WO2024011871A1 - 二次电池和用电设备 - Google Patents

二次电池和用电设备 Download PDF

Info

Publication number
WO2024011871A1
WO2024011871A1 PCT/CN2022/143091 CN2022143091W WO2024011871A1 WO 2024011871 A1 WO2024011871 A1 WO 2024011871A1 CN 2022143091 W CN2022143091 W CN 2022143091W WO 2024011871 A1 WO2024011871 A1 WO 2024011871A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
negative electrode
layer
secondary battery
lithium
Prior art date
Application number
PCT/CN2022/143091
Other languages
English (en)
French (fr)
Inventor
冯静
黄凯昇
Original Assignee
欣旺达电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达电子股份有限公司 filed Critical 欣旺达电子股份有限公司
Publication of WO2024011871A1 publication Critical patent/WO2024011871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of secondary batteries, and in particular, to a secondary battery and electrical equipment.
  • Metal lithium anode has the advantages of low chemical potential (-3.04V vs. SHE) and high theoretical capacity (3860mAh g -1 ), and has always been considered the most ideal anode material for lithium batteries.
  • the high activity of metallic lithium and the formation of lithium dendrites during battery cycling have seriously hindered the commercialization of metallic lithium anodes.
  • Solid-state batteries are considered the most effective way to overcome lithium dendrites, using solid electrolytes with high mechanical strength to inhibit lithium dendrite puncture.
  • most solid electrolytes are unstable to metallic lithium.
  • an interface layer will form, consuming metallic lithium.
  • the interface layer has high impedance, reducing battery performance and leading to battery failure.
  • Chinese patent CN202110914122.1 discloses a solid metal lithium battery with a negative electrode interface modification layer.
  • the negative electrode interface modification layer is located between the metal lithium negative electrode and the solid electrolyte.
  • the negative electrode interface modification layer is prepared on the solid electrolyte by magnetron sputtering.
  • aluminum nitride coating but the cost of magnetron sputtering used in this method is high and it is impossible to prepare large-capacity batteries.
  • the aluminum nitride coating has poor ion conductivity and high internal resistance of the battery.
  • the primary purpose of the present invention is to overcome the problems of poor interface chemical stability between solid electrolyte and metallic lithium negative electrode, easy growth of lithium dendrites, and large interface resistance, and provide a secondary battery including a lithium metal layer, a solid electrolyte layer, and a A negative electrode interface modification layer between the lithium metal layer and the solid electrolyte layer.
  • the negative electrode interface modification layer of the present invention can reduce the direct contact between the solid electrolyte and metallic lithium, significantly improve the interface stability of the lithium metal negative electrode side of the solid-state battery, facilitate the uniform deposition of lithium ions, inhibit the growth of lithium dendrites, thereby improving the battery utilization and cycle life.
  • Another object of the present invention is to provide a method for preparing the above-mentioned negative electrode interface modification layer.
  • Another object of the present invention is to provide electrical equipment including the secondary battery.
  • the present invention provides a secondary battery, including a lithium metal layer, a solid electrolyte layer, and a negative electrode interface modification layer disposed between the lithium metal layer and the solid electrolyte layer.
  • the negative electrode interface modification layer includes Metal micron wires and carbon materials, the length of the metal micron wires is 0.5 ⁇ m to 100 ⁇ m.
  • the length of the metal microwire is 1 ⁇ m to 10 ⁇ m.
  • the aspect ratio of the metal microwire is (10-1000):1.
  • the aspect ratio of the metal microwire is (50-200):1.
  • the conductivity of the negative electrode interface modification layer can be further improved, thereby reducing the interface impedance between the solid electrolyte and the metallic lithium negative electrode and improving the chemical stability of the interface.
  • the metal purity of the metal microwire is above 80%.
  • the metal purity of the metal microwire is above 95%.
  • the metal of the metal microwires includes a metal that can form an alloy with metallic lithium.
  • the metal includes one or more of Ag, Zn, Zr, Sn and Ti. After Ag, Zn, Zr, Sn and Ti form alloys with metallic lithium, they can reduce the affinity energy of metallic lithium, which is beneficial to the conduction of lithium ions and regulates the deposition of lithium ions.
  • the content of the metal microwires is more than 20 wt% based on the total weight of the negative electrode interface modification layer.
  • the content of the metal microwires is 30wt% ⁇ 40wt%.
  • the content of the carbon material is less than 75 wt% based on the total weight of the negative electrode interface modification layer.
  • the content of the carbon material is 55 wt% to 65 wt% based on the total weight of the negative electrode interface modification layer.
  • the carbon material includes one or more of conductive carbon black, graphene, and vapor-grown carbon fiber.
  • the negative electrode interface modification layer further includes a water-based binder.
  • the water-based binder includes one or more of CMC (sodium carboxymethyl cellulose), PAA (polyacrylic acid) and PVA (polyvinyl alcohol).
  • CMC sodium carboxymethyl cellulose
  • PAA polyacrylic acid
  • PVA polyvinyl alcohol
  • the thickness of the negative electrode interface modification layer may be 0.5-30 ⁇ m.
  • the negative electrode interface modification layer has lithium ion conductivity. However, the lithium ion conductivity of the negative electrode interface modification layer will be lower than the lithium ion conductivity of the electrolyte layer. Therefore, if the negative electrode interface modification layer is too thick, it will hinder the conduction of lithium ions and increase the interface resistance. If the negative electrode interface modification layer is too thin, it will reduce the chemical stability of the interface.
  • the thickness of the negative electrode interface modification layer is 8-15 ⁇ m.
  • the porosity of the negative electrode interface modification layer is less than or equal to 5%.
  • the carbon in the negative electrode interface modification layer of the present invention serves as a skeleton structure and can conduct both lithium ions and electrons, while the metal micron wires can perform a reversible alloying/dealloying reaction with lithium ions, serving as lithium ions in the buffer layer. transmission channel in.
  • metal microwires can improve the electronic conductivity of the buffer layer and have a skeleton support effect.
  • the present invention provides a method for preparing the above-mentioned negative electrode interface modification layer.
  • the preparation method of the negative electrode interface modification layer provided by the invention includes the following steps:
  • step (1) of the above method ball milling is used for mixing, the rotation speed can be 1500-2500 rpm, and the time can be 1-3 hours.
  • the adhesive in the above method step (1), includes one or more of CMC, PAA and PVA.
  • CMC chemical vapor deposition
  • PAA PAA
  • PVA polyvinyl acrylate
  • the binder contains CMC.
  • the pole pieces prepared with CMC as a binder have weak adhesion and can be better pressed and transferred.
  • CMC will decompose sodium ions and anions in the aqueous solution.
  • the amount of CMC in the aqueous solution reaches a certain level, its The decomposition products will adhere to the surface of the carbon material, and the carbon materials repel each other due to electrostatic force, achieving a good dispersion effect.
  • the sacrificial substrate used contains Cu, Al or Fe, with a thickness of 5-15 ⁇ m
  • the coating method includes blade coating, coating roller, spin coating, spray coating, At least one of a coating brush and the like.
  • the electrolyte contains at least one of LGPS, LPSC1, LATP, LLZO, etc.
  • the solid electrolyte layer includes solid electrolyte particles, and the particle size of the solid electrolyte particles is 0.1 to 100 ⁇ m.
  • the solid electrolyte layer includes solid electrolyte particles, and the particle size of the solid electrolyte particles is 0.2 to 1 ⁇ m. When the solid electrolyte particle size is within this range, the battery has better overall performance.
  • the solid electrolyte layer has a porosity of 0.1 to 20%.
  • the solid electrolyte layer has a porosity of 5% to 15%.
  • the thickness of the negative electrode interface modification layer is H1 ⁇ m
  • the thickness of the solid electrolyte layer is H2 ⁇ m, satisfying 0.0005 ⁇ H1/H2 ⁇ 0.2, where 50 ⁇ H2 ⁇ 5000.
  • the present invention also provides electrical equipment.
  • the electrical equipment provided by the present invention includes the above-mentioned secondary battery.
  • the invention provides a negative electrode interface modification layer.
  • the negative electrode interface modification layer includes metal micron wires of a specific length that can form an alloy with metallic lithium and carbon materials. It is arranged between the metallic lithium negative electrode and the solid electrolyte to reduce polarization. voltage ( ⁇ 0.05V) and extend the lithium stability cycle time ( ⁇ 800h), improve the chemical stability of the interface between the solid electrolyte and the metallic lithium anode, reduce lithium dendrites and reduce the interface impedance.
  • Figure 1 is a schematic diagram of the interface modification layer of the present invention.
  • Figure 2 is a diagram of the lithium stability cycle test results of the invention with an interface modification layer (Example 1) and without an interface modification layer (Comparative Example 1).
  • the present invention provides a secondary battery, including a lithium metal layer, a solid electrolyte layer, and a negative electrode interface modification layer disposed between the lithium metal layer and the solid electrolyte layer.
  • the negative electrode interface modification layer is disposed on the secondary battery. Between the lithium metal negative electrode of the battery and the solid electrolyte, and applied to the solid electrolyte;
  • the negative electrode interface modification layer includes metal micron wires and carbon materials.
  • the length of the metal micron wires is 0.5 ⁇ m to 100 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m.
  • the aspect ratio of the metal microwire is (10-1000):1, preferably (50-200):1.
  • the metal purity of the metal micron wire is above 80%.
  • the metal purity of the metal micron wire is above 95%.
  • the metal purity of the metal micron wire is 95% to 99%.
  • the metal of the metal microwire includes a metal that can form an alloy with metallic lithium.
  • the metal includes one or more of Ag, Zn, Zr, Sn and Ti.
  • the content of the metal microwires is more than 20 wt%.
  • the content of the metal microwires is 30wt% ⁇ 40wt%.
  • the content of the carbon material is 75wt% or less, preferably 55wt% to 65wt%.
  • the carbon material includes one or more of conductive carbon black, graphene, and vapor-grown carbon fiber.
  • the negative electrode interface modification layer also includes a water-based binder, and the water-based binder includes one or more of CMC, PVA and PAA.
  • the thickness of the negative electrode interface modification layer is 0.5-30 ⁇ m, preferably 8-15 ⁇ m.
  • the porosity of the negative electrode interface modification layer is less than or equal to 5%.
  • the present invention also provides a secondary battery, which includes a lithium metal layer, a solid electrolyte layer, and the negative electrode interface modification layer disposed between the lithium metal layer and the solid electrolyte layer.
  • the thickness of the negative electrode interface modification layer is H1 ⁇ m, and the thickness of the solid electrolyte layer is H2 ⁇ m, satisfying 0.0005 ⁇ H1/H2 ⁇ 0.2, where 50 ⁇ H2 ⁇ 5000.
  • the invention also provides an electrical device, including the secondary battery.
  • the present invention reduces the direct contact between the solid electrolyte and metallic lithium, significantly improves the interface stability of the lithium metal negative electrode side of the solid-state battery, is conducive to the deposition of lithium ions, and inhibits the formation of lithium dendrites. growth, thereby improving battery utilization and cycle life.
  • the Ag micron wires in the following examples are products of Aladdin;
  • CMC, SP are products of Ningbo Zhengli New Energy Technology Co., Ltd.
  • This embodiment provides a method for preparing a negative electrode interface modification layer, which includes the following steps:
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that Sn micron wires are used instead of Ag micron wires.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that Zn micron wires are used instead of Ag micron wires.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that Zr micron wires are used instead of Ag micron wires.
  • Example 1 The difference between this embodiment and Example 1 is that the purity of the Ag micron wire is 95%.
  • Example 1 The difference between this embodiment and Example 1 is that the purity of the Ag micron wire is 80%.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the aspect ratio of the Ag micron wire is 50:1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the aspect ratio of the Ag micron wire is 200:1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the aspect ratio of the Ag micron wire is 10:1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the aspect ratio of the Ag micron wire is 1000:1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the cold pressing pressure is changed to 150 MPa, so that the porosity of the negative electrode interface modification layer is 2%.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the cold pressing pressure is changed to 100 MPa, so that the porosity of the negative electrode interface modification layer is 5%.
  • Example 1 The difference from Example 1 is that the proportions of Ag micron wires and carbon materials are adjusted to the values shown in Table 1.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that PVDF is used as the binder.
  • Example 1 The difference from Example 1 is that the amount of electrolyte powder is adjusted and the thickness of the electrolyte layer is adjusted to the value shown in Table 1.
  • step (2) the coating thickness is adjusted to obtain the thickness of the modified layer described in Table 1.
  • Example 1 The difference from Example 1 is that the length of the Ag micron wire is adjusted to the value shown in Table 1.
  • This comparative example does not contain the interface modification layer, and is otherwise the same as Example 1.
  • This comparative example does not contain carbon materials, and is otherwise the same as Example 1.
  • This comparative example does not contain metal micron wires, and is otherwise the same as Example 1.
  • the symmetrical battery performance test method is as follows: At room temperature, use 10mA blue battery charge and discharge test equipment to conduct symmetrical battery performance test. The charge and discharge current density is 0.1mA/cm 2 and the charge and discharge capacity is 0.1mAh/cm 2 . Table 1 lists the specific parameters of Examples 1 to 36 and Comparative Examples 1 to 3.
  • the negative electrode interface modification layer of the present invention is arranged between the metallic lithium negative electrode and the solid electrolyte, which can reduce the polarization voltage ( ⁇ 0.05V) and extend the lithium stability cycle time ( ⁇ 800h ), thereby improving the chemical stability of the interface between the solid electrolyte and the metallic lithium anode, reducing lithium dendrites and lowering the interface impedance.
  • Example 1 Comparing Example 1 and Examples 5-6, it can be seen that the purity of metal micron wires will affect the polarization voltage and lithium stability cycle time. The higher the purity of the metal micron wires, the smaller the polarization voltage, and the lithium stability cycle time. The reason is that the impurities in the metal wire have poor conductivity and ionic conductivity.
  • Example 1 Comparing Example 1 and Examples 7 to 10, it can be seen that the aspect ratio of metal microwires will also affect the polarization voltage and lithium stability cycle time. If the aspect ratio of the metal wire is too small, the conductivity of the interface layer will be poor, resulting in polarization. As the voltage increases, the cycle life of the symmetrical battery is reduced; a metal wire with an aspect ratio that is too large will cause the metal wires to be excessively concentrated and unable to be effectively dispersed. This will also lead to poor conductivity of the interface layer, resulting in an increase in polarization voltage and a reduction in the cycle life of the symmetrical battery.
  • Example 1 Comparing Example 1 and Examples 11-12, it can be seen that the smaller the porosity of the modified layer, the smaller the polarization voltage, and the longer the lithium stability cycle time. This is because the smaller the porosity, the fewer interface layer defects, and the conductivity. The better the properties and ionic conductivity, the smaller the polarization voltage and the longer the lithium stability cycle time.
  • Example 1 Comparing Example 1 and Examples 13 to 16, it can be seen that the micron wire content is higher, the carbon material content is less, the polarization voltage is smaller, and the lithium stability cycle time is longer.
  • the reason is that the carbon material is less and the interface layer is conductive. The better the carbon material, the smaller the polarization voltage and the longer the cycle time for lithium stability.
  • the ionic conductivity will become worse and the polarization voltage will become higher.
  • Example 1 Comparing Example 1 and Example 17, it can be seen that the type of binder also affects the polarization voltage and lithium stability cycle time.
  • the polarization voltage is smaller and the lithium stability cycle time is Longer, which is attributed to the aqueous binder's better stability to metallic lithium anode and better compatibility with metallic lithium.
  • Example 1 Comparing Example 1 and Examples 18 to 23, it can be seen that when the electrolyte layer is too thin, the polarization voltage is small, but the stability to lithium cycle time is short; when the electrolyte layer is too thick, the stability to lithium cycle time is long, but the stability to lithium is long.
  • the polarization voltage is larger, and the performance is more balanced when the electrolyte layer thickness is 1000 ⁇ 3000 ⁇ m.
  • the thickness of the modification layer also affects the polarization voltage and lithium stability cycle time.
  • the thickness of the modification layer is 8 to 15 ⁇ m, the performance is more balanced.
  • Example 1 Comparing Example 1 and Examples 30 to 36, it can be seen that the length of the metal micron wire will affect the polarization voltage and lithium stability cycle time. The reason is that the metal micron wire is too short, which will lead to poor conductivity of the interface layer and increase the polarization voltage. , the cycle life of the symmetrical battery is reduced; too long a metal wire will cause the metal wires to be excessively concentrated and unable to be effectively dispersed, which will also lead to poor conductivity of the interface layer, resulting in an increase in polarization voltage and a reduction in the cycle life of the symmetrical battery. When the length of the metal micron wire is 1 ⁇ 10 ⁇ m, the performance is better.
  • the present invention reduces the direct contact between the solid electrolyte and metallic lithium, significantly improves the interface stability of the lithium metal negative electrode side of the solid-state battery, is conducive to the deposition of lithium ions, and inhibits the formation of lithium dendrites. growth, thereby improving battery utilization and cycle life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种二次电池和用电设备。所述二次电池包含锂金属层、固态电解质层,以及设置在所述锂金属层和所述固态电解质层之间的负极界面修饰层,所述负极界面修饰层包括金属微米线和碳材料,所述金属微米线的长度为0.5μm~100μm。本发明所述二次电池包括设置在金属锂负极和固态电解质之间的负极界面修饰层,可减少固态电解质与金属锂的直接接触,显著改善固态电池锂金属负极侧的界面稳定性,有利于锂离子的均匀沉积,抑制锂枝晶的生长,提高电池的利用率和循环寿命。

Description

二次电池和用电设备 技术领域
本发明涉及二次电池领域,尤其涉及一种二次电池和用电设备。
背景技术
金属锂负极具有化学势低(-3.04V vs.SHE)和理论容量高(3860mAh g -1)等优势,一直被认为是最理想的锂电池负极材料。但是,金属锂的高活性和在电池循环过程中形成的锂枝晶严重阻碍了金属锂负极的商业化进程。
固态电池被认为是克服锂枝晶的最有效方法,其采用高机械强度的固态电解质来抑制锂枝晶的刺穿。但是,大多数固态电解质对金属锂不稳定,静置和循环过程中会形成界面层,消耗金属锂,而且界面层阻抗高,降低电池的性能,并导致电池的失效。
中国专利CN202110914122.1公开了一种具有负极界面修饰层的固态金属锂电池,负极界面修饰层位于金属锂负极和固态电解质之间,该负极界面修饰层是采用磁控溅射在固态电解质上制备的氮化铝涂层,但该方法中采用的磁控溅射成本较高,无法制备大容量电池,而且氮化铝涂层的离子传导能力差,电池内阻大。
发明公开
本发明的首要目的是克服固态电解质与金属锂负极的界面化学稳定性差、易生长锂枝晶以及界面阻抗大的问题,提供一种二次电池,包含锂金属层、固态电解质层,以及设置在所述锂金属层和所述固态电解质层之间的负极界面修饰层。本发明所述负极界面修饰层可减少固态电解质与金属锂的直接接触,显著改善固态电池锂金属负极侧的界面稳定性,有利于锂离子的均匀沉积,抑制锂枝晶的生长,从而提高电池的利用率和循环寿命。
本发明的另一目的是提供上述负极界面修饰层的制备方法。
本发明的再一目的是提供包含所述二次电池的用电设备。
为达到上述目的,本发明采用的技术方案是:
一方面,本发明提供一种二次电池,包含锂金属层、固态电解质层,以及设置在所述锂金属层和所述固态电解质层之间的负极界面修饰层,所述负极界面修饰层包括金属微米线和碳材料,所述金属微米线的长度为0.5μm~100μm。
在本发明的一些实施方式中,所述金属微米线的长度为1μm~10μm。
在本发明的一些实施方式中,所述金属微米线的长径比为(10~1000):1。
在本发明的一些实施方式中,所述金属微米线的长径比为(50~200):1。当金属微米线的长径比为(50~200):1时,可进一步提高负极界面修饰层导电性,从而降低固态电解质与金属锂负极的界面阻抗并提高界面化学稳定性。
在本发明的一些实施方式中,所述金属微米线的金属的纯度为80%以上。
金属杂质较少,其导电性和导离子性越好,可进一步改善固态电解质与金属锂负极的界面化学稳定性和界面阻抗。
在本发明的一些实施方式中,所述金属微米线的金属的纯度为95%以上。
在本发明的一些实施方式中,所述金属微米线的金属包含能与金属锂形成合金的金属。
在本发明的一些实施方式中,所述金属包含Ag、Zn、Zr、Sn和Ti中的一种或几种。Ag、Zn、Zr、Sn和Ti与金属锂形成合金后可减少金属锂的亲和能,有利于锂离子的传导,规整锂离子的沉积。
在本发明的一些实施方式中,基于所述负极界面修饰层的总重量,所述金属微米线的含量为20wt%以上。
金属微米线的含量高,负极界面修饰层的导电性越好,界面阻抗低、化学稳定性好,但金属微米线的含量过高时离子传导性会变差,界面阻抗会变高。
在本发明的一些实施方式中,基于所述负极界面修饰层的总重量,所述金属微米线的含量为30wt%~40wt%。
在本发明的一些实施方式中,基于所述负极界面修饰层的总重量,所述碳材料的含量为75wt%以下。
碳材料较少,负极界面修饰层的导电性越好,界面阻抗低、化学稳定性好,但碳材料过少时离子传导性会变差,界面阻抗会变高。
在本发明的一些实施方式中,基于所述负极界面修饰层的总重量,所述碳材料的含量为55wt%~65wt%。
在本发明的一些实施方式中,所述碳材料包含导电炭黑、石墨烯、气相生长碳纤维中的一种或几种。
在本发明的一些实施方式中,所述负极界面修饰层还包括水系粘结剂。
在本发明的一些实施方式中,所述水系粘结剂包含CMC(羧甲基纤维素钠)、PAA(聚丙烯酸)和PVA(聚乙烯醇)中的一种或几种。与PVDF相比,作为水系粘结剂的CMC、PVA和PAA对金属锂负极更稳定,且兼容性更好。
在本发明的一些实施方式中,所述负极界面修饰层的厚度可为0.5~30μm。
负极界面修饰层具有锂离子传导性,然而负极界面修饰层的锂离子传导率会低于电解质层的锂离子传导率。因此,负极界面修饰层太厚会阻碍锂离子的传导,增加界面阻抗。而负极界面修饰层太薄,则会降低界面化学稳定性。
在本发明的一些实施方式中,所述负极界面修饰层的厚度为8~15μm。
在本发明的一些实施方式中,所述负极界面修饰层的孔隙率小于或等于5%。
本发明所述负极界面修饰层中碳作为骨架结构,既可以传导锂离子,也可以传导电子,而金属微米线则可与锂离子进行可逆的合金/去合金化反应,作为锂离子在缓冲层中的传输通道。此外,金属微米线可以提升缓冲层的电子传导能力且具有骨架支撑的效果。
另一方面,本发明提供上述负极界面修饰层的制备方法。
本发明所提供的负极界面修饰层的制备方法,包括如下步骤:
(1)将金属微米线、碳材料、粘结剂和水按照比例混合后,搅拌分散,得到缓冲层浆料;
(2)经涂布工艺将所得缓冲层浆料涂到牺牲衬底上,烘干,在所述牺牲衬底上形成复合缓冲层,得到负载复合缓冲层的极片;
(3)在所述极片的复合缓冲层上方覆盖固态电解质粉末或固态电解质膜,通过冷压或热压工艺,将极片与固态电解质压紧贴合;
(4)将所述牺牲衬底与固态电解质层进行机械剥离,从而使得所述复合缓冲层施加到固态电解质侧,即得到负极界面修饰层。
在本发明的一些实施方式中,上述方法步骤(1)中,采用球磨方式混合,转速可为1500~2500rpm,时间可为1~3h。
在本发明的一些实施方式中,上述方法步骤(1)中,所述粘结剂包含CMC、PAA和PVA中的一种或几种。使用水系粘结剂CMC、PAA和PVA,制备过程中没有有机溶剂参与,过程更为环保。
优选地,所述粘结剂包含CMC。CMC作为粘结剂制备的极片粘接力较弱,可以更好地进行压制转印,同时CMC在水溶液中会分解出钠离子和阴离子,当CMC在水溶液中的量达到一定程度时,其分解产物将附着在碳材料表面,碳材料之间由于静电作用力而相互排斥,达到很好分散效果。
在本发明的一些实施方式中,步骤(2)中,所使用的牺牲衬底包含Cu、Al或者Fe,厚度在5~15μm,涂布方式包含刮涂、涂布辊、旋涂、喷涂、涂布刷等中的至少一种。
在本发明的一些实施方式中,步骤(3)中,所述电解质包含LGPS,LPSCl,LATP,LLZO等中的至少一种。
在本发明的一些实施方式中,所述固态电解质层包括固态电解质颗粒,所述固态电解质颗粒粒径为0.1~100μm。
在本发明的一些实施方式中,所述固态电解质层包括固态电解质颗粒,所述固态电解质颗粒粒径为0.2~1μm。所述固态电解质颗粒粒径在此范围内,电池具有更优的综合性能。
在本发明的一些实施方式中,所述固态电解质层的孔隙率为0.1~20%。
在本发明的一些实施方式中,所述固态电解质层的孔隙率为5%~15%。
在本发明的一些实施方式中,所述负极界面修饰层厚度为H1μm,所述固态电解质层的厚度为H2μm,满足0.0005≤H1/H2≤0.2,其中50≤H2≤5000。
又一方面,本发明还提供一种用电设备。
本发明所提供的用电设备包含上述二次电池。
与以往技术相比,本发明的有益效果是:
本发明提供了一种负极界面修饰层,所述负极界面修饰层包括特定长度且能与金属锂形成合金的金属微米线以及碳材料,设置在金属锂负极和固态 电解质之间,可降低极化电压(≤0.05V)并延长对锂稳定性循环时间(≥800h),改善固态电解质与金属锂负极的界面化学稳定性,减少锂枝晶并降低界面阻抗。
附图说明
图1为本发明的界面修饰层示意图。
图2为本发明中有界面修饰层(实施例1)和无界面修饰层(对比例1)的对锂稳定性循环测试效果图。
实施发明的最佳方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明提供一种二次电池,包含锂金属层、固态电解质层,以及设置在所述锂金属层和所述固态电解质层之间的负极界面修饰层,所述负极界面修饰层设置于二次电池的金属锂负极与固态电解质之间,并施加在固态电解质上;
所述负极界面修饰层包括金属微米线和碳材料,所述金属微米线的长度为0.5μm~100μm,优选为1μm~10μm。
所述金属微米线的长径比为(10~1000):1,优选为(50~200):1。
所述金属微米线的金属的纯度为80%以上。
所述金属微米线的金属的纯度为95%以上。
所述金属微米线的金属的纯度为95%~99%。
所述金属微米线的金属包含能与金属锂形成合金的金属。
所述金属包含Ag、Zn、Zr、Sn和Ti中的一种或几种。
基于所述负极界面修饰层的总重量,所述金属微米线的含量为20wt%以上。
基于所述负极界面修饰层的总重量,所述金属微米线的含量为30wt%~40wt%。所述碳材料的含量为75wt%以下,优选为55wt%~65wt%。
所述碳材料包含导电炭黑、石墨烯、气相生长碳纤维中的一种或几种。
所述负极界面修饰层还包括水系粘结剂,所述水系粘结剂包含CMC、PVA和PAA中的一种或几种。
所述负极界面修饰层的厚度为0.5~30μm,优选为8~15μm。
所述负极界面修饰层的孔隙率小于或等于5%。
本发明还提供二次电池,所述二次电池包含锂金属层、固态电解质层,以及设置在锂金属层和固态电解质层之间的所述的负极界面修饰层。
所述负极界面修饰层厚度为H1μm,所述固态电解质层的厚度为H2μm,满足0.0005≤H1/H2≤0.2,其中50≤H2≤5000。
本发明还提供一种用电设备,包括所述二次电池。
本发明通过使用微米金属线和碳的负极界面修饰层,减少固态电解质与金属锂的直接接触,显著改善固态电池锂金属负极侧的界面稳定性,有利于锂离子的沉积,抑制锂枝晶的生长,从而提高电池的利用率和循环寿命。
下述实施例中的Ag微米线为阿拉丁的产品;
CMC,SP为宁波正锂新能源科技有限公司的产品。
实施例1
本实施例提供一种负极界面修饰层的制备方法,包括如下步骤:
(1)将Ag微米线(长度3μm,长径比100:1,纯度99%)、碳材料(SP)、粘结剂(CMC)和水按照比例混合后,进行搅拌分散,得到缓冲层浆料(固含量为40%);其中,Ag微米线占比40wt%、碳材料占比55wt%,粘结剂5wt%,
(2)经刮涂工艺将缓冲层浆料涂到牺牲衬底Cu(厚度为8μm)上,厚度为60μm,烘干,得到负载复合缓冲层的极片;
(3)将100mg的LGPS粉末(粒径0.2μm),在压强360MPa下压制1min,得到电解质片,此时电解质层孔隙率为5%,层厚度为1000μm;将极片裁剪成合适的尺寸,在极片上方覆盖固态电解质片,在压强为200MPa下,冷压1min,使极片压制到电解质片上;
(4)将牺牲衬底与固态电解质层进行机械剥离,从而使得复合缓冲层施加到固态电解质侧,即得到孔隙率为1%,厚度为10μm的负极界面修饰层。
实施例2
本实施例与实施例1的区别在于,采用Sn微米线代替Ag微米线。
实施例3
本实施例与实施例1的区别在于,采用Zn微米线代替Ag微米线。
实施例4
本实施例与实施例1的区别在于,采用Zr微米线代替Ag微米线。
实施例5
本实施例与实施例1的区别在于,Ag微米线的纯度为95%。
实施例6
本实施例与实施例1的区别在于,Ag微米线的纯度为80%。
实施例7
本实施例与实施例1的区别在于,Ag微米线的长径比为50:1。
实施例8
本实施例与实施例1的区别在于,Ag微米线的长径比为200:1。
实施例9
本实施例与实施例1的区别在于,Ag微米线的长径比为10:1。
实施例10
本实施例与实施例1的区别在于,Ag微米线的长径比为1000:1。
实施例11
本实施例与实施例1的区别在于,冷压压强改为150Mpa,使得负极界面修饰层的孔隙率为2%。
实施例12
本实施例与实施例1的区别在于,冷压压强改为100Mpa,使得负极界面修饰层的孔隙率为5%。
实施例13-实施例16
与实施例1的区别在于,Ag微米线和碳材料的占比调整为表1所示值。
实施例17
本实施例与实施例1的区别在于,采用PVDF为粘结剂。
实施例18-23
与实施例1的区别在于,调整电解质粉末用量调整电解质层厚度为表1所示值。
实施例24-实施例29
与实施例1的区别在于,步骤(2)中,调整涂覆厚度得到表1所述的修饰层厚度。
实施例30-实施例36
与实施例1的区别在于,Ag微米线的长度调整为表1所示值。
对比例1
本对比例不含界面修饰层,其他同实施例1。
对比例2
本对比例不含碳材料,其他同实施例1。
对比例3
本对比例不含金属微米线,其他同实施例1。
性能测试
实施例1~36和对比例1~3中,压制完带有修饰层的电解质层后,去除牺牲衬底,在两侧加入金属锂组装成对称电池,然后进行性能测试。
对称电池性能测试方法如下:室温下,采用10mA蓝电充放电测试设备进行对称电池性能测试,充放电电流密度为0.1mA/cm 2,充放电容量为0.1mAh/cm 2。表1列出了实施例1~36和对比例1~3的具体参数。
表1
Figure PCTCN2022143091-appb-000001
Figure PCTCN2022143091-appb-000002
Figure PCTCN2022143091-appb-000003
Figure PCTCN2022143091-appb-000004
从表1实施例和对比例可知,本发明所述负极界面修饰层设置在金属锂负极和固态电解质之间,可降低极化电压(≤0.05V)并延长对锂稳定性循环时间(≥800h),从而改善固态电解质与金属锂负极的界面化学稳定性,减少锂枝晶并降低界面阻抗。
对比实施例1~4可知,本发明对金属微米线的种类没有特殊要求,本领域常规的金属微米线均可用于本发明中。
对比实施例1和实施例5~6可知,金属微米线的纯度会影响极化电压和对锂稳定性循环时间,金属微米线的纯度越高,极化电压越小,对锂稳定性循环时间越长,原因在于金属线中的杂质导电性和导离子性差。
对比实施例1和实施例7~10可知,金属微米线的长径比也会影响极化电压和对锂稳定性循环时间,金属线长径比太小会导致界面层导电性差,造成极化电压升高,对称电池循环寿命降低;金属线长径比太大会导致金属线过渡集中,无法有效分散,同样导致界面层导电性差,造成极化电压升高,对称电池循环寿命降低。
对比实施例1和实施例11~12可知,修饰层的孔隙率越小,极化电压越小,对锂稳定性循环时间越长,这是由于空隙率越小,界面层缺陷越少,导电性和导离子性越好,所以极化电压小,对锂稳定性循环时间长。
对比实施例1和实施例13~16可知,微米线含量较高,碳材料含量较少,极化电压较小,对锂稳定性循环时间越长,原因是碳材料较少,界面层的导电性越好,所以极化电压小,对锂稳定性循环时间长,但碳材料过 少时离子传导性会变差,极化电压会变高。
对比实施例1和实施例17可知,粘结剂的种类也会影响极化电压和对锂稳定性循环时间,当采用CMC作为粘结剂时,极化电压较小,对锂稳定性循环时间更长,这归因于水系粘结剂对金属锂负极的稳定性和与金属锂的兼容性更好。
对比实施例1和实施例18~23可知,电解质层过薄时,极化电压较小,但对锂稳定性循环时间较短;电解质层过厚时,对锂稳定性循环时间较长,但极化电压较大,当电解质层厚度为1000~3000μm时性能更平衡。
对比实施例1和实施例24~29可知,修饰层厚度同样会影响极化电压和对锂稳定性循环时间,当修饰层的厚度为8~15μm时性能更平衡。
对比实施例1和实施例30~36可知,金属微米线的长度会影响极化电压和对锂稳定性循环时间,原因在于金属微米线太短会导致界面层导电性差,造成极化电压升高,对称电池循环寿命降低;金属线太长会导致金属线过渡集中,无法有效分散,同样导致界面层导电性差,造成极化电压升高,对称电池循环寿命降低,当金属微米线的长度为1~10μm时,性能更优。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
工业应用
本发明通过使用微米金属线和碳的负极界面修饰层,减少固态电解质与金属锂的直接接触,显著改善固态电池锂金属负极侧的界面稳定性,有利于锂离子的沉积,抑制锂枝晶的生长,从而提高电池的利用率和循环寿命。

Claims (14)

  1. 一种二次电池,其特征在于,包含锂金属层、固态电解质层,以及设置在所述锂金属层和所述固态电解质层之间的负极界面修饰层,所述负极界面修饰层包括金属微米线和碳材料,所述金属微米线的长度为0.5μm~100μm。
  2. 根据权利要求1所述的二次电池,其特征在于,所述金属微米线的长径比为(50~200):1。
  3. 根据权利要求1所述的二次电池,其特征在于,所述金属微米线中的金属包含Ag、Zn、Zr、Sn和Ti中的一种或几种。
  4. 根据权利要求3所述的二次电池,其特征在于,所述金属微米线的金属的纯度为80%以上。
  5. 根据权利要求4所述的二次电池,其特征在于,所述金属微米线的金属的纯度为95%以上。
  6. 根据权利要求1所述的二次电池,其特征在于,基于所述负极界面修饰层的总重量,所述金属微米线的含量为20wt%以上。
  7. 根据权利要求6所述的二次电池,其特征在于,基于所述负极界面修饰层的总重量,所述金属微米线的含量为30wt%~40wt%。
  8. 根据权利要求1所述的二次电池,其特征在于,基于所述负极界面修饰层的总重量,所述碳材料的含量为75wt%以下;
    所述碳材料包含导电炭黑、石墨烯、气相生长碳纤维中的一种或几种。
  9. 根据权利要求8所述的二次电池,其特征在于,基于所述负极界面修饰层的总重量,所述碳材料的含量为55wt%~65wt%。
  10. 根据权利要求1所述的二次电池,其特征在于,所述负极界面修饰层还包括水系粘结剂,所述水系粘结剂包含CMC、PVA和PAA中的一种或几种。
  11. 根据权利要求1所述的二次电池,其特征在于,所述负极界面修饰层的厚度为0.5~30μm;
    所述负极界面修饰层的孔隙率小于或等于5%。
  12. 根据权利要求11所述的二次电池,其特征在于,所述负极界面修饰层的厚度为8~15μm。
  13. 根据权利要求1所述的二次电池,其特征在于:所述负极界面修饰层厚度为H1μm,所述固态电解质层的厚度为H2μm,满足0.0005≤H1/H2≤0.2,其中50≤H2≤5000。
  14. 用电设备,其特征在于,包括权利要求1~13任一所述二次电池。
PCT/CN2022/143091 2022-07-12 2022-12-29 二次电池和用电设备 WO2024011871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210814204.3A CN115036555A (zh) 2022-07-12 2022-07-12 二次电池和用电设备
CN202210814204.3 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024011871A1 true WO2024011871A1 (zh) 2024-01-18

Family

ID=83128323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143091 WO2024011871A1 (zh) 2022-07-12 2022-12-29 二次电池和用电设备

Country Status (2)

Country Link
CN (1) CN115036555A (zh)
WO (1) WO2024011871A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036555A (zh) * 2022-07-12 2022-09-09 欣旺达电子股份有限公司 二次电池和用电设备
CN115763706B (zh) * 2022-11-21 2024-03-12 上海屹锂新能源科技有限公司 一种用于全固态电池的合金/碳复合薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435756A (zh) * 2019-12-27 2020-07-21 蜂巢能源科技有限公司 锂电池及其制备方法和应用
US20210265618A1 (en) * 2020-02-24 2021-08-26 Nissan North America, Inc. Modified Electrolyte-Anode Interface for Solid-State Lithium Batteries
CN113809386A (zh) * 2021-08-10 2021-12-17 武汉理工大学 一种具有负极界面修饰层的固态金属锂电池
CN114242942A (zh) * 2021-11-30 2022-03-25 厦门大学 一种具有稳定负极界面的复合缓冲层及其固态锂金属电池
CN115036555A (zh) * 2022-07-12 2022-09-09 欣旺达电子股份有限公司 二次电池和用电设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923022A (zh) * 2018-05-23 2018-11-30 中国科学院青岛生物能源与过程研究所 一种提高全固态电池锂负极稳定性的改性方法
CN109103492B (zh) * 2018-09-03 2020-10-09 江西克莱威纳米碳材料有限公司 一种羟基磷灰石纳米线-碳纳米管膜及其制备方法和锂硫电池
KR20210136832A (ko) * 2020-05-08 2021-11-17 주식회사 엘지에너지솔루션 리튬 프리 전지용 음극 집전체, 이를 포함하는 전극 조립체 및 리튬 프리 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435756A (zh) * 2019-12-27 2020-07-21 蜂巢能源科技有限公司 锂电池及其制备方法和应用
US20210265618A1 (en) * 2020-02-24 2021-08-26 Nissan North America, Inc. Modified Electrolyte-Anode Interface for Solid-State Lithium Batteries
CN113809386A (zh) * 2021-08-10 2021-12-17 武汉理工大学 一种具有负极界面修饰层的固态金属锂电池
CN114242942A (zh) * 2021-11-30 2022-03-25 厦门大学 一种具有稳定负极界面的复合缓冲层及其固态锂金属电池
CN115036555A (zh) * 2022-07-12 2022-09-09 欣旺达电子股份有限公司 二次电池和用电设备

Also Published As

Publication number Publication date
CN115036555A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2024011871A1 (zh) 二次电池和用电设备
WO2018161821A1 (zh) 一种复合物、其制备方法及在锂离子二次电池中的用途
KR101621133B1 (ko) 리튬이온전지 3d다공성 실리카계 복합 음극재료 및 그 제조방법
JP5008180B2 (ja) 非水二次電池
TWI249868B (en) Anode and battery
CN111816856B (zh) 复合材料及其制备方法和负极
CN105977453B (zh) 活性物质复合粒子及锂电池
JP5023912B2 (ja) 正極活物質の製造方法
CN110571413B (zh) 一种具有复合层结构的电极和锂电池
WO2001073872A1 (fr) Batterie rechargeable
JP2023531545A (ja) 負極シート及びリチウムイオン電池
WO2020038011A1 (zh) 锂离子电池及其制备方法和电动车辆
WO2022016374A1 (zh) 复合材料及其制备方法和负极
CN112952031B (zh) 一种负极及其制备方法和应用
JP2018206486A (ja) 積層体グリーンシート、全固体二次電池およびその製造方法
CN113921756B (zh) 一种高硅含量的硅碳负极极片及其制备方法
CN111269509B (zh) 一种全固态金属-空气电池用多孔塑晶电解质及其制备方法、全固态金属-空气电池
WO2021184222A1 (zh) 一种基于石墨烯量子点及其衍生物的导电涂层材料及其应用
CN113140699A (zh) 一种复合负极片及包含该负极片的锂离子电池
KR20210099248A (ko) 전극 활물질 입자 표면에 고체 전해질 코팅막을 균일하게 코팅하는 방법
CN113594410B (zh) 一种负极结构、其制备方法以及固态电池
CN114784247A (zh) 电池正极材料及其制造方法
US20230125633A1 (en) Nanoporous electrode
TW201414058A (zh) 二次電池用正極,二次電池及二次電池用正極之製造方法
CN112838212A (zh) 用于保护锂金属的自愈合人工界面层及其制备方法、电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950977

Country of ref document: EP

Kind code of ref document: A1