WO2021238629A1 - 一种集流体、集流体的制备方法、极片及锂离子电池 - Google Patents

一种集流体、集流体的制备方法、极片及锂离子电池 Download PDF

Info

Publication number
WO2021238629A1
WO2021238629A1 PCT/CN2021/092595 CN2021092595W WO2021238629A1 WO 2021238629 A1 WO2021238629 A1 WO 2021238629A1 CN 2021092595 W CN2021092595 W CN 2021092595W WO 2021238629 A1 WO2021238629 A1 WO 2021238629A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
thickness
diaphragm
layer
conductor layer
Prior art date
Application number
PCT/CN2021/092595
Other languages
English (en)
French (fr)
Inventor
张磊
王晓明
杨浩田
解金库
魏凤杰
周予坤
韩冰
Original Assignee
江苏卓高新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏卓高新材料科技有限公司 filed Critical 江苏卓高新材料科技有限公司
Publication of WO2021238629A1 publication Critical patent/WO2021238629A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of lithium ion batteries, for example, to a current collector, a method for preparing the current collector, a pole piece, and a lithium ion battery.
  • Lithium-ion batteries are wound or superimposed with a basic unit structure, and the basic unit structure is positive electrode/separator/negative electrode.
  • the positive and negative electrodes are where the electrochemical reaction occurs.
  • the current generated by the electrochemical reaction is collected and exported through the current collectors in the positive and negative electrodes; the separator is responsible for separating the positive and negative electrodes to avoid contact between the positive and negative electrodes and causing short circuits.
  • the positive electrode current collector is aluminum foil
  • the negative electrode current collector is copper foil
  • the separator is a porous polymer.
  • the manufacturing process of lithium ion battery is as follows: mix the positive and negative active materials with additives and glue to make a slurry, continuously coat it on the current collector and dry and wind to form the positive and negative electrode rolls; according to the battery design requirements, align the The negative electrode roll is slit and the tabs are processed to form the positive and negative sheets; the positive and negative pole sheets and the separator are combined to form a dry cell in a winding or stacking manner; the dry cell is placed in the shell, The electrolyte is injected and packaged; the lithium-ion battery is obtained after charging and forming.
  • the slitting of the positive and negative electrode rolls and the processing of the tabs usually adopt the slitting technology of cutter or die cutting.
  • the commonly used method is to improve the design and material of the die-cutting tool to reduce the generation of die-cutting burrs.
  • burrs are still unavoidable.
  • the Chinese patent application with publication number CN106252665A discloses a method for removing the burrs of the current collector by jetting plasma. Under the action of the tip electric field, the burrs are etched by the jetting fluid. However, this method requires a 2-8kV electric field to generate ion jets. Fluid, high efficiency and low cost.
  • the Chinese patent application with publication number CN101783402A discloses a technology for removing the burrs of the cathode electrode, which chemically corrodes the burrs of the aluminum foil through alkali solution.
  • this technology is based on a chemical reaction, requires additional reagents and process steps, is difficult to operate and processes, is not easy to achieve continuous production, and also introduces lye and reactant impurities.
  • the Chinese patent application with publication number CN102208590A discloses a battery structure.
  • the cutting edge of the current collector is wrapped in the inside of the current collector by winding the head and tail of the current collector to fold 360 degrees, so as to avoid the cut burr facing the diaphragm. Penetration of the diaphragm causes a short circuit.
  • this structure will increase the thickness of the battery on the one hand, and on the other hand, it will cause the winding and folding parts to expand and contract during the cycle, which will generate additional stress, prone to lithium evolution, and cause safety hazards.
  • Laser cutting is a cutting technology that has developed rapidly in recent years. Through the thermal effect of laser, metal is vaporized to achieve cutting. Laser cutting has the advantages of low cost, good stability and fast speed. However, the use of laser cutting current collector metal foil in the lithium battery industry will produce a large amount of slag. The slag also has the risk of piercing the diaphragm.
  • the present application provides a current collector to improve the situation in the related art that the burrs of the current collector easily penetrate the diaphragm and cause a micro short circuit or even a short circuit of the battery.
  • a current collector applied to a lithium ion battery includes a basic unit structure, the basic unit structure includes a diaphragm, the diaphragm has a diaphragm coating, and the current collector has a conductor
  • the thickness of the conductor layer satisfies the following relationship: X ⁇ Y+Z; where X represents the thickness of the conductor layer, Y represents the thickness of the diaphragm, and Z represents the thickness of the diaphragm coating.
  • the embodiment of the application also discloses a method for preparing the above-mentioned current collector.
  • the current collector has a conductor layer and a support layer, including: preparing the conductor layer by a pressing method, and combining the conductor layer with the support layer. Layer composite.
  • the embodiment of the application also discloses a method for preparing the above-mentioned current collector.
  • the current collector has a conductive layer and a supporting layer, including: preparing the conductive layer on the surface of the supporting layer by evaporation or sputtering. .
  • the embodiment of the application also discloses a pole piece having the current collector according to any one of claims 1-16.
  • the embodiment of the present application also discloses a lithium ion battery, which includes a positive pole piece, a negative pole piece, a separator and an electrolyte, wherein the positive pole piece and/or the negative pole piece includes the above-mentioned current collector.
  • Figure 1 Schematic diagram of burr puncture when the thickness of the conductor layer is greater than the thickness of the diaphragm.
  • Figure 2 Schematic diagram of burr puncture when the thickness of the conductor layer is less than the thickness of the diaphragm.
  • Figure 3 is a front micrograph of 15 micron aluminum foil after slitting.
  • Figure 4 is a micrograph of the end face of 15 micron aluminum foil after slitting.
  • Figure 5 is a photomicrograph of the end face of 1 micron aluminum foil after slitting.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • a current collector described in this application has a conductor layer and a support layer, and the thickness of the conductor layer satisfies the following relationship: X ⁇ Y+Z, where X represents the thickness of the conductor layer, Y represents the thickness of the diaphragm, and Z represents The thickness of the diaphragm coating.
  • the piercing ability of the burr of the current collector to the diaphragm can be weakened.
  • the burr 3 generated after cutting the current collector 1 is bent in the direction of the diaphragm 2.
  • the burr 3 When the burr 3 is pressed, it will penetrate the diaphragm 2, and the burr 3 will be affected by the diaphragm. 2 Resistance to puncture.
  • the burr 3 does not penetrate the diaphragm 2 perpendicularly, but cuts in at a certain angle. In this case, the thicker burr 3 obviously has a stronger cutting and piercing effect on the diaphragm 2. Therefore, if the thickness of the burr 3 is reduced to be lower than the thickness of the diaphragm 2, the possibility of the burr 3 penetrating the diaphragm 2 after piercing the diaphragm 2 will be greatly reduced.
  • the length of the burr is closely related to the thickness of the aluminum foil.
  • the 15-micron aluminum foil shown in Figure 3-4 has a large number of gaps on the edge after slitting, and there are many burrs on the slitting end surface, and the burrs protrude obliquely outwards, which can easily pierce the diaphragm.
  • the thickness of the aluminum foil is reduced, the aluminum foil is more likely to break under the same shearing process, which will alleviate the unevenness of the fracture and reduce the burr length.
  • the 1-micron aluminum foil shown in Figure 5 hardly produces burrs on the end face after slitting.
  • reducing the thickness of the aluminum foil can reduce the length of the burr, and reducing the length of the burr can also reduce the possibility of the burr piercing the diaphragm.
  • slag is formed by metal particles that have not been fully heated and vaporized. Therefore, the size of the slag is smaller than the thickness of the cut metal body. Therefore, the relationship between the thickness of the metal conductor layer and the thickness of the diaphragm in the composite current collector can be controlled to reduce the possibility of the diaphragm being penetrated by the slag.
  • the surface of the diaphragm has a coating
  • the total thickness of the diaphragm is the sum of the thickness of the diaphragm and the thickness of the diaphragm coating.
  • the diaphragm coating usually has the characteristics of high strength at high temperature, such as alumina ceramic or aramid, and the coating has a strength that exceeds that of the diaphragm.
  • the thickness of the burr is lower than the thickness of the diaphragm coating, it is more difficult for the burr to penetrate the diaphragm. That is, the thickness of the conductor layer can satisfy the following relationship: X < Z.
  • the diaphragm in the related art is generally a porous polymer.
  • the burr penetrates into the diaphragm, the porous polymer is compressed.
  • the actual thickness of the diaphragm at this time is the compressed thickness of the porous polymer. If the porosity of the separator is m, the thickness of the conductor layer can satisfy the following relationship: X ⁇ (100%-m)Y+Z.
  • the conductor layer described in this application can be made of metal materials, and can be implemented as gold, silver, nickel, titanium, copper, and alloys of the foregoing metals, stainless steel, or carbon and carbon alloys.
  • the mixture of carbon and the above-mentioned pure metal, the mixture of carbon and the above alloy, the mixture of carbon and stainless steel, the mixture of carbon and carbon alloy, or other materials with conductive properties do not limit the application.
  • the material of the support layer can be Oriented Polypropylene (OPP), Polyimide (PI), Polyethylene Terephthalate (PET), Chlorinated Polypropylene (Colorinated Polypropylene) Any of Polypropylene, CPP), Polyvinyl Chloride (PVC), paper or cellulose film.
  • OPP Polypropylene
  • PI Polyimide
  • PET Polyethylene Terephthalate
  • Chlorinated Polypropylene Colorinated Polypropylene
  • Polyvinyl Chloride (PVC)
  • the thickness X of the conductor layer can be 0.1-5 microns
  • the thickness Y of the diaphragm can be 4-20 microns
  • the thickness Z of the diaphragm coating can be 0.5-3 microns.
  • the porosity m of the separator can be 35%-55%.
  • the manufacturing method of the current collector may include the following steps: after the conductor layer material is pressed into the conductor layer, the conductor layer and the support layer material are combined. Among them, the conductor layer and the supporting layer are compounded by adhesion, chemical or electrochemical corrosion.
  • the manufacturing method of the current collector may also include the following steps: forming a conductor layer by evaporation or sputtering on the surface of the support layer material.
  • the current collector can be used to make pole pieces: coating the positive electrode active material on the surface of the current collector to make a positive pole piece; coating the negative electrode active material on the surface of the current collector to make a negative pole piece.
  • the positive pole piece, the separator and the negative pole piece are assembled in a winding manner to form a dry cell.
  • the dry cell is put into the battery casing and injected with electrolyte, and then charged and formed into a lithium ion battery.
  • the aluminum material with a purity of 99.7% is rolled to obtain an aluminum foil with a thickness of 9 microns.
  • a 9-micron-thick aluminum foil is compounded on both sides of a 10-micron-thick PET through an adhesive to form a positive electrode current collector.
  • the molecular weight of PET is 192.17
  • the adhesive is WB888 glue produced by Wuxi Yuke
  • the compounding temperature is 95 degrees Celsius
  • the compounding pressure is 0.5 MPa
  • the standing time after compounding is 150 hours.
  • positive pole piece the positive ternary material LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), conductive carbon black super P and polyvinylidene fluoride Solvay Solef5130PVDF according to the weight ratio of 95:3:2 and solvent N-methyl
  • the -2-pyrrolidone is uniformly mixed to form a positive electrode slurry, and the solid content of the positive electrode slurry is 65%.
  • the slurry is uniformly coated on both sides of the positive electrode current collector by a transfer coating method, dried and rolled to form a positive electrode coil. Using hardware die-cutting tools, the positive pole roll is cut and processed to form the positive pole piece.
  • negative pole piece FSN graphite, conductive carbon black super P, Carboxymethyl Cellulose sodium (CMC-Na), 40% solid content styrene butadiene rubber emulsion (weight is calculated as styrene butadiene rubber solid) by weight
  • CMC-Na Carboxymethyl Cellulose sodium
  • the ratio of 95:1:2:2 is uniformly mixed with deionized water to form a negative electrode slurry, and the solid content of the negative electrode slurry is 45%.
  • the slurry is uniformly coated on both sides of the negative electrode current collector by a transfer coating method, dried and rolled to form a negative electrode roll.
  • a copper foil with a thickness of 9 microns is used as the negative electrode current collector.
  • the negative pole roll is slit and processed to form the negative pole piece.
  • the thickness of the separator is 15 microns, and the porosity is 45%.
  • the positive pole piece, the separator and the negative pole piece are assembled in a winding manner to form a dry cell. Put the dry cell into the battery shell and inject the electrolyte, after charging and forming, the lithium ion battery is formed.
  • Preparation of positive pole piece The difference from Example 2 is that the etching time is 1 minute, and the thickness of the single-sided aluminum layer on the current collector after chemical etching is 2.5 microns. The remaining steps are the same as in Example 1.
  • the negative electrode current collector rolls copper with a purity of 99.7% to obtain a copper foil with a thickness of 1 micron.
  • the 1 micron thick copper foil is laminated on both sides of the 10 micron PET through an adhesive to form a negative current collector.
  • the molecular weight of PET is 192.17
  • the adhesive is WB888 glue produced by Wuxi Yuke
  • the compounding temperature is 95 degrees Celsius
  • the compounding pressure is 0.5 MPa
  • the standing time after compounding is 150 hours. The remaining steps are the same as in Example 1.
  • Preparation of positive pole piece Using 6 micron thick PET as the substrate, aluminum is vapor deposited under vacuum conditions of 3 ⁇ 10 -4 Pascals, the PET substrate speed is 8 m/min, and the aluminum wire feeding speed is 1.3 m/min. , The evaporation source is a 15-kilowatt tungsten boat evaporation source. The thickness of the prepared composite current collector aluminum layer is 0.4 microns. The remaining steps are the same as in Example 1.
  • Table 1 is used to summarize the conductive layer thickness, diaphragm thickness, coating thickness, porosity and satisfied relational expressions in each embodiment and comparative example.
  • the square resistance is measured by a milliohm meter four-point resistance tester;
  • Table 2 The test results are summarized in Table 2.
  • Comparative Examples 1-3 show that under the condition that the relationship of X ⁇ Y+Z is not satisfied, the proportion of unqualified resistance of dry batteries is greatly increased. This is because the thickness of the current collector conductive layer is greater than that of the separator and the separator coating The sum of the thickness of the layers increases the probability that the thickness of the burr after the cutting of the conductor layer is greater than the thickness of the diaphragm and the thickness of the diaphragm coating is greatly increased, so that the puncture ability of the burr is strengthened, and it is easier to pierce the diaphragm.
  • Examples 1-3 satisfy the relationship of X ⁇ Y+Z, and the thickness of the current collector conductive layer is less than the sum of the thickness of the diaphragm and the diaphragm coating, which ensures that the thickness of the burr is less than the sum of the thickness of the diaphragm and the diaphragm coating, and weakens In addition to the puncture ability of the burr, the proportion of unqualified resistance of the dry cell produced is greatly reduced, even to 0%.
  • the quality of the cell can be improved by appropriately reducing the thickness of the diaphragm (that is, the K value can be reduced).
  • the reduction in the thickness of the diaphragm means that the puncture resistance of the diaphragm is weakened.
  • the thickness of the current collector conductive layer In order to ensure that the burr cannot penetrate the diaphragm, the thickness of the current collector conductive layer must be greater than the sum of the thickness of the diaphragm and the diaphragm coating to satisfy X ⁇ (100%-m)Y+Z The relationship.
  • the thickness of the conductive layer of the current collector is larger than the thickness of the diaphragm and the thickness of the diaphragm coating to satisfy X ⁇ Z, it can perfectly ensure that the burr will not pierce the diaphragm.
  • the embodiment of the application controls the thickness of the conductor layer.
  • the conductor layer is more likely to be broken during the same shearing process, which will alleviate the unevenness of the fracture, reduce the length of the burr, and make the thickness of the burr smaller than the thickness of the diaphragm.
  • the burr penetrates the diaphragm, the possibility of penetrating the diaphragm is greatly reduced, thereby weakening the piercing ability of the current collector burr on the diaphragm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

一种集流体(1)、极片、锂离子电池。其中的集流体(1)应用于锂离子电池,所述锂离子电池包括基本单元结构,所述基本单元结构包括隔膜(2),所述隔膜(2)具有隔膜涂层,集流体(1)具有导体层,导体层的厚度满足以下关系式:X<Y+Z;其中,X表示导体层的厚度,Y表示隔膜(2)的厚度,Z表示隔膜涂层的厚度。

Description

一种集流体、集流体的制备方法、极片及锂离子电池
本申请要求在2020年5月28日提交中国专利局、申请号为202010467692.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池技术领域,例如涉及一种集流体、集流体的制备方法、极片及锂离子电池。
背景技术
锂离子电池由基本单元结构卷绕或者叠加构成,基本单元结构为正极/隔膜/负极。其中正极和负极是发生电化学反应的地方,通过正极和负极中的集流体,将电化学反应生成的电流收集并导出;隔膜负责将正极和负极分隔开,避免正负极发生接触出现短路。为了兼顾成本、电化学稳定性和加工性,通常正极集流体为铝箔,负极集流体为铜箔,隔膜为多孔聚合物。
锂离子电池制造过程为:将正负极活性材料与添加剂和胶等混合制作成浆料,连续涂布于集流体上并烘干收卷形成正负极电极卷;根据电池设计需要,对正负极电极卷进行分切和极耳加工,形成的正负极片;将正负极极片与隔膜进行组合,以卷绕或者堆叠方式形成干电芯;将干电芯装入壳体,注入电解液后封装;充电化成后获得锂离子电池。在这一过程中,正负极电极卷进行分切和极耳加工通常采用切刀或者模切的分切技术。然而切刀分切或模切金属集流体时,不可避免的会在分切端面产生毛刺。金属毛刺会刺入甚至刺穿隔膜,导致电池微短路甚至短路。
为了提高隔膜抵抗毛刺的能力,技术人员开发了复合隔膜,即在多孔聚合物上增加强度更高的涂层,例如氧化铝涂层或者芳纶涂层。然而由于涂层必须具有透过电解液的能力,因此涂层也为多孔结构,在实际生产过程中毛刺,仍然可以刺穿涂层。特别是随着锂离子电池技术进步,为了提高电池能量密度,提高了正负极电极压实密度,为了保证制造过程中集流体不断裂,集流体往往采用更高强度的铝箔或者铜箔。这种情况下,毛刺变得更容易刺穿电池造成短路。
为了提高锂离子电池性能,必须降低毛刺短路的风险。常用的办法是改进模切的刀具设计和材质,减少模切的毛刺产生。然而随着刀具磨损以及生产中设备和材料振动等原因,毛刺仍然无法避免。公布号为CN106252665A的中国专利申请公开了一种通过流射等离子体去除集流体毛刺的方法,在尖端电场作用下通过射流体对毛刺进行刻蚀,然而这种方法需要2~8kV电场产生离子射流体,效率低成本高。公布号为CN101783402A的中国专利申请,公开了一种阴极极片毛刺去除技术,通过碱液对铝箔毛刺进行化学腐蚀。然而这种技术基于化学反应,需要额外的试剂和工艺步骤,操作加工难度大,不容易实现连续化生产,还会引入碱液和反应物杂质。公布号为CN102208590A的中国专利申请公开了一种电池结构,通过将集流体头尾部卷绕起来折叠360度,使集流体切断边缘被包在集流体内部,从而避免切断的毛刺与隔膜相对,刺入刺穿隔膜造成短路。然而这种结构一方面会导致电池厚度增加,另一方面会导致卷绕折叠部位,在循环中由电池膨胀收缩,会产生额外应力,容易发生析锂,造成安全隐患。
激光切割是近几年来发展迅速的切割技术,通过激光的热效应,将金属气化实现切割。激光切割具有成本低,稳定性好,速度快的优势。然而在锂电行业中采用激光切割集流体金属箔材,会产生大量的熔渣。这些熔渣也有刺穿隔膜的风险。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种集流体,改善相关技术中集流体毛刺容易穿透隔膜导致电池微短路甚至短路的情况。
本申请实施例采用以下技术方案:一种集流体,应用于锂离子电池,所述锂离子电池包括基本单元结构,所述基本单元结构包括隔膜,所述隔膜具有隔膜涂层,集流体具有导体层,导体层的厚度满足以下关系式:X<Y+Z;其中,X表示导体层的厚度,Y表示隔膜的厚度,Z表示隔膜涂层的厚度。
本申请实施例还公开了一种上述的集流体的制备方法,所述集流体具有导体层和支撑层,包括:采用压制的方法制备所述导体层,并将所述导体层与所述支撑层复合。
本申请实施例还公开了一种上述的集流体的制备方法,所述集流体具有导体层和支撑层,包括:采用蒸镀或者溅射的方法在所述支撑层的表面制备所述导体层。
本申请实施例还公开了一种极片,具有如权利要求1-16中任一项所述的集流体。
本申请实施例还公开了一种锂离子电池,包括正极极片、负极极片、隔膜和电解质,其中,正极极片和/或负极极片包括如上所述的集流体。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1导体层厚度大于隔膜厚度的情况下毛刺穿刺情况示意图。
图2导体层厚度小于隔膜厚度的情况下毛刺穿刺情况示意图。
图3是15微米铝箔分切后的正面显微照片。
图4是15微米铝箔分切后的端面显微照片。
图5是1微米铝箔分切后的端面显微照片。
具体实施方式
以下对本申请实施例进行详细说明。应当理解,此处所描述的示例实施例是本申请一部分实施例,而不是全部的实施例,仅仅用以解释本申请实施例,并不用于限定本申请实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“中”、“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”、“侧”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“一”、“第一”、“第二”、“第三”、“第四”、“第五”、“第六”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连, 也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
实施例的原理主要通过参考例子来描述。在以下描述中,很多具体细节被提出用以提供对实施例的彻底理解。然而明显的是,对于本领域普通技术人员,这些实施例在实践中可以不限于这些具体细节。在一些实例中,没有详细地描述公知方法和结构,以避免无必要地使这些实施例变得难以理解。另外,所有实施例可以互相结合使用。
本申请所述的一种集流体具有导体层和支撑层,所述导体层的厚度满足以下关系式:X<Y+Z,其中,X表示导体层的厚度,Y表示隔膜的厚度,Z表示隔膜涂层的厚度。
即对本申请中的集流体而言,通过控制导体层的厚度小于隔膜厚度,从而得以减弱集流体毛刺对隔膜的穿刺能力。
在一个实施例中,如图1-2所示,切割集流体1后产生的毛刺3向隔膜2方向弯折,当毛刺3受到压力时,会刺入隔膜2,此时毛刺3会受到隔膜2抵抗穿刺的作用。毛刺3并不会垂直刺入隔膜2,而是具有一定的角度切入。在这种情况下较厚的毛刺3显然对于隔膜2具有更强的切割和刺入效果。所以,如果降低毛刺3厚度到低于隔膜2厚度时,毛刺3刺入隔膜2后穿透隔膜2的可能性会大大降低。
同时,经过实验和测量发现,毛刺长度和铝箔厚度密切相关。例如图3-4所示的15微米铝箔,分切后边缘产生大量缺口,在其分切端面具有许多毛刺,且毛刺为斜向外伸出,极易刺穿隔膜。当铝箔厚度降低,同样的剪切过程,铝箔更加容易断裂,会缓解断裂不平齐的情况,减少毛刺长度,例如图5所述的1微米铝箔,分切后的端面几乎不产生毛刺。因此减小铝箔厚度可以降低毛刺长度,减少毛刺长度同样可以减少毛刺刺穿隔膜的可能性。当采用激光切割时,熔渣是由未能完全加热气化的金属颗粒形成的。因此熔渣的尺寸小于切割的金属体的厚度尺寸。由此可以通过控制复合集流体中金属导体层厚度与隔膜之间厚度的相互关系,以降低隔膜被熔渣穿透的可能性。
对此,在一般情况下,隔膜表面具有涂层,隔膜的总厚度为隔膜及隔膜涂层的厚度之和。其中,隔膜涂层通常是具有高温下高强度的特性,例如氧化铝陶瓷或者芳纶,涂层具有超过隔膜的强度。在一个实施例中,若毛刺的厚度低于隔膜涂层的厚度时,毛刺更难以刺穿隔膜。即,导体层的厚度可以满足以下关 系式:X<Z。
此外,相关技术中的隔膜一般为多孔聚合物,当毛刺刺入隔膜时会对多孔聚合物进行压缩,则此时的隔膜实际厚度是多孔聚合物压缩后的厚度。若设隔膜的孔隙率为m,则导体层的厚度可以满足以下关系式:X<(100%-m)Y+Z。
在上述技术方案中,本申请所述的导体层可以采用金属材料制成,可实施为金、银、镍、钛、铜、及其上述金属的合金,不锈钢,也可以采用碳,碳合金,碳与上述纯金属的混合物,碳与上述合金的混合物,碳与不锈钢的混合物,碳与碳合金的混合物,或者是其他具有导电性能的材料,并不限制本申请。所述支撑层的材料可以采用定向聚丙烯(Oriented Polypropylene,OPP)、聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)、氯化聚丙烯(Colorinated Polypropylene,CPP)、聚氯乙烯(Polyvinyl chloride,PVC)、纸或纤维素膜中的任一种。其中,导体层方阻小于150毫欧/□,支撑层方阻大于1000欧姆/□。
在上述技术方案中,所述导体层的厚度X可以为0.1-5微米,所述隔膜的厚度Y可以为4-20微米,所述隔膜涂层的厚度Z可以为0.5-3微米,所述隔膜的孔隙率m可以为35%-55%。
在上述技术方案中,所述集流体的制作方法可以包括以下步骤:将导体层材料压制成导体层后,将导体层与支撑层材料复合。其中导体层与支撑层通过胶粘、化学或者电化学方法腐蚀的方式复合。此外,集流体的制作方法也可以包括以下步骤:在支撑层材料表面进行蒸镀或者溅射方法形成导体层。
在上述技术方案中,所述集流体可以用于制作极片:在集流体表面涂布正极活性材料,制得正极极片;在集流体表面涂布负极活性材料,制得负极极片。以卷绕方式将正极极片、隔膜和负极极片组装形成干电芯。将干电芯装入电池壳体内并注电解液,经过充电化成,制得锂离子电池。
下面通过实施例对本申请进行说明,但本申请不限于这些实施例。
【实施例1】
制备正极集流体:将纯度99.7%的铝材进行轧制加工,获得9微米厚的铝箔。将9微米厚的铝箔通过胶黏剂复合在10微米厚的PET的两侧,形成正极集流体。其中PET分子量192.17,胶黏剂为无锡宇科生产的WB888胶,复合的温度为95摄氏度,复合压力0.5兆帕,复合后静置时间为150小时。
制备正极极片:将正极三元材料料LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、导电炭黑 super P和聚偏二氟乙烯Solvay Solef5130PVDF按照重量比95∶3∶2与溶剂N-甲基-2-吡咯烷酮进行混合均匀形成正极浆料,正极浆料固含量为65%。将浆料采用转移涂布方法,均匀涂布在正极集流体两侧并干燥和滚压形成正极极卷。利用五金模切刀具,对正极极卷进行分切加工,形成正极极片。
制备负极极片:将FSN石墨、导电炭黑super P、羧甲基纤维素钠(Carboxymethyl Cellulose sodium,CMC-Na)、40%固含量丁苯橡胶乳液(重量以丁苯橡胶固体计算)按照重量比95∶1∶2∶2与去离子水混合均匀形成负极浆料,负极浆料固含量45%。将浆料采用转移涂布方法,均匀涂布在负极集流体两侧并干燥和滚压形成负极极卷。负极集流体使用9微米厚的铜箔。利用五金模切刀具,对负极极卷进行分切加工,形成负极极片。
制作锂离子电池:隔膜厚度为15微米,孔隙率为45%。以卷绕方式将正极极片、隔膜和负极极片组装形成干电芯。将干电芯装入电池壳体内并注电解液,经过充电化成,形成锂离子电池。
【实施例2】
制备正极极片:实施例1中正极集流体复合静置后,继续采用25%NaOH溶液进行化学腐蚀,温度为55摄氏度,腐蚀时间为45秒,然后使用去离子水冲洗烘干获得实施例的正极集流体。实施例2采用的集流体上单侧铝层厚度经过化学腐蚀后为4微米。其余步骤与实施例1一致。
制备负极极片:采用厚度为2.5微米的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为45%的隔膜,其余步骤与实施例1一致。
【实施例3】
制备正极极片:与实施例2不同之处在于腐蚀时间为1分钟,集流体上单侧铝层厚度经过化学腐蚀后为2.5微米。其余步骤与实施例1一致。
制备负极极片:采用厚度为2微米的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为45%的隔膜,且隔膜具有氧化铝涂层,厚度为0.5微米,其余步骤与实施例1一致。
【实施例4】
制备正极极片:采用2微米厚的铝箔,其余步骤与实施例1一致。其余步骤与实施例1一致。
制备负极极片:采用4微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为45%的隔膜,且隔膜具有氧化铝涂层,厚度为3微米,其余步骤与实施例1一致。
【实施例5】
制备正极极片:采用1微米厚的铝箔,其余步骤与实施例1一致。
制备负极极片:负极集流体将纯度99.7%的铜进行轧制加工,获得1微米厚的铜箔。将1微米厚的铜箔通过胶黏剂复合在10微米的PET的两侧,形成负极集流体。其中PET分子量192.17,胶黏剂为无锡宇科生产的WB888胶,复合的温度为95摄氏度,复合压力0.5兆帕,复合后静置时间为150小时。其余步骤与实施例1一致。
制作锂离子电池:采用厚度为6微米、孔隙率为45%的隔膜,且隔膜具有氧化铝涂层,厚度为2微米,其余步骤与实施例1一致。
【实施例6】
制备正极极片:采用0.8微米厚的铝箔,并采用激光切割。其余步骤与实施例1一致。
制备负极极片:采用2微米厚的铜箔,并采用激光切割。其余步骤与实施例1一致。
制作锂离子电池:采用厚度为8微米、孔隙率为45%的隔膜,且隔膜具有氧化铝涂层,厚度为1微米,其余步骤与实施例1一致。
【实施例7】
制备正极极片:采用6微米厚的PET作为基材,在3×10 -4帕斯卡的真空条件下进行蒸镀铝,PET基材速度8米/分钟,铝材送丝速度为1.3米/分钟,蒸发源为15千瓦的钨舟蒸发源。制备得到的复合集流体铝层厚度0.4微米。其余步骤与实施例1一致。
制备负极极片:采用4微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为10微米、孔隙率为45%的隔膜,且隔膜具有氧化铝涂层,厚度为2微米,其余步骤与实施例1一致。
【实施例8】
制备正极极片:采用10微米厚的PVC作为基材,采用实施例7中的方式制得复合集流体,其铝层厚度0.1微米。其余步骤与实施例1一致。
制备负极极片:采用5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为45%的隔膜,且隔膜具有氧 化铝涂层,厚度为1微米,其余步骤与实施例1一致。
【实施例9】
制备正极极片:采用10微米厚的OPP材料及厚度为5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用4微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为20微米、孔隙率为35%的隔膜,且隔膜具有氧化铝涂层,厚度为1微米,其余步骤与实施例1一致。
【实施例10】
制备正极极片:采用3微米厚的PET材料及厚度为2.5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用3微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为5微米、孔隙率为40%的隔膜,且隔膜具有氧化铝涂层,厚度为1微米,其余步骤与实施例1一致。
【实施例11】
制备正极极片:采用30微米厚的PET材料及厚度为4微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用2.5微米的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为10微米、孔隙率为35%的隔膜,且隔膜具有氧化铝涂层,厚度为2微米,其余步骤与实施例1一致。
【实施例12】
制备正极极片:采用厚度为1.5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用1.5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为55%的隔膜,且隔膜具有氧化铝涂层,厚度为1微米,其余步骤与实施例1一致。
【实施例13】
制备正极极片:采用厚度为5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用2.5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为8微米、孔隙率为40%的隔膜,且隔膜具有氧化铝涂层,厚度为2微米,其余步骤与实施例1一致。
【实施例14】
制备正极极片:采用厚度为0.8微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用3.5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为6微米、孔隙率为55%的隔膜,且隔膜具有氧化铝涂层,厚度为3微米,其余步骤与实施例1一致。
【实施例15】
制备正极极片:采用厚度为4.5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为10微米、孔隙率为50%的隔膜,且隔膜具有氧化铝涂层,厚度为4微米,其余步骤与实施例1一致。
【比较例1】
制备正极极片:采用厚度为15微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用5微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为5微米、孔隙率为40%的隔膜,且隔膜具有氧化铝涂层,厚度为3微米,其余步骤与实施例1一致。
【比较例2】
制备正极极片:采用厚度为5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用8微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为55%的隔膜,其余步骤与实施例1一致。
【比较例3】
制备正极极片:采用厚度为5微米的铝箔。其余步骤与实施例1一致。
制备负极极片:采用8微米厚的铜箔,其余步骤与实施例1一致。
制作锂离子电池:采用厚度为4微米、孔隙率为40%的隔膜,且隔膜具有氧化铝涂层,厚度为1微米,其余步骤与实施例1一致。
通过实施例与比较例的对比可以产生明确的结论。比较结果如下表1-2所示。
其中,表1用于汇总各实施例及对比例中导电层厚度、隔膜厚度、涂层厚度、孔隙率及满足的关系式。
表1
Figure PCTCN2021092595-appb-000001
Figure PCTCN2021092595-appb-000002
Figure PCTCN2021092595-appb-000003
在上述实施例及对比例中,对所有正负极集流体均进行方阻测量;且所有实施例和比较例均制作150只电池用于进行干电芯电阻测试、全电池自放电测试。
其中,方阻通过毫欧计四探针方阻测试仪进行测量;干电芯电阻测试方法为:将正极/隔膜/负极进行卷绕获得的干电芯在250kPa压力下,测量正极和负极之间的电阻,当电阻小于5兆欧时,为电阻不合格。此时干电芯发生微短路;全电池自放电测试方法为,取电阻测量合格的干电芯继续制作电池,将制成电池充满电至截至电压,在25℃下静置144小时,测量电压下降,K值=电压下降值/144小时。测试结果汇总到表2。
表2
Figure PCTCN2021092595-appb-000004
Figure PCTCN2021092595-appb-000005
如表2所示,对比例1-3提现了在未满足X<Y+Z关系式的情况下,干电池的电阻不合格比例大幅提升,这是由于集流体导电层的厚度大于隔膜及隔膜涂层的厚度之和,导致导体层切割后产生的毛刺的厚度大于隔膜及隔膜涂层的厚度之和的几率大幅提升,从而毛刺的穿刺能力加强,更容易刺穿隔膜。而实施例1-3满足了X<Y+Z关系式,集流体导电层的厚度小于隔膜及隔膜涂层的厚度之和,保证了毛刺的厚度小于隔膜及隔膜涂层的厚度之和,减弱了毛刺的穿刺能力,制得的干电池的电阻不合格比例大幅下降,甚至为0%。
同时,在能满足X<Y+Z关系式的前提下,可以通过适当降低隔膜的厚度来提高电芯的质量(即降低K值)。但隔膜厚度的降低意味着隔膜抗穿刺能力减弱, 为了保障毛刺无法刺穿隔膜,集流体导电层的厚度比隔膜及隔膜涂层的厚度之和需要满足X<(100%-m)Y+Z的关系式。在一个实施例中,若集流体导电层的厚度比隔膜及隔膜涂层的厚度之和能够满足X<Z,那就能够完美保证毛刺不会刺到隔膜。
尽管上面对本申请说明性的示例实施方式进行了描述,以便于本技术领域的技术人员能够理解本申请,但是本申请不仅限于示例实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本申请精神和范围内,一切利用本申请构思的申请创造均在保护之列。
本申请实施例通过控制导体层的厚度,当导体层的厚度降低,同样的剪切过程,导体层更加容易断裂,会缓解断裂不平齐的情况,减少毛刺长度,使毛刺的厚度小于隔膜厚度,毛刺刺入隔膜后穿透隔膜的可能性会大大降低,从而得以减弱集流体毛刺对隔膜的穿刺能力。

Claims (18)

  1. 一种集流体,应用于锂离子电池,所述锂离子电池包括基本单元结构,所述基本单元结构包括隔膜,所述隔膜具有隔膜涂层,所述集流体具有导体层,所述导体层的厚度满足以下关系式:X<Y+Z;
    其中,X表示所述导体层的厚度,Y表示所述隔膜的厚度,Z表示所述隔膜涂层的厚度。
  2. 根据权利要求1所述的集流体,其中,所述导体层的厚度X为0.1-5微米。
  3. 根据权利要求1所述的集流体,其中,所述隔膜的厚度Y为4-20微米。
  4. 根据权利要求1所述的集流体,其中,所述隔膜涂层的厚度Z为0-3微米。
  5. 根据权利要求1所述的集流体,其中,所述导体层的厚度满足以下关系式:X<Z。
  6. 根据权利要求1所述的集流体,其中,所述导体层的厚度满足以下关系式:X<(100%-m)Y+Z;
    其中,X表示所述导体层的厚度,Y表示所述隔膜的厚度,Z表示所述隔膜涂层的厚度,m表示所述隔膜的孔隙率。
  7. 根据权利要求6所述的集流体,其中,所述隔膜的孔隙率m为35%-55%。
  8. 根据权利要求1所述的集流体,其中,所述导体层的方阻小于150毫欧/□。
  9. 根据权利要求1所述的集流体,其中,所述导体层的材料为金属。
  10. 根据权利要求1所述的集流体,其中,所述导体层的材料为金;银;镍;钛;铜;不锈钢;碳;金合金;银合金;镍合金;钛合金;铜合金;碳合金;金、银、镍、钛、铜中至少一种与碳的混合物;不锈钢与碳的混合物;金合金、银合金、镍合金、钛合金、铜合金中至少一种与碳的混合物;或碳与碳合金的混合物。
  11. 根据权利要求1所述的集流体,还包括支撑层。
  12. 根据权利要求11所述的集流体,其中,所述支撑层的方阻大于1000欧姆/□。
  13. 根据权利要求11所述的集流体,其中,所述支撑层的材料为定向聚丙烯OPP、聚酰亚胺PI、聚对苯二甲酸乙二醇酯PET、氯化聚丙烯CPP、聚氯乙 烯PVC、纸或纤维素膜中的任一种。
  14. 一种集流体的制备方法,用于制备如权利要求1所述的集流体,所述集流体具有导体层和支撑层,包括:将导体层材料压制成所述导体层,并将所述导体层与所述支撑层复合。
  15. 根据权利要求14所述的方法,其中,所述导体层与所述支撑层通过胶粘连接,所述导体层通过化学或者电化学方法减薄。
  16. 一种集流体的制备方法,用于制备如权利要求1所述的集流体,所述集流体具有导体层和支撑层,包括:采用蒸镀或者溅射的方法在所述支撑层的表面制备所述导体层。
  17. 一种极片,具有如权利要求1-16中任一项所述的集流体。
  18. 一种锂离子电池,包括正极极片、负极极片、隔膜和电解质,其中,
    所述正极极片和所述负极极片中的至少一种包括如权利要求1-16中任一项所述的集流体。
PCT/CN2021/092595 2020-05-28 2021-05-10 一种集流体、集流体的制备方法、极片及锂离子电池 WO2021238629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010467692.6 2020-05-28
CN202010467692.6A CN111668491A (zh) 2020-05-28 2020-05-28 一种集流体及具有其的极片、二次电池

Publications (1)

Publication Number Publication Date
WO2021238629A1 true WO2021238629A1 (zh) 2021-12-02

Family

ID=72385014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092595 WO2021238629A1 (zh) 2020-05-28 2021-05-10 一种集流体、集流体的制备方法、极片及锂离子电池

Country Status (2)

Country Link
CN (1) CN111668491A (zh)
WO (1) WO2021238629A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744208A (zh) * 2022-03-29 2022-07-12 佛山市中技烯米新材料有限公司 一种集流体刻蚀箔材及其制备方法、电极、锂电池
CN114824179A (zh) * 2022-04-28 2022-07-29 南昌大学 一种固态锂电池制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668491A (zh) * 2020-05-28 2020-09-15 江苏卓高新材料科技有限公司 一种集流体及具有其的极片、二次电池
CN112510206A (zh) * 2020-10-16 2021-03-16 江苏卓高新材料科技有限公司 一种集流体及具有该集流体的电池、物体
CN114824505B (zh) * 2022-04-06 2023-11-03 苏州时代华景新能源有限公司 一种卷绕式电池零形变的制造工艺及其生产线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201985201U (zh) * 2011-01-19 2011-09-21 哈尔滨光宇电源股份有限公司 一种安全性高的锂离子动力电池极片
CN204303913U (zh) * 2014-12-15 2015-04-29 宁德新能源科技有限公司 一种动力型锂离子电池
CN104979565A (zh) * 2015-05-26 2015-10-14 广东烛光新能源科技有限公司 一种电化学储能器件
CN208127315U (zh) * 2017-11-30 2018-11-20 中航锂电(洛阳)有限公司 一种高安全性锂离子电池正极极片及集流体
CN111668491A (zh) * 2020-05-28 2020-09-15 江苏卓高新材料科技有限公司 一种集流体及具有其的极片、二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201985201U (zh) * 2011-01-19 2011-09-21 哈尔滨光宇电源股份有限公司 一种安全性高的锂离子动力电池极片
CN204303913U (zh) * 2014-12-15 2015-04-29 宁德新能源科技有限公司 一种动力型锂离子电池
CN104979565A (zh) * 2015-05-26 2015-10-14 广东烛光新能源科技有限公司 一种电化学储能器件
CN208127315U (zh) * 2017-11-30 2018-11-20 中航锂电(洛阳)有限公司 一种高安全性锂离子电池正极极片及集流体
CN111668491A (zh) * 2020-05-28 2020-09-15 江苏卓高新材料科技有限公司 一种集流体及具有其的极片、二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744208A (zh) * 2022-03-29 2022-07-12 佛山市中技烯米新材料有限公司 一种集流体刻蚀箔材及其制备方法、电极、锂电池
CN114744208B (zh) * 2022-03-29 2023-02-10 佛山市中技烯米新材料有限公司 一种集流体刻蚀箔材及其制备方法、电极、锂电池
CN114824179A (zh) * 2022-04-28 2022-07-29 南昌大学 一种固态锂电池制备方法

Also Published As

Publication number Publication date
CN111668491A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021238629A1 (zh) 一种集流体、集流体的制备方法、极片及锂离子电池
JP6715896B2 (ja) 集電体、その極シート及び電池
JP6724083B2 (ja) 集電体、その極シート及び電池
JP6873169B2 (ja) 集電体、極シート及び電気化学デバイス
WO2022068207A1 (zh) 一种复合集流体、制备方法及锂离子电池
JP5342088B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2022077900A1 (zh) 一种集流体及具有集流体的电池
JP5126813B2 (ja) 非水電解質二次電池
EP3919269B1 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JPH11233116A (ja) リチウム二次電池用電極構造体、その製造方法及びリチウム二次電池
JPWO2009081594A1 (ja) 非水電解質二次電池
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
CN114709422A (zh) 一种复合集流体、制备方法及锂离子电池
JP2008282797A (ja) 非水二次電池用集電体、およびその製造方法
CN111072317A (zh) 陶瓷浆料、陶瓷隔膜和锂离子电池
TW202033832A (zh) 具抗銅屑特性的電解銅箔
JP2008282799A (ja) 非水二次電池用電極およびその製造方法
CN110402506A (zh) 锂离子二次电池
JP2008234853A (ja) 非水系二次電池用セパレータおよびこれを備えた非水系二次電池
WO2022000308A1 (zh) 一种双极性集流体、电化学装置及电子装置
CN113013546A (zh) 一种有机/无机粒子涂层复合隔膜、制备方法及电池
JP7304380B2 (ja) 電極集電体および二次電池
CN214411251U (zh) 一种集流体及具有其的极片、二次电池、物体
CN217361857U (zh) 一种电芯结构和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811854

Country of ref document: EP

Kind code of ref document: A1