であるため、シリカを0.3g/m2を超えて含有する場合、ホットスタンプ後の溶接性の点で好ましくない。シリカを含有させる場合における表面処理皮膜13中のシリカの含有量は、小さければ小さいほどよい。表面処理皮膜のシリカの含有量は、より好ましくは0.10g/m2以下であり、更に好ましくは0.05g/m2以下である。
本実施形態に係る表面処理皮膜13は、先だって言及したように、シリカを含有していなくともよく、ある範囲内でシリカを含有していてもよい。より詳細には、本実施形態に係る表面処理皮膜13において、シリカの含有量は、0~0.3g/m2であってもよい。シリカを0.3g/m2を超えて含有する場合、温度上昇効果が望めない一方で高コストとなるため、経済性の点で好ましくない。また、シリカは電気伝導性が低い物質であるため、シリカを0.3g/m2を超えて含有する場合、ホットスタンプ後の溶接性の点で好ましくない。シリカを含有させる場合における表面処理皮膜13中のシリカの含有量は、小さければ小さいほどよい。表面処理皮膜のシリカの含有量は、より好ましくは0.10g/m2以下であり、更に好ましくは0.05g/m2以下である。
<<表面処理皮膜の膜厚>>
以上のような成分を含有する表面処理皮膜13の平均膜厚は、例えば、0.5~15.0μmとすることが好ましい。表面処理皮膜13の平均膜厚が0.5μmより小さいと、ホットスタンプ時の昇温速度を十分に高めることができない。一方、表面処理皮膜13の平均膜厚が15.0μmを超えると、ホットスタンプ時の昇温速度を速める効果が飽和するのに対し生産コストが高くなるため、経済的に不利である。また、表面処理皮膜13の膜厚を厚くしようとすると、表面処理皮膜13の形成時、処理剤を塗布した後の乾燥に時間を要するため、生産性が低下する。表面処理皮膜13の膜厚を上記の範囲内とすることで、昇温速度を向上させることができる。表面処理皮膜の平均膜厚は、より好ましくは、1.0μm以上または2.0μm以上であり、12μm以下、10μm以下または7.0μm以下である。
以上のような成分を含有する表面処理皮膜13の平均膜厚は、例えば、0.5~15.0μmとすることが好ましい。表面処理皮膜13の平均膜厚が0.5μmより小さいと、ホットスタンプ時の昇温速度を十分に高めることができない。一方、表面処理皮膜13の平均膜厚が15.0μmを超えると、ホットスタンプ時の昇温速度を速める効果が飽和するのに対し生産コストが高くなるため、経済的に不利である。また、表面処理皮膜13の膜厚を厚くしようとすると、表面処理皮膜13の形成時、処理剤を塗布した後の乾燥に時間を要するため、生産性が低下する。表面処理皮膜13の膜厚を上記の範囲内とすることで、昇温速度を向上させることができる。表面処理皮膜の平均膜厚は、より好ましくは、1.0μm以上または2.0μm以上であり、12μm以下、10μm以下または7.0μm以下である。
<下地処理皮膜>
表面処理皮膜13とアルミめっき層12の間に、表面処理皮膜13の密着性を向上させるために下地処理皮膜14(化成処理層)が付与されてもよい。
表面処理皮膜13とアルミめっき層12の間に、表面処理皮膜13の密着性を向上させるために下地処理皮膜14(化成処理層)が付与されてもよい。
下地処理皮膜14は、樹脂、シランカップリング剤、ジルコニウム化合物、シリカ、りん酸及びその塩、ふっ化物、並びに、バナジウム化合物から選択されるいずれか一つ以上を含んでもよい。これら物質を含むと、さらに、下地処理皮膜14用の化成処理剤塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、めっき面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与する。特に、下地処理皮膜14が、シランカップリング剤、およびジルコニウム化合物のいずれか一つ以上を含むと、皮膜に架橋構造を形成し、さらにめっき表面との結合も強化するため、皮膜の密着性やバリア性を高めることができる。
また、下地処理皮膜14が、シリカ、りん酸及びその塩、ふっ化物、並びに、バナジウム化合物のいずれか一つ以上を含むと、インヒビターとして、めっき表面や母材鋼板表面に沈殿皮膜や不動態皮膜を形成することで、耐食性を向上することができる。
また、下地処理皮膜14が、シリカ、りん酸及びその塩、ふっ化物、並びに、バナジウム化合物のいずれか一つ以上を含むと、インヒビターとして、めっき表面や母材鋼板表面に沈殿皮膜や不動態皮膜を形成することで、耐食性を向上することができる。
[めっき層片面あたりの下地処理皮膜の付着量]
めっき層片面あたりの下地処理皮膜14の付着量は、固形分換算で、10~1000mg/m2が好ましい。10mg/m2未満では充分な加工密着性と耐食性が確保されず、1000mg/m2を超えると加工密着性が低下することがある。
めっき鋼板片面あたりの下地処理皮膜14の付着量は、より好ましくは20~800mg/m2、さらに好ましくは50~600mg/m2である。
めっき層片面あたりの下地処理皮膜14の付着量は、固形分換算で、10~1000mg/m2が好ましい。10mg/m2未満では充分な加工密着性と耐食性が確保されず、1000mg/m2を超えると加工密着性が低下することがある。
めっき鋼板片面あたりの下地処理皮膜14の付着量は、より好ましくは20~800mg/m2、さらに好ましくは50~600mg/m2である。
<アルミめっき層>
本実施形態に係るホットスタンプ用アルミめっき鋼板10は、母材鋼板11の少なくとも一方の表面において、母材鋼板11と表面処理皮膜13との間の少なくとも一部に、アルミめっき層12を有する。アルミめっき層12を有することにより、ホットスタンプ後の塗装後耐食性をより一層向上させることができる。また、アルミめっき層12が存在することで、ホットスタンプの際に、加熱により鉄スケールが生成するのを防ぐことができる。鉄スケールは、加熱炉を汚染させたり、搬送のために用いられるロールに付着したりするため、製造上の負荷になる。そのため、鉄スケールが生成した場合には、鉄スケールを除去するためにショットブラスト等の工程が必要となり、経済上好ましくない。
本実施形態に係るホットスタンプ用アルミめっき鋼板10は、母材鋼板11の少なくとも一方の表面において、母材鋼板11と表面処理皮膜13との間の少なくとも一部に、アルミめっき層12を有する。アルミめっき層12を有することにより、ホットスタンプ後の塗装後耐食性をより一層向上させることができる。また、アルミめっき層12が存在することで、ホットスタンプの際に、加熱により鉄スケールが生成するのを防ぐことができる。鉄スケールは、加熱炉を汚染させたり、搬送のために用いられるロールに付着したりするため、製造上の負荷になる。そのため、鉄スケールが生成した場合には、鉄スケールを除去するためにショットブラスト等の工程が必要となり、経済上好ましくない。
<母材鋼板>
次に、本実施形態に係るホットスタンプ用アルミめっき鋼板10の母材鋼板11について説明する。母材鋼板11は、ホットスタンプ法に好適に利用可能な鋼板であれば、特に制限はない。本実施形態に係るホットスタンプ用アルミめっき鋼板に適用可能な鋼板として、例えば、化学組成が、質量%で、
C:0.03~0.60%、
Si:0.01~0.60%、
Mn:0.50~3.00%、
P:0.050%以下、
S:0.020%以下、
Al:0.100%以下、
Ti:0.01~0.10%、
B:0.0001~0.0100%、
N:0.010%以下、
Cr:0~1.00%、
Ni:0~2.00%、
Cu:0~1.000%、
Mo:0~1.00%、
V:0~1.00%、
Nb:0~1.00%、
Sn:0~1.00%、
W:0~1.00%、
Ca:0~0.010%、
REM:0~0.30%であり、
残部:Fe及び不純物である鋼板を例示できる。
また、母材鋼板11の形態としては、例えば熱延鋼板や冷延鋼板などの鋼板を例示できる。以下、母材鋼板の化学組成について、詳細に説明する。なお、以下の母材鋼板11の化学組成に関する説明において、「%」の表記は、特に断りのない限り「質量%」を意味する。
次に、本実施形態に係るホットスタンプ用アルミめっき鋼板10の母材鋼板11について説明する。母材鋼板11は、ホットスタンプ法に好適に利用可能な鋼板であれば、特に制限はない。本実施形態に係るホットスタンプ用アルミめっき鋼板に適用可能な鋼板として、例えば、化学組成が、質量%で、
C:0.03~0.60%、
Si:0.01~0.60%、
Mn:0.50~3.00%、
P:0.050%以下、
S:0.020%以下、
Al:0.100%以下、
Ti:0.01~0.10%、
B:0.0001~0.0100%、
N:0.010%以下、
Cr:0~1.00%、
Ni:0~2.00%、
Cu:0~1.000%、
Mo:0~1.00%、
V:0~1.00%、
Nb:0~1.00%、
Sn:0~1.00%、
W:0~1.00%、
Ca:0~0.010%、
REM:0~0.30%であり、
残部:Fe及び不純物である鋼板を例示できる。
また、母材鋼板11の形態としては、例えば熱延鋼板や冷延鋼板などの鋼板を例示できる。以下、母材鋼板の化学組成について、詳細に説明する。なお、以下の母材鋼板11の化学組成に関する説明において、「%」の表記は、特に断りのない限り「質量%」を意味する。
[C:0.03~0.60%]
Cは、目的とする機械的強度を確保するために含有される。C含有量が0.03%以上であることで、十分な機械的強度の向上が得られ、Cを含有する効果が十分に得られる。
そのため、C含有量は、0.03%以上であることが好ましい。C含有量は、より好ましくは0.20%以上である。一方、C含有量が0.60%以下であることで、鋼板の強度を硬化向上させつつ、伸び、絞りの低下を抑制できる。そのため、C含有量は、0.60%以下であることが好ましい。C含有量は、より好ましくは0.40%以下である。
Cは、目的とする機械的強度を確保するために含有される。C含有量が0.03%以上であることで、十分な機械的強度の向上が得られ、Cを含有する効果が十分に得られる。
そのため、C含有量は、0.03%以上であることが好ましい。C含有量は、より好ましくは0.20%以上である。一方、C含有量が0.60%以下であることで、鋼板の強度を硬化向上させつつ、伸び、絞りの低下を抑制できる。そのため、C含有量は、0.60%以下であることが好ましい。C含有量は、より好ましくは0.40%以下である。
[Si:0.01~0.60%]
Siは、機械的強度を向上させる強度向上元素の一つであり、Cと同様に、目的とする機械的強度を確保するために含有される。Si含有量が0.01%以上であることで、強度向上効果が十分に発揮され、十分な機械的強度の向上が得られる。そのため、Si含有量は、0.01%以上であることが好ましい。Si含有量は、より好ましくは0.10%以上である。一方、Siは易酸化性元素でもあるため、Si含有量が0.60%以下であることで、鋼板表層に形成したSi酸化物の影響による、溶融Alめっきを行う際の濡れ性の低下が抑制され、不めっきの発生が抑制できる。そのため、Si含有量は、0.60%以下であることが好ましい。Si含有量は、より好ましくは0.40%以下である。
Siは、機械的強度を向上させる強度向上元素の一つであり、Cと同様に、目的とする機械的強度を確保するために含有される。Si含有量が0.01%以上であることで、強度向上効果が十分に発揮され、十分な機械的強度の向上が得られる。そのため、Si含有量は、0.01%以上であることが好ましい。Si含有量は、より好ましくは0.10%以上である。一方、Siは易酸化性元素でもあるため、Si含有量が0.60%以下であることで、鋼板表層に形成したSi酸化物の影響による、溶融Alめっきを行う際の濡れ性の低下が抑制され、不めっきの発生が抑制できる。そのため、Si含有量は、0.60%以下であることが好ましい。Si含有量は、より好ましくは0.40%以下である。
[Mn:0.50~3.00%]
Mnは、鋼を強化させる強化元素の1つであり、焼入れ性を高める元素の1つでもある。更に、Mnは、不純物の1つであるSによる熱間脆性を防止するのにも有効な元素である。Mn含有量が0.50%以上であることで、これらの効果が十分に得られる。そのため、上記効果を確実に発現させるために、Mn含有量は、0.50%以上であることが好ましい。Mn含有量は、より好ましくは0.80%以上である。一方、Mnはオーステナイト形成元素であるため、Mn含有量が3.00%以下であることで、残留オーステナイト相が多くなり過ぎず、強度の低下が抑制される。そのため、Mn含有量は、3.00%以下であることが好ましい。Mn含有量は、より好ましくは1.50%以下である。
Mnは、鋼を強化させる強化元素の1つであり、焼入れ性を高める元素の1つでもある。更に、Mnは、不純物の1つであるSによる熱間脆性を防止するのにも有効な元素である。Mn含有量が0.50%以上であることで、これらの効果が十分に得られる。そのため、上記効果を確実に発現させるために、Mn含有量は、0.50%以上であることが好ましい。Mn含有量は、より好ましくは0.80%以上である。一方、Mnはオーステナイト形成元素であるため、Mn含有量が3.00%以下であることで、残留オーステナイト相が多くなり過ぎず、強度の低下が抑制される。そのため、Mn含有量は、3.00%以下であることが好ましい。Mn含有量は、より好ましくは1.50%以下である。
[P:0.050%以下]
Pは、鋼中に含まれる不純物である。P含有量が0.050%以下であることで、鋼板に含まれるPが鋼板の結晶粒界に偏析してホットスタンプされた成形体の母材の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、P含有量は0.050%以下であることが好ましく、P含有量はできる限り少なくすることが好ましい。必要に応じて、P含有量を0.045%以下または0.040%以下としてもよい。P含有量の下限は0%であるが、その下限を0.001%または0.005%としてもよい。
Pは、鋼中に含まれる不純物である。P含有量が0.050%以下であることで、鋼板に含まれるPが鋼板の結晶粒界に偏析してホットスタンプされた成形体の母材の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、P含有量は0.050%以下であることが好ましく、P含有量はできる限り少なくすることが好ましい。必要に応じて、P含有量を0.045%以下または0.040%以下としてもよい。P含有量の下限は0%であるが、その下限を0.001%または0.005%としてもよい。
[S:0.020%以下]
Sは、鋼中に含まれる不純物である。S含有量が0.020%以下であることで、鋼板に含まれるSが硫化物を形成して鋼板の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、S含有量は0.020%以下であることが好ましく、S含有量はできる限り少なくすることが好ましい。必要に応じて、S含有量を0.015%以下または0.010%以下としてもよい。S含有量の下限は0%であるが、その下限を0.001%または0.002%としてもよい。
Sは、鋼中に含まれる不純物である。S含有量が0.020%以下であることで、鋼板に含まれるSが硫化物を形成して鋼板の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、S含有量は0.020%以下であることが好ましく、S含有量はできる限り少なくすることが好ましい。必要に応じて、S含有量を0.015%以下または0.010%以下としてもよい。S含有量の下限は0%であるが、その下限を0.001%または0.002%としてもよい。
[Al:0.100%以下]
Alは、一般に鋼の脱酸目的で使用される。一方、Al含有量が0.100%以下であることで、鋼板のAc3点の上昇が抑制されるため、ホットスタンプの際に鋼の焼入れ性確保に必要な加熱温度を低減でき、ホットスタンプ製造上望ましい。従って、鋼板のAl含有量は、0.100%以下が好ましく、より好ましくは0.050%以下であり、更に好ましくは0.010%以下である。
Alは、一般に鋼の脱酸目的で使用される。一方、Al含有量が0.100%以下であることで、鋼板のAc3点の上昇が抑制されるため、ホットスタンプの際に鋼の焼入れ性確保に必要な加熱温度を低減でき、ホットスタンプ製造上望ましい。従って、鋼板のAl含有量は、0.100%以下が好ましく、より好ましくは0.050%以下であり、更に好ましくは0.010%以下である。
[Ti:0.01~0.10%]
Tiは、強度強化元素の1つである。Ti含有量が0.01%以上であることで、強度向上効果や耐酸化性向上効果が十分に得られる。そのため、上記効果を確実に発現させるために、Ti含有量は、0.01%以上であることが好ましい。Ti含有量は、より好ましくは0.03%以上である。一方、Ti含有量が0.10%以下であることで、例えば炭化物や窒化物の形成が抑制され、鋼の軟質化を抑制でき、目的とする機械的強度を十分に得ることができる。従って、Ti含有量は、0.10%以下であることが好ましい。Ti含有量は、より好ましくは0.08%以下である。
Tiは、強度強化元素の1つである。Ti含有量が0.01%以上であることで、強度向上効果や耐酸化性向上効果が十分に得られる。そのため、上記効果を確実に発現させるために、Ti含有量は、0.01%以上であることが好ましい。Ti含有量は、より好ましくは0.03%以上である。一方、Ti含有量が0.10%以下であることで、例えば炭化物や窒化物の形成が抑制され、鋼の軟質化を抑制でき、目的とする機械的強度を十分に得ることができる。従って、Ti含有量は、0.10%以下であることが好ましい。Ti含有量は、より好ましくは0.08%以下である。
[B:0.0001~0.0100%]
Bは、焼入れ時に作用して強度を向上させる効果を有する。B含有量が0.0001%以下であることで、このような強度向上効果が十分に得られる。そのため、B含有量は、0.0001%以上であることが好ましい。B含有量は、より好ましくは0.0010%以上である。一方、B含有量が0.0100%以下であることで、介在物の形成が低減されて鋼板の脆化が抑制され、疲労強度の低下を抑制できる。そのため、B含有量は、0.0100%以下であることが好ましい。B含有量は、より好ましくは0.0040%以下である。
Bは、焼入れ時に作用して強度を向上させる効果を有する。B含有量が0.0001%以下であることで、このような強度向上効果が十分に得られる。そのため、B含有量は、0.0001%以上であることが好ましい。B含有量は、より好ましくは0.0010%以上である。一方、B含有量が0.0100%以下であることで、介在物の形成が低減されて鋼板の脆化が抑制され、疲労強度の低下を抑制できる。そのため、B含有量は、0.0100%以下であることが好ましい。B含有量は、より好ましくは0.0040%以下である。
[N:0.010%以下]
Nは、鋼中に含まれる不純物である。N含有量が0.010%以下であることで、鋼板に含まれるNによる窒化物の形成が抑制されて、鋼板の靭性低下を抑制できる。更に、鋼板中にBが含有される場合に、鋼板に含まれるNがBと結合して固溶B量を減少させることが抑制され、Bの焼入れ性向上効果の低下が抑制できる。そのため、N含有量は、0.010%以下であることが好ましく、N含有量はできる限り少なくすることがより好ましい。
Nは、鋼中に含まれる不純物である。N含有量が0.010%以下であることで、鋼板に含まれるNによる窒化物の形成が抑制されて、鋼板の靭性低下を抑制できる。更に、鋼板中にBが含有される場合に、鋼板に含まれるNがBと結合して固溶B量を減少させることが抑制され、Bの焼入れ性向上効果の低下が抑制できる。そのため、N含有量は、0.010%以下であることが好ましく、N含有量はできる限り少なくすることがより好ましい。
また、本実施形態に係るホットスタンプ用鋼板の母材鋼板は、更に、任意元素として、Cr、Mo、Ni、Cu、Mo、V、Nb、Sn、W、CaおよびREMからなる群から選ばれる1種以上の元素を含有してもよい。これらの元素の含有量の下限は0%である。
[Cr:0~1.00%]
Crは、鋼板の焼入れ性を向上させる元素である。かかる効果を十分にj得るためには、Cr含有量を0.01%以上とすることが好ましい。一方、Cr含有量を1.00%以下とすることで、その効果を十分に得つつ、コストの上昇を抑制できる。そのため、含有させる場合のCr含有量は、1.00%以下とすることが好ましい。必要に応じて、Cr含有量を0.70%以下または0.50%以下としてもよい。
Crは、鋼板の焼入れ性を向上させる元素である。かかる効果を十分にj得るためには、Cr含有量を0.01%以上とすることが好ましい。一方、Cr含有量を1.00%以下とすることで、その効果を十分に得つつ、コストの上昇を抑制できる。そのため、含有させる場合のCr含有量は、1.00%以下とすることが好ましい。必要に応じて、Cr含有量を0.70%以下または0.50%以下としてもよい。
[Ni:0~2.00%]
Niは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Ni含有量を0.10%以上とすることが好ましい。一方、Ni含有量が2.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNi含有量は、2.00%以下とすることが好ましい。必要に応じて、Ni含有量を1.20%以下、0.80%以下または0.50%以下としてもよい。
Niは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Ni含有量を0.10%以上とすることが好ましい。一方、Ni含有量が2.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNi含有量は、2.00%以下とすることが好ましい。必要に応じて、Ni含有量を1.20%以下、0.80%以下または0.50%以下としてもよい。
[Cu:0~1.000%]
Cuは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Cuは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、Cu含有量を0.100%以上とすることが好ましい。一方、Cu含有量が1.000%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のCu含有量は、1.000%以下とすることが好ましい。必要に応じて、Cu含有量を0.600%以下、0.400%以下または0.200%以下としてもよい。
Cuは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Cuは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、Cu含有量を0.100%以上とすることが好ましい。一方、Cu含有量が1.000%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のCu含有量は、1.000%以下とすることが好ましい。必要に応じて、Cu含有量を0.600%以下、0.400%以下または0.200%以下としてもよい。
[Mo:0~1.00%]
Moは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Mo含有量を0.10%以上とすることが好ましい。一方、Mo含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のMo含有量は、1.00%以下とすることが好ましい。必要に応じて、Mo含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
Moは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Mo含有量を0.10%以上とすることが好ましい。一方、Mo含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のMo含有量は、1.00%以下とすることが好ましい。必要に応じて、Mo含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
[V:0~1.00%]
Vは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、V含有量を0.10%以上とすることが好ましい。一方、V含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のV含有量は、1.00%以下とすることが好ましい。必要に応じて、V含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
Vは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、V含有量を0.10%以上とすることが好ましい。一方、V含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のV含有量は、1.00%以下とすることが好ましい。必要に応じて、V含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
[Nb:0~1.00%]
Nbは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Nb含有量を0.01%以上とすることが好ましい。一方、Nb含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNb含有量は、1.00%以下とすることが好ましい。必要に応じて、Nb含有量を0.50%以下、0.20%以下または0.10%以下としてもよい。
Nbは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Nb含有量を0.01%以上とすることが好ましい。一方、Nb含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNb含有量は、1.00%以下とすることが好ましい。必要に応じて、Nb含有量を0.50%以下、0.20%以下または0.10%以下としてもよい。
[Sn:0~1.00%]
Snは、腐食環境において耐孔食性を向上させる元素である。かかる効果を十分に発現させるためには、Sn含有量を0.01%以上とすることが好ましい。一方、Sn含有量が1.00%以下であることで、粒界強度の低下が抑制され、靭性の低下を抑制できる。そのため、含有させる場合のSn含有量は、1.00%以下とすることが好ましい。必要に応じて、Sn含有量を0.40%以下、0.10%以下または0.05%以下としてもよい。
Snは、腐食環境において耐孔食性を向上させる元素である。かかる効果を十分に発現させるためには、Sn含有量を0.01%以上とすることが好ましい。一方、Sn含有量が1.00%以下であることで、粒界強度の低下が抑制され、靭性の低下を抑制できる。そのため、含有させる場合のSn含有量は、1.00%以下とすることが好ましい。必要に応じて、Sn含有量を0.40%以下、0.10%以下または0.05%以下としてもよい。
[W:0~1.00%]
Wは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Wは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、W含有量を0.01%以上とすることが好ましい。一方、W含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のW含有量は、1.00%以下とすることが好ましい。必要に応じて、W含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
Wは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Wは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、W含有量を0.01%以上とすることが好ましい。一方、W含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のW含有量は、1.00%以下とすることが好ましい。必要に応じて、W含有量を0.60%以下、0.40%以下または0.20%以下としてもよい。
[Ca:0~0.010%]
Caは、鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、Ca含有量が0.010%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のCa含有量は、0.010%以下とすることが好ましく、0.004%以下とすることがより好ましい。必要に応じて、Ca含有量を0.008%以下、0.006%以下または0.0004%以下としてもよい。
Caは、鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、Ca含有量が0.010%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のCa含有量は、0.010%以下とすることが好ましく、0.004%以下とすることがより好ましい。必要に応じて、Ca含有量を0.008%以下、0.006%以下または0.0004%以下としてもよい。
[REM:0~0.30%]
REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、REM含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、REM含有量が0.30%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のREM含有量は、0.30%以下とすることが好ましく、0.20%以下とすることがより好ましい。必要に応じて、Ca含有量を0.10%以下、0.05%以下または0.02%以下としてもよい。
REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、REM含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、REM含有量が0.30%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のREM含有量は、0.30%以下とすることが好ましく、0.20%以下とすることがより好ましい。必要に応じて、Ca含有量を0.10%以下、0.05%以下または0.02%以下としてもよい。
ここで、REMは、Sc、Y及びランタノイドの合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を意味する。REMは、例えば、Fe-Si-REM合金を使用して溶鋼に添加され、この合金には、例えば、Ce、La、Nd、Prが含まれる。
上記成分以外の残部は、Fe及び不純物である。母材鋼板11は、上記成分の他、本発明の効果を阻害しない範囲で、製造工程などで混入してしまう不純物を含んでもよい。かかる不純物としては、例えば、Zn(亜鉛)、Co(コバルト)が挙げられる。
上記の化学組成を有する母材鋼板11およびアルミめっき層12からなるめっき鋼板の表面のうち、表面処理皮膜13が付与された部位は、ホットスタンプ法による加熱および焼入れにより、例えば、約1000MPa以上の引張強度を有するホットスタンプ部材とすることができる。また、ホットスタンプ法においては、高温で軟化した状態でプレス加工を行うことができるので、容易に成形することができる。
(ホットスタンプ用アルミめっき鋼板の製造方法)
以下、本実施形態に係るホットスタンプ用アルミめっき鋼板の製造方法の一例を説明する。なお、本実施形態に係るホットスタンプ用アルミめっき鋼板は、上述の構成を有すれば、製造方法は特に限定されない。下記の製造方法は、本実施形態に係るホットスタンプ用アルミめっき鋼板を製造するための一つの例であり、本実施形態に係るホットスタンプ用アルミめっき鋼板の製造方法の好適な例である。
以下、本実施形態に係るホットスタンプ用アルミめっき鋼板の製造方法の一例を説明する。なお、本実施形態に係るホットスタンプ用アルミめっき鋼板は、上述の構成を有すれば、製造方法は特に限定されない。下記の製造方法は、本実施形態に係るホットスタンプ用アルミめっき鋼板を製造するための一つの例であり、本実施形態に係るホットスタンプ用アルミめっき鋼板の製造方法の好適な例である。
<母材鋼板>
アルミめっきに供する母材鋼板は、ホットスタンプ法に好適に利用可能な鋼板であれば、特に制限はない。母材鋼板の形態としては、例えば熱延鋼板や冷延鋼板などの鋼板を例示できる。
アルミめっきに供する母材鋼板は、ホットスタンプ法に好適に利用可能な鋼板であれば、特に制限はない。母材鋼板の形態としては、例えば熱延鋼板や冷延鋼板などの鋼板を例示できる。
<アルミめっき層>
本実施形態に係るホットスタンプ用アルミめっき鋼板は、母材鋼板の片面又は両面において、母材鋼板と表面処理皮膜との間の少なくとも一部に、アルミめっき層を有することが好ましい。アルミめっき層を有することにより、ホットスタンプ後の塗装後耐食性をより一層向上させることができる。また、アルミめっき層が存在することで、ホットスタンプの際に、加熱により鉄スケールが生成するのを防ぐことができる。鉄スケールは、加熱炉を汚染させたり、搬送のために用いられるロールに付着したりするため、製造上の負荷になる。そのため、鉄スケールが生成した場合には、鉄スケールを除去するためにショットブラスト等の工程が必要となり、経済上好ましくない。
本実施形態に係るホットスタンプ用アルミめっき鋼板は、母材鋼板の片面又は両面において、母材鋼板と表面処理皮膜との間の少なくとも一部に、アルミめっき層を有することが好ましい。アルミめっき層を有することにより、ホットスタンプ後の塗装後耐食性をより一層向上させることができる。また、アルミめっき層が存在することで、ホットスタンプの際に、加熱により鉄スケールが生成するのを防ぐことができる。鉄スケールは、加熱炉を汚染させたり、搬送のために用いられるロールに付着したりするため、製造上の負荷になる。そのため、鉄スケールが生成した場合には、鉄スケールを除去するためにショットブラスト等の工程が必要となり、経済上好ましくない。
アルミめっき層の種別は、特に限定されない。かかるアルミめっき層を構成する組成としては、アルミめっき、Al-Siめっき、Al-Si-Mg、Al-Si-Caめっき等がある。
例えば、アルミめっき層の化学組成(平均化学組成)は、質量%で、Al:85.0~95.0%、Si:2.0~15.0%、Fe:1~15.0%、Cr:0%以上1.0%未満、Mo:0%以上1.0%未満、Zn:0%以上1.0%未満、V:0%以上1.0%未満、Ti:0%以上1.0%未満、Sn:0%以上1.0%未満、Ni:0%以上1.0%未満、Cu:0%以上1.0%未満、W:0%以上1.0%未満、Bi:0%以上1.0%未満、Mg:0%以上1.0%未満、Ca:0%以上1.0%未満を含有し、残部は不純物であるめっき層であってもよい。
例えば、アルミめっき層の化学組成(平均化学組成)は、質量%で、Al:85.0~95.0%、Si:2.0~15.0%、Fe:1~15.0%、Cr:0%以上1.0%未満、Mo:0%以上1.0%未満、Zn:0%以上1.0%未満、V:0%以上1.0%未満、Ti:0%以上1.0%未満、Sn:0%以上1.0%未満、Ni:0%以上1.0%未満、Cu:0%以上1.0%未満、W:0%以上1.0%未満、Bi:0%以上1.0%未満、Mg:0%以上1.0%未満、Ca:0%以上1.0%未満を含有し、残部は不純物であるめっき層であってもよい。
アルミめっき層におけるAl含有量が85.0%未満であると、ホットスタンプ後の耐食性(ホットスタンプ成形体における耐食性)が劣化する。そのため、Al含有量は、85.0%以上であることが好ましい。Al含有量は、より好ましくは、88.0%以上である。一方、アルミめっき層におけるAl含有量が95.0%超であると、めっき密着性が劣化する場合がある。そのため、Al含有量は95.0%以下とすることが好ましい。Al含有量は、より好ましくは92.0%以下である。
アルミめっき層におけるSi含有量が2.0%未満であると、めっき密着性が劣化する場合がある。そのため、Si含有量は2.0%以上とすることが好ましい。Si含有量は、より好ましくは3.0%以上、さらに好ましくは4.0%以上である。一方、アルミめっき層におけるSi含有量が15.0%超であると、めっき密着性が劣化する場合がある。そのため、Si含有量は15.0%以下とすることが好ましい。Si含有量は、より好ましくは13.0%以下である。
Fe含有量は、好ましくは1.0%以上であり、15.0%以下である。
アルミめっき層の化学組成は、JIS K 0119:2008に準拠した蛍光X線法によって測定することができる。すなわち、目的元素の含有量が既知の試料を用いて、X線強度と含有量の関係を予め求める。これをもとに作成した検量線から、未知試料の各元素の含有量すなわち化学組成を求めることができる。
めっきの付着量は、片面につき10g/m2から120g/m2であることが好ましい。10g/m2未満の場合、めっき層に欠陥が存在する場合ホットスタンプの過程において鉄のスケールが生成する場合がある。一方、120g/m2を超えると、コストが高くなり経済的でない。好ましくは、30g/m2から100g/m2である。
また、アルミめっき層を形成させる方法は、溶融めっき法、電気めっき法、物理蒸着、化学蒸着等が挙げられるが、特に限定されるものではない。
また、アルミめっき層を形成させる方法は、溶融めっき法、電気めっき法、物理蒸着、化学蒸着等が挙げられるが、特に限定されるものではない。
<表面処理皮膜>
表面処理皮膜の製造方法は特に限定されないが、例えば、各々の皮膜形成成分を混合し、ディスパーで攪拌し、溶解もしくは分散した表面処理剤をめっき層上に塗布した後、乾燥させる方法が挙げられる。
表面処理皮膜の製造方法は特に限定されないが、例えば、各々の皮膜形成成分を混合し、ディスパーで攪拌し、溶解もしくは分散した表面処理剤をめっき層上に塗布した後、乾燥させる方法が挙げられる。
表面処理皮膜層に含有させる針状化合物の原料としては、短径に対する長径の比率が4以上50以下の六方晶系の結晶構造を有する化合物を用いる。六方晶系の結晶構造を有する化合物としては、ランタンシリケート、二ホウ化マグネシウム、酸化ベリリウム(ベリリア)、酸化亜鉛、グラファイト(C)、β-石英、針ニッケル鉱(NiS)、ウルツ鉱(ZnS)などがある。これらの中でも、炭素濃度が90質量%であるグラファイト(C)を用いることが好ましい。これら原料を溶媒(例えば水または溶剤)に分散させた表面処理剤を用いて表面処理皮膜を製造する。なお、使用する化合物の短径に対する長径の比率が不明な場合、必要に応じて、予備試験などにより、所要の短径に対する長径の比率などの針状化合物が含む表面処理被膜が得られることを確認してもよい。
短径が20nm以上、長径/短径の比率が4~50とし、かつ、六方晶系の結晶構造を有する針状化合物X1の割合が、個数%で、70%以上とし、針状化合物X1のうち、前述の角度αが0度以上40度以下である針状化合物X2の割合が、個数%で、70%以上とするためには、水酸化ナトリウム水溶液やアンモニウム水をpH11.0以上に調整した液で、液温30~50℃で1~7日間撹拌を続けることが有効である。すなわち、針状化合物の原料として六方晶系の結晶構造を有する化合物を用い、かつ、処理剤のpHおよび攪拌条件を適切な範囲に制御することにより、長径/短径の比率が4~50の範囲である針状化合物X1の割合および角度αが0度以上40度以下である針状化合物X2の割合を十分に高める(例えば、70個数%以上)ことが可能となる。
原料を水又は溶剤(アセトンなど)に分散させた処理液を用いる場合は、予めめっき層が付与された鋼板などの基材に処理液を塗布し、水又は溶剤を十分に乾燥した後にTEM観察し、短径が20nm以上、短径に対する長径の比が4~50であることを予め確認する。このようにしてスクリーニングした原料や製造方法を用いることで、バインダー成分と混合した表面処理皮膜を得ることができる。
さらに、表面処理皮膜において、針状化合物X1のうち、長径に平行な直線と、めっき層表面に平行な直線交点における角度のうち小さい方の角度αを0度以上40度以下である針状化合物X2の割合を高めるためには、前述の方法(pH調整や液温や攪拌時間など)を行った上で、更に、水又は溶剤に原料を分散させた処理液を塗装する直前に、撹拌子を入れた容器に40~70gの処理液を入れて80~120rpmで撹拌してから5.0秒以内に塗装することが有効である。なお、上記のように、pH11.0以上に調整した処理液を1日以上攪拌した容器のまま、攪拌中に塗装することも可能である。
また、処理液の粘度を3.0~10.0mPa・s、表面張力を20~60mN/mにすることも有効である。さらに、処理液を塗布した後の加熱乾燥時において、鋼板の温度が60℃に到達するまでの時間を3.0秒以上とすることも有効である。
また、処理液の粘度を3.0~10.0mPa・s、表面張力を20~60mN/mにすることも有効である。さらに、処理液を塗布した後の加熱乾燥時において、鋼板の温度が60℃に到達するまでの時間を3.0秒以上とすることも有効である。
表面処理剤の製造方法は特に限定されないが、例えば、各々の皮膜形成成分を混合し、ディスパーで攪拌し、溶解もしくは分散する方法が挙げられる。各々の皮膜形成成分の溶解性、又は分散性を向上させるために、必要に応じて、公知の親水性溶剤等を添加してもよい。下地処理皮膜14用の化成処理剤中には、その性能が損なわれない範囲内で、pH調整のために酸、アルカリ等を添加してもよい。
表面処理皮膜層を形成するには、表面処理剤をめっき鋼板に塗布し、塗布膜を加熱乾燥する。化成処理剤の塗布方法は、特に限定されず、一般に公知の塗装方法、例えば、ロールコート、エアースプレー、エアーレススプレー、浸漬などを利用する方法が可能である。加熱乾燥温度としては、50~250℃がよい。50℃未満では、水分の蒸発速度が遅く充分な成膜性が得られないので、防錆力が不足することがある。250℃を超えると、有機物であるシランカップリング剤のアルキル部分が熱分解等のため変性を起こし、密着性や耐食性が低下することがある。加熱温度は70~160℃がより好ましい。
加熱乾燥方法は、特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独又は組み合わせた方法が挙げられる。
加熱乾燥方法は、特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独又は組み合わせた方法が挙げられる。
(ホットスタンプ部材の製造方法)
自動車用の骨格部品に例示されるような各種のホットスタンプ部材は、上記のような表面処理皮膜が少なくとも一方の表面の全面に付与されたホットスタンプ用アルミめっき鋼板を用いて製造できる。
自動車用の骨格部品に例示されるような各種のホットスタンプ部材は、上記のような表面処理皮膜が少なくとも一方の表面の全面に付与されたホットスタンプ用アルミめっき鋼板を用いて製造できる。
まず、例えばコイル状の鋼板等の金属素材の少なくとも一方の表面の全面に対して表面処理皮膜を付与する。そして、切断やプレスで打抜く等の各種加工を施すことで、本実施形態に係るホットスタンプ用アルミめっき鋼板を得る。また、切断やプレスで打抜く等した鋼板に表面処理皮膜を付与することでも、本実施形態に係るホットスタンプ用アルミめっき鋼板を得ることができる。また、表面処理皮膜の膜厚を部分的に薄くすることで、例えばホットスタンプを施す前に複数の鋼板を溶接する用途において、通電しやすくなりスポット溶接性を高めることができる。
例えば以上のようにして表面処理皮膜を付与したホットスタンプ用鋼板を、ホットスタンプする。加熱装置としては、例えば、電気加熱炉、ガス加熱炉や、遠赤外炉、赤外線ヒータを備えた通常の加熱装置、等がある。表面処理皮膜を付与して放射率を高めた側の面は、輻射による伝熱効果が大きいために昇温速度が速い。そのため、金属組織がオーステナイト相に変態するAc3点以上の温度以上まで、迅速に昇温される。これにより、本実施形態に係るホットスタンプ部材の製造方法では、加熱時間の短縮を図ることで、ホットスタンプ部材の生産性をより向上させることができる。本実施形態では、具体的な加熱条件については、特に限定されるものではなく、用いる加熱装置等を適切に制御すればよい。
次に、加熱した鋼板を、成形及び冷却する。鋼材の金属組織がオーステナイト相に変態するAc3点温度以上にまで昇温された部位は、焼入れされて強度が高くなる。これにより、焼入れにより強度が向上したホットスタンプ部材を得ることができる。
以下、本発明の実施例について説明するが、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例にすぎず、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
母材鋼板としては、高い機械的強度(引張強度、降伏点、伸び、絞り、硬さ、衝撃値、疲れ強さ等の機械的な変形及び破壊に関する諸性質を意味する。)を有する鋼板を使用することが好ましい。以下の実施例に示したホットスタンプ用鋼板に使用した、めっき前の母材鋼板の化学組成を、以下の表1に示した。
表1に示した化学組成を有する母材鋼板(鋼No.S1~S10)に対し、表面処理皮膜を付与した。より詳細には、各母材鋼板について、幅100mm×長さ200mm、板厚1.6mmの鋼板を準備し、Al―10%Siめっき浴で溶融めっきした後、表面処理皮膜を両面の全面にわたって付与した。ここで、表1の表記「-」は、対応する元素含有量が、本実施形態に規定の有効数字(最小桁までの数値)において、0%であることを意味する。
処理液の製造方法は、表2に示す条件とした。すなわち、水または溶剤に溶質として、ランタンシリケート、二ホウ化マグネシウム、酸化ベリリウム、酸化亜鉛、β-石英、グラファイト、酸化ジルコニウムの粉末または分散液を用い、所定のpH、温度、撹拌時間で熟成した後、ロールコーターによってアルミめっき鋼板に塗布した。熱風炉での乾燥の際に60℃に到達するまでの時間を風速と炉内の温度により制御した。なお製造No.A9では、処理液への添加剤として、アセトンを用いた。
また、製造No.A14~A16(表3の符号B14~B16に対応)においては、バインダー成分を分散した液を、Al-10%Siめっき鋼板の表面にロールコーターを用いて塗布し、乾燥することで表面処理皮膜を付与した。製造No.A14では、バインダー成分としてとして、SiO2の化合物を添加した水系処理液を用い、製造No.A15ではアクリル樹脂、製造No.A16ではポリウレタン樹脂をそれぞれ分散した液を用いた。
表面処理皮膜の膜厚は1.0~10μmの範囲内とした。
ここで、表2における下線は、本実施形態の好適な製造条件の範囲外であることを示す。
表面処理皮膜の膜厚は1.0~10μmの範囲内とした。
ここで、表2における下線は、本実施形態の好適な製造条件の範囲外であることを示す。
その後、表面処理皮膜を付与した鋼板の中心部熱電対を接続して、各位置の温度を測定できるようにした。そして、設定温度920℃の電気加熱炉において鋼板を加熱し、皮膜を付与した鋼板が910℃に到達した時点で、加熱炉から鋼板を取り出した。鋼板を平金型で急速に冷却して、ホットスタンプ部材を得た。
表面処理皮膜を付与した部位の昇温速度、表面処理皮膜密着性を調査した。
各評価項目の評価方法は、以下の通りとした。
各評価項目の評価方法は、以下の通りとした。
(1)昇温速度(昇温特性)
各鋼板に設けた熱電対から得られた温度変化と、電気加熱炉における加熱時間とから、各鋼板での昇温速度を算出し、評価を行った。詳細には、室温から910℃に達するまでの平均昇温速度を算出し、以下の評価基準に基づき評価を行い、評点「2」以上を合格とした。
各鋼板に設けた熱電対から得られた温度変化と、電気加熱炉における加熱時間とから、各鋼板での昇温速度を算出し、評価を行った。詳細には、室温から910℃に達するまでの平均昇温速度を算出し、以下の評価基準に基づき評価を行い、評点「2」以上を合格とした。
(評点)
5:昇温速度5.0℃/s以上
4:昇温速度4.5℃/s以上5.0℃/s未満
3:昇温速度4.0℃/s以上4.5℃/s未満
2:昇温速度3.5℃/s以上4.0℃/s未満
1:昇温速度2.0℃/s以上3.5℃/s未満
5:昇温速度5.0℃/s以上
4:昇温速度4.5℃/s以上5.0℃/s未満
3:昇温速度4.0℃/s以上4.5℃/s未満
2:昇温速度3.5℃/s以上4.0℃/s未満
1:昇温速度2.0℃/s以上3.5℃/s未満
(2)表面処理皮膜密着性
得られたホットスタンプ成形体に対し、リン酸化成処理、及び、厚み15μmの電着塗装を施し、170℃で20分間焼き付けて表面処理皮膜を付与した。その後、60℃の脱イオン水に250時間浸漬後に表面処理皮膜の剥離状態を確認した。評点「2」を合格とした。
得られたホットスタンプ成形体に対し、リン酸化成処理、及び、厚み15μmの電着塗装を施し、170℃で20分間焼き付けて表面処理皮膜を付与した。その後、60℃の脱イオン水に250時間浸漬後に表面処理皮膜の剥離状態を確認した。評点「2」を合格とした。
(評点)
2:優位(剥離なし)
1:良好(面積率で3%未満の剥離あり)
2:優位(剥離なし)
1:良好(面積率で3%未満の剥離あり)
上記で得られた評価結果を表3に示した。なお、表3に示す「針状化合物の炭素濃度」は、EDS分析による針状化合物X2の炭素濃度の平均値(単位:質量%)である。
B1~B19が発明例であり、b1~b12が比較例である。針状化合物の粒径はいずれも20nm~400nmであった。
発明例B1~B19では、全針状化合物(比率が4未満、50超である針状化合物も含む)に対する長径/短径の比率が4~50の、結晶構造が六方晶系である針状化合物X1の割合(個数%)が70%以上、針状化合物X1のうち、表面処理皮膜の表面との角度αが0から40度である針状化合物X2の割合(個数%)が70%以上であった。これらの昇温速度(昇温特性)の評点は2以上であった。
発明例B1~B19では、全針状化合物(比率が4未満、50超である針状化合物も含む)に対する長径/短径の比率が4~50の、結晶構造が六方晶系である針状化合物X1の割合(個数%)が70%以上、針状化合物X1のうち、表面処理皮膜の表面との角度αが0から40度である針状化合物X2の割合(個数%)が70%以上であった。これらの昇温速度(昇温特性)の評点は2以上であった。
一方、比較例b1では、使用した化合物が不適切であり、長径/短径の比率が4~50の、結晶構造が六方晶系である針状化合物X1の割合(個数%)が70%未満であった。また比較例b2では、使用した化合物が不適切であり、結晶構造が六方晶系でなかった。比較例b3は、使用した化合物が不適切であり、針状化合物X2の割合(個数%)が70%未満であった。
比較例b4は、使用した化合物がカーボンブラックであり、使用した化合物が不適切であった。比較例b5及びb8では、針状化合物X1の割合(個数%)および針状化合物X2の割合(個数%)が70%未満であった。比較例b6,b7,b9およびb10~b12では、少なくとも使用した化合物が不適切であり、針状化合物X1の長径/短径の比率が4~50の範囲を外れてしまった。その結果、比較例b1~b12は、その針状化合物X1の割合又は針状化合物X2の割合が低く、その昇温速度の評点は1であった。
比較例b4は、使用した化合物がカーボンブラックであり、使用した化合物が不適切であった。比較例b5及びb8では、針状化合物X1の割合(個数%)および針状化合物X2の割合(個数%)が70%未満であった。比較例b6,b7,b9およびb10~b12では、少なくとも使用した化合物が不適切であり、針状化合物X1の長径/短径の比率が4~50の範囲を外れてしまった。その結果、比較例b1~b12は、その針状化合物X1の割合又は針状化合物X2の割合が低く、その昇温速度の評点は1であった。
なお、長径/短径の比率が4~50の、結晶構造が六方晶系である針状化合物X1の割合(個数%)、結晶構造、表面との角度αに加えて、含有率Rが2から60%となった発明例B7~B12で昇温速度の評点が3に向上した。
針状化合物X1の炭素濃度が90質量%のB13では、B12よりも昇温速度が向上し、グラファイトを用いた発明例B12~B16では、グラファイト以外の場合よりもさらに昇温速度の評点が向上した。
樹脂を含有した発明例B14~B16では、皮膜密着性の評点が1から2に向上した。
発明例B11は発明例B17よりも針状化合物X1の分散度が良好なため、昇温特性により優れた。
発明例B11は発明例B17よりも針状化合物X1の分散度が良好なため、昇温特性により優れた。
以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
本発明の上記態様によれば、ホットスタンプ部材の生産性をより向上させることが可能なホットスタンプ用アルミめっき鋼板の提供が可能となるので、産業上の利用可能性が高い。
10 ホットスタンプ用アルミめっき鋼板
11 母材鋼板
12 アルミめっき層
13 表面処理皮膜
14 下地処理皮膜
15 皮膜
11 母材鋼板
12 アルミめっき層
13 表面処理皮膜
14 下地処理皮膜
15 皮膜
Claims (6)
- 母材鋼板と、
前記母材鋼板の少なくとも一方の面の上に設けられたアルミめっき層と、
前記アルミめっき層の上に設けられた表面処理皮膜と
を有するホットスタンプ用アルミめっき鋼板において、
前記表面処理皮膜は、針状化合物Xを含有し、
前記針状化合物Xのうち、短径に対する長径の比率が4以上50以下、かつ、六方晶系の結晶構造を有する針状化合物X1の割合が、個数%で、70%以上であり、
前記針状化合物X1のうち、長径と平行な直線と、前記アルミめっき層の表面のなす角度の内、最も小さい角度が0度以上40度以下である針状化合物X2の割合が、個数%で、70%以上である
ことを特徴とするホットスタンプ用アルミめっき鋼板。 - 前記針状化合物X1の含有率Rが、体積%で、2%以上60%以下であることを特徴とする請求項1に記載のホットスタンプ用アルミめっき鋼板。
- 前記針状化合物X1の炭素濃度が、90質量%以上であることを特徴とする請求項1または2に記載のホットスタンプ用アルミめっき鋼板。
- 前記針状化合物X1の含有率Rを10箇所測定し、最大含有率をR1、最小含有率をR2とした場合、R2に対するR1の比率R1/R2が2.0以下であることを特徴とする請求項1~3の何れか一項に記載のホットスタンプ用アルミめっき鋼板。
- 前記針状化合物X1が、グラファイトであることを特徴とする請求項1~4の何れか一項に記載のホットスタンプ用アルミめっき鋼板。
- 前記表面処理皮膜が、樹脂を含有することを特徴とする請求項1~5の何れか一項に記載のホットスタンプ用アルミめっき鋼板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023568183A JP7469732B1 (ja) | 2022-07-14 | 2023-07-14 | ホットスタンプ用アルミめっき鋼板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022113179 | 2022-07-14 | ||
JP2022-113179 | 2022-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014543A1 true WO2024014543A1 (ja) | 2024-01-18 |
Family
ID=89536834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/026113 WO2024014543A1 (ja) | 2022-07-14 | 2023-07-14 | ホットスタンプ用アルミめっき鋼板 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7469732B1 (ja) |
WO (1) | WO2024014543A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004202988A (ja) * | 2002-12-26 | 2004-07-22 | Nisshin Steel Co Ltd | 金属素地外観を活かした黒色クリア塗装金属板 |
WO2009131233A1 (ja) * | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | めっき鋼板及びめっき鋼板の熱間プレス方法 |
WO2012147886A1 (ja) * | 2011-04-28 | 2012-11-01 | 堺化学工業株式会社 | 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 |
WO2017164234A1 (ja) * | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | プレコート金属板 |
-
2023
- 2023-07-14 WO PCT/JP2023/026113 patent/WO2024014543A1/ja active Application Filing
- 2023-07-14 JP JP2023568183A patent/JP7469732B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004202988A (ja) * | 2002-12-26 | 2004-07-22 | Nisshin Steel Co Ltd | 金属素地外観を活かした黒色クリア塗装金属板 |
WO2009131233A1 (ja) * | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | めっき鋼板及びめっき鋼板の熱間プレス方法 |
WO2012147886A1 (ja) * | 2011-04-28 | 2012-11-01 | 堺化学工業株式会社 | 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 |
WO2017164234A1 (ja) * | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | プレコート金属板 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024014543A1 (ja) | 2024-01-18 |
JP7469732B1 (ja) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048525B2 (ja) | 熱間プレス成形品 | |
JP6836600B2 (ja) | ホットスタンプ部材 | |
JP6470266B2 (ja) | プレス焼入れ用亜鉛めっき鋼材およびその製造方法 | |
KR20130132623A (ko) | 도장 후 내식성이 우수한 핫 스탬핑 성형된 고강도 부품 및 그 제조 방법 | |
JP2004323970A (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP2011137210A (ja) | ホットスタンプ用鋼板及びその製造方法 | |
JP5192991B2 (ja) | 高強度合金化溶融亜鉛めっき鋼板の製造方法および高強度合金化溶融亜鉛めっき鋼板 | |
RU2648729C1 (ru) | Al-плакированный стальной лист, используемый для горячего прессования, и способ изготовления al-плакированного стального листа, применяемого для горячего прессования | |
JP2016125101A (ja) | ホットスタンプ成形体およびホットスタンプ成形体の製造方法 | |
JP2011149084A (ja) | 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法 | |
WO2024014543A1 (ja) | ホットスタンプ用アルミめっき鋼板 | |
KR101267705B1 (ko) | 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
WO2022215228A1 (ja) | ホットスタンプ用鋼板及びホットスタンプ部材 | |
WO2022215229A1 (ja) | ホットスタンプ用鋼板及びホットスタンプ部材 | |
EP4265815A1 (en) | Plated steel for hot press forming, and method for manufacturing same | |
WO2024048504A1 (ja) | ホットスタンプ用アルミニウムめっき鋼板 | |
WO2019066063A1 (ja) | めっき鋼板、めっき鋼板コイル、熱間プレス成形品の製造方法、及び自動車部品 | |
EP4230766A1 (en) | Steel material | |
CN115053009B (zh) | 热压部件及其制造方法以及热压用镀覆钢板 | |
US20230047998A1 (en) | Steel component comprising an anti-corrosion layer containing manganese | |
JP5128619B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2006144106A (ja) | 塗膜密着性に優れた高強度鋼板 | |
WO2024154829A1 (ja) | 冷延鋼板及びその製造方法 | |
KR20210077292A (ko) | 인산염 처리성이 우수한 고강도 냉연강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023568183 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839710 Country of ref document: EP Kind code of ref document: A1 |