WO2022016374A1 - 复合材料及其制备方法和负极 - Google Patents

复合材料及其制备方法和负极 Download PDF

Info

Publication number
WO2022016374A1
WO2022016374A1 PCT/CN2020/103283 CN2020103283W WO2022016374A1 WO 2022016374 A1 WO2022016374 A1 WO 2022016374A1 CN 2020103283 W CN2020103283 W CN 2020103283W WO 2022016374 A1 WO2022016374 A1 WO 2022016374A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
active material
aluminum
layer
composite material
Prior art date
Application number
PCT/CN2020/103283
Other languages
English (en)
French (fr)
Inventor
唐永炳
蒋春磊
张晓明
石磊
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/103283 priority Critical patent/WO2022016374A1/zh
Publication of WO2022016374A1 publication Critical patent/WO2022016374A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery materials, in particular to a composite material, a preparation method thereof, and a negative electrode.
  • lithium-ion batteries Due to its good electrochemical performance, lithium-ion batteries have been widely used in various consumer electronic devices, power tools, electric vehicles, energy storage and other fields.
  • most of the current commercial lithium-ion batteries use graphite as the negative electrode material, and the theoretical capacity of graphite is limited (372 mAh g -1 ), which makes it difficult to meet the performance requirements of high energy density and long battery life. Therefore, the development of new anode materials with high capacity has become an important research direction for lithium-ion batteries. Alloyed anode materials, such as silicon, germanium, aluminum, tin, antimony, zinc, etc., have high theoretical capacity and have good application prospects as high-capacity flexible anode materials.
  • the composite anode material is prepared by adding an appropriate amount of alloyed anode material to the graphite anode material.
  • the capacity of the graphite anode can be increased, and the volume expansion of the alloyed anode can be reduced to a certain extent, which has a good development prospect.
  • the alloyed anode material particles with micron and nanometer scales are prone to agglomeration during the mixing process with carbon particles such as graphite, and it is difficult to achieve uniform dispersion, so that the alloyed anode material particles have local accumulation, while in the alloying During the reaction process, the area where the alloyed particles are locally accumulated has serious volume expansion, resulting in stress concentration, which causes the active material to peel off, and even causes the current collector to crack, which seriously affects the battery cycle performance.
  • One of the purposes of the embodiments of the present application is to provide a composite material and a preparation method thereof, aiming at solving the technical problem of poor mixing and dispersibility of the existing carbon-based active materials and alloyed active materials.
  • Another object of the embodiments of the present application is to provide a negative electrode, which aims to solve the technical problem that the carbon-based active material and the alloyed active material in the existing negative electrode have poor mixing and dispersibility, thereby affecting the cycle performance.
  • a composite material comprising a carbon-based active material core, an alloyed-based active material layer and an outer shell layer coated on the surface of the carbon-based active material core, and the alloyed-based active material layer is located in the between the carbon-based active material core and the outer shell layer.
  • a method for preparing a composite material comprising the following steps:
  • a shell layer is prepared on the surface of the alloyed active material layer.
  • a negative electrode comprising a current collector and a negative electrode active layer covering the current collector, the negative electrode active layer comprising a negative electrode active material, a conductive agent and a binder, and the negative electrode active material is the present application.
  • the beneficial effect of the composite material provided by the embodiments of the present application is that the composite material includes three layers of materials, namely, a carbon-based active material core located at the core, an alloyed active material layer located in the middle, and an outer shell layer located on the outer surface.
  • the composite material can be used for the negative electrode active material; the materials of the carbon-based active material core and the alloyed active material layer belong to active materials, and the alloyed active material layer is coated on the surface of the carbon-based active material core, not only can use
  • the active properties of the two can also achieve a highly uniform dispersion of different active material phases, thereby effectively alleviating stress concentration, and the outer shell layer not only acts as a mechanical protection for the alloyed active material layer and the carbon-based active material core, but also It can isolate the electrolyte and reduce side reactions. Therefore, the composite material with such a unique structure can be used as the negative electrode active material of the lithium ion battery to significantly improve its cycle stability performance.
  • the beneficial effect of the negative electrode provided by the embodiments of the present application is that the negative electrode active material in the negative electrode is the unique composite material of the present application or the unique composite material obtained by the preparation method of the composite material of the present application, and the composite material can realize the height of different active material phases. Uniform dispersion can effectively relieve stress concentration, and can isolate electrolyte and reduce side reactions. Therefore, the preparation of such a composite material with a unique structure into an electrode can significantly improve the cycle stability of lithium-ion batteries.
  • Fig. 1 is the structural representation of the composite material of the embodiment of the present application.
  • FIG. 2 is a SEM comparison diagram of the negative electrode made of the composite material of the embodiment of the present application and the negative electrode prepared by mixing natural graphite and aluminum powder particles in a traditional mechanical mixing process;
  • FIG 3 is a comparison diagram of the cycle performance of the negative electrode made of the composite material of the embodiment of the present application and the negative electrode prepared by mixing natural graphite and aluminum powder particles in a traditional mechanical mixing process.
  • the composite material includes a carbon-based active material core 1 and an alloyed-based active material layer 2 coated on the surface of the carbon-based active material core 1 and The outer shell layer 3 , the alloyed active material layer 2 is located between the carbon-based active material core 1 and the outer shell layer 3 .
  • the composite material provided in the embodiment of the present application includes three layers of materials, namely a carbon-based active material core located in the core, an alloyed active material layer located in the middle, and an outer shell layer located on the outer surface, so that the composite material with a unique structure can be used for negative electrodes Active materials; the materials of the carbon-based active material core and the alloyed active material layer belong to active materials, and the alloyed active material layer is coated on the surface of the carbon-based active material core, which can not only utilize the active properties of the two, but also It can also achieve highly uniform dispersion of different active material phases, thereby effectively alleviating stress concentration, and the outer shell layer not only acts as a mechanical protection for the alloyed active material layer and the carbon-based active material core, but also can isolate the electrolyte. , reducing side reactions, so the composite material with such a unique structure can be used as the negative electrode active material of lithium ion battery to significantly improve its cycle stability performance.
  • the carbon-based active material of the carbon-based active material core includes at least one of a graphite-based active material and a non-graphite-based active material.
  • Graphite active materials include but are not limited to one or more combinations of natural graphite and artificial graphite
  • non-graphite active materials include but are not limited to soft carbon, hard carbon, coke, mesocarbon microbeads (MCMB), One or more combinations of carbon nanotubes, graphene and activated carbon, etc.
  • the particle size of the carbon-based active material core composed of the above-mentioned carbon-based active material material is micro-scale or nano-scale, such as 10-100 nm, or 0.1-100 ⁇ m.
  • the alloying-type active material material of the alloying-type active material layer includes aluminum, silicon, germanium, tin, lead, antimony, bismuth, zinc, aluminum-copper alloy, copper-tin alloy, aluminum-tin alloy, At least one of aluminum-silicon alloy, aluminum-magnesium alloy, tin-nickel alloy and tin-cobalt-nickel alloy.
  • the thickness of the alloyed active material layer composed of the above alloyed active material material is 50 nm-10 ⁇ m.
  • the composite materials described in the embodiments of the present application include two active materials, a carbon-based active material material and an alloyed-type active material material, wherein the core is a carbon-based active material material, and the intermediate layer of an alloyed-type active material layer is an alloyed-type active material layer.
  • Material, the above alloyed active material is coated on the surface of the carbon active material, on the one hand, the capacity of the composite material can be improved when used as a negative electrode, and at the same time, the volume expansion of the alloyed negative electrode can be reduced, and more importantly,
  • the alloyed active material and the carbon active material can be highly uniformly distributed, thereby avoiding stress concentration defects caused by uneven dispersion, which can effectively improve the cycle stability of the composite material used as a negative electrode material.
  • the shell material of the shell layer includes carbon, zirconium dioxide (ZrO 2 ), titanium nitride (TiN), titanium aluminum nitride (TiAlN), lithium phosphorus oxynitride (LiPON), tantalum doped At least one of lithium lanthanum zirconium oxygen (LLZTO), lithium aluminum germanium phosphorus (LAGP), lithium phosphate-phosphorus pentasulfide (Li 3 PO 4 -P 2 S 5 ) and lithium sulfide-phosphorus pentasulfide (Li 2 SP 2 S 5 );
  • the outer shell layer is at least one of a carbon-based material coating layer, an oxide coating layer, a nitride coating layer and a solid electrolyte coating layer.
  • the material of the oxide cladding layer can be zirconium dioxide
  • the material of the nitride cladding layer can be titanium nitride or titanium aluminum nitride
  • the material of the solid electrolyte cladding layer can be lithium phosphorus oxynitride, tantalum doped lithium Lanthanum Zirconium Oxygen, Lithium Aluminum Germanium Phosphorus, Lithium Phosphate-Phosphorus Pentasulfide and Lithium Sulfide-Phosphorus Pentasulfide.
  • the outer shell layer can mechanically protect the active substances inside the composite material on the one hand, and can isolate the electrolyte and reduce side reactions on the other hand.
  • the thickness of the outer shell layer is 10 nm-200 nm.
  • the embodiment of the present application also provides a method for preparing a composite material, comprising the following steps:
  • the preparation method of the composite material provided in the embodiment of the present application is to prepare a composite material composed of three layers of materials, that is, a carbon-based active material core located in the core, an alloyed active material layer located in the middle, and an outer shell layer located on the outer surface, so that The composite material with the unique structure can be used for the negative electrode active material; the composite material obtained by the preparation method can not only achieve a highly uniform dispersion of different active material phases, thereby effectively alleviating stress concentration, and the outer shell layer can play a role in the alloying active material layer.
  • the mechanical protection of carbon-based active material cores can isolate the electrolyte and reduce side reactions. Therefore, the composite material with such a unique structure can be used as the negative electrode active material of lithium-ion batteries to significantly improve its cycle stability.
  • the carbon-based active material core may be a granular carbon-based active material material, which may be nano-scale or micro-scale.
  • the carbon-based active material core may be a granular carbon-based active material material, which may be nano-scale or micro-scale.
  • the step of preparing the alloyed active material layer on the surface of the carbon-based active material core includes: adopting methods including but not limited to vapor deposition, electroplating, chemical plating, hydrothermal synthesis, and microwave synthesis. , any one of the electrophoretic deposition method and the ball milling method, the alloyed active material is coated on the surface of the carbon-based active material core to obtain the alloyed active material layer.
  • the vapor deposition method may be physical vapor deposition, chemical vapor deposition, and the like.
  • types of alloyed active material materials please refer to the above description.
  • step S03 the step of preparing the outer shell layer on the surface of the alloyed active material layer includes: forming the outer shell layer on the surface of the alloyed active material layer by a method including but not limited to vapor deposition or sintering.
  • the shell material of the shell layer is described above.
  • an embodiment of the present application also provides a negative electrode, comprising a current collector and a negative electrode active layer covering the current collector, the negative electrode active layer comprising a negative electrode active material, a conductive agent and a binder, and the negative electrode active material
  • a negative electrode comprising a current collector and a negative electrode active layer covering the current collector
  • the negative electrode active layer comprising a negative electrode active material, a conductive agent and a binder
  • the negative electrode active material comprising a negative electrode active material, a conductive agent and a binder, and the negative electrode active material
  • the negative electrode active material in the negative electrode provided by the embodiment of the present application is the unique composite material of the embodiment of the present application or the unique composite material obtained by the preparation method of the composite material of the embodiment of the present application, and the composite material can realize highly uniform dispersion of different active material phases. , thereby effectively alleviating stress concentration, and isolating the electrolyte, reducing side reactions, so the preparation of such a composite material with a unique structure into an electrode can significantly improve the cycle stability of lithium-ion batteries.
  • the negative electrode includes a current collector and a negative electrode active layer disposed on the surface of the current collector, and the current collector can be copper foil, aluminum foil, alloy foil, or the like.
  • the negative electrode active layer includes a negative electrode active material, a conductive agent and a binder.
  • the negative electrode active slurry containing the above-mentioned negative electrode active material, conductive agent and binder can be prepared, and then uniformly coated on the above-mentioned current collector, and uniform on the surface of the current collector through processes such as mixing, beating, coating, and rolling. coating, and drying to obtain a negative electrode sheet.
  • the binder can be carboxylated styrene-butadiene latex (SBR), sodium carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), polyacrylic acid (PAA), and the conductive agent can be carbon black, carbon nanotubes, SP, the solvent of the negative electrode active slurry can be deionized water or N-methylpyrrolidone.
  • SBR carboxylated styrene-butadiene latex
  • CMC sodium carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • PAA polyacrylic acid
  • the conductive agent can be carbon black, carbon nanotubes, SP
  • the solvent of the negative electrode active slurry can be deionized water or N-methylpyrrolidone.
  • This embodiment provides a composite material: natural graphite is used as a carbon-based active material core, aluminum is used as an alloyed active material layer, and a carbon material is used as an outer shell layer, wherein the D50 of natural graphite is 12 ⁇ m, and the alloyed active material is Layer thickness is 1 ⁇ m, the thickness of the shell layer is 100 nm, and the mass percentage of aluminum is 40%; the composite material is used as the negative electrode active material to prepare a negative electrode, and the specific preparation process is as follows:
  • sucrose solution as the precursor, using high temperature carbonization technology to coat the carbon layer on the surface of the graphite particles deposited with the aluminum active material alloyed active material layer prepared above is the outer shell layer.
  • concentration of the precursor solution and The carbonization treatment time was controlled, and the thickness of the outer shell layer was controlled to be 100 nm, and the natural graphite/silicon/carbon composite material was obtained as the negative electrode active material.
  • the binder is PVDF.
  • NMP N-methylpyrrolidone
  • the composite electrode is prepared by mixing natural graphite and aluminum powder particles by a traditional mechanical mixing process, wherein the mass percentage of the aluminum active material is consistent with the three-layer structure design of the above-mentioned Example 1, and is controlled to 40%.
  • the mixing uniformity and electrochemical performance of the traditional composite negative electrode and the negative electrode with a three-layer structure design in this example are compared: the scanning electron micrographs of the two negative electrodes are shown in Figure 2, in which the traditional composite negative electrode is dispersed Inhomogeneity, agglomeration of aluminum powder particles occurs (as shown in Figure 2a), while this example has a negative electrode with a three-layer structure design, and the two phases of natural graphite and aluminum show highly uniform dispersion characteristics (as shown in Figure 2b). ).
  • the lithium metal sheet is used as the counter electrode, and EC: DEC (volume ratio 1:1) is used as the electrolyte to assemble the half-cell, and the electrochemical performance test is carried out.
  • the test results are shown in Figure 3.
  • This embodiment has a three-layer structure designed The negative electrode made of the negative electrode active material was cycled for 2000 cycles at a rate of 0.2 C, and the capacity retention rate reached 97%, while the negative electrode using the traditional process was cycled for 500 cycles at the same rate, and the capacity retention rate was lower than 80%.
  • Example 2-7 The difference between Examples 2-7 and Example 1 is that different carbon-based active materials are used, and others are the same.
  • the carbon-based active materials used are respectively: artificial graphite, soft carbon, hard carbon, MCMB, coke, and graphene.
  • the half-cell electrochemical performance test was carried out on the negative electrode of Example 2-7 under the condition of 0.2 C rate, and compared with Example 1. The test results are shown in Table 1 below.
  • Example carbon active material Cycle performance Capacity retention rate (%) 1 natural graphite 2000 97 2 artificial graphite 2000 96 3 soft carbon 2000 92 4 hard carbon 2000 98 5 MCMB 2000 99 6 coke 2000 90 7 Graphene 2000 98
  • Example 8-16 The difference between Examples 8-16 and Example 1 is that the thickness of the aluminum active material as the alloying active material layer is different, and the others are the same.
  • the thicknesses of the aluminum active material as the alloying active material layer are: 50 nm, 200 nm, 500 nm, 700 nm, 2 ⁇ m, 3 ⁇ m, 3 ⁇ m, 5 ⁇ m, 6 ⁇ m, half-cell electrochemical performance test was carried out on the negative electrode of Example 8-16, the rate condition was 0.2 C, and compared with Example 1 , the test results are shown in Table 2 below.
  • Example Alloyed active material layer thickness Cycle performance Capacity retention rate (%) 1 1 ⁇ m 2000 97 8 50nm 2500 98 9 200nm 2500 96 10 500 nm 2500 93 11 700nm 2000 95 12 2 ⁇ m 2000 93 13 3 ⁇ m 1500 98 14 4 ⁇ m 1500 97 15 5 ⁇ m 1000 98 16 6 ⁇ m 1000 91
  • the alloyed active material layer is 50 nm-2 ⁇ m, and the cycle stability is better.
  • Example 17-30 The difference between Examples 17-30 and Example 1 is that the alloyed active material is different, and the others are the same. Alloying active materials are silicon, germanium, tin, lead, aluminum, antimony, bismuth, zinc, aluminum-copper alloy, copper-tin alloy, aluminum-tin alloy, aluminum-silicon alloy, aluminum-magnesium alloy, tin - Nickel alloy, tin-cobalt-nickel alloy, tin-nickel-carbon alloy, half-cell electrochemical performance test was carried out on the negative electrode of Example 17-30, and the test rate condition was 0.2 C, and compared with Example 1, the test results are shown in Table 3 below.
  • Example Alloyed active material Cycle performance Capacity retention rate (%) 1 aluminum 2000 97 17 silicon 2000 95 18 germanium 2000 89 19 tin 2000 87 20 lead 1500 95 twenty one antimony 1500 90 twenty two bismuth 2000 96 twenty three Zinc 2000 98 twenty four Aluminum-copper alloy 2000 93 25 Copper-tin alloy 2000 95 26 Aluminum-tin alloy 2000 95 27 Aluminum-Silicon Alloy 2000 98 28 Aluminum-magnesium alloy 1500 95 29 Tin-nickel alloy 1500 90 30 Tin-Cobalt-Nickel Alloy 1500 94
  • Example 31-36 The difference between Examples 31-36 and Example 1 is that different shell layers are used, and others are the same.
  • the shell layer materials used are: ZrO 2 , TiN, TiAlN, LiPON, LLZTO, LAGP, Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , the preparation technology of the outer shell layer is prepared by the vapor deposition technology, and the half-cell electrochemical performance test is carried out on the negative electrodes of Examples 31-36 under the condition of 0.2 C rate, and the same as that of Example 1. For comparison, the test results are shown in Table 4 below.
  • Positive electrode preparation The positive electrode active material, conductive carbon black and polyvinylidene fluoride (PVDF) are mixed uniformly according to the mass ratio of 8:1:1, and then N-methylpyrrolidone (NMP) solvent is added for thorough stirring to obtain Then, the slurry was uniformly coated on the surface of the carbon-coated aluminum foil, and then put into a vacuum oven for drying treatment, the baking temperature was 80 °C, and the baking time was 48 h.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Example Anode active material Positive active material Cycling performance (laps) Capacity retention rate (%) 39 natural graphite/aluminum/carbon Lithium Iron Phosphate 2000 99.9 40 natural graphite/aluminum/carbon Lithium cobaltate 2000 98.2 41 natural graphite/aluminum/carbon Ternary positive electrode (111) 2000 97.5 42 natural graphite/aluminum/carbon Ternary positive electrode (532) 2000 96.2 43 natural graphite/aluminum/carbon Ternary positive electrode (622) 2000 92.7 44 natural graphite/aluminum/carbon Ternary positive electrode (811) 2000 91.9 45 Artificial graphite/aluminum/carbon Lithium Iron Phosphate 2000 99.8 46 Artificial graphite/aluminum/carbon Lithium cobaltate 2000 99.1 47 Artificial graphite/aluminum/carbon Ternary positive electrode (111) 2000 98.8 48 Artificial graphite/aluminum/carbon Ternary positive electrode (532)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开一种复合材料及其制备方法和负极。该复合材料包括碳类活性物质核和包覆在所述碳类活性物质核表面的合金化类活性物质层和外壳层,所述合金化类活性物质层位于所述碳类活性物质核和所述外壳层之间。该复合材料可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而且可以隔绝电解液,减少副反应,因此这样特有结构的复合材料用于锂离子电池的负极活性材料可以显著提高其循环稳定性能。

Description

复合材料及其制备方法和负极 技术领域
本申请涉及电池材料技术领域,具体涉及一种复合材料及其制备方法和负极。
背景技术
锂离子电池由于良好的电化学性能,已广泛应用于各种消费类电子器件、电动工具、电动汽车、储能等领域。然而,当前商用锂离子电池多采用石墨作为负极材料,石墨理论容量有限(372 mAh g -1),难以满足高能量密度、长续航时间的性能要求。因此,开发具有高容量的新型负极材料成为锂离子电池的重要研究方向。合金化类负极材料,如硅、锗、铝、锡、锑、锌等具有高理论容量,作为高容量柔性负极材料具有良好的应用前景。然而,纯的合金化类负极在合金化反应时有大的体积膨胀(如硅负极~300%),严重影响了电池的循环稳定性。通过在石墨负极材料中添加适量的合金化类负极材料制备出复合负极材料,一方面可以提高石墨负极的容量,同时可以一定程度减少合金化类负极的体积膨胀,具有良好发展前景。
但是,具有微米及纳米尺度的合金化类负极材料颗粒在与石墨等碳类颗粒进行混合过程中容易发生团聚,难以实现均匀分散,从而使合金化类负极材料颗粒产生局部堆积,而在合金化反应过程中,合金化类颗粒局部堆积的区域体积膨胀严重,造成应力集中,从而使活性材料剥落、甚至造成集流体开裂,严重影响电池循环性能。
因此,现有技术有待改进。
技术问题
本申请实施例的目的之一在于:提供一种复合材料及其制备方法,旨在解决现有碳类活性物质和合金化类活性物质混合分散性差的技术问题。
本申请实施例的另一目的在于提供一种负极,旨在解决现有负极中的碳类活性物质和合金化类活性物质混合分散性差,从而影响循环性能的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种复合材料,包括碳类活性物质核和包覆在所述碳类活性物质核表面的合金化类活性物质层和外壳层,所述合金化类活性物质层位于所述碳类活性物质核和所述外壳层之间。
第二方面,提供了一种复合材料的制备方法,包括以下步骤:
提供碳类活性物质核;
在所述碳类活性物质核表面制备合金化类活性物质层;
在所述合金化类活性物质层表面制备外壳层。
第三方面,提供一种负极,包括集流体及覆于所述集流体上的负极活性层,所述负极活性层包括负极活性材料、导电剂和粘结剂,所述负极活性材料为本申请所述的复合材料或本申请所述的复合材料的制备方法得到的复合材料。
有益效果
本申请实施例提供的复合材料的有益效果在于:复合材料包括三层材料,即位于核心的碳类活性物质核、位于中间的合金化类活性物质层和位于外表面的外壳层,这样特有结构的复合材料可以用于负极活性材料;碳类活性物质核和合金化类活性物质层的材料均属于活性物质,而将合金化类活性物质层包覆在碳类活性物质核表面,不仅可以利用两者的活性性能,同时还可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而外壳层不仅起到对合金化类活性物质层和碳类活性物质核的机械保护作用,还可以使其可以隔绝电解液,减少副反应,因此这样特有结构的复合材料用于锂离子电池的负极活性材料可以显著提高其循环稳定性能。
本申请实施例提供的负极的有益效果在于:负极中的负极活性材料为本申请特有的复合材料或本申请复合材料的制备方法得到的特有复合材料,该复合材料可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而且可以隔绝电解液,减少副反应,因此这样特有结构的复合材料制备成电极可以显著提高锂离子电池的循环稳定性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例的复合材料的结构示意图;
图2是本申请实施例的复合材料制成的负极与传统机械混合工艺将天然石墨与铝粉颗粒进行混合制备的负极的SEM对比图;
图3是本申请实施例的复合材料制成的负极与传统机械混合工艺将天然石墨与铝粉颗粒进行混合制备的负极的循环性能对比图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请一些实施例提供了一种复合材料,如图1所示,该复合材料包括碳类活性物质核1和包覆在所述碳类活性物质核1表面的合金化类活性物质层2和外壳层3,所述合金化类活性物质层2位于所述碳类活性物质核1和所述外壳层3之间。
本申请实施例提供的复合材料包括三层材料,即位于核心的碳类活性物质核、位于中间的合金化类活性物质层和位于外表面的外壳层,这样特有结构的复合材料可以用于负极活性材料;碳类活性物质核和合金化类活性物质层的材料均属于活性物质,而将合金化类活性物质层包覆在碳类活性物质核表面,不仅可以利用两者的活性性能,同时还可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而外壳层不仅起到对合金化类活性物质层和碳类活性物质核的机械保护作用,还可以使其可以隔绝电解液,减少副反应,因此这样特有结构的复合材料用于锂离子电池的负极活性材料可以显著提高其循环稳定性能。
在一个实施例中,所述碳类活性物质核的碳类活性物质材料包括石墨类活性物质和非石墨类活性物质中的至少一种。其中石墨类活性物质包括但不限于天然石墨和人造石墨等中的一种或多种组合,非石墨类活性物质包括但不限于软碳、硬碳、焦炭、中间相炭微珠(MCMB)、碳纳米管、石墨烯和活性碳等中的一种或多种组合。具体地,上述碳类活性物质材料组成的碳类活性物质核的粒径为微米级或纳米级,如10-100nm,或0.1-100μm等。
在一个实施例中,所述合金化类活性物质层的合金化类活性物质材料包括铝、硅、锗、锡、铅、锑、铋、锌、铝铜合金、铜锡合金、铝锡合金、铝硅合金、铝镁合金、锡镍合金和锡钴镍合金中的至少一种。具体地,上述合金化类活性物质材料组成的所述合金化类活性物质层的厚度为50nm-10μm。
本申请实施例所述的复合材料包括碳类活性物质材料和合金化类活性物质材料两种活性物质,其中核心为碳类活性物质材料、中间层合金化类活性物质层为合金化类活性物质材料,将上述合金化类活性物质材料包覆在碳类活性物质材料表面,一方面可以提高该复合材料用作负极时的容量,同时还可以减少合金化类负极的体积膨胀,更重要的是合金化类活性物质材料与碳类活性物质材料可以高度均匀分布,从而避免了因分散不均导致的应力集中缺陷,这样可有效提高复合材料用作负极材料的循环稳定性。
在一个实施例中,所述外壳层的外壳材料包括碳、二氧化锆(ZrO 2)、氮化钛(TiN)、氮化铝钛(TiAlN)、锂磷氧氮(LiPON)、钽掺杂锂镧锆氧(LLZTO)、锂铝锗磷(LAGP)、磷酸锂-五硫化二磷(Li 3PO 4-P 2S 5)和硫化锂-五硫化二磷(Li 2S-P 2S 5)中的至少一种;或者,所述外壳层为碳类材料包覆层、氧化物包覆层、氮化物包覆层和固态电解质包覆层中的至少一种。氧化物包覆层的材料可以是二氧化锆,氮化物包覆层的材料可以是氮化钛或氮化铝钛,而固态电解质包覆层的材料可以是锂磷氧氮、钽掺杂锂镧锆氧、锂铝锗磷、磷酸锂-五硫化二磷和硫化锂-五硫化二磷。外壳层作为一表面保护层,一方面对复合材料内部的活性物质起到机械保护作用,另一方面可以隔绝电解液,减少副反应。具体地,外壳层的厚度为10 nm-200nm。
另一方面,本申请实施例还提供了一种复合材料的制备方法,包括如下步骤:
S01:提供碳类活性物质核;
S02:在所述碳类活性物质核表面制备合金化类活性物质层;
S03:在所述合金化类活性物质层表面制备外壳层。
本申请实施例提供的复合材料的制备方法,制备成三层材料组成的复合材料,即位于核心的碳类活性物质核、位于中间的合金化类活性物质层和位于外表面的外壳层,这样特有结构的复合材料可以用于负极活性材料;该制备方法得到的复合材料不仅可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而且外壳层可以起到对合金化类活性物质层和碳类活性物质核的机械保护作用,使其可以隔绝电解液,减少副反应,因此这样特有结构的复合材料用于锂离子电池的负极活性材料可以显著提高其循环稳定性能。
步骤S01中,碳类活性物质核可以是为颗粒状的碳类活性物质材料,可以是纳米级或微米级,具体种类见上文阐述内容。
步骤S02中,在所述碳类活性物质核表面制备所述合金化类活性物质层的步骤包括:采用包括但不限于气相沉积法、电镀法、化学镀法、水热合成法、微波合成法、电泳沉积法和球磨法中的任意一种,将合金化类活性物质材料包覆在所述碳类活性物质核表面得到所述合金化类活性物质层。其中气相沉积法可以是物理气相沉积、化学气相沉积等。而合金化类活性物质材料的种类见上文阐述内容。
步骤S03中,在所述合金化类活性物质层表面制备所述外壳层的步骤包括:采用包括但不限于气相沉积法或烧结法在所述合金化类活性物质层表面形成所述外壳层。外壳层的外壳材料见上文阐述内容。
最后,本申请实施例还提供一种负极,包括集流体及覆于所述集流体上的负极活性层,所述负极活性层包括负极活性材料、导电剂和粘结剂,所述负极活性材料为本申请实施例所述的复合材料或本申请实施例所述的复合材料的制备方法得到的复合材料。
本申请实施例提供的负极中的负极活性材料为本申请实施例特有的复合材料或本申请实施例复合材料的制备方法得到的特有复合材料,该复合材料可以实现不同活性物质相的高度均匀分散,从而有效缓解应力集中,而且可以隔绝电解液,减少副反应,因此这样特有结构的复合材料制备成电极可以显著提高锂离子电池的循环稳定性能。
所述负极包括集流体和设置在所述集流体表面的负极活性层,集流体可以是铜箔、铝箔、合金箔等。负极活性层包括负极活性物质、导电剂和粘结剂。可以通过配制含有上述负极活性物质、导电剂和粘结剂的负极活性浆料,然后均匀涂覆在上述集流体上,通过混料、打浆、涂布、辊压等工序在集流体表面进行均匀涂覆,并通过烘干得到负极片。其中,粘结剂可以是羧基丁苯乳胶(SBR)、羧甲基纤维素钠(CMC)、聚四氟乙烯(PTFE)、聚丙烯酸(PAA),导电剂可以是炭黑、碳纳米管、SP,负极活性浆料的溶剂可以是去离子水或N-甲基吡咯烷酮。
本申请先后进行过多次试验,现举一部分试验结果作为参考对申请进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
本实施例提供一种复合材料:采用天然石墨作为碳类活性物质核,采用铝作为合金化类活性物质层,采用碳材料作为外壳层,其中天然石墨的D50为12 μm,合金化类活性物质层厚度为1 μm,外壳层厚度为100 nm,其中铝的质量百分比为40%;将该复合材料作为负极活性材料制备成负极,具体的制备过程如下:
(1)以天然石墨颗粒为基底材料,以纯铝为溅射靶材,采用磁控溅射技术在石墨颗粒表面沉积铝活性物质,得到合金化类活性物质层,且控制膜层厚度约为3 μm。
(2)以蔗糖溶液为前驱体,采用高温碳化技术在上述制备的沉积有铝活性物质的合金化类活性物质层的石墨颗粒表面包覆碳层即为外壳层,通过控制前驱体溶液浓度及碳化处理时间,控制外壳层厚度为100 nm,得到天然石墨/硅/碳复合材料即为负极活性材料。
(3)在步骤(2)中获得的负极材料中加入导电剂和粘结剂,质量比为负极材料:导电剂:粘结剂=8:1:1,其中导电剂为导电炭黑、粘结剂为PVDF,混合均匀后加入N-甲基吡咯烷酮(NMP)溶剂进行充分搅拌获得浆料,然后将所述浆料均匀涂覆在铜箔表面,之后放入真空烘箱进行干燥处理,烘烤温度为80℃,烘烤时间为48 h,得到负极。
采用传统机械混合工艺将天然石墨与铝粉颗粒进行混合制备复合电极,其中铝活性物质的质量百分比与上述实施例1三层结构设计的一致,控制为40%。将传统工艺复合负极与本实施例具有三层结构设计的负极的混合均匀性及电化学性能进行对比:两种负极的扫描电子显微形貌像如图2所示,其中传统工艺复合负极分散不均匀,出现了铝粉颗粒的团聚现象(图2a所示),而本实施例具有三层结构设计的负极,天然石墨和铝两种物相呈现出高度均匀分散的特性(图2b所示)。
以锂金属片为对电极,以EC : DEC(体积比1:1)为电解液组装半电池,并进行电化学性能测试,测试结果如图3所示,本实施例具有三层结构设计的负极活性材料制成的负极在0.2 C的倍率条件下循环2000圈,容量保持率达到97%,而采用传统工艺的负极在相同倍率条件下循环500圈,容量保持率低于80%。
基于不同碳类活性物质材料的负极
实施例 2-7
实施例2-7与实施例1不同的是采用不同碳类活性物质,其他均相同,所采用的碳活类性物质,分别为:人造石墨、软碳、硬碳、MCMB、焦炭、石墨烯,对实施例2-7的负极在0.2 C倍率条件下进行半电池电化学性能测试,并与实施例1进行比较,测试结果如下表1所示。
表1
实施例 碳活性物质 循环性能 容量保持率(%)
1 天然石墨 2000 97
2 人造石墨 2000 96
3 软碳 2000 92
4 硬碳 2000 98
5 MCMB 2000 99
6 焦炭 2000 90
7 石墨烯 2000 98
从表1可知:不同碳活性物质制备的负极,均具有很好的循环稳定性和容量保持率,而MCMB制备的负极容量保持率最高。
基于不同厚度的合金化类活性物质层的负极
实施例8-16与实施例1不同的是铝活性物质作为合金化类活性物质层厚度不同,其他均相同,铝活性物质作为合金化类活性物质层的厚度分别为:50 nm、200 nm、500 nm、700 nm、2 μm、3 μm、3 μm、5 μm、6 μm,对实施例8-16的负极进行半电池电化学性能测试,倍率条件为0.2 C,并与实施例1进行比较,测试结果如下表2所示。
表2
实施例 合金化类活性物质层厚度 循环性能 容量保持率(%)
1 1 μm 2000 97
8 50 nm 2500 98
9 200 nm 2500 96
10 500 nm 2500 93
11 700 nm 2000 95
12 2 μm 2000 93
13 3 μm 1500 98
14 4 μm 1500 97
15 5 μm 1000 98
16 6 μm 1000 91
从表2可知:合金化类活性物质层在50 nm-2 μm,循环稳定性更佳。
基于不同合金化类活性物质的负极
实施例17-30与实施例1不同的是合金化类活性物质材料不同,其他均相同。合金化类活性物质材料分别为硅、锗、锡、铅、铝、锑、铋、锌、铝-铜合金、铜-锡合金、铝-锡合金、铝-硅合金、铝-镁合金、锡-镍合金、锡-钴-镍合金、锡-镍-碳合金,对实施例17-30的负极进行半电池电化学性能测试,测试倍率条件为0.2 C,并与实施例1进行比较,测试结果如下表3所示。
表3
实施例 合金化类活性物质材料 循环性能 容量保持率(%)
1 2000 97
17 2000 95
18 2000 89
19 2000 87
20 1500 95
21 1500 90
22 2000 96
23 2000 98
24 铝-铜合金 2000 93
25 铜-锡合金 2000 95
26 铝-锡合金 2000 95
27 铝-硅合金 2000 98
28 铝-镁合金 1500 95
29 锡-镍合金 1500 90
30 锡-钴-镍合金 1500 94
从表3可知:不同合金化类活性物质材料制备的负极,均具有很好的循环稳定性和容量保持率。
基于不同外壳层的负极
实施例31-36与实施例1不同的是采用不同外壳层,其他均相同,所采用的外壳层材料分别为:ZrO 2、TiN、TiAlN、LiPON、LLZTO、LAGP、Li 3PO 4-P 2S 5、Li 2S-P 2S 5,外壳层的制备技术采用气相沉积技术进行制备,对实施例31-36的负极在0.2 C倍率条件下进行半电池电化学性能测试,并与实施例1进行比较,测试结果如下表4所示。
表4
实施例 不同的外壳层 外壳层厚度(nm) 循环性能 容量保持率(%)
1 100 2000 97
31 ZrO2 15 2000 95
32 TiN 10 2000 93
33 TiAlN 10 2000 95
34 LiPON 50 2000 99
35 LLZTO 50 2000 98
36 LAGP 60 2000 98
37 Li3PO4-P2S5 30 2000 99
38 Li2S-P2S5 45 2000 96
从表4可知:不同外壳层制备的负极,均具有很好的循环稳定性和容量保持率。
基于具有三层结构的负极活性材料的全电池
采用本申请实施例制备的各类负极构筑全电池,其中正极活性材料分别为:磷酸铁锂、钴酸锂、三元正极(111、532、622、811)。具体制备步骤如下:
(1)具有三层结构复合材料制备负极:具体步骤参见上述实施例1-38。
(2)电解液配置:具体步骤同本申请实施例1。
(3)正极制备:将正极活性材料、导电炭黑和聚偏氟乙烯(PVDF)按照8:1:1的质量配比混合均匀,然后加入N-甲基吡咯烷酮(NMP)溶剂进行充分搅拌获得浆料,然后将所述浆料均匀涂覆在涂碳铝箔表面,之后放入真空烘箱进行干燥处理,烘烤温度为80℃,烘烤时间为48 h。
(4)全电池组装。
对本实施例制备的基于具有三层结构复合材料的负极的全电池进行循环及倍率性能测试,测试结果如表5所示。
表5
实施例 负极活性材料 正极活性材料 循环性能(圈) 容量保持率(%)
39 天然石墨/铝/碳 磷酸铁锂 2000 99.9
40 天然石墨/铝/碳 钴酸锂 2000 98.2
41 天然石墨/铝/碳 三元正极(111) 2000 97.5
42 天然石墨/铝/碳 三元正极(532) 2000 96.2
43 天然石墨/铝/碳 三元正极(622) 2000 92.7
44 天然石墨/铝/碳 三元正极(811) 2000 91.9
45 人造石墨/铝/碳 磷酸铁锂 2000 99.8
46 人造石墨/铝/碳 钴酸锂 2000 99.1
47 人造石墨/铝/碳 三元正极(111) 2000 98.8
48 人造石墨/铝/碳 三元正极(532) 2000 97.9
49 人造石墨/铝/碳 三元正极(622) 2000 97.3
50 人造石墨/铝/碳 三元正极(811) 2000 90.1
51 软碳/铝/碳 磷酸铁锂 2000 98.4
52 软碳/铝/碳 钴酸锂 2000 97.9
53 软碳/铝/碳 三元正极(111) 2000 96.7
54 软碳/铝/碳 三元正极(532) 2000 95.2
55 软碳/铝/碳 三元正极(622) 2000 93.7
56 软碳/铝/碳 三元正极(811) 2000 93.3
57 硬碳/铝/碳 磷酸铁锂 2000 99.6
58 硬碳/铝/碳 钴酸锂 2000 95.5
59 硬碳/铝/碳 三元正极(111) 2000 95.4
60 硬碳/铝/碳 三元正极(532) 2000 93.7
61 硬碳/铝/碳 三元正极(622) 2000 93.3
62 硬碳/铝/碳 三元正极(811) 2000 90.7
63 MCMB/铝/碳 磷酸铁锂 2000 98.8
64 MCMB/铝/碳 钴酸锂 2000 96.6
65 MCMB/铝/碳 三元正极(111) 2000 94.6
66 MCMB/铝/碳 三元正极(532) 2000 92.5
67 MCMB/铝/碳 三元正极(622) 2000 92.2
68 MCMB/铝/碳 三元正极(811) 2000 90.4
69 焦炭/铝/碳 磷酸铁锂 2000 95.4
70 焦炭/铝/碳 钴酸锂 2000 95.1
71 焦炭/铝/碳 三元正极(111) 2000 94.9
72 焦炭/铝/碳 三元正极(532) 2000 94.4
73 焦炭/铝/碳 三元正极(622) 2000 94.2
74 焦炭/铝/碳 三元正极(811) 2000 91.6
75 石墨烯/铝/碳 磷酸铁锂 2000 99.8
76 石墨烯/铝/碳 钴酸锂 2000 94.7
77 石墨烯/铝/碳 三元正极(111) 2000 93.4
78 石墨烯/铝/碳 三元正极(532) 2000 93.0
79 石墨烯/铝/碳 三元正极(622) 2000 91.8
80 石墨烯/铝/碳 三元正极(811) 2000 90.8
81 天然石墨/硅/碳 磷酸铁锂 2000 99.2
82 天然石墨/硅/碳 钴酸锂 2000 99.0
83 天然石墨/硅/碳 三元正极(111) 2000 98.7
84 天然石墨/硅/碳 三元正极(532) 2000 93.3
85 天然石墨/硅/碳 三元正极(622) 2000 92.5
86 天然石墨/硅/碳 三元正极(811) 2000 91.8
87 天然石墨/锗/碳 磷酸铁锂 2000 99.1
88 天然石墨/锗/碳 钴酸锂 2000 97.6
89 天然石墨/锗/碳 三元正极(111) 2000 96.3
90 天然石墨/锗/碳 三元正极(532) 2000 95.9
91 天然石墨/锗/碳 三元正极(622) 2000 95.1
92 天然石墨/锗/碳 三元正极(811) 2000 94.0
93 天然石墨/锡/碳 磷酸铁锂 2000 99.6
94 天然石墨/锡/碳 钴酸锂 2000 97.0
95 天然石墨/锡/碳 三元正极(111) 2000 92.7
96 天然石墨/锡/碳 三元正极(532) 2000 92.3
97 天然石墨/锡/碳 三元正极(622) 2000 91.0
98 天然石墨/锡/碳 三元正极(811) 2000 90.2
99 天然石墨/铅/碳 磷酸铁锂 2000 96.7
100 天然石墨/铅/碳 钴酸锂 2000 95.4
101 天然石墨/铅/碳 三元正极(111) 2000 94.3
102 天然石墨/铅/碳 三元正极(532) 2000 93.4
103 天然石墨/铅/碳 三元正极(622) 2000 92.1
104 天然石墨/铅/碳 三元正极(811) 2000 90.5
105 天然石墨/锑/碳 磷酸铁锂 2000 96.5
106 天然石墨/锑/碳 钴酸锂 2000 96.4
107 天然石墨/锑/碳 三元正极(111) 2000 94.6
108 天然石墨/锑/碳 三元正极(532) 2000 91.3
109 天然石墨/锑/碳 三元正极(622) 2000 90.3
110 天然石墨/锑/碳 三元正极(811) 2000 90.2
111 天然石墨/铋/碳 磷酸铁锂 2000 97.1
112 天然石墨/铋/碳 钴酸锂 2000 95.9
113 天然石墨/铋/碳 三元正极(111) 2000 94.2
114 天然石墨/铋/碳 三元正极(532) 2000 93.5
115 天然石墨/铋/碳 三元正极(622) 2000 90.6
116 天然石墨/铋/碳 三元正极(811) 2000 90.2
117 天然石墨/锌/碳 磷酸铁锂 2000 99.2
118 天然石墨/锌/碳 钴酸锂 2000 98.0
119 天然石墨/锌/碳 三元正极(111) 2000 97.9
120 天然石墨/锌/碳 三元正极(532) 2000 96.7
121 天然石墨/锌/碳 三元正极(622) 2000 94.8
122 天然石墨/锌/碳 三元正极(811) 2000 90.7
123 天然石墨/铝-铜/碳 磷酸铁锂 2000 98.2
124 天然石墨/铝-铜/碳 钴酸锂 2000 94.3
125 天然石墨/铝-铜/碳 三元正极(111) 2000 93.9
126 天然石墨/铝-铜/碳 三元正极(532) 2000 93.5
127 天然石墨/铝-铜/碳 三元正极(622) 2000 93.1
128 天然石墨/铝-铜/碳 三元正极(811) 2000 91.2
129 天然石墨/铜-锡/碳 磷酸铁锂 2000 98.4
130 天然石墨/铜-锡/碳 钴酸锂 2000 98.2
131 天然石墨/铜-锡/碳 三元正极(111) 2000 95.6
132 天然石墨/铜-锡/碳 三元正极(532) 2000 93.7
133 天然石墨/铜-锡/碳 三元正极(622) 2000 93.6
134 天然石墨/铜-锡/碳 三元正极(811) 2000 90.2
135 天然石墨/铝-锡/碳 磷酸铁锂 2000 99.7
136 天然石墨/铝-锡/碳 钴酸锂 2000 94.6
137 天然石墨/铝-锡/碳 三元正极(111) 2000 92.3
138 天然石墨/铝-锡/碳 三元正极(532) 2000 92.1
139 天然石墨/铝-锡/碳 三元正极(622) 2000 91.5
140 天然石墨/铝-锡/碳 三元正极(811) 2000 90.1
141 天然石墨/铝-硅/碳 磷酸铁锂 2000 96.6
142 天然石墨/铝-硅/碳 钴酸锂 2000 95.6
143 天然石墨/铝-硅/碳 三元正极(111) 2000 93.7
144 天然石墨/铝-硅/碳 三元正极(532) 2000 93.0
145 天然石墨/铝-硅/碳 三元正极(622) 2000 91.7
146 天然石墨/铝-硅/碳 三元正极(811) 2000 91.1
147 天然石墨/铝-镁/碳 磷酸铁锂 2000 99.7
148 天然石墨/铝-镁/碳 钴酸锂 2000 98.3
149 天然石墨/铝-镁/碳 三元正极(111) 2000 95.9
150 天然石墨/铝-镁/碳 三元正极(532) 2000 95.4
151 天然石墨/铝-镁/碳 三元正极(622) 2000 94.5
152 天然石墨/铝-镁/碳 三元正极(811) 2000 92.5
153 天然石墨/锡-镍/碳 磷酸铁锂 2000 99.1
154 天然石墨/锡-镍/碳 钴酸锂 2000 96.0
155 天然石墨/锡-镍/碳 三元正极(111) 2000 95.8
156 天然石墨/锡-镍/碳 三元正极(532) 2000 94.3
157 天然石墨/锡-镍/碳 三元正极(622) 2000 93.7
158 天然石墨/锡-镍/碳 三元正极(811) 2000 93.1
159 天然石墨/锡-钴-镍/碳 磷酸铁锂 2000 98.4
160 天然石墨/锡-钴-镍/碳 钴酸锂 2000 97.4
161 天然石墨/锡-钴-镍/碳 三元正极(111) 2000 96.6
162 天然石墨/锡-钴-镍/碳 三元正极(532) 2000 94.1
163 天然石墨/锡-钴-镍/碳 三元正极(622) 2000 93.8
164 天然石墨/锡-钴-镍/碳 三元正极(811) 2000 91.0
165 天然石墨/铝/ ZrO2 磷酸铁锂 2000 98.3
166 天然石墨/铝/ ZrO2 钴酸锂 2000 98.0
167 天然石墨/铝/ ZrO2 三元正极(111) 2000 97.5
168 天然石墨/铝/ ZrO2 三元正极(532) 2000 97.1
169 天然石墨/铝/ ZrO2 三元正极(622) 2000 94.7
170 天然石墨/铝/ ZrO2 三元正极(811) 2000 91.7
171 天然石墨/铝/ TiN 磷酸铁锂 2000 99.5
172 天然石墨/铝/ TiN 钴酸锂 2000 98.9
173 天然石墨/铝/ TiN 三元正极(111) 2000 98.1
174 天然石墨/铝/ TiN 三元正极(532) 2000 97.7
175 天然石墨/铝/ TiN 三元正极(622) 2000 93.6
176 天然石墨/铝/ TiN 三元正极(811) 2000 92.9
177 天然石墨/铝/ TiAlN 磷酸铁锂 2000 99.4
178 天然石墨/铝/ TiAlN 钴酸锂 2000 94.3
179 天然石墨/铝/ TiAlN 三元正极(111) 2000 93.6
180 天然石墨/铝/ TiAlN 三元正极(532) 2000 93.5
181 天然石墨/铝/ TiAlN 三元正极(622) 2000 93.3
182 天然石墨/铝/ TiAlN 三元正极(811) 2000 91.4
183 天然石墨/铝/ LiPON 磷酸铁锂 2000 97.4
184 天然石墨/铝/ LiPON 钴酸锂 2000 96.5
185 天然石墨/铝/ LiPON 三元正极(111) 2000 94.4
186 天然石墨/铝/ LiPON 三元正极(532) 2000 93.8
187 天然石墨/铝/ LiPON 三元正极(622) 2000 93.0
188 天然石墨/铝/ LiPON 三元正极(811) 2000 92.1
189 天然石墨/铝/ LLZTO 磷酸铁锂 2000 99.9
190 天然石墨/铝/ LLZTO 钴酸锂 2000 99.7
191 天然石墨/铝/ LLZTO 三元正极(111) 2000 99.3
192 天然石墨/铝/ LLZTO 三元正极(532) 2000 94.1
193 天然石墨/铝/ LLZTO 三元正极(622) 2000 93.7
194 天然石墨/铝/ LLZTO 三元正极(811) 2000 90.6
195 天然石墨/铝/ LAGP 磷酸铁锂 2000 98.0
196 天然石墨/铝/ LAGP 钴酸锂 2000 97.6
197 天然石墨/铝/ LAGP 三元正极(111) 2000 96.0
198 天然石墨/铝/ LAGP 三元正极(532) 2000 94.4
199 天然石墨/铝/ LAGP 三元正极(622) 2000 93.3
200 天然石墨/铝/ LAGP 三元正极(811) 2000 90.2
201 天然石墨/铝/ Li3PO4-P2S5 磷酸铁锂 2000 98.1
202 天然石墨/铝/ Li3PO4-P2S5 钴酸锂 2000 95.9
203 天然石墨/铝/ Li3PO4-P2S5 三元正极(111) 2000 95.0
204 天然石墨/铝/ Li3PO4-P2S5 三元正极(532) 2000 94.0
205 天然石墨/铝/ Li3PO4-P2S5 三元正极(622) 2000 93.6
206 天然石墨/铝/ Li3PO4-P2S5 三元正极(811) 2000 91.5
207 天然石墨/铝/ Li2S-P2S5 磷酸铁锂 2000 98.0
208 天然石墨/铝/ Li2S-P2S5 钴酸锂 2000 97.5
209 天然石墨/铝/ Li2S-P2S5 三元正极(111) 2000 95.9
210 天然石墨/铝/ Li2S-P2S5 三元正极(532) 2000 95.1
211 天然石墨/铝/ Li2S-P2S5 三元正极(622) 2000 93.7
212 天然石墨/铝/ Li2S-P2S5 三元正极(811) 2000 93.0
由上表5可知:本申请实施例基于具有三层结构的负极活性材料的全电池具有很好的循环稳定性和容量保持率。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种复合材料,其特征在于,包括碳类活性物质核和包覆在所述碳类活性物质核表面的合金化类活性物质层和外壳层,所述合金化类活性物质层位于所述碳类活性物质核和所述外壳层之间。
  2. 如权利要求1所述的复合材料,其特征在于,所述碳类活性物质核的碳类活性物质材料包括石墨类活性物质和非石墨类活性物质中的至少一种。
  3. 如权利要求2所述的复合材料,其特征在于,所述石墨类活性物质包括天然石墨和人造石墨中的至少一种。
  4. 如权利要求2所述的复合材料,其特征在于,所述非石墨类活性物质包括软碳、硬碳、焦炭、中间相炭微珠、碳纳米管、石墨烯和活性碳中的至少一种。
  5. 如权利要求1所述的复合材料,其特征在于,所述合金化类活性物质层的合金化类活性物质材料包括铝、硅、锗、锡、铅、锑、铋、锌、铝铜合金、铜锡合金、铝锡合金、铝硅合金、铝镁合金、锡镍合金和锡钴镍合金中的至少一种。
  6. 如权利要求1所述的复合材料,其特征在于,所述外壳层的外壳材料包括碳、二氧化锆、氮化钛、氮化铝钛、锂磷氧氮、钽掺杂锂镧锆氧、锂铝锗磷、磷酸锂-五硫化二磷和硫化锂-五硫化二磷中的至少一种。
  7. 如权利要求1所述的复合材料,其特征在于,所述外壳层为碳类材料包覆层、氧化物包覆层、氮化物包覆层和固态电解质包覆层中的至少一种。
  8. 如权利要求1所述的复合材料,其特征在于,所述碳类活性物质核的粒径为微米级或纳米级。
  9. 如权利要求1所述的复合材料,其特征在于,所述合金化类活性物质层的厚度为50nm-10μm;和/或,
  10. 如权利要求1所述的复合材料,其特征在于,所述外壳层的厚度为10 nm-200nm。
  11. 一种复合材料的制备方法,其特征在于,包括如下步骤:
    提供碳类活性物质核;
    在所述碳类活性物质核表面制备合金化类活性物质层;
    在所述合金化类活性物质层表面制备外壳层。
  12. 如权利要求11所述的复合材料的制备方法,其特征在于,在所述碳类活性物质核表面制备合金化类活性物质层的步骤包括:采用气相沉积法、电镀法、化学镀法、水热合成法、微波合成法、电泳沉积法和球磨法中的任意一种,将合金化类活性物质材料包覆在所述碳类活性物质核表面得到所述合金化类活性物质层。
  13. 如权利要求11所述的复合材料的制备方法,其特征在于,在所述合金化类活性物质层表面制备外壳层的步骤包括:采用气相沉积法或烧结法在所述合金化类活性物质层表面形成所述外壳层。
  14. 如权利要求11所述的复合材料的制备方法,其特征在于,所述碳类活性物质核的碳类活性物质材料包括石墨类活性物质和非石墨类活性物质中的至少一种。
  15. 如权利要求14所述的复合材料的制备方法,其特征在于,所述石墨类活性物质包括天然石墨和人造石墨中的至少一种。
  16. 如权利要求14所述的复合材料的制备方法,其特征在于,所述非石墨类活性物质包括软碳、硬碳、焦炭、中间相炭微珠、碳纳米管、石墨烯和活性碳中的至少一种。
  17. 如权利要求11所述的复合材料的制备方法,其特征在于,所述合金化类活性物质层的合金化类活性物质材料包括铝、硅、锗、锡、铅、锑、铋、锌、铝铜合金、铜锡合金、铝锡合金、铝硅合金、铝镁合金、锡镍合金和锡钴镍合金中的至少一种。
  18. 如权利要求11所述的复合材料的制备方法,其特征在于,所述外壳层的外壳材料包括碳、二氧化锆、氮化钛、氮化铝钛、锂磷氧氮、钽掺杂锂镧锆氧、锂铝锗磷、磷酸锂-五硫化二磷和硫化锂-五硫化二磷中的至少一种。
  19. 如权利要求11所述的复合材料的制备方法,其特征在于,所述外壳层为碳类材料包覆层、氧化物包覆层、氮化物包覆层和固态电解质包覆层中的至少一种。
  20. 一种负极,包括集流体及覆于所述集流体上的负极活性层,所述负极活性层包括负极活性材料、导电剂和粘结剂,其特征在于,所述负极活性材料为权利要求1-10任一项所述的复合材料或权利要求11-19任一项所述的复合材料的制备方法得到的复合材料。
PCT/CN2020/103283 2020-07-21 2020-07-21 复合材料及其制备方法和负极 WO2022016374A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103283 WO2022016374A1 (zh) 2020-07-21 2020-07-21 复合材料及其制备方法和负极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103283 WO2022016374A1 (zh) 2020-07-21 2020-07-21 复合材料及其制备方法和负极

Publications (1)

Publication Number Publication Date
WO2022016374A1 true WO2022016374A1 (zh) 2022-01-27

Family

ID=79728402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103283 WO2022016374A1 (zh) 2020-07-21 2020-07-21 复合材料及其制备方法和负极

Country Status (1)

Country Link
WO (1) WO2022016374A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628679A (zh) * 2022-02-22 2022-06-14 银叶元素公司 一种锂离子电池正极材料及其制备方法与应用
CN114644361A (zh) * 2022-05-19 2022-06-21 浙江帕瓦新能源股份有限公司 多层结构的钠离子电池正极材料及其前驱体、以及制备方法
CN114883537A (zh) * 2022-03-31 2022-08-09 格龙新材料科技(常州)有限公司 一种高容量快充负极复合材料及其制备方法
CN115832182A (zh) * 2022-04-24 2023-03-21 宁德时代新能源科技股份有限公司 正极片及其制备方法、电极组件、电池单体、电池和用电设备
CN116023134A (zh) * 2022-12-27 2023-04-28 合肥国轩高科动力能源有限公司 一种锂镧锆氧材料及其制备方法、固态电解质、固态锂离子电池
CN117117161A (zh) * 2023-10-25 2023-11-24 浙江帕瓦新能源股份有限公司 一种改性锂离子电池正极材料及其制备方法、锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479948A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN103107336A (zh) * 2013-01-28 2013-05-15 方大工业技术研究院有限公司 梯度包覆的锂离子电池石墨负极材料及其制备方法
KR20160055758A (ko) * 2016-05-02 2016-05-18 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
CN105680026A (zh) * 2016-04-21 2016-06-15 苏州协鑫集成科技工业应用研究院有限公司 碳复合材料及其制备方法及电池
CN106058228A (zh) * 2016-07-15 2016-10-26 中天储能科技有限公司 一种核壳结构硅碳复合材料及其制备方法与用途
CN107946542A (zh) * 2017-11-28 2018-04-20 孙炳连 锂离子电池负极材料及制备方法、负极和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479948A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN103107336A (zh) * 2013-01-28 2013-05-15 方大工业技术研究院有限公司 梯度包覆的锂离子电池石墨负极材料及其制备方法
CN105680026A (zh) * 2016-04-21 2016-06-15 苏州协鑫集成科技工业应用研究院有限公司 碳复合材料及其制备方法及电池
KR20160055758A (ko) * 2016-05-02 2016-05-18 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
CN106058228A (zh) * 2016-07-15 2016-10-26 中天储能科技有限公司 一种核壳结构硅碳复合材料及其制备方法与用途
CN107946542A (zh) * 2017-11-28 2018-04-20 孙炳连 锂离子电池负极材料及制备方法、负极和锂离子电池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628679A (zh) * 2022-02-22 2022-06-14 银叶元素公司 一种锂离子电池正极材料及其制备方法与应用
CN114883537A (zh) * 2022-03-31 2022-08-09 格龙新材料科技(常州)有限公司 一种高容量快充负极复合材料及其制备方法
CN115832182A (zh) * 2022-04-24 2023-03-21 宁德时代新能源科技股份有限公司 正极片及其制备方法、电极组件、电池单体、电池和用电设备
CN114644361A (zh) * 2022-05-19 2022-06-21 浙江帕瓦新能源股份有限公司 多层结构的钠离子电池正极材料及其前驱体、以及制备方法
CN116023134A (zh) * 2022-12-27 2023-04-28 合肥国轩高科动力能源有限公司 一种锂镧锆氧材料及其制备方法、固态电解质、固态锂离子电池
CN116023134B (zh) * 2022-12-27 2024-01-19 合肥国轩高科动力能源有限公司 一种锂镧锆氧材料及其制备方法、固态电解质、固态锂离子电池
CN117117161A (zh) * 2023-10-25 2023-11-24 浙江帕瓦新能源股份有限公司 一种改性锂离子电池正极材料及其制备方法、锂离子电池
CN117117161B (zh) * 2023-10-25 2024-01-23 浙江帕瓦新能源股份有限公司 一种改性锂离子电池正极材料及其制备方法、锂离子电池

Similar Documents

Publication Publication Date Title
CN111816856B (zh) 复合材料及其制备方法和负极
WO2022016374A1 (zh) 复合材料及其制备方法和负极
CN102479948B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN102479949B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN111900394B (zh) 一种锂离子电池正极材料的包覆结构及其制备方法和用途
CN113594412B (zh) 一种三明治结构的锂电池正极片及锂离子电池
WO2021174689A1 (zh) 一种全固态电池及其制备方法
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN111785946B (zh) 负极活性材料及其制备及应用
CN103904305A (zh) 一种锂离子电池的负极活性材料及其制备方法和一种锂离子电池
US20240154106A1 (en) Negative electrode active material, negative electrode material and battery
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
CN111640919B (zh) 一种高首效硅碳负极材料及其制备方法、锂离子电池
WO2023193562A1 (zh) 负极片及锂离子电池
US20050221186A1 (en) Lithium rechargeable battery
WO2023071912A1 (zh) 补锂添加剂及其制备方法和应用
CN115513424A (zh) 复合电极材料及其制备方法和应用
CN114105133A (zh) 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
US8709648B2 (en) Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
CN117594749B (zh) 一种硅基负极片及其制备方法和应用
CN117039114B (zh) 一种可充电高安全锂电池
CN210136960U (zh) 一种电极极片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946186

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946186

Country of ref document: EP

Kind code of ref document: A1