WO2024011537A1 - 复合集流体及其制备方法和应用 - Google Patents

复合集流体及其制备方法和应用 Download PDF

Info

Publication number
WO2024011537A1
WO2024011537A1 PCT/CN2022/105818 CN2022105818W WO2024011537A1 WO 2024011537 A1 WO2024011537 A1 WO 2024011537A1 CN 2022105818 W CN2022105818 W CN 2022105818W WO 2024011537 A1 WO2024011537 A1 WO 2024011537A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
composite current
polymer film
polymer
preparation
Prior art date
Application number
PCT/CN2022/105818
Other languages
English (en)
French (fr)
Inventor
唐皞
杨开福
刘科
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/105818 priority Critical patent/WO2024011537A1/zh
Publication of WO2024011537A1 publication Critical patent/WO2024011537A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, and specifically to a composite current collector and its preparation method and application.
  • Composite current collector is a new type of current collector material, which is usually made of a polymer substrate layer and a conductive layer plated on both sides of the polymer substrate layer, forming a "sandwich structure".
  • the weight of composite current collectors can be reduced by 50% to 80%.
  • the thickness of the composite current collector is also reduced by 25% to 40% compared to that of pure metal current collectors, which can transfer the space in the battery to the electrode active material.
  • the presence of the polymer substrate layer in the composite current collector can reduce the temperature rise of the battery, reduce the risk of thermal runaway of the battery, and improve the safety of the battery.
  • the tabs of the composite current collector cannot output the current in the current collector cell to the electrode terminals.
  • the tab foil (aluminum foil or copper foil) needs to be The two ends are welded together with the conductive layer of the composite current collector.
  • the welding efficiency is low.
  • tearing easily occurs between the conductive layer and the tab foil, which affects the welding quality.
  • the present invention provides a composite current collector, which includes a polymer film and conductive layers located on both sides of the polymer film.
  • the raw materials for preparing the polymer film include the following components by mass:
  • the first polymer material is 90-100 parts, the inorganic sound-absorbing material is 0.1-2 parts and the interface modifier is 0.005-0.2 parts.
  • the inorganic sound-absorbing material includes metal powder and/or metal nanowires.
  • the inorganic sound-absorbing material is metal powder and metal nanowires with a mass ratio of (5-50):1.
  • the metal powder is selected from one or more of copper powder, aluminum powder and silver powder.
  • the metal nanowires are selected from one or more of silver nanowires, nickel nanowires and platinum nanowires.
  • the conductive layer is a copper metal layer or an aluminum metal layer.
  • the present invention also provides a method for preparing the composite current collector as described above, which includes the following steps:
  • the conductive layer is formed on both sides of the polymer film; wherein the preparation method of the polymer film includes: mixing and extruding the inorganic sound-absorbing material, the interface modifier and the polymer material. out.
  • the polymer material includes a first polymer material and a second polymer material
  • the preparation method of the polymer film is as follows:
  • the masterbatch and the second polymer material are mixed and extruded.
  • the first polymer material and the second polymer material are independently selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polyethylene, One or more of polypropylene, polyamide, polyimide, polyvinyl chloride and polystyrene.
  • the present invention further provides an electrode, which includes the above-mentioned composite current collector and an electrode active material layer located on one or both sides of the composite current collector.
  • the present invention provides a lithium-ion battery, which includes the above-mentioned electrode.
  • an electrical device which includes the above-mentioned lithium-ion battery.
  • the polymer film in the composite current collector provided above contains a specific amount of inorganic sound-absorbing material.
  • Inorganic sound-absorbing materials can resonate under the action of ultrasonic waves, which can quickly melt the polymer film in the contact area of the ultrasonic welding head, allowing the conductive layer of the composite current collector and the tab foil to quickly fuse, improving the welding efficiency. .
  • the tab foil and composite current collector will not be torn during the welding process, which improves the welding quality.
  • the inorganic sound-absorbing material itself is conductive, which can further promote the transmission of current in the composite current collector cell.
  • the resistivity of the above-mentioned composite current collector is low.
  • the present invention provides a composite current collector, which includes a polymer film and conductive layers located on both sides of the polymer film, wherein the raw materials for preparing the polymer film include the following components by mass:
  • the first polymer material is 90-100 parts, the inorganic sound-absorbing material is 0.1-2 parts and the interface modifier is 0.005-0.2 parts.
  • the polymer film in the composite current collector provided above contains a specific amount of inorganic sound-absorbing material.
  • Inorganic sound-absorbing materials can resonate under the action of ultrasonic waves, which can quickly melt the polymer film in the contact area of the ultrasonic welding head, allowing the conductive layer of the composite current collector and the tab foil to quickly fuse, improving the welding efficiency. .
  • the tab foil and composite current collector will not be torn during the welding process, which improves the welding quality.
  • the inorganic sound-absorbing material itself is conductive, which can further promote the transmission of current in the composite current collector cell.
  • the resistivity of the above-mentioned composite current collector is low.
  • inorganic sound absorbing materials may include metal powders and/or metal nanowires.
  • the inorganic sound-absorbing material is metal powder and metal nanowires with a mass ratio of (5-50):1.
  • the metal powder is not limited, for example, including but not limited to one or more of copper powder, aluminum powder and silver powder. Copper powder is preferred.
  • the metal nanowires are not limited.
  • the metal nanowires may be selected from one or more of silver nanowires, nickel nanowires, and platinum nanowires. Silver nanowires are preferred.
  • the particle size of the inorganic sound-absorbing material is ⁇ 1000nm, for example, it can also be about 800nm, about 600nm, about 500nm, about 400nm, about 300nm, about 200nm, about 150nm, about 100nm.
  • the polymer material is not limited, and polymer materials commonly used in the art can be used, for example, including but not limited to polybutylene terephthalate (PBT), polyethylene terephthalate One of alcohol ester (PET), polyethylene (PE), polypropylene (PP), polyamide (PA), polyimide (PI), polyvinyl chloride (PVC) and polystyrene (PS) or Various.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • PA polyamide
  • PI polyimide
  • PVC polyvinyl chloride
  • PS polystyrene
  • the thickness of the polymer film is not limited and can be a thickness value commonly used in the art.
  • it can be any value between 6 ⁇ m and 15 ⁇ m, or it can be 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, or 11 ⁇ m. , 12 ⁇ m, 13 ⁇ m, 14 ⁇ m.
  • the conductive layer may be made of a copper metal layer or an aluminum metal layer.
  • the thickness of the conductive layer is not limited.
  • it can be any value between 0.5 ⁇ m and 5 ⁇ m, and can also be 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 4.5 ⁇ m.
  • the interface modifier can be any interface modifier known in the art, for example, it can be a silane coupling agent and/or a titanate coupling agent; wherein the silane coupling agent can be KH550, One or more of KH560, KH570 and KH602; the titanate coupling agent can be isopropyl triisostearate titanate, isopropyl tris(dodecylbenzenesulfonyl) titanate, isopropyl One or more of tris(dioctylphosphorylacyloxy)titanate and tetraisopropylbis(dioctylphosphiteacyloxy)titanate.
  • the silane coupling agent can be KH550, One or more of KH560, KH570 and KH602
  • the titanate coupling agent can be isopropyl triisostearate titanate, isopropyl tris(dodecylbenzenesulfon
  • the present invention also provides a method for preparing the composite current collector as described above, which includes the following steps:
  • the conductive layer is formed on both sides of the polymer film; wherein, the preparation method of the polymer film includes: mixing and extruding inorganic sound-absorbing materials, interface modifiers and polymer materials.
  • the polymer material includes a first polymer material and a second polymer material
  • the preparation method of the polymer film is as follows:
  • the masterbatch is mixed with the second polymer material and extruded.
  • the first polymeric material and the second polymeric material are each independently selected from polybutylene terephthalate, polyethylene terephthalate, polyethylene, polypropylene, polyamide , one or more of polyimide, polyvinyl chloride and polystyrene.
  • the mass percentage of the inorganic sound-absorbing material is 3% to 20%
  • the mass percentage of the interface modifier is 0.25% to 0.2%
  • the mass percentage of the second polymer material is 75% ⁇ 95%.
  • the method used to form the conductive layer can be any method known in the art, such as chemical vapor deposition or physical vapor deposition, or magnetron sputtering or vacuum evaporation.
  • the present invention further provides an electrode, which includes the above-mentioned composite current collector and an electrode active material layer located on one or both sides of the composite current collector.
  • the above-mentioned electrode may be a negative electrode or a positive electrode.
  • the present invention provides a lithium-ion battery, which includes the above-mentioned electrode.
  • an electrical device which includes the above-mentioned lithium-ion battery.
  • specific types of electrical devices include, but are not limited to, mobile terminals (mobile phones, mobile computers, etc.), smart wearables, power tools (electric drills, electric motors, etc.), electric vehicles, mobile power supplies, etc.
  • the polymer materials in this embodiment are polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), the inorganic sound-absorbing material is copper powder, and the interface modifier is silane.
  • Coupling agent (KH550) the specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the tab foil, and the required welding time is 1 second. The resistivity of the above composite current collector was measured to be 51 ⁇ .cm.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the mass of the masterbatch is 3kg and the mass of the polyethylene terephthalate particles is 97kg. Specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the required welding time is 0.5 s. The resistivity of the above composite current collector was measured to be 12 ⁇ .cm.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the mass of the masterbatch is 5kg and the mass of the polyethylene terephthalate particles is 95kg. Specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the required welding time is 0.5 s. The resistivity of the above composite current collector was measured to be 1.76 ⁇ .cm.
  • the polymer materials in this embodiment are polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), the inorganic sound-absorbing material is silver nanowires, and the interface modifier is Silane coupling agent (KH550), the specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the required welding time is 1 second. The resistivity of the above composite current collector was measured to be 24 ⁇ .cm.
  • the preparation method of this embodiment is basically the same as that of Example 4, except that the mass of the masterbatch is 3kg and the mass of the polyethylene terephthalate particles is 97kg. Specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the required welding time is 0.5 s. The resistivity of the above composite current collector was measured to be 1.17 ⁇ .cm.
  • the masterbatch is a mixture of the first masterbatch and the second masterbatch, and the mass of the masterbatch is 2kg, and the mass of the polyethylene terephthalate particles is 98kg. Specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology is used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the required welding time is 0.5 s. The resistivity of the above composite current collector was measured to be 0.53 ⁇ .cm.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the polymer material is polyimide and the content of each component is different. Specific steps are as follows:
  • the preparation method of this embodiment is basically the same as that of Embodiment 1, except that the polymer material is polyimide, the inorganic sound-absorbing material is silver nanowires, and the contents of each component are different. Specific steps are as follows:
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the added amount of copper powder in the polymer film is 2.5 kg. Specific steps are as follows:
  • An aluminum conductive layer with a thickness of 1 ⁇ m was deposited on both sides of the polymer film prepared in step 1) using vacuum evaporation technology. Ultrasonic welding technology was used to weld the aluminum conductive layer of the above composite current collector and one end of the metal foil, and the welding time was measured to be 0.5 s. The resistivity of the above composite current collector was measured to be 0.83 ⁇ .cm.
  • Tensile strength Take 5 pieces of composite current collectors prepared in each embodiment and comparative example, test them at a tensile speed of 50mm/min, and take the average value as the test result. It is required that the length direction be parallel to the axis of the clamp during measurement and the sample should be kept straight. The sample should be pulled off within the jaws of the clamp. If there is a gap on the edge of the sample, the experimental results will be invalid.
  • Resistivity test Use a pole piece resistor to test. Cut the composite current collector prepared in each example and comparative example into a rectangle of about 5cm ⁇ 10cm, and place the welded joint between it and the tab foil on the test head. Below, the test pressure is maintained at 5MPa for 15 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

涉及锂离子电池技术领域,具体而言,涉及一种复合集流体及其制备方法和应用。复合集流体包括聚合物薄膜及位于聚合物薄膜两侧的导电层,其中,聚合物薄膜的制备原料包括以下质量份的各组分:聚合物材料90~100份、无机吸声材料0.1~2份及界面改性剂0.005~0.2份。复合集流体的导电层和极耳箔材之间的焊接质量和焊接速率较为优异。

Description

复合集流体及其制备方法和应用 技术领域
本发明涉及锂离子电池技术领域,具体而言,涉及一种复合集流体及其制备方法和应用。
背景技术
锂离子电池已经在消费电子、电动车等领域大规模应用,随着电池行业的不断发展,需要具有更佳性能的集流体。复合集流体是一种新型的集流体材料,通常由高分子基材层以及镀覆于高分子基材层两面的导电层制成,呈“三明治结构”。相较于纯金属集流体,复合集流体的重量能够降低50%~80%。同时复合集流体的厚度相比纯金属集流体的厚度也减少了25%-40%,从而能够将电池内的空间让渡给电极活性物质。复合集流体中高分子基材层的存在可以减小电池温升,降低电池发生热失控的风险,提高电池的安全性。然而,由于高分子基材层的绝缘性能,复合集流体的极耳无法将集流体电芯中的电流输出至电极端子,为解决这一问题,需将极耳箔材(铝箔或铜箔)的两端分别与复合集流体的导电层焊接到一起。然而在将极耳箔材焊接到复合集流体中的导电层上时,焊接效率较低。而且焊接过程中,导电层和极耳箔材之间易发生撕裂,影响了焊接质量。
发明内容
基于此,有必要提供一种能够提升焊接质量和焊接速率的复合集流体及其制备方法和应用。
本发明一方面,提供一种复合集流体,其包括聚合物薄膜及位于所述聚合物薄膜两侧的导电层,所述聚合物薄膜的制备原料包括以下质量份的各组分:
第一聚合物材料90~100份、无机吸声材料0.1~2份及界面改性剂0.005~0.2份。
在其中一个实施例中,所述无机吸声材料包括金属粉末和/或金属纳米线。
在其中一个实施例中,所述无机吸声材料为质量比为(5~50):1的金属粉末和金属纳米线。
在其中一个实施例中,所述金属粉末选自铜粉、铝粉及银粉中一种或多种。
在其中一个实施例中,所述金属纳米线选自银纳米线、镍纳米线及铂纳米线中的一种或多种。
在其中一个实施例中,所述导电层为铜金属层或铝金属层。
本发明一方面,还提供一种如上述所述的复合集流体的制备方法,其包括以下步骤:
在所述聚合物薄膜的两侧形成所述导电层;其中,所述聚合物薄膜的制备方法包括:将所述无机吸声材料、所述界面改性剂及所述聚合物材料混合、挤出。
在其中一个实施例中,所述聚合物材料包括第一聚合物材料和第二聚合物材料,所述聚合物薄膜的制备方法具体如下:
将所述无机吸声材料、所述界面改性剂与所述第一聚合物材料混合、挤出,制备母粒;及
将所述母粒与所述第二聚合物材料混合、挤出。
在其中一个实施例中,所述第一聚合物材料和所述第二聚合物材料分别独立地选自聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、 聚酰胺、聚酰亚胺、聚氯乙烯及聚苯乙烯中的一种或多种。
本发明另一方面,进一步提供一种电极,其包括上述所述的复合集流体及位于所述复合集流体一面或两面的电极活性材料层。
本发明再一方面,提供一种锂离子电池,其包括上述所述的电极。
本发明又一方面,提供一种用电装置,其包括上述所述的锂离子电池。
上述提供的复合集流体中的聚合物薄膜中含有特定量的无机吸声材料。无机吸声材料可以在超声波作用下产生共振,从而可以使得超声波焊头接触部位的聚合物薄膜快速融化,进而使得复合集流体的导电层和极耳箔材之间可以快速熔合,提升了焊接效率。同时,在焊接过程中不会对极耳箔材和复合集流体造成撕裂,提升了焊接质量。
此外,无机吸声材料本身具有导电性,可以进一步促进复合集流体电芯中电流的传输。而且上述复合集流体的电阻率较低。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明一方面,提供一种复合集流体,其包括聚合物薄膜及位于聚合物薄膜两侧的导电层,其中,聚合物薄膜的制备原料包括以下质量份的各组分:
第一聚合物材料90~100份、无机吸声材料0.1~2份及界面改性剂0.005~0.2份。
上述提供的复合集流体中的聚合物薄膜中含有特定量的无机吸声材料。无机吸声材料可以在超声波作用下产生共振,从而可以使得超声波焊头接触部位的聚合物薄膜快速融化,进而使得复合集流体的导电层和极耳箔材之间可以快速熔合,提升了焊接效率。同时,在焊接过程中不会对极耳箔材和复合集流体造成撕裂,提升了焊接质量。
此外,无机吸声材料本身具有导电性,可以进一步促进复合集流体电芯中电流的传输。而且上述复合集流体的电阻率较低。
在一些实施方式中,无机吸声材料可以包括金属粉末和/或金属纳米线。
在一些实施方式中,无机吸声材料为质量比为(5~50):1的金属粉末和金属纳米线。
在一些实施方式中,金属粉末不做限制,例如,包括但不限于铜粉、铝粉及银粉中一种或多种。优选为铜粉。
在一些实施方式中,金属纳米线也不做限制,例如,金属纳米线可以选自银纳米线、镍纳米线及铂纳米线中的一种或多种。优选为银纳米线。
在一些实施方式中,无机吸声材料的粒径<1000nm,例如还可以为约800nm、约600nm、约500nm、约400nm、约300nm、约200nm、约150nm、约100nm。
在一些实施方式中,聚合物材料不做限制,选用本领域常用的聚合物材料即可,例如,包括但不限于聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯(PE)、聚丙烯(PP)、聚酰胺(PA)、聚酰亚胺(PI)、聚氯乙烯(PVC)及聚苯乙烯(PS)中的一种或多种。
在一些实施方式中,聚合物薄膜的厚度也不做限制,选用本领域常用的厚度值即可,例如可以为6μm~15μm之间的任意值,还可以为7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm。
在一些实施方式中,导电层的材质可以为铜金属层或铝金属层。
在一些实施方式中,导电层的厚度也不做限制,例如,可以为0.5μm~5μm之间的任意值,还可以为0.8μm、1μm、1.5μm、2μm、3μm、4μm、4.5μm。
在一些实施方式中,界面改性剂可以选用本领域公知的任意界面改性剂,例如,可以为硅烷偶联剂和/或钛酸酯偶联剂;其中,硅烷偶联剂可以为KH550、KH560、KH570及KH602的一种或多种;钛酸酯偶联剂可以为三异硬酯酸钛酸异丙酯、异丙基三(十二烷基苯磺酰基)钛酸酯、异丙基三(二辛基磷酸酰氧基) 钛酸酯及四异丙基二(二辛基亚磷酸酰氧基)钛酸酯的一种或多种。
本发明一方面,还提供一种如上述所述的复合集流体的制备方法,其包括以下步骤:
在聚合物薄膜的两侧形成所述导电层;其中,所述聚合物薄膜的制备方法包括:将无机吸声材料、界面改性剂及聚合物材料混合、挤出。
在一些实施方式中,聚合物材料包括第一聚合物材料和第二聚合物材料,所述聚合物薄膜的制备方法具体如下:
将无机吸声材料、界面改性剂与第一聚合物材料混合、挤出,制备母粒;及
将母粒与第二聚合物材料混合、挤出。
在一些实施方式中,第一聚合物材料和第二聚合物材料分别独立地选自聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰胺、聚酰亚胺、聚氯乙烯及聚苯乙烯中的一种或多种。
在一些实施方式中,在所述母粒中,无机吸声材料的质量百分比为3%~20%、界面改性剂的质量百分比为0.25%~0.2%、第二聚合物材料的质量百分比为75%~95%。
在一些实施方式中,形成导电层所采用的方法可以为本领域已知的任意方法,例如可以为化学气相沉积法或物理气相沉积法,进一步可以为磁控溅射技术或真空蒸镀技术。
本发明另一方面,进一步提供一种电极,其包括上述所述的复合集流体及位于复合集流体一面或两面的电极活性材料层。
在一些实施方式中,上述电极可以为负极或正极。
本发明再一方面,提供一种锂离子电池,其包括上述所述的电极。
本发明又一方面,提供一种用电装置,其包括上述所述的锂离子电池。
在一些实施方式中,用电装置的具体类型包括,但不限于移动终端(手机、移动电脑等)、智能穿戴、电动工具(电钻、电动机等)、电动汽车、移动电源等。
以下结合具体实施例和对比例对本发明作进一步详细的说明。
实施例1
本实施例中的聚合物材料分别为聚对苯二甲酸丁二醇酯(PBT)和聚对苯二甲酸乙二醇酯(PET)、无机吸声材料为铜粉、界面改性剂为硅烷偶联剂(KH550),具体步骤如下:
1)聚合物薄膜的制备
将10kg铜粉、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为10%的母粒;
取1kg母粒和99kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和极耳箔材的一端进行焊接,所需焊接时间为1s。测得上述复合集流体的电阻率为51Ω.cm。
实施例2
本实施例与实施例1的制备方法基本相同,不同之处在于:母粒的质量为3kg,聚对苯二甲酸乙二醇酯颗粒的质量为97kg。具体步骤如下:
1)聚合物薄膜的制备
将10kg铜粉、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混, 并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为10%的母粒;
取3kg母粒和97kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为12Ω.cm。
实施例3
本实施例与实施例1的制备方法基本相同,不同之处在于:母粒的质量为5kg,聚对苯二甲酸乙二醇酯颗粒的质量为95kg。具体步骤如下:
1)聚合物薄膜的制备
将10kg铜粉、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为10%的母粒;
取5kg母粒和95kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为1.76Ω.cm。
实施例4
本实施例中的聚合物材料分别为聚对苯二甲酸丁二醇酯(PBT)和聚对苯二 甲酸乙二醇酯(PET)、无机吸声材料为银纳米线、界面改性剂为硅烷偶联剂(KH550),具体步骤如下:
1)聚合物薄膜的制备
将10kg银纳米线、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备银纳米线质量百分比为10%的母粒;
取1kg母粒和99kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为1s。测得上述复合集流体的电阻率为24Ω.cm。
实施例5
本实施例与实施例4的制备方法基本相同,不同之处在于:母粒的质量为3kg,聚对苯二甲酸乙二醇酯颗粒的质量为97kg。具体步骤如下:
1)聚合物薄膜的制备
将10kg银纳米线、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备银纳米线质量百分比为10%的母粒;
取3kg母粒和97kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为1.17 Ω.cm。
实施例6
本实施例中母粒为第一母粒和第二母粒的混合物,且母粒质量为2kg,聚对苯二甲酸乙二醇酯颗粒的质量为98kg。具体步骤如下:
1)聚合物薄膜的制备
将10kg铜粉、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为10%的第一母粒;
将10kg银纳米线、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备银纳米线质量百分比为10%的第二母粒;
分别取1kg第一母粒、1kg第二母粒和98kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为0.53Ω.cm。
实施例7
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物材料为聚酰亚胺,且各个组分的含量不同。具体步骤如下:
1)聚合物薄膜的制备
将5kg铜粉、0.25kg KH550和94.75kg聚酰亚胺颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为5%的母粒;
取10kg母粒和90kg聚酰亚胺颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过的真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为0.96Ω.cm。
实施例8
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物材料为聚酰亚胺,无机吸声材料为银纳米线,且各个组分的含量不同。具体步骤如下:
1)聚合物薄膜的制备
将20kg银纳米线、2kg KH550和78kg聚酰亚胺颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备银纳米线质量百分比20%为母粒;
取10kg母粒和90kg聚酰亚胺颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过的真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,所需焊接时间为0.5s。测得上述复合集流体的电阻率为0.24Ω.cm。
对比例1
本对比例中未添加无机吸声材料。具体步骤如下:
使用双螺杆挤出机将100kg聚对苯二甲酸乙二醇酯颗粒挤出拉伸,制备厚 度为8μm的聚合物薄膜;随后通过真空蒸镀技术在制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,测得焊接时间为3s。测得上述复合集流体的电阻率>500Ω.cm。
对比例2
本对比例与实施例1的制备方法基本相同,不同之处在于:聚合物薄膜中铜粉的添加量为2.5kg。具体步骤如下:
1)聚合物薄膜的制备
将10kg铜粉、1kg KH550和89kg聚对苯二甲酸丁二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出切粒,制备铜粉质量百分比为10%母粒;
取25kg母粒和75kg聚对苯二甲酸乙二醇酯颗粒搅拌共混,并使用双螺杆挤出机挤出拉伸,制备厚度为8μm的聚合物薄膜;
2)复合集流体的制备
通过真空蒸镀技术在步骤1)中制得的聚合物薄膜的两面分别沉积厚度为1μm的铝导电层。采用超声波焊接技术将上述复合集流体的铝导电层和金属箔材的一端进行焊接,测得焊接时间为0.5s。测得上述复合集流体的电阻率为0.83Ω.cm。
性能测试:
1)拉伸强度:各个实施例和对比例中制得的复合集流体每个取5个片样,在拉伸速度为50mm/min下测试,取平均值作为测试结果。要求测量时长度方向与夹具轴线平行,并保持样品直线状,样品在夹具钳口内拉断,若样品边缘有缺口,则实验结果无效。
2)极耳焊接速度测试:取各个实施例和对比例中制得的复合集流体,以单层复合集流体的形式与极耳箔材进行焊接。其中,焊接参数如下:超声频率为 20KHz、振幅为20μm、压力为400kPa、焊接强度≥15N,认为焊接有效,并记录焊接时间。
3)电阻率测试:采用极片电阻仪测试,将各个实施例和对比例中制得的复合集流体剪切成约5cm×10cm的长方形,将其与极耳箔材的焊接处置于测试头下方,在5MPa测试压力保压15s。
实施例1~8及对比例1和2制得的复合集流体的相关性能测试如表1所示:
表1
序号 拉伸强度(MPa) 超声焊接时间(s) 电阻率(Ω.cm)
实施例1 212 1 51
实施例2 223 0.5 12
实施例3 233 0.5 1.76
实施例4 221 1 24
实施例5 237 0.5 1.17
实施例6 229 0.5 0.53
实施例7 211 0.5 0.96
实施例8 153 0.5 0.24
对比例1 197 3 >500
对比例2 97 0.5 0.83
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种复合集流体,其特征在于,包括聚合物薄膜及位于所述聚合物薄膜两侧的导电层,所述聚合物薄膜的制备原料包括以下质量份的各组分:
    聚合物材料90~100份、无机吸声材料0.1~2份及界面改性剂0.005~0.2份。
  2. 根据权利要求1所述的复合集流体,其特征在于,所述无机吸声材料包括金属粉末和/或金属纳米线。
  3. 根据权利要求1所述的复合集流体,其特征在于,所述无机吸声材料为质量比为(5~50):1的金属粉末和金属纳米线;
    可选地,所述金属粉末选自铜粉、铝粉及银粉中一种或多种;
    所述金属纳米线选自银纳米线、镍纳米线及铂纳米线中的一种或多种。
  4. 根据权利要求1~3任一项所述的复合集流体,其特征在于,所述导电层为铜金属层或铝金属层。
  5. 一种如权利要求1~4任一项所述的复合集流体的制备方法,其特征在于,包括以下步骤:
    在所述聚合物薄膜的两侧形成所述导电层;其中,所述聚合物薄膜的制备方法包括:将所述无机吸声材料、所述界面改性剂及所述聚合物材料混合、挤出。
  6. 根据权利要求5所述的复合集流体的制备方法,其特征在于,所述聚合物材料包括第一聚合物材料和第二聚合物材料,所述聚合物薄膜的制备方法具体如下:
    将所述无机吸声材料、所述界面改性剂与所述第一聚合物材料混合、挤出,制备母粒;及
    将所述母粒与所述第二聚合物材料混合、挤出。
  7. 根据权利要求6所述的复合集流体的制备方法,其特征在于,所述第一聚 合物材料和所述第二聚合物材料分别独立地选自聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰胺、聚酰亚胺、聚氯乙烯及聚苯乙烯中的一种或多种。
  8. 一种电极,其特征在于,包括权利要求1~4任一项所述的复合集流体及位于所述复合集流体一面或两面的电极活性材料层。
  9. 一种锂离子电池,其特征在于,包括权利要求8所述的电极。
  10. 一种用电装置,其特征在于,包括权利要求9所述的锂离子电池。
PCT/CN2022/105818 2022-07-14 2022-07-14 复合集流体及其制备方法和应用 WO2024011537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105818 WO2024011537A1 (zh) 2022-07-14 2022-07-14 复合集流体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105818 WO2024011537A1 (zh) 2022-07-14 2022-07-14 复合集流体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024011537A1 true WO2024011537A1 (zh) 2024-01-18

Family

ID=89535153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105818 WO2024011537A1 (zh) 2022-07-14 2022-07-14 复合集流体及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024011537A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604003A (zh) * 2012-08-30 2015-05-06 株式会社钟化 电池用集电体和使用了它的电池
CN109216703A (zh) * 2018-09-06 2019-01-15 珠海光宇电池有限公司 一种柔性多孔集流体及其制备方法
CN111048790A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用
CN111224148A (zh) * 2019-12-11 2020-06-02 中国科学院大连化学物理研究所 一种平面电池及其制备方法和应用
CN111883777A (zh) * 2020-07-28 2020-11-03 合肥国轩高科动力能源有限公司 一种复合集流体及其制备方法、锂电池极片
CN112310406A (zh) * 2020-10-29 2021-02-02 欣旺达电动汽车电池有限公司 柔性集流体及其制备方法、极片和电池
US20210351413A1 (en) * 2020-05-11 2021-11-11 Global Graphene Group, Inc. Conducting composite current collector for a battery or supercapacitor and production process
US20220085384A1 (en) * 2019-05-31 2022-03-17 Contemporary Amperex Technology Co., Limited Composite current collector, electrode plate and electrochemical device
CN114899356A (zh) * 2022-06-30 2022-08-12 扬州纳力新材料科技有限公司 一种复合集流体、制备方法、电极极片、电池和电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604003A (zh) * 2012-08-30 2015-05-06 株式会社钟化 电池用集电体和使用了它的电池
CN109216703A (zh) * 2018-09-06 2019-01-15 珠海光宇电池有限公司 一种柔性多孔集流体及其制备方法
US20220085384A1 (en) * 2019-05-31 2022-03-17 Contemporary Amperex Technology Co., Limited Composite current collector, electrode plate and electrochemical device
CN111224148A (zh) * 2019-12-11 2020-06-02 中国科学院大连化学物理研究所 一种平面电池及其制备方法和应用
CN111048790A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用
US20210351413A1 (en) * 2020-05-11 2021-11-11 Global Graphene Group, Inc. Conducting composite current collector for a battery or supercapacitor and production process
CN111883777A (zh) * 2020-07-28 2020-11-03 合肥国轩高科动力能源有限公司 一种复合集流体及其制备方法、锂电池极片
CN112310406A (zh) * 2020-10-29 2021-02-02 欣旺达电动汽车电池有限公司 柔性集流体及其制备方法、极片和电池
CN114899356A (zh) * 2022-06-30 2022-08-12 扬州纳力新材料科技有限公司 一种复合集流体、制备方法、电极极片、电池和电子设备

Similar Documents

Publication Publication Date Title
JP6635043B2 (ja) 電極構成体固定用両面テープおよび二次電池
CN202259480U (zh) 双极型电池的密封构造及双极型电池
KR101491873B1 (ko) 파우치형 플렉서블 필름 전지 및 그 제조 방법
WO2024000802A1 (zh) 一种复合集流体、制备方法、电极极片、电池和电子设备
WO2010074151A1 (ja) 電池用セパレータおよび非水系リチウム電池
WO2012077707A1 (ja) リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP5163439B2 (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
CN111048790B (zh) 一种集流体及其制备方法和应用
WO2012029556A1 (ja) 非水系二次電池および非水系二次電池の製造方法
JP2017016825A (ja) 二次電池およびその製造方法
CN102959768A (zh) 蓄电元件用电极体及蓄电元件
JP2020057584A (ja) 集電体、極シート及び電気化学デバイス
KR20130004153A (ko) 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지
WO2021238629A1 (zh) 一种集流体、集流体的制备方法、极片及锂离子电池
TW201312838A (zh) 電氣裝置用負極活性物質、電氣裝置用負極及電氣裝置
CN115084536B (zh) 复合集流体及其制备方法和应用
JP6579694B2 (ja) 二次電池
JP7089374B2 (ja) 樹脂集電体、及び、リチウムイオン電池
WO2024011537A1 (zh) 复合集流体及其制备方法和应用
JP2019153587A (ja) 樹脂集電体、及び、リチウムイオン電池
CN116034499A (zh) 蓄电装置
JP2019186002A (ja) 電池の製造方法
WO2019198454A1 (ja) 電池の製造方法
WO2019198495A1 (ja) 電池の製造方法
CN111106354A (zh) 一种锂电池集流体及其制备方法以及锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950658

Country of ref document: EP

Kind code of ref document: A1