WO2024014303A1 - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2024014303A1
WO2024014303A1 PCT/JP2023/024220 JP2023024220W WO2024014303A1 WO 2024014303 A1 WO2024014303 A1 WO 2024014303A1 JP 2023024220 W JP2023024220 W JP 2023024220W WO 2024014303 A1 WO2024014303 A1 WO 2024014303A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
formula
Prior art date
Application number
PCT/JP2023/024220
Other languages
English (en)
French (fr)
Inventor
真人 三谷
清香 水谷
良多 高橋
啓太郎 山田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024014303A1 publication Critical patent/WO2024014303A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a novel compound, a material for an organic electroluminescent device, an organic electroluminescent device, and an electronic device.
  • an organic electroluminescent element hereinafter also referred to as an organic EL element
  • holes are injected from the anode and electrons from the cathode, respectively, into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons recombine to form excitons.
  • An object of the present invention is to provide a high-performance organic EL device and a compound that can realize the organic EL device.
  • a compound represented by the following formula (1) is each independently N or CH, and either one of X 1 and X 2 is N.
  • Ar 1 and Ar 2 are each independently, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 1 to L 3 are each independently, single bond, A substituted or unsubstituted arylene group having 6 to 50 ring atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms.
  • n1 is an integer from 0 to 4, and when n1 is 0, (L 1 ) n1 is a single bond.
  • n2 is an integer from 0 to 4, and when n2 is 0, (L 2 ) n2 is a single bond.
  • n3 is an integer from 0 to 4, and when n3 is 0, (L 3 ) n3 is a single bond.
  • each of the plurality of L 3 may be the same or different.
  • R 11 to R 19 are each independently a hydrogen atom or a substituent R. Adjacent sets of two or more of R 11 to R 19 are not bonded to each other.
  • R 21 and R 22 combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 21 and R 22 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the substituent R is Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, -Si(R 901 )(R 902 )(R 903 ), -O-(R 904 ), -S- (R 905 ), -N(R 906 )(R 907 ), Halogen atom, cyano group, nitro group, It is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • each of the two or more R 901 to R 907 may be the same or different.
  • the two or more substituents R may be the same or different.
  • a cathode a cathode; an anode; one or more organic layers disposed between the cathode and the anode; has An organic electroluminescent device in which at least one of the organic layers contains the compound described in 1 above. 3.
  • An electronic device comprising the organic electroluminescent element according to 2 above.
  • a high-performance organic EL device and a compound capable of realizing the organic EL device can be provided.
  • FIG. 1 is a diagram showing a schematic configuration of an organic EL element according to one embodiment of the present invention.
  • the hydrogen atom includes isotopes having different numbers of neutrons, ie, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • a hydrogen atom that is, a light hydrogen atom, a deuterium atom, or Assume that tritium atoms are bonded.
  • the number of carbon atoms forming a ring refers to the number of carbon atoms constituting the ring itself of a compound having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, and a heterocyclic compound). represents the number of carbon atoms among the atoms.
  • a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, and a heterocyclic compound represents the number of carbon atoms among the atoms.
  • the carbon contained in the substituent is not included in the number of carbon atoms forming the ring.
  • the "number of ring carbon atoms" described below is the same unless otherwise specified.
  • a benzene ring has 6 carbon atoms
  • a naphthalene ring has 10 carbon atoms
  • a pyridine ring has 5 carbon atoms
  • a furan ring has 4 carbon atoms.
  • the number of ring carbon atoms in the 9,9-diphenylfluorenyl group is 13
  • the number of ring carbon atoms in the 9,9'-spirobifluorenyl group is 25.
  • the benzene ring is substituted with an alkyl group as a substituent, for example, the number of carbon atoms of the alkyl group is not included in the number of carbon atoms forming the benzene ring.
  • the number of ring carbon atoms in the benzene ring substituted with an alkyl group is 6. Further, when the naphthalene ring is substituted with an alkyl group as a substituent, for example, the number of carbon atoms of the alkyl group is not included in the number of carbon atoms forming the naphthalene ring. Therefore, the number of ring carbon atoms in the naphthalene ring substituted with an alkyl group is 10.
  • the number of ring-forming atoms refers to compounds with a structure in which atoms are bonded in a cyclic manner (e.g., monocyclic, fused ring, and ring assembly) (e.g., monocyclic compound, fused ring compound, bridged compound, carbocyclic compound). Represents the number of atoms that constitute the ring itself (compounds and heterocyclic compounds). Atoms that do not form a ring (for example, a hydrogen atom that terminates a bond between atoms that form a ring) and atoms that are included in a substituent when the ring is substituted with a substituent are not included in the number of ring-forming atoms.
  • the "number of ring-forming atoms" described below is the same unless otherwise specified.
  • the number of ring atoms in the pyridine ring is 6, the number of ring atoms in the quinazoline ring is 10, and the number of ring atoms in the furan ring is 5.
  • the number of hydrogen atoms bonded to the pyridine ring or atoms constituting substituents is not included in the number of atoms forming the pyridine ring. Therefore, the number of ring atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is six.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group with carbon number XX to YY” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in substituents.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • number of atoms XX to YY in the expression “substituted or unsubstituted ZZ group with number of atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of atoms of substituents in case.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY" means an integer of 2 or more.
  • an unsubstituted ZZ group refers to a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group refers to a "substituted or unsubstituted ZZ group". represents the case where is a "substituted ZZ group".
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that the hydrogen atom in the ZZ group is not replaced with a substituent.
  • the hydrogen atom in the "unsubstituted ZZ group” is a light hydrogen atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substitution in the case of "BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified herein. .
  • the number of ring atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified herein. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1 to 50, preferably 1 to 20, more preferably 1 to 6, unless otherwise specified herein.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2 to 50, preferably 2 to 20, more preferably 2 to 6, unless otherwise specified herein.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2 to 50, preferably 2 to 20, more preferably 2 to 6, unless otherwise specified herein.
  • the number of ring carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6. be.
  • the number of ring carbon atoms in the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18. .
  • the number of ring atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1 to 50, preferably 1 to 20, more preferably 1 to 6, unless otherwise specified herein.
  • Specific examples (specific example group G1) of the "substituted or unsubstituted aryl group” described in this specification include the following unsubstituted aryl groups (specific example group G1A) and substituted aryl groups (specific example group G1B). ) etc.
  • the unsubstituted aryl group refers to the case where the "substituted or unsubstituted aryl group” is an "unsubstituted aryl group"
  • the substituted aryl group refers to the case where the "substituted or unsubstituted aryl group” is (Refers to the case where it is a "substituted aryl group.)
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group.”
  • “Substituted aryl group” means a group in which one or more hydrogen atoms of "unsubstituted aryl group” are replaced with a substituent.
  • Examples of the "substituted aryl group” include a group in which one or more hydrogen atoms of the "unsubstituted aryl group” in the specific example group G1A below are replaced with a substituent, and a substituted aryl group in the following specific example group G1B. Examples include: The examples of “unsubstituted aryl group” and “substituted aryl group” listed here are just examples, and the "substituted aryl group” described in this specification includes the following specific examples.
  • aryl group (specific example group G1A): phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzanthryl group, phenanthryl group, benzophenanthryl group, phenalenyl group, pyrenyl group, chrysenyl group, benzocrysenyl group,
  • aryl group (specific example group G1B): o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl)fluorenyl group, cyanophenyl group, triphenylsily
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen atom, oxygen atom, sulfur atom, silicon atom, phosphorus atom, and boron atom.
  • a “heterocyclic group” as described herein is a monocyclic group or a fused ring group.
  • a “heterocyclic group” as described herein is an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • substituted or unsubstituted heterocyclic group examples include the following unsubstituted heterocyclic group (specific example group G2A) and substituted heterocyclic group ( Examples include specific example group G2B).
  • unsubstituted heterocyclic group refers to the case where "substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”
  • substituted heterocyclic group refers to "substituted or unsubstituted heterocyclic group”
  • Heterocyclic group refers to a "substituted heterocyclic group."
  • heterocyclic group refers to "unsubstituted heterocyclic group” and “substituted heterocyclic group.” including both.
  • “Substituted heterocyclic group” means a group in which one or more hydrogen atoms of "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include a group in which the hydrogen atom of the "unsubstituted heterocyclic group” in specific example group G2A is replaced, and examples of substituted heterocyclic groups in specific example group G2B below. Can be mentioned.
  • Specific example group G2A includes, for example, the following unsubstituted heterocyclic groups containing a nitrogen atom (specific example group G2A1), unsubstituted heterocyclic groups containing an oxygen atom (specific example group G2A2), and unsubstituted heterocyclic groups containing a sulfur atom.
  • heterocyclic group (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) (Specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic groups containing a nitrogen atom (specific example group G2B1), substituted heterocyclic groups containing an oxygen atom (specific example group G2B2), and substituted heterocyclic groups containing a sulfur atom.
  • group Specific Example Group G2B3
  • one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) are substituents.
  • Includes substituted groups (Example Group G2B4).
  • ⁇ Unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, Tetrazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, indolyl group, isoindolyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quinazolinyl group, quinoxalinyl group, benzimidazolyl group, indazolyl group, phenanthrolinyl
  • ⁇ Unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): frill group, oxazolyl group, isoxazolyl group, oxadiazolyl group, xanthenyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, naphthobenzofuranyl group, benzoxazolyl group, benzisoxazolyl group, phenoxazinyl group, morpholino group, dinaphthofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, Azanaphthobenzofuranyl group, and diazanaphthobenzofuranyl group.
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic group derived from the represented ring structure includes a monovalent group obtained by removing one hydrogen atom from these NH or CH 2 .
  • Substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl)phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, phenylcarbazol-9-yl group, methylbenzimidazolyl group, ethylbenzimidazolyl group, phenyltriazinyl group, biphenylyltriazinyl group, diphenyltriazinyl group, phenylquinazolinyl group, and biphenylylquinazolinyl group.
  • ⁇ Substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9'-[9H]fluorene].
  • ⁇ Substituted heterocyclic group containing a sulfur atom (specific example group G2B3): phenyldibenzothiophenyl group, methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9'-[9H]fluorene].
  • one or more hydrogen atoms of a monovalent heterocyclic group means a hydrogen atom bonded to a ring-forming carbon atom of the monovalent heterocyclic group, at least one of X A and Y A is NH It means one or more hydrogen atoms selected from a hydrogen atom bonded to a nitrogen atom when the above is the case, and a hydrogen atom of a methylene group when one of X A and Y A is CH 2 .
  • Specific examples (specific example group G3) of the "substituted or unsubstituted alkyl group" described in this specification include the following unsubstituted alkyl groups (specific example group G3A) and substituted alkyl groups (specific example group G3B). ).
  • an unsubstituted alkyl group refers to a case where a "substituted or unsubstituted alkyl group” is an "unsubstituted alkyl group," and a substituted alkyl group refers to a case where a "substituted or unsubstituted alkyl group” is (This refers to the case where it is a "substituted alkyl group.”)
  • alkyl group when it is simply referred to as an "alkyl group,” it includes both an "unsubstituted alkyl group” and a "substituted alkyl group.”
  • “Substituted alkyl group” means a group in which one or more hydrogen atoms in "unsubstituted alkyl group” are replaced with a substituent.
  • substituted alkyl group examples include groups in which one or more hydrogen atoms in the "unsubstituted alkyl group” (specific example group G3A) below are replaced with a substituent, and substituted alkyl groups (specific examples examples include group G3B).
  • the alkyl group in "unsubstituted alkyl group” means a chain alkyl group. Therefore, the "unsubstituted alkyl group” includes a linear "unsubstituted alkyl group” and a branched "unsubstituted alkyl group”.
  • ⁇ Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
  • ⁇ Substituted alkyl group (specific example group G3B): heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group.
  • “Substituted or unsubstituted alkenyl group” Specific examples of the "substituted or unsubstituted alkenyl group" (specific example group G4) described in this specification include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B), etc.
  • the term "unsubstituted alkenyl group” refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group”
  • “substituted alkenyl group” refers to "substituted or unsubstituted alkenyl group”).
  • alkenyl group includes both “unsubstituted alkenyl group” and “substituted alkenyl group.”
  • Substituted alkenyl group means a group in which one or more hydrogen atoms in "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include the following "unsubstituted alkenyl group” (specific example group G4A) having a substituent, and the substituted alkenyl group (specific example group G4B). It will be done.
  • ⁇ Unsubstituted alkenyl group (specific example group G4A): vinyl group, allyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • ⁇ Substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-methylallyl group and 1,2-dimethylallyl group.
  • unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group” is “unsubstituted alkynyl group."
  • "unsubstituted alkynyl group” is referred to as "unsubstituted alkynyl group.”
  • ⁇ alkynyl group'' and ⁇ substituted alkynyl group.'' "Substituted alkynyl group” means a group in which one or more hydrogen atoms in "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with a substituent.
  • Specific examples (specific example group G6) of the "substituted or unsubstituted cycloalkyl group” described in this specification include the following unsubstituted cycloalkyl groups (specific example group G6A) and substituted cycloalkyl groups ( Examples include specific example group G6B).
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group”, and the term “substituted cycloalkyl group” refers to "substituted or unsubstituted cycloalkyl group”).
  • cycloalkyl group refers to the case where "substituted cycloalkyl group” is used.
  • cycloalkyl group when simply referring to “cycloalkyl group”, it refers to "unsubstituted cycloalkyl group” and “substituted cycloalkyl group”. including both.
  • Substituted cycloalkyl group means a group in which one or more hydrogen atoms in "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include the following "unsubstituted cycloalkyl group” (specific example group G6A) in which one or more hydrogen atoms are replaced with a substituent, and a substituted cycloalkyl group. (Specific example group G6B) and the like can be mentioned.
  • cycloalkyl group (specific example group G6A): cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • cycloalkyl group (specific example group G6B): 4-methylcyclohexyl group.
  • G7 Specific examples of the group represented by -Si(R 901 )(R 902 )(R 903 ) described in this specification (specific example group G7) include: -Si(G1)(G1)(G1), -Si (G1) (G2) (G2), -Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3), and -Si(G6)(G6)(G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G2's in Si(G2) (G2) (G2) are mutually the same or different.
  • a plurality of G3's in Si(G3) (G3) are mutually the same or different.
  • - A plurality of G6's in Si(G6) (G6) (G6) are mutually the same or different.
  • G8 Specific examples of the group represented by -O-(R 904 ) described in this specification (specific example group G8) include: -O(G1), -O(G2), -O (G3) and -O (G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 Group represented by -S-(R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in this specification include: -S (G1), -S (G2), -S (G3) and -S (G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G10 Group represented by -N(R 906 )(R 907 )
  • Specific examples of the group represented by -N(R 906 )(R 907 ) described in this specification include: -N(G1)(G1), -N(G2)(G2), -N (G1) (G2), -N (G3) (G3), and -N (G6) (G6) can be mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in specific example group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • -N(G1) A plurality of G1's in (G1) are mutually the same or different.
  • -N(G2) A plurality of G2's in (G2) are the same or different.
  • -N(G3) A plurality of G3's in (G3) are mutually the same or different.
  • -N(G6) Multiple G6s in (G6) are the same or different from each other
  • halogen atom specifically examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • substituted or unsubstituted fluoroalkyl group refers to a "substituted or unsubstituted alkyl group" in which at least one hydrogen atom bonded to a carbon atom constituting the alkyl group is replaced with a fluorine atom. It also includes a group in which all hydrogen atoms bonded to the carbon atoms constituting the alkyl group in a "substituted or unsubstituted alkyl group” are replaced with fluorine atoms (perfluoro group).
  • the number of carbon atoms in the "unsubstituted fluoroalkyl group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18, unless otherwise specified herein.
  • “Substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of the "fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atom of the alkyl chain in the "substituted fluoroalkyl group” is further replaced with a substituent, and Also included are groups in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” are further replaced with a substituent.
  • substituents of a substituent in a "substituted fluoroalkyl group” are further replaced with a substituent.
  • the "unsubstituted fluoroalkyl group” include a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a fluorine atom.
  • ⁇ “Substituted or unsubstituted haloalkyl group” means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a halogen atom. It means a group, and also includes a group in which all hydrogen atoms bonded to carbon atoms constituting an alkyl group in a "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the number of carbon atoms in the "unsubstituted haloalkyl group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18.
  • “Substituted haloalkyl group” means a group in which one or more hydrogen atoms of the "haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atom of the alkyl chain in the "substituted haloalkyl group” is further replaced with a substituent; Also included are groups in which one or more hydrogen atoms of a substituent in the "haloalkyl group” are further replaced with a substituent.
  • Specific examples of the "unsubstituted haloalkyl group” include a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a halogen atom.
  • a haloalkyl group is sometimes referred to as a halogenated alkyl group.
  • a specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is a "substituted or unsubstituted alkoxy group” described in specific example group G3.
  • the number of carbon atoms in the "unsubstituted alkoxy group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18, unless otherwise specified herein.
  • ⁇ “Substituted or unsubstituted alkylthio group” A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), where G3 is the "substituted or unsubstituted alkylthio group” described in specific example group G3. "unsubstituted alkyl group”. Unless otherwise specified herein, the number of carbon atoms in the "unsubstituted alkylthio group” is from 1 to 50, preferably from 1 to 30, and more preferably from 1 to 18.
  • a specific example of the "substituted or unsubstituted aryloxy group” described in this specification is a group represented by -O(G1), where G1 is a "substituted or unsubstituted aryloxy group” described in specific example group G1. or an unsubstituted aryl group.
  • the number of ring carbon atoms in the "unsubstituted aryloxy group" is from 6 to 50, preferably from 6 to 30, and more preferably from 6 to 18, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted arylthio group” described in this specification is a group represented by -S(G1), where G1 is the "substituted or unsubstituted arylthio group” described in the specific example group G1.
  • G1 is the "substituted or unsubstituted arylthio group” described in the specific example group G1.
  • the number of ring carbon atoms in the "unsubstituted arylthio group” is from 6 to 50, preferably from 6 to 30, and more preferably from 6 to 18, unless otherwise specified herein.
  • ⁇ “Substituted or unsubstituted trialkylsilyl group” A specific example of the "trialkylsilyl group” described in this specification is a group represented by -Si(G3)(G3)(G3), where G3 is a group described in specific example group G3. It is a "substituted or unsubstituted alkyl group.” - A plurality of G3's in Si(G3) (G3) (G3) are mutually the same or different. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is from 1 to 50, preferably from 1 to 20, and more preferably from 1 to 6, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), where G3 is a group described in specific example group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in the specific example group G1.
  • an "aralkyl group” is a group in which the hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one embodiment of a “substituted alkyl group.”
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group”, and the number of carbon atoms in the "unsubstituted aralkyl group” is determined unless otherwise specified herein. , 7 to 50, preferably 7 to 30, more preferably 7 to 18.
  • substituted or unsubstituted aralkyl groups include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ - Naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • the substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl group, unless otherwise specified herein.
  • the substituted or unsubstituted heterocyclic group described herein is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzimidazolyl group, or a phenol group, unless otherwise specified herein.
  • Nanthrolinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-b
  • carbazolyl group is specifically any of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any of the following groups, unless otherwise stated in the specification.
  • dibenzofuranyl group and dibenzothiophenyl group are specifically any of the following groups unless otherwise specified in the specification.
  • the substituted or unsubstituted alkyl group described herein is preferably a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, and t- Butyl group, etc.
  • the "substituted or unsubstituted arylene group” described in this specification refers to 2 derived from the above “substituted or unsubstituted aryl group” by removing one hydrogen atom on the aryl ring. It is the basis of valence.
  • the "substituted or unsubstituted arylene group” (specific example group G12), by removing one hydrogen atom on the aryl ring from the "substituted or unsubstituted aryl group” described in specific example group G1
  • Examples include divalent groups derived from the derivatives.
  • the "substituted or unsubstituted divalent heterocyclic group” described herein refers to the "substituted or unsubstituted heterocyclic group" described above, in which one hydrogen atom on the heterocycle is removed. It is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocycle from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • the "substituted or unsubstituted alkylene group” described in this specification refers to 2 derived from the above "substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. It is the basis of valence.
  • a "substituted or unsubstituted alkylene group” (specific example group G14), one hydrogen atom on the alkyl chain is removed from the "substituted or unsubstituted alkyl group” described in specific example group G3. Examples include divalent groups derived from the derivatives.
  • the substituted or unsubstituted arylene group described herein is preferably a group represented by any of the following general formulas (TEMP-42) to (TEMP-68).
  • Q 1 to Q 10 are each independently a hydrogen atom or a substituent.
  • * represents a binding site.
  • Q 1 to Q 10 are each independently a hydrogen atom or a substituent.
  • Formulas Q 9 and Q 10 may be bonded to each other via a single bond to form a ring.
  • * represents a binding site.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a binding site.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably one of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein. It is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • the set of two or more adjacent R 930 is one set. is a set of R 921 and R 922 , a set of R 922 and R 923 , a set of R 923 and R 924 , a set of R 924 and R 930 , a set of R 930 and R 925 , a set of R 925 and A set of R 926 , a set of R 926 and R 927 , a set of R 927 and R 928 , a set of R 928 and R 929 , and a set of R 929 and R 921 .
  • the above-mentioned "one or more sets” means that two or more sets of the above-mentioned two or more adjacent sets may form a ring at the same time.
  • R 921 and R 922 combine with each other to form ring Q A
  • R 925 and R 926 combine with each other to form ring Q B
  • the above general formula (TEMP-103) The anthracene compound represented is represented by the following general formula (TEMP-104).
  • a set of two or more adjacent items forms a ring is not only the case where a set of "two" adjacent items are combined as in the example above, but also the case where a set of "three or more adjacent items” form a ring. This also includes the case where two sets are combined.
  • R 921 and R 922 combine with each other to form a ring Q A
  • R 922 and R 923 combine with each other to form a ring Q C
  • the three adjacent to each other (R 921 , R 922 and R 923 ) combine with each other to form a ring and are condensed to the anthracene mother skeleton.
  • anthracene compound represented by the general formula (TEMP-103) is as follows: It is represented by the general formula (TEMP-105). In the following general formula (TEMP-105), ring Q A and ring Q C share R 922 .
  • the "single ring” or “fused ring” that is formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even if “one set of two adjacent rings” forms a “monocycle” or “fused ring,” the “monocycle” or “fused ring” is a saturated ring, or Can form unsaturated rings.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a “fused ring.”
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are "fused rings”.
  • Ring Q A and ring Q C in the general formula (TEMP-105) are a condensed ring due to the condensation of ring Q A and ring Q C.
  • ring Q A in the general formula (TMEP-104) is a benzene ring
  • ring Q A is a monocyclic ring.
  • ring Q A in the general formula (TMEP-104) is a naphthalene ring
  • ring Q A is a fused ring.
  • Unsaturated ring includes an aromatic hydrocarbon ring, an aromatic heterocycle, and an aliphatic hydrocarbon ring having an unsaturated bond, that is, a double bond and/or triple bond in the ring structure (e.g., cyclohexene, cyclohexadiene, etc.), and non-aromatic heterocycles having unsaturated bonds (for example, dihydropyran, imidazoline, pyrazoline, quinolidine, indoline, isoindoline, etc.).
  • the "saturated ring” includes an aliphatic hydrocarbon ring having no unsaturated bond or a non-aromatic heterocycle having no unsaturated bond.
  • aromatic hydrocarbon ring examples include structures in which the groups listed as specific examples in specific example group G1 are terminated with hydrogen atoms.
  • aromatic heterocycle include structures in which the aromatic heterocyclic group listed as a specific example in specific example group G2 is terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in specific example group G6 are terminated with hydrogen atoms.
  • "Form a ring" means to form a ring with only a plurality of atoms of the parent skeleton, or with a plurality of atoms of the parent skeleton and one or more arbitrary atoms.
  • the ring Q A shown in the general formula (TEMP-104) formed by R 921 and R 922 bonding to each other is a carbon atom of the anthracene skeleton to which R 921 is bonded, and an anthracene bond to which R 922 is bonded. It means a ring formed by a carbon atom of the skeleton and one or more arbitrary atoms.
  • R 921 and R 922 form a ring Q A
  • the carbon atom of the anthracene skeleton to which R 921 is bonded the carbon atom of the anthracene skeleton to which R 922 is bonded, and four carbon atoms.
  • R 921 and R 922 form a monocyclic unsaturated ring
  • the ring formed by R 921 and R 922 is a benzene ring.
  • any atom is preferably at least one atom selected from the group consisting of carbon atom, nitrogen atom, oxygen atom, and sulfur atom.
  • any atom for example, in the case of a carbon atom or a nitrogen atom
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an "arbitrary substituent” described below.
  • the ring formed is a heterocycle.
  • "one or more arbitrary atoms" constituting a monocyclic ring or a condensed ring are preferably 2 to 15 atoms, more preferably 3 to 12 atoms.
  • a “monocycle” is preferred among “monocycle” and “fused ring.” Unless otherwise specified herein, the "unsaturated ring” is preferred between the “saturated ring” and the “unsaturated ring”. Unless otherwise stated herein, a “monocycle” is preferably a benzene ring. Unless otherwise stated herein, an “unsaturated ring” is preferably a benzene ring.
  • one or more pairs of two or more adjacent groups are “bonded with each other to form a substituted or unsubstituted monocycle” or “bonded with each other to form a substituted or unsubstituted fused ring”
  • one or more of the pairs of two or more adjacent atoms are bonded to each other to form a bond with a plurality of atoms of the parent skeleton and one or more of the 15 or more atoms.
  • a substituted or unsubstituted "unsaturated ring” is formed with at least one atom selected from the group consisting of carbon atoms, nitrogen atoms, oxygen atoms, and sulfur atoms.
  • the substituent is, for example, the "arbitrary substituent” described below.
  • Specific examples of the substituent in the case where the above-mentioned “single ring” or “fused ring” has a substituent are the substituents described in the section of "Substituent described herein” above.
  • the substituent is, for example, the "arbitrary substituent” described below.
  • substituents in the case where the above-mentioned "single ring” or “fused ring” has a substituent are the substituents described in the section of "Substituent described herein" above. The above applies to cases in which "one or more sets of two or more adjacent rings combine with each other to form a substituted or unsubstituted monocycle," and “one or more sets of two or more adjacent rings.” are combined with each other to form a substituted or unsubstituted condensed ring ("the case where they are combined to form a ring").
  • the substituent in the case of "substituted or unsubstituted” (herein referred to as "arbitrary substituent")
  • arbitrary substituent For example, unsubstituted alkyl group having 1 to 50 carbon atoms, unsubstituted alkenyl group having 2 to 50 carbon atoms, unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, -Si(R 901 )(R 902 )(R 903 ), -O-(R 904 ), -S- (R 905 ), -N(R 906 )(R 907 ), Halogen atom, cyano group, nitro group, A group selected from the group consisting of an unsubstituted aryl group having 6 to 50 ring carbon atoms,
  • R 901s When two or more R 901s exist, the two or more R 901s are the same or different, When two or more R 902s exist, the two or more R 902s are the same or different, When two or more R 903s exist, the two or more R 903s are the same or different, When two or more R 904s exist, the two or more R 904s are the same or different, When two or more R 905s exist, the two or more R 905s are the same or different, When two or more R 906s exist, the two or more R 906s are the same or different, When two or more R 907s exist, the two or more R 907s are the same or different.
  • the substituent in the case of "substituted or unsubstituted” is an alkyl group having 1 to 50 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituent in the case of "substituted or unsubstituted” is an alkyl group having 1 to 18 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a "saturated ring" or "unsaturated ring", preferably a substituted or unsubstituted saturated ring. Forms a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may further have a substituent.
  • the substituents that the arbitrary substituents further have are the same as the above arbitrary substituents.
  • the numerical range expressed using "AA-BB” has the numerical value AA written before “AA-BB” as the lower limit, and the numerical value BB written after "AA-BB”. means a range that includes as an upper limit value.
  • a compound according to one embodiment of the present invention is represented by the following formula (1).
  • X 1 and X 2 are each independently N or CH, and either one of X 1 and X 2 is N.
  • Ar 1 and Ar 2 are each independently, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 1 to L 3 are each independently, single bond, A substituted or unsubstituted arylene group having 6 to 50 ring atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms.
  • n1 is an integer from 0 to 4, and when n1 is 0, (L 1 ) n1 is a single bond.
  • n2 is an integer from 0 to 4, and when n2 is 0, (L 2 ) n2 is a single bond.
  • n3 is an integer from 0 to 4, and when n3 is 0, (L 3 ) n3 is a single bond.
  • each of the plurality of L 3 may be the same or different.
  • R 11 to R 19 are each independently a hydrogen atom or a substituent R. Adjacent sets of two or more of R 11 to R 19 are not bonded to each other.
  • R 21 and R 22 combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 21 and R 22 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the substituent R is Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, -Si(R 901 )(R 902 )(R 903 ), -O-(R 904 ), -S- (R 905 ), -N(R 906 )(R 907 ), Halogen atom, cyano group, nitro group, It is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are each independently, hydrogen atom, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • each of the two or more R 901 to R 907 may be the same or different.
  • the two or more substituents R may be the same or different.
  • one of X 1 and X 2 is N, and the other is CH. That is, when X 1 is N, X 2 is CH. When X 2 is N, X 1 is CH.
  • the compound represented by the formula (1) is a compound represented by the following formula (11).
  • [In formula (11), X 1 , X 2 , Ar 1 , Ar 2 , L 1 , L 2 , n1, n2, R 11 to R 19 , R 21 , and R 22 are as defined in formula (1) above. ]
  • R 21 and R 22 in formula (11) do not form a substituted or unsubstituted saturated or unsaturated ring.
  • R 21 and R 22 in formula (11) are substituted or unsubstituted alkyl groups having 1 to 5 carbon atoms, such as a methyl group.
  • X 1 in formula (11) is N and X 2 is CH. In one embodiment, X 1 in formula (11) is CH and X 2 is N.
  • the compound represented by the formula (11) is a compound represented by the following formula (111) or formula (112).
  • [In formula (111), L 1 , L 2 , n1, n2, and R 11 to R 19 are as defined in formula (1) above.
  • At least one set of two or more adjacent ones of R 111 to R 115 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or are not bonded to each other.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 111 to R 115 are each independently a hydrogen atom or a substituent R.
  • R 116 to R 120 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or are not bonded to each other.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 116 to R 120 are each independently a hydrogen atom or a substituent R.
  • L 1 , L 2 , n1, n2, and R 11 to R 19 are as defined in formula (1) above.
  • Y 1 is N(R 129 ), C(R 130a )(R 130b ), O, or S.
  • R 121 to R 129 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or are not bonded to each other. Any one of the bondable positions in the structure in parentheses containing a fused ring structure represents a bond with (L 2 ) n2 .
  • R 121 to R 129 that are not bonded to each other and do not represent a bond to (L 2 ) n2 are each independently a hydrogen atom or a substituent R.
  • R 130a and R 130b combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 130a and R 130b are each independently a hydrogen atom or a substituent R.
  • At least one set of two or more adjacent ones of R 131 to R 135 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or are not bonded to each other.
  • the substituted or unsubstituted saturated or unsaturated ring-forming R 131 to R 135 are each independently a hydrogen atom or a substituent R.
  • the substituent R is as defined in formula (1) above. ]
  • one or more of the pairs of two or more adjacent ones of R 111 to R 115 do not bond to each other, and one or more of the adjacent pairs of R 116 to R 120
  • One or more of the sets of two or more do not bond to each other
  • one or more of the sets of two or more adjacent of R 121 to R 129 do not bond to each other
  • adjacent of R 131 to R 135 One or more of the sets of two or more are not coupled to each other.
  • R 123 in formula (112) represents a bond with L 2 .
  • the compound represented by formula (112) has the following structure.
  • Y 1 is O.
  • the compound represented by the formula (1) is a compound represented by the following formula (21).
  • X 1 , X 2 , Ar 1 , Ar 2 , L 1 , L 2 , n1, n2, R 11 to R 19 , R 21 , and R 22 are as defined in formula (1) above.
  • L21 is A substituted or unsubstituted arylene group having 6 to 50 ring atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms.
  • n21 is an integer from 1 to 4. When a plurality of L 21s exist, each of the plurality of L 21s may be the same or different.
  • R 21 and R 22 in formula (21) do not form a substituted or unsubstituted saturated or unsaturated ring.
  • R 21 and R 22 in formula (21) are substituted or unsubstituted alkyl groups having 1 to 5 carbon atoms, such as a methyl group.
  • L 21 in formula (21) is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 21 in formula (21) is a substituted or unsubstituted phenylene group or a substituted or unsubstituted naphthylene group.
  • X 1 in formula (21) is N and X 2 is CH. In one embodiment, X 1 in formula (21) is CH and X 2 is N.
  • the compound represented by the formula (21) is a compound represented by any of the following formulas (211) to (213).
  • Ar 1 , Ar 2 , L 1 , L 2 , n1, n2, and R 11 to R 19 are as defined in formula (1) above.
  • R 211 to R 214 are each independently a hydrogen atom or a substituent R. Adjacent sets of two or more of R 211 to R 214 are not bonded to each other.
  • Ar 1 , Ar 2 , L 1 , L 2 , n1, n2, and R 11 to R 19 are as defined in formula (1) above.
  • R 221 to R 226 are each independently a hydrogen atom or a substituent R. Adjacent sets of two or more of R 221 to R 226 are not bonded to each other.
  • the substituent R is as defined in formula (1) above.
  • the compound represented by the formula (21) is a compound represented by the following formula (221) or formula (222).
  • Ar 1 , Ar 2 , R 11 to R 19 , L 21 , and n21 are as defined in formula (21) above. ]
  • L 1 and L 2 in formula (1) are each independently a single bond, a substituted or unsubstituted phenylene group, or a substituted or unsubstituted naphthylene group.
  • Ar 1 and Ar 2 in formula (1) are each independently a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted aryl group having 5 to 18 ring atoms. is a monovalent heterocyclic group.
  • Ar 1 and Ar 2 in formula (1) are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group.
  • R 11 to R 19 in formula (1) are hydrogen atoms.
  • the substituent in the case of "substituted or unsubstituted" in formula (1) and the substituent R are an alkyl group having 1 to 50 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a monovalent heterocyclic group having 5 to 50 ring atoms.
  • the substituent in the case of "substituted or unsubstituted" in formula (1) and the substituent R are an alkyl group having 1 to 18 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a monovalent heterocyclic group having 5 to 18 ring atoms.
  • the compound according to one aspect of the present invention does not have a deuterium atom in the molecule as a hydrogen atom.
  • the proportion of deuterium atoms is the natural abundance ratio with respect to the total of light hydrogen atoms and deuterium atoms. It means that: In other words, the compound of the present invention that does not have a deuterium atom in its molecule as a hydrogen atom may contain deuterium atoms in a proportion lower than the natural abundance ratio. It can be confirmed by a nuclear magnetic resonance apparatus that the ratio of deuterium atoms to the total of light hydrogen atoms and deuterium atoms is less than the natural abundance ratio.
  • the compound according to one aspect of the present invention has at least one deuterium atom as a hydrogen atom in the molecule.
  • having a deuterium atom as a hydrogen atom means that in the hydrogen atom, the proportion of deuterium atoms is higher than the natural abundance ratio with respect to the total of light hydrogen atoms and deuterium atoms. do. It can be confirmed by a nuclear magnetic resonance apparatus that the proportion of deuterium atoms in the total of light hydrogen atoms and deuterium atoms is higher than the natural abundance ratio.
  • H of X 1 which is CH
  • H of X 2 which is CH
  • the hydrogen atom that Ar 1 has, A hydrogen atom possessed by Ar2
  • the hydrogen atom that L 1 has,
  • the hydrogen atom that L 2 has,
  • R 11 to R 19 are hydrogen atoms
  • Hydrogen atoms possessed by R 11 to R 19 which are substituents R, R 21 and R 22 are hydrogen atoms
  • At least one of the hydrogen atoms possessed by the substituents R 21 and R 22 and the substituted or unsubstituted saturated or unsaturated ring formed by R 21 and R 22 is a deuterium atom. It is.
  • At least one of the hydrogen atoms of Ar 1 in formula (1) is a deuterium atom.
  • the compound represented by formula (1) can be synthesized by following the examples and using known alternative reactions and raw materials depending on the target product.
  • the compound according to one embodiment of the present invention is useful as a material for an organic EL device, for example, as a material for an electron transport band of an organic EL device.
  • An organic EL element according to one embodiment of the present invention will be described.
  • An organic EL element according to one aspect of the present invention includes a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, and at least one of the organic layers.
  • One layer includes a compound according to one embodiment of the present invention (a compound represented by formula (1)).
  • an organic EL device includes an anode, a light-emitting layer, an electron transport zone, and a cathode in this order, and the electron transport zone is composed of a compound (formula (1)) according to one embodiment of the present invention. ).
  • the electron transport zone is formed by forming a first layer (also referred to as "first electron transport layer” or “hole blocking layer”) and a second layer ("second electron transport layer”) from the light emitting layer side. ) in this order, and the first layer contains the compound represented by formula (1).
  • first layer also referred to as "first electron transport layer” or “hole blocking layer”
  • second electron transport layer the first layer contains the compound represented by formula (1).
  • the second layer in this case, for example, the structure of the electron transport layer described later can be applied.
  • a typical element configuration of the organic EL element is a structure in which the following structures are laminated on a substrate.
  • Anode/emissive layer/electron transport zone/cathode (2) Anode/hole transport zone/emissive layer/electron transport zone/cathode ("/" indicates that each layer is stacked adjacent to each other.)
  • the electron transport zone usually consists of one or more layers selected from an electron injection layer and an electron transport layer.
  • the hole transport zone usually consists of one or more layers selected from a hole injection layer and a hole transport layer.
  • An organic EL device 1 includes a substrate 2, an anode 3, a light emitting layer 5, a cathode 10, a hole transport zone 4 between the anode 3 and the light emitting layer 5, and a light emitting layer. 5 and an electron transport zone 6 between the cathode 10 and the cathode 10.
  • the substrate is used as a support for the light emitting device.
  • the substrate for example, glass, quartz, plastic, etc. can be used.
  • a flexible substrate may be used.
  • the flexible substrate refers to a bendable (flexible) substrate, and includes, for example, a plastic substrate made of polycarbonate or polyvinyl chloride.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal for example, indium oxide-tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, indium oxide containing zinc oxide, and graphene.
  • ITO indium oxide-tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide indium oxide-zinc oxide
  • tungsten oxide indium oxide containing zinc oxide
  • graphene graphene.
  • gold gold
  • platinum platinum
  • nitrides of metal materials eg, titanium nitride
  • the hole injection layer is a layer containing a substance with high hole injection properties.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, aromatic amine compounds, or high molecular compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • the hole transport layer is a layer containing a substance with high hole transport properties.
  • aromatic amine compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • materials other than these may be used as long as they have a higher transportability for holes than for electrons.
  • the layer containing a substance with high hole transport properties is not limited to a single layer, and may be a stack of two or more layers made of the above substance.
  • the light-emitting layer is a layer containing a highly luminescent substance, and various materials can be used for the light-emitting layer.
  • a highly luminescent substance a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used as a highly luminescent substance.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • blue fluorescent material that can be used in the light emitting layer
  • green fluorescent material that can be used in the light emitting layer
  • aromatic amine derivatives and the like can be used.
  • Tetracene derivatives, diamine derivatives, etc. can be used as red fluorescent materials that can be used in the light emitting layer.
  • Metal complexes such as iridium complexes, osmium complexes, and platinum complexes are used as blue-based phosphorescent materials that can be used in the light-emitting layer.
  • An iridium complex or the like is used as a green phosphorescent material that can be used in the light emitting layer.
  • Metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used as red-colored phosphorescent materials that can be used in the light-emitting layer.
  • the light-emitting layer may have a structure in which the above-mentioned highly luminescent substance (guest material) is dispersed in another substance (host material).
  • Various substances can be used to disperse highly luminescent substances, and the lowest unoccupied orbital level (LUMO level) is higher than that of highly luminescent substances, and the highest occupied orbital level (LUMO level) is higher than that of highly luminescent substances. It is preferable to use a substance with a low HOMO level.
  • Substances (host materials) for dispersing highly luminescent substances include 1) metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes, 2) oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives. Heterocyclic compounds, 3) fused aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives, 4) aromatic amine compounds such as triarylamine derivatives, or fused polycyclic aromatic amine derivatives. used.
  • the electron transport layer is a layer containing a substance with high electron transport properties.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • the electron transport layer may or may not contain the other substances described above in addition to the compound according to one embodiment of the present invention (compound represented by formula (1)). good.
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • the electron injection layer contains lithium (Li), ytterbium (Yb), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8-hydroxyquinolinolato-lithium (Liq), etc. metal complex compounds, alkali metals such as lithium oxide (LiO x ), alkaline earth metals, or compounds thereof can be used.
  • cathode For the cathode, it is preferable to use metals, alloys, electrically conductive compounds, mixtures thereof, etc. with a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium ( Examples include alkaline earth metals such as Ca), strontium (Sr), alloys containing these (for example, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these.
  • the cathode is usually formed by vacuum evaporation or sputtering.
  • a coating method, an inkjet method, etc. can be used.
  • the cathode when an electron injection layer is provided, can be formed using various conductive materials such as aluminum, silver, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the size of the work function. can be formed.
  • the thickness of each layer is not particularly limited, but it is generally from several nm to a few nanometers in order to suppress defects such as pinholes, keep the applied voltage low, and improve luminous efficiency. A range of 1 ⁇ m is preferred.
  • each layer is not particularly limited.
  • a conventionally known forming method such as a vacuum evaporation method or a spin coating method can be used.
  • Each layer such as the light-emitting layer is formed by a known coating method such as a vacuum evaporation method, a molecular beam evaporation method (MBE method), a dipping method using a solution dissolved in a solvent, a spin coating method, a casting method, a bar coating method, or a roll coating method. It can be formed by
  • An electronic device includes an organic EL element according to one embodiment of the present invention.
  • Specific examples of electronic devices include display components such as organic EL panel modules, display devices such as televisions, mobile phones, or personal computers, and light emitting devices such as lighting or vehicle lamps.
  • the compounds used for manufacturing the organic EL device of the comparative example are shown below.
  • Example 1 Provide of organic EL element> An organic EL device was produced as follows. A 25 mm x 75 mm x 1.1 mm thick glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatic Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaned for 30 minutes. The ITO film thickness was 130 nm. The cleaned glass substrate with transparent electrodes is mounted on a substrate holder of a vacuum evaporation device, and first, compounds HTL-1 and HI-1 are added to the surface on which the transparent electrodes are formed so as to cover the transparent electrodes.
  • ITO transparent electrode anode
  • a hole injection layer having a thickness of 10 nm was formed by co-evaporation so that the ratio of -1 was 3% by mass.
  • Compound HTL-1 was deposited on the hole injection layer to form a first hole transport layer with a thickness of 80 nm.
  • Compound EBL-1 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 5 nm.
  • Compound BH-1 (host material) and compound BD-1 (dopant material) were co-deposited on the second hole transport layer so that the proportion of compound BD-1 was 4% by mass, and a film with a thickness of 25 nm was formed to emit light.
  • a layer was deposited.
  • Compound ET-1 was deposited on the light emitting layer to form a first electron transport layer (hole blocking layer) with a thickness of 5 nm.
  • first electron transport layer hole blocking layer
  • the compound ETL-1 and Liq were co-deposited such that the ratio of Liq was 50% by mass to form a second electron transport layer with a thickness of 20 nm.
  • Metal Yb was deposited on the second electron transport layer to form an electron injection layer with a thickness of 1 nm.
  • Metallic Al was deposited on the electron injection layer to form a cathode with a thickness of 50 nm.
  • the element structure of the organic EL element of Example 1 is schematically shown as follows. ITO(130)/HTL-1:HI-1(10:3%)/HTL-1(80)/EBL-1(5)/BH-1:BD-1(25:4%)/Compound ET- 1(5)/ETL-1:Liq(20:50%)/Yb(1)/Al(50)
  • the numbers in parentheses represent the film thickness (unit: nm). Moreover, the number expressed as a percentage in parentheses indicates the proportion (mass %) of the latter compound in the layer.
  • Examples 2-6, Comparative Examples 1-2 An organic EL device was produced and evaluated in the same manner as in Example 1, except that the compounds listed in Table 1 were used instead of ET-1. The results are shown in Table 1.
  • Example 7 An organic EL device was prepared by providing a hole transport zone, a light emitting layer, an electron transport zone, and a cathode on a glass substrate with an ITO transparent electrode (anode).
  • the organic layer (hole blocking layer) closest to the light emitting layer in the electron transport band was composed of ET-3. When the obtained organic EL device was evaluated, it was found that it had excellent device performance.
  • Example 8 An organic EL device was produced and evaluated in the same manner as in Example 7, except that the organic layer (hole blocking layer) closest to the light emitting layer in the electron transport band was composed of ET-4, and the device showed excellent device performance. That's what I found out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

下記式(1)で表される化合物。

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、新規化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
 従来の有機EL素子は素子性能が未だ十分ではなかった。素子性能を高めるべく有機EL素子に用いる材料の改良は徐々に進められているが、さらなる高性能化が求められている。
国際公開第2016/105141号 国際公開第2022/181157号
 本発明の目的は、高性能な有機EL素子及び当該有機EL素子を実現可能な化合物を提供することである。
 本発明者らは上記目的を達成するために鋭意研究を重ねた結果、特定の構造を有する化合物が、有機EL素子の高性能化に資することを見出し、本発明を完成した。
 本発明によれば、以下の化合物等が提供される。
1.下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、
 X及びXは、それぞれ独立に、N又はCHであり、X及びXのうちいずれか1つはNである。
 Ar及びArは、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L~Lは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n1は0~4の整数であり、n1が0である場合、(Ln1は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 n2は0~4の整数であり、n2が0である場合、(Ln2は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 n3は0~4の整数であり、n3が0である場合、(Ln3は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 R11~R19は、それぞれ独立に、水素原子又は置換基Rである。R11~R19のうち隣接する2つ以上からなる組は互いに結合しない。
 R21及びR22は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR21及びR22は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基である。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、及び
置換もしくは無置換の環形成原子数5~50の1価の複素環基
からなる群から選択される。
 R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なってもよい。
 置換基Rが2以上存在する場合、2以上の置換基Rは同一でもよく、異なってもよい。]
2.陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
を有し、
 前記有機層のうちの少なくとも1層が、前記1に記載の化合物を含む、有機エレクトロルミネッセンス素子。
3.前記2に記載の有機エレクトロルミネッセンス素子を備える電子機器。
 本発明によれば、高性能な有機EL素子及び当該有機EL素子を実現可能な化合物が提供できる。
本発明の一態様に係る有機EL素子の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及び
ビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、X及びYの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びX及びYの一方がCHである場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):
エチニル基
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合部位を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合部位を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合部位を表す。
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合部位を表す。
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合部位を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」には、芳香族炭化水素環、芳香族複素環の他、環構造中に不飽和結合、即ち、二重結合及び/又は三重結合を有する脂肪族炭化水素環(例えば、シクロヘキセン、シクロヘキサジエン等)、及び不飽和結合を有する非芳香族複素環(例えば、ジヒドロピラン、イミダゾリン、ピラゾリン、キノリジン、インドリン、イソインドリン等)が含まれる。「飽和の環」には、不飽和結合を有しない脂肪族炭化水素環、又は不飽和結合を有しない非芳香族複素環が含まれる。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の原子で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の原子とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の原子」は、本明細書に別途記載のない限り、好ましくは、炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される少なくとも1種の原子である。任意の原子において(例えば、炭素原子、又は窒素原子の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素原子以外の任意の原子を含む場合、形成される環は複素環である。
 単環又は縮合環を構成する「1以上の任意の原子」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される少なくとも1種の原子とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基
からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
[新規な化合物]
 本発明の一態様に係る化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000029
[式(1)中、
 X及びXは、それぞれ独立に、N又はCHであり、X及びXのうちいずれか1つはNである。
 Ar及びArは、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L~Lは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n1は0~4の整数であり、n1が0である場合、(Ln1は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 n2は0~4の整数であり、n2が0である場合、(Ln2は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 n3は0~4の整数であり、n3が0である場合、(Ln3は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
 R11~R19は、それぞれ独立に、水素原子又は置換基Rである。R11~R19のうち隣接する2つ以上からなる組は互いに結合しない。
 R21及びR22は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR21及びR22は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基である。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、及び
置換もしくは無置換の環形成原子数5~50の1価の複素環基
からなる群から選択される。
 R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なってもよい。
 置換基Rが2以上存在する場合、2以上の置換基Rは同一でもよく、異なってもよい。]
 式(1)において、X及びXのうちいずれか1つはNであり、他方はCHである。すなわち、XがNの場合、XはCHである。XがNの場合、XはCHである。
 式(1)において、Lが複数存在する場合(n1が2以上の場合)、Arは、X及びXを含む含窒素六員環から最も離れたLに結合する。Lが複数存在する場合(n2が2以上の場合)も同様に、Arは、X及びXを含む含窒素六員環から最も離れたLに結合する。Lが複数存在する場合(n3が2以上の場合)も同様に、ベンゾフルオレン骨格は、X及びXを含む含窒素六員環から最も離れたLに結合する。
 一実施形態において、前記式(1)で表される化合物は、下記式(11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000030
[式(11)中、
 X、X、Ar、Ar、L、L、n1、n2、R11~R19、R21、及びR22は、前記式(1)で定義した通りである。]
 一実施形態において、式(11)におけるR21及びR22は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 一実施形態において、式(11)におけるR21及びR22は、置換もしくは無置換の炭素数1~5のアルキル基であり、例えば、メチル基である。
 一実施形態において、式(11)におけるXはNであり、XはCHである。
 一実施形態において、式(11)におけるXはCHであり、XはNである。
 一実施形態において、前記式(11)で表される化合物は、下記式(111)又は式(112)で表される化合物である。
Figure JPOXMLDOC01-appb-C000031
[式(111)中、
 L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
 R111~R115のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR111~R115は、それぞれ独立に、水素原子又は置換基Rである。
 R116~R120のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR116~R120は、それぞれ独立に、水素原子又は置換基Rである。
 式(112)中、
 L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
 Yは、N(R129)、C(R130a)(R130b)、O、又はSである。
 R121~R129のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
 縮合環構造を含む括弧内の構造における結合可能な位置のいずれか1つは(Ln2との結合を表す。
 互いに結合せず、(Ln2との結合を表さないR121~R129は、それぞれ独立に、水素原子又は置換基Rである。
 R130a及びR130bは、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR130a及びR130bは、それぞれ独立に、水素原子又は置換基Rである。
 R131~R135のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR131~R135は、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(1)で定義した通りである。]
 一実施形態において、式(111)及び式(112)において、R111~R115のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、R116~R120のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、R121~R129のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、R131~R135のうち隣接する2つ以上からなる組の1組以上が互いに結合しない。
 一実施形態において、式(112)におけるR123がLとの結合を表す。
 R123がLとの結合を表す場合、式(112)で表される化合物は、以下の構造となる。
Figure JPOXMLDOC01-appb-C000032
 一実施形態において、YはOである。
 一実施形態において、前記式(1)で表される化合物は、下記式(21)で表される化合物である。
Figure JPOXMLDOC01-appb-C000033
[式(21)中、
 X、X、Ar、Ar、L、L、n1、n2、R11~R19、R21、及びR22は、前記式(1)で定義した通りである。
 L21は、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n21は1~4の整数である。L21が複数存在する場合、複数のL21のそれぞれは同一でもよく、異なってもよい。]
 一実施形態において、式(21)におけるR21及びR22は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 一実施形態において、式(21)におけるR21及びR22は、置換もしくは無置換の炭素数1~5のアルキル基であり、例えば、メチル基である。
 一実施形態において、式(21)におけるL21は、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 一実施形態において、式(21)におけるL21は、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である。
 一実施形態において、式(21)におけるXはNであり、XはCHである。
 一実施形態において、式(21)におけるXはCHであり、XはNである。
 一実施形態において、前記式(21)で表される化合物は、下記式(211)~(213)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000034
[式(211)中、
 Ar、Ar、L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
 R211~R214は、それぞれ独立に、水素原子又は置換基Rである。R211~R214のうち隣接する2つ以上からなる組は互いに結合しない。
 式(212)及び(213)中、
 Ar、Ar、L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
 R221~R226は、それぞれ独立に、水素原子又は置換基Rである。R221~R226のうち隣接する2つ以上からなる組は互いに結合しない。
 置換基Rは、前記式(1)で定義した通りである。]
 一実施形態において、前記式(21)で表される化合物は、下記式(221)又は式(222)で表される化合物である。
Figure JPOXMLDOC01-appb-C000035
[式(221)及び式(222)中、
 Ar、Ar、R11~R19、L21、及びn21は、前記式(21)で定義した通りである。]
 一実施形態において、式(1)におけるL及びLは、それぞれ独立に、単結合、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である。
 一実施形態において、式(1)におけるAr及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~18のアリール基、又は置換もしくは無置換の環形成原子数5~18の1価の複素環基である。
 一実施形態において、式(1)におけるAr及びArは、それぞれ独立に、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のビフェニル基である。
 一実施形態において、式(1)におけるR11~R19は水素原子である。
 一実施形態において、式(1)における「置換もしくは無置換の」という場合の置換基、及び前記置換基Rが、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の1価の複素環基
からなる群から選択される基である。
 一実施形態において、式(1)における「置換もしくは無置換の」という場合の置換基、及び前記置換基Rが、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の1価の複素環基
からなる群から選択される基である。
 一実施形態において、本発明の一態様に係る化合物は、水素原子として、分子内に重水素原子を有しない。
 本明細書において「水素原子として、重水素原子を有しない」とは、分子内の全ての水素原子において、軽水素原子と重水素原子の合計に対して、重水素原子の割合が天然存在比以下であることを意味する。換言すれば、水素原子として分子内に重水素原子を有しない本発明の化合物は、重水素原子を天然存在比以下の割合で含んでいてもよい。
 軽水素原子と重水素原子の合計に対して、重水素原子の割合が天然存在比以下であることは、核磁気共鳴装置により確認することができる。
 一実施形態において、本発明の一態様に係る化合物は、水素原子として、分子内に少なくとも1つの重水素原子を有する。
 本明細書において「水素原子として、重水素原子を有する」とは、当該水素原子において、軽水素原子と重水素原子の合計に対して、重水素原子の割合が天然存在比より多いことを意味する。軽水素原子と重水素原子の合計に対して、重水素原子の割合が天然存在比より多いことは、核磁気共鳴装置により確認することができる。
 一実施形態において、
CHであるXのH、
CHであるXのH、
Arが有する水素原子、
Arが有する水素原子、
が有する水素原子、
が有する水素原子、
が有する水素原子、
水素原子であるR11~R19
置換基RであるR11~R19が有する水素原子、
水素原子であるR21及びR22
置換基RであるR21及びR22が有する水素原子、及び
21及びR22が形成する置換もしくは無置換の飽和又は不飽和の環が有する水素原子
のうち、少なくとも1つは、重水素原子である。
 一実施形態において、式(1)におけるArが有する水素原子のうち、少なくとも1つは、重水素原子である。
 式(1)で表される化合物は、実施例に倣い、目的物に合わせた既知の代替反応や原料を用いることで合成することができる。
 以下に、式(1)で表される化合物の具体例を記載するが、これらは例示に過ぎず、式(1)で表される化合物は下記具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
[有機エレクトロルミネッセンス素子用材料]
 本発明の一態様に係る化合物は、有機EL素子用材料として有用であり、例えば、有機EL素子の電子輸送帯域に用いる材料として有用である。
[有機EL素子]
 本発明の一態様に係る有機EL素子について説明する。
 本発明の一態様に係る有機EL素子は、陰極と、陽極と、前記陰極と前記陽極との間に配置された1又は2以上の有機層と、を有し、前記有機層のうちの少なくとも1層が、本発明の一態様に係る化合物(式(1)で表される化合物)を含む。
 一実施形態において、本発明の一態様に係る有機EL素子は、陽極、発光層、電子輸送帯域、及び陰極をこの順に含み、電子輸送帯域は、本発明の一態様に係る化合物(式(1)で表される化合物)を含む。
 一実施形態において、電子輸送帯域は、発光層側から第1の層(「第1の電子輸送層」又は「正孔障壁層」ともいう)と第2の層(「第2の電子輸送層」ともいう)とをこの順に有し、第1の層が、式(1)で表される化合物を含む。この場合の上記の第2の層としては、例えば、後述する電子輸送層の構成が適用可能である。
 当該有機EL素子の代表的な素子構成としては、基板上に、以下の構造を積層した構造が例示される。
(1)陽極/発光層/電子輸送帯域/陰極
(2)陽極/正孔輸送帯域/発光層/電子輸送帯域/陰極
(「/」は各層が隣接して積層されていることを示す。)
 電子輸送帯域は、通常、電子注入層及び電子輸送層から選択される1以上の層からなる。正孔輸送帯域は、通常、正孔注入層及び正孔輸送層から選択される1以上の層からなる。
 本発明の一態様の有機EL素子の概略構成を、図1を参照して説明する。
 本発明の一態様に係る有機EL素子1は、基板2と、陽極3と、発光層5と、陰極10と、陽極3と発光層5との間にある正孔輸送帯域4と、発光層5と陰極10との間にある電子輸送帯域6とを有する。
 以下、本発明の一態様に係る有機EL素子で用いることができる部材、及び各層を構成する、上記化合物以外の材料等について説明する。
(基板)
 基板は、発光素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有した酸化インジウム、及びグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、又は高分子化合物(オリゴマー、デンドリマー、ポリマー等)等も使用できる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。尚、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
(発光層のゲスト(ドーパント)材料)
 発光層は、発光性の高い物質を含む層であり、種々の材料を用いることができる。例えば、発光性の高い物質としては、蛍光を発光する蛍光性化合物や燐光を発光する燐光性化合物を用いることができる。蛍光性化合物は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。発光層に用いることができる緑色系の燐光発光材料としてイリジウム錯体等が使用される。発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。
(発光層のホスト材料)
 発光層としては、上述した発光性の高い物質(ゲスト材料)を他の物質(ホスト材料)に分散させた構成としてもよい。発光性の高い物質を分散させるための物質としては、各種のものを用いることができ、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 発光性の高い物質を分散させるための物質(ホスト材料)としては、1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。
 本発明の一態様において、電子輸送層は、本発明の一態様に係る化合物(式(1)で表される化合物)に加えて、上記の他の物質を含んでもよいし、含まなくてもよい。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8-ヒドロキシキノリノラト-リチウム(Liq)等の金属錯体化合物、リチウム酸化物(LiO)等のアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、即ち、リチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。
 本発明の一態様に係る有機EL素子において、各層の膜厚は特に制限されないが、一般にピンホール等の欠陥を抑制し、印加電圧を低く抑え、発光効率をよくするため、通常は数nmから1μmの範囲が好ましい。
 本発明の一態様に係る有機EL素子において、各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。発光層等の各層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
[電子機器]
 本発明の一態様に係る電子機器は、本発明の一態様に係る有機EL素子を備えることを特徴とする。
 電子機器の具体例としては、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、又はパーソナルコンピュータ等の表示装置、及び、照明、又は車両用灯具等の発光装置等が挙げられる。
<化合物>
 実施例の有機EL素子の製造に用いた、式(1)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000141
 比較例の有機EL素子の製造に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000142
 実施例及び比較例の有機EL素子の製造に用いた、他の化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000143
実施例1
<有機EL素子の作製>
 有機EL素子を以下のように作製した。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は130nmとした。
 洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HTL-1及びHI-1を化合物HI-1の割合が3質量%となるように共蒸着し、膜厚10nmの正孔注入層を成膜した。
 正孔注入層上に、化合物HTL-1を蒸着し、膜厚80nmの第1正孔輸送層を成膜した。
 第1正孔輸送層上に、化合物EBL-1を蒸着し、膜厚5nmの第2正孔輸送層を成膜した。
 第2正孔輸送層上に化合物BH-1(ホスト材料)及び化合物BD-1(ドーパント材料)を、化合物BD-1の割合が4質量%となるように共蒸着し、膜厚25nmの発光層を成膜した。
 発光層上に、化合物ET-1を蒸着し、膜厚5nmの第1電子輸送層(正孔障壁層)を形成した。
 第1電子輸送層上に、化合物ETL-1及びLiqを、Liqの割合が50質量%となるように共蒸着し、膜厚20nmの第2電子輸送層を形成した。
 第2電子輸送層上に、金属Ybを蒸着し、膜厚1nmの電子注入層を形成した。
 電子注入層上に、金属Alを蒸着し、膜厚50nmの陰極を成膜した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次の通りである。
ITO(130)/HTL-1:HI-1(10:3%)/HTL-1(80)/EBL-1(5)/BH-1:BD-1(25:4%)/化合物ET-1(5)/ETL-1:Liq(20:50%)/Yb(1)/Al(50)
 括弧内の数字は膜厚(単位:nm)を表す。また、括弧内においてパーセント表示された数字は、当該層における後者の化合物の割合(質量%)を示す。
<有機EL素子の評価>
 作製した有機EL素子について以下の評価を行った。結果を表1に示す。
・外部量子効率(EQE)
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加し、EL発光スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)にて計測した。得られた分光放射輝度スペクトルから、EQE(%)を算出した。表1において、EQE比は、後述する比較例1を100とした場合の相対値を示す。
実施例2~6、比較例1~2
 ET-1の代わりに表1に記載の化合物を用いた以外は、実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000144
実施例7
 ITO透明電極(陽極)付きガラス基板上に、正孔輸送帯域、発光層、電子輸送帯域、及び陰極を設けて有機EL素子とした。電子輸送帯域における最も発光層側の有機層(正孔障壁層)をET-3により構成した。
 得られた有機EL素子を評価したところ、優れた素子性能を有することが分かった。
実施例8
 電子輸送帯域における最も発光層側の有機層(正孔障壁層)をET-4により構成した以外は、実施例7と同様に有機EL素子を製造し、評価したところ、優れた素子性能を有することが分かった。
<化合物の合成>
(合成実施例1)ET-1の合成
 下記合成経路で、ET-1を合成した。
Figure JPOXMLDOC01-appb-C000145
 2,4-ジフェニル-6-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリミジン(5.32g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(3.55g)、Pd(dba)(0.20g)、SPhos(0.36g)、及び炭酸セシウム(7.16g)をフラスコに入れ、アルゴンガスでフラスコ内を置換した後、1,4-ジオキサン(47mL)、及びHO(7.8mL)を加え、溶液を75℃で20時間加熱攪拌した。反応溶液を冷却後、溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、ヘキサンで洗浄することで、ET-1を白色固体(5.65g、収率85%)として得た。
 マススペクトル分析の結果、分子量600.76に対してm/e=601であり、目的物であると同定した。
(合成実施例2)ET-2の合成
 下記合成経路で、ET-2を合成した。
Figure JPOXMLDOC01-appb-C000146
 4-([1,1’-ビフェニル]-3-イル)-2-フェニル-6-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリミジン(5.76g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(3.32g)、Pd(dba)(0.19g)、SPhos(0.34g)、及び炭酸セシウム(6.69g)をフラスコに入れ、フラスコ内をアルゴンガスで置換した後、1,4-ジオキサン(44mL)、及びHO(7.3mL)を加え、溶液を75℃で20時間加熱攪拌した。反応溶液を冷却後、溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、ヘキサン/酢酸エチルで洗浄することで、ET-2を白色固体(6.34g、収率91%)として得た。
 マススペクトル分析の結果、分子量676.86に対してm/e=677であり、目的物であると同定した。
(合成実施例3)ET-3の合成
 下記合成経路で、ET-3を合成した。
Figure JPOXMLDOC01-appb-C000147
 4-([1,1’-ビフェニル]-2-イル)-6-クロロ-2-フェニルピリミジン(12.3g)と、(4-クロロナフタレン-1-イル)ボロン酸(7.76g)、及びPdCl(dppf)(1.06g)を加えた反応容器をアルゴン置換し、ジオキサン358mLと炭酸ナトリウム水溶液(2M、45mL)を加え、攪拌しながら80℃で7時間加熱した。反応溶液を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン)により精製することにより、4-([1,1’-ビフェニル]-2-イル)-6-(4-クロロナフタレン-1-イル)-2-フェニルピリミジンを白色固体(10.74g、収率51%)として得た。
Figure JPOXMLDOC01-appb-C000148
 4-([1,1’-ビフェニル]-2-イル)-6-(4-クロロナフタレン-1-イル)-2-フェニルピリミジン(10.74g)と、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ(1,3,2-ジオキサボロラン)(6.98g)、Pd(dba)(0.42g)、XPhos(0.75g)、及び酢酸カリウム(4.50g)を加えた反応容器をアルゴン置換し、ジオキサン76mLを加え、攪拌しながら6時間加熱還流した。反応溶液を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン)により精製することにより、4-([1,1’-ビフェニル]-2-イル)-2-フェニル-6-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリミジンを白色固体(6.67g、収率52%)として得た。
Figure JPOXMLDOC01-appb-C000149
 4-([1,1’-ビフェニル]-2-イル)-2-フェニル-6-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリミジン(4.90g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(3.11g)、Pd(dba)(0.16g)、SPhos(0.29g)、及び炭酸セシウム(5.70g)をフラスコに入れ、フラスコ内をアルゴンガスで置換した後、1,4-ジオキサン(38mL)、及びHO(6.2mL)を加え、加熱還流下で7時間加熱攪拌した。反応溶液を冷却後、溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、ヘキサン/酢酸エチルで洗浄することで、ET-3を白色固体(4.78g、収率81%)として得た。
 マススペクトル分析の結果、分子量676.86に対してm/e=677であり、目的物であると同定した。
(合成実施例4)ET-4の合成
 下記合成経路で、ET-4を合成した。
Figure JPOXMLDOC01-appb-C000150
 4,6-ジクロロ-2-フェニルピリミジン(2.74g)と、2-(4-(ジベンゾ[b,d]フラン-2-イル)フェニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.00g)、及びPd(PPh(0.38g)を加えた反応容器をアルゴン置換し、トルエン54mL、DME27mL、及び炭酸ナトリウム水溶液(2M、12mL)を加え、攪拌しながら80℃で24時間加熱した。反応溶液を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン)により精製することにより、4-クロロ-6-(4-(ジベンゾ[b,d]フラン-2-イル)フェニル)-2-フェニルピリミジンを白色固体(1.25g、収率36%)として得た。
Figure JPOXMLDOC01-appb-C000151
 4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(1.65g)と、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ(1,3,2-ジオキサボロラン)(1.56g)、Pd(dba)(0.09g)、SPhos(0.17g)、及び酢酸カリウム(1.00g)を加えた反応容器をアルゴン置換し、ジオキサン17mLを加え、攪拌しながら6時間加熱還流した。反応溶液を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン)により精製することにより、2-(11,11-ジメチル-11H-ベンゾ[b]フルオレン-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランを白色固体(1.45g、収率77%)として得た。
Figure JPOXMLDOC01-appb-C000152
 4-クロロ-6-(4-(ジベンゾ[b,d]フラン-2-イル)フェニル)-2-フェニルピリミジン(1.25g)、2-(11,11-ジメチル-11H-ベンゾ[b]フルオレン-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(1.29g)、Pd(dba)(0.05g)、及びSPhos(0.10g)をフラスコに入れ、フラスコ内をアルゴンガスで置換した後、1,4-ジオキサン(29mL)と炭酸ナトリウム水溶液(2M、3.6mL)を加え、加熱還流下で8時間加熱攪拌した。反応溶液を冷却後、溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、ヘキサンで洗浄することで、ET-4を白色固体(1.72g、収率93%)として得た。
 マススペクトル分析の結果、分子量640.78に対してm/e=641であり、目的物であると同定した
(合成実施例5)ET-5の合成
 下記合成経路で、ET-5を合成した。
Figure JPOXMLDOC01-appb-C000153
 (4-(6-([1,1’-ビフェニル]-4-イル)-2-フェニルピリミジン-4-イル)フェニル)ボロン酸(3.13g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(2.36g)、Pd(dba)(0.13g)、及びSPhos(0.24g)をフラスコに入れ、アルゴンガスで置換した後、1,4-ジオキサン(49mL)と炭酸ナトリウム水溶液(2M、18.2mL)を加え、加熱還流下で8時間加熱攪拌した。反応溶液を冷却後、ジクロロメタンと水を加えて分液を行い、油相を回収した。溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、1,2-ジメトキシエタンを用いて再結晶することで、ET-5を白色固体(2.69g、収率59%)として得た。
 マススペクトル分析の結果、分子量626.80に対してm/e=627であり、目的物であると同定した
(合成実施例6)ET-6の合成
 下記合成経路で、ET-6を合成した。
Figure JPOXMLDOC01-appb-C000154
 (4-(6-([1,1’-ビフェニル]-4-イル)-2-フェニルピリミジン-4-イル)ナフタレン-1-イル)ボロン酸(4.78g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(3.23g)、Pd(dba)(0.18g)、及びSPhos(0.33g)をフラスコに入れ、アルゴンガスで置換した後、1,4-ジオキサン(67mL)と炭酸ナトリウム水溶液(2M、25.0mL)を加え、加熱還流下で6.5時間加熱攪拌した。反応溶液を冷却後、ジクロロメタンと水を加えて分液を行い、油相を回収した。溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、トルエンとエタノールで洗浄することで、ET-6を白色固体(5.98g、収率88%)として得た。
 マススペクトル分析の結果、分子量676.86に対してm/e=677であり、目的物であると同定した
(合成実施例7)ET-7の合成
 下記合成経路で、ET-7を合成した。
Figure JPOXMLDOC01-appb-C000155
 4,6-ジフェニル-2-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリミジン(4.84g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(3.23g)、Pd(dba)(0.18g)、及びSPhos(0.33g)をフラスコに入れ、アルゴンガスで置換した後、1,4-ジオキサン(67mL)と炭酸ナトリウム水溶液(2M、25.0mL)を加え、加熱還流下で6.5時間加熱攪拌した。反応溶液を冷却後、ジクロロメタンと水を加えて分液を行い、油相を回収した。溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製することで、ET-7を白色固体(4.50g、収率75%)として得た。
 マススペクトル分析の結果、分子量600.76に対してm/e=601であり、目的物であると同定した
(合成実施例8)ET-8の合成
 下記合成経路で、ET-8を合成した。
Figure JPOXMLDOC01-appb-C000156
 4-(4-ブロモ-1-ナフタレニル)-2-フェニル-6-(フェニル-2,3,4,5,6-d5)ピリミジン(2.50g)、4-ブロモ-11,11-ジメチル-11H-ベンゾ[b]フルオレン(1.65g)、Pd(dba)(0.09g)、SPhos(0.17g)、及び炭酸セシウム(3.33g)をフラスコに入れ、アルゴンガスで置換した後、1,4-ジオキサン(22mL)とHO(3.7mL)を加え、75℃で20時間加熱攪拌した。反応溶液を冷却後、溶媒を留去し得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、ヘキサンで洗浄することで、ET-8を白色固体(2.12g、収率69%)として得た。
 マススペクトル分析の結果、分子量605.79に対してm/e=606であり、目的物であると同定した。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (30)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     X及びXは、それぞれ独立に、N又はCHであり、X及びXのうちいずれか1つはNである。
     Ar及びArは、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     L~Lは、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n1は0~4の整数であり、n1が0である場合、(Ln1は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
     n2は0~4の整数であり、n2が0である場合、(Ln2は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
     n3は0~4の整数であり、n3が0である場合、(Ln3は単結合である。Lが複数存在する場合、複数のLのそれぞれは同一でもよく、異なってもよい。
     R11~R19は、それぞれ独立に、水素原子又は置換基Rである。R11~R19のうち隣接する2つ以上からなる組は互いに結合しない。
     R21及びR22は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR21及びR22は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基である。
     置換基Rは、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、及び
    置換もしくは無置換の環形成原子数5~50の1価の複素環基
    からなる群から選択される。
     R901~R907は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なってもよい。
     置換基Rが2以上存在する場合、2以上の置換基Rは同一でもよく、異なってもよい。]
  2.  前記式(1)で表される化合物が、下記式(11)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式(11)中、
     X、X、Ar、Ar、L、L、n1、n2、R11~R19、R21、及びR22は、前記式(1)で定義した通りである。]
  3.  R21及びR22が、置換もしくは無置換の飽和又は不飽和の環を形成しない、請求項1又は2に記載の化合物。
  4.  R21及びR22が、置換もしくは無置換の炭素数1~5のアルキル基である、請求項1~3のいずれかに記載の化合物。
  5.  R21及びR22が、メチル基である、請求項1~4のいずれかに記載の化合物。
  6.  XがNであり、XがCHである請求項1~5のいずれかに記載の化合物。
  7.  前記式(11)で表される化合物が、下記式(111)又は式(112)で表される化合物である、請求項1~6のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式(111)中、
     L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
     R111~R115のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR111~R115は、それぞれ独立に、水素原子又は置換基Rである。
     R116~R120のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR116~R120は、それぞれ独立に、水素原子又は置換基Rである。
     式(112)中、
     L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
     Yは、N(R129)、C(R130a)(R130b)、O、又はSである。
     R121~R129のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
     縮合環構造を含む括弧内の構造における結合可能な位置のいずれか1つは(Ln2との結合を表す。
     互いに結合せず、(Ln2との結合を表さないR121~R129は、それぞれ独立に、水素原子又は置換基Rである。
     R130a及びR130bは、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR130a及びR130bは、それぞれ独立に、水素原子又は置換基Rである。
     R131~R135のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は互いに結合しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR131~R135は、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(1)で定義した通りである。]
  8.  前記式(111)及び前記式(112)において、
     R111~R115のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、
     R116~R120のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、
     R121~R129のうち隣接する2つ以上からなる組の1組以上が互いに結合せず、
     R131~R135のうち隣接する2つ以上からなる組の1組以上が互いに結合しない、
     請求項7に記載の化合物。
  9.  XがCHであり、XがNである請求項1~5のいずれかに記載の化合物。
  10.  前記式(1)で表される化合物が、下記式(21)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式(21)中、
     X、X、Ar、Ar、L、L、n1、n2、R11~R19、R21、及びR22は、前記式(1)で定義した通りである。
     L21は、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n21は1~4の整数である。L21が複数存在する場合、複数のL21のそれぞれは同一でもよく、異なってもよい。]
  11.  R21及びR22が、置換もしくは無置換の飽和又は不飽和の環を形成しない、請求項10に記載の化合物。
  12.  R21及びR22が、置換もしくは無置換の炭素数1~5のアルキル基である、請求項10又は11に記載の化合物。
  13.  R21及びR22が、メチル基である、請求項10~12のいずれかに記載の化合物。
  14.  L21が、置換もしくは無置換の環形成炭素数6~50のアリーレン基である、請求項10~13のいずれかに記載の化合物。
  15.  L21が、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である、請求項10~14のいずれかに記載の化合物。
  16.  XがNであり、XがCHである請求項10~15のいずれかに記載の化合物。
  17.  前記式(21)で表される化合物が、下記式(211)~(213)のいずれかで表される化合物である、請求項10~16のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式(211)中、
     Ar、Ar、L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
     R211~R214は、それぞれ独立に、水素原子又は置換基Rである。R211~R214のうち隣接する2つ以上からなる組は互いに結合しない。
     式(212)及び(213)中、
     Ar、Ar、L、L、n1、n2、及びR11~R19は、前記式(1)で定義した通りである。
     R221~R226は、それぞれ独立に、水素原子又は置換基Rである。R221~R226のうち隣接する2つ以上からなる組は互いに結合しない。
     置換基Rは、前記式(1)で定義した通りである。]
  18.  XがCHであり、XがNである請求項10~15のいずれかに記載の化合物。
  19.  前記式(21)で表される化合物が、下記式(221)又は式(222)で表される化合物である、請求項10~15のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(221)及び式(222)中、
     Ar、Ar、R11~R19、L21、及びn21は、前記式(21)で定義した通りである。]
  20.  L及びLが、それぞれ独立に、単結合、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である、請求項1~18のいずれかに記載の化合物。
  21.  Ar及びArが、それぞれ独立に、置換もしくは無置換の環形成炭素数6~18のアリール基、又は置換もしくは無置換の環形成原子数5~18の1価の複素環基である、請求項1~20のいずれかに記載の化合物。
  22.  Ar及びArが、それぞれ独立に、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のビフェニル基である、請求項1~21のいずれかに記載の化合物。
  23.  R11~R19が水素原子である、請求項1~22のいずれかに記載の化合物。
  24.  「置換もしくは無置換の」という場合の置換基、及び前記置換基Rが、
    炭素数1~50のアルキル基、
    環形成炭素数6~50のアリール基、及び
    環形成原子数5~50の1価の複素環基
    からなる群から選択される基である、請求項1~23のいずれかに記載の化合物。
  25.  「置換もしくは無置換の」という場合の置換基、及び前記置換基Rが、
    炭素数1~18のアルキル基、
    環形成炭素数6~18のアリール基、及び
    環形成原子数5~18の1価の複素環基
    からなる群から選択される基である、請求項1~24のいずれかに記載の化合物。
  26.  有機エレクトロルミネッセンス素子用材料である、請求項1~25のいずれかに記載の化合物。
  27.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
    を有し、
     前記有機層のうちの少なくとも1層が、請求項1~26のいずれかに記載の化合物を含む、有機エレクトロルミネッセンス素子。
  28.  陽極、発光層、電子輸送帯域、及び陰極をこの順に含み、
     前記電子輸送帯域が、前記化合物を含む、請求項27に記載の有機エレクトロルミネッセンス素子。
  29.  前記電子輸送帯域が、前記発光層側から第1の層と第2の層とをこの順に有し、
     前記第1の層が、前記化合物を含む、請求項28に記載の有機エレクトロルミネッセンス素子。
  30.  請求項27~29のいずれかに記載の有機エレクトロルミネッセンス素子を備える電子機器。
PCT/JP2023/024220 2022-07-13 2023-06-29 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 WO2024014303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112508 2022-07-13
JP2022112508 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014303A1 true WO2024014303A1 (ja) 2024-01-18

Family

ID=89536511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024220 WO2024014303A1 (ja) 2022-07-13 2023-06-29 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Country Status (1)

Country Link
WO (1) WO2024014303A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038401A1 (ko) * 2016-08-23 2018-03-01 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN108912063A (zh) * 2018-08-06 2018-11-30 长春海谱润斯科技有限公司 一种含菲化合物及其有机电致发光器件
WO2021101255A1 (ko) * 2019-11-21 2021-05-27 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20210062293A (ko) * 2019-11-21 2021-05-31 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210131639A (ko) * 2020-04-24 2021-11-03 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021223650A1 (zh) * 2020-05-08 2021-11-11 陕西莱特光电材料股份有限公司 一种含氮化合物以及使用其的电子元件和电子装置
KR20220077279A (ko) * 2020-12-01 2022-06-09 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038401A1 (ko) * 2016-08-23 2018-03-01 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN108912063A (zh) * 2018-08-06 2018-11-30 长春海谱润斯科技有限公司 一种含菲化合物及其有机电致发光器件
WO2021101255A1 (ko) * 2019-11-21 2021-05-27 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20210062293A (ko) * 2019-11-21 2021-05-31 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210131639A (ko) * 2020-04-24 2021-11-03 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021223650A1 (zh) * 2020-05-08 2021-11-11 陕西莱特光电材料股份有限公司 一种含氮化合物以及使用其的电子元件和电子装置
KR20220077279A (ko) * 2020-12-01 2022-06-09 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Similar Documents

Publication Publication Date Title
WO2020071478A1 (ja) 新規化合物、及びそれを含む有機エレクトロルミネッセンス素子用材料
WO2020036197A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
JP2020188121A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021025162A1 (ja) 新規化合物、それを用いた有機エレクトロルミネッセンス素子及び電子機器
JP2023162192A (ja) 有機エレクトロルミネッセンス素子、組成物、粉体、電子機器、及び新規化合物
WO2022264826A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2022264827A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2021210304A1 (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2021167045A1 (ja) 化合物及び有機エレクトロルミネッセンス素子
JP2023050726A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024014303A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2023219071A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP2021172592A (ja) 化合物及び有機エレクトロルミネッセンス素子
JP2022022632A (ja) 化合物及び有機エレクトロルミネッセンス素子
WO2024024726A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024029581A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP2022191533A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2022123149A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2022123150A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2023112915A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP2020083865A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2023017861A1 (ja) 組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
WO2022138107A1 (ja) 有機エレクトロルミネッセンス素子
WO2023238769A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839477

Country of ref document: EP

Kind code of ref document: A1