WO2024004671A1 - 車両用ブレーキ制御装置 - Google Patents

車両用ブレーキ制御装置 Download PDF

Info

Publication number
WO2024004671A1
WO2024004671A1 PCT/JP2023/022205 JP2023022205W WO2024004671A1 WO 2024004671 A1 WO2024004671 A1 WO 2024004671A1 JP 2023022205 W JP2023022205 W JP 2023022205W WO 2024004671 A1 WO2024004671 A1 WO 2024004671A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
control unit
control
current value
operation amount
Prior art date
Application number
PCT/JP2023/022205
Other languages
English (en)
French (fr)
Inventor
山岡拓実
津田郁也
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024004671A1 publication Critical patent/WO2024004671A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure

Definitions

  • the present invention relates to a vehicle brake control device, particularly a vehicle brake control device for a two-wheeled vehicle.
  • an object of the present invention is to perform a brake operator release judgment satisfactorily even in a vehicle brake control device that does not include a pressure sensor.
  • a vehicle brake control device includes a control section that controls the braking force of a wheel brake based on the operation amount of a brake operator.
  • the control unit starts a release determination to determine whether or not the brake operator has been loosened when the operation amount of the brake operator becomes equal to or less than a first predetermined value, and during the release determination, when the operation amount is equal to or less than the first predetermined value. If the value has decreased from a predetermined value, it is determined that the brake operator has been loosened.
  • release determination is performed based on the amount of operation of the brake operator, even in a vehicle brake control device that does not include a pressure sensor, release determination of the brake operator can be performed satisfactorily.
  • control unit may determine that the brake operator has been loosened if the operation amount continues to decrease for a first predetermined period of time during the release determination.
  • control unit sets a release flag when determining that the brake operator has been loosened, and lowers the release flag when the operation amount becomes equal to or less than a second predetermined value, which is smaller than the first predetermined value. Good too.
  • the release flag is lowered when the manipulated variable becomes equal to or less than the second predetermined value, which is smaller than the first predetermined value. can be terminated.
  • control unit may lower the release flag if the amount of operation increases while the release flag is set.
  • the release flag is lowered, so that, for example, pressure reduction control that is performed when the release flag is set is triggered by re-input of the brake operator. You can then finish it.
  • control unit may lower the release flag when the operation amount continues to increase for a second predetermined period while the release flag is set.
  • the vehicle brake control device may further include an angle sensor that detects the angle of the brake operator, and the control unit may obtain the angle detected by the angle sensor as the operation amount.
  • FIG. 1 is a diagram showing the configuration of a motorcycle equipped with a vehicle brake control device according to an embodiment.
  • 5 is a flowchart showing the operation of the control section. 5 is a time chart showing a specific example of the operation of the control unit. It is a flow chart which shows operation of a control part concerning a modification. It is a figure which shows the setting method of the instruction
  • the motorcycle MC includes an engine ENG, a transmission TM, and a vehicle brake control device C.
  • the engine ENG is a drive source that provides driving force to the rear wheels WR, and is connected to the rear wheels WR via the transmission TM. That is, in the motorcycle MC of this embodiment, the rear wheel WR is a driving wheel, and the front wheel WF is a driven wheel.
  • Engine ENG is provided with a throttle sensor 54 that detects the opening degree of the throttle valve of engine ENG. The opening degree of the throttle valve increases as the operation amount of the accelerator AC increases.
  • the transmission TM is a mechanism that changes the speed of the driving force of the engine ENG and transmits it to the rear wheels WR, and a speed detection sensor 52 is provided near its output shaft.
  • the speed detection sensor 52 is a sensor (so-called speedometer sensor) that detects the wheel speed of the rear wheel WR, and detects the wheel speed corresponding to the speed displayed by a speedometer (not shown).
  • the speed detection sensor 52 has a different detection type from the wheel speed sensor 51 that detects the wheel speed of the front wheel WF.
  • the wheel speed sensor 51 is a sensor that generates pulse waves as the wheels rotate.
  • the vehicle brake control device C includes a brake system BF for the front wheels WF, a brake system BR for the rear wheels WR, and a control section 100.
  • the brake system BF includes a front brake lever LF, a master cylinder MF, a hydraulic unit 10, a front brake 20F as an example of a wheel brake, and a pipe 30 connecting the master cylinder MF and the input port 11a of the hydraulic unit 10. , and mainly includes a pipe 40 connecting the output port 11b of the hydraulic unit 10 and the front brake 20F.
  • the front brake lever LF is an operating lever for operating the front brake 20F, is arranged on the right side of the handlebar of the motorcycle MC, and can be operated with the driver's right hand. Front brake lever LF is connected to front brake 20F via master cylinder MF, piping 30, hydraulic unit 10, and piping 40.
  • the master cylinder MF is a device that outputs hydraulic pressure according to the amount of operation of the front brake lever LF.
  • the front brake 20F is a brake that brakes the front wheel WF.
  • the front brake 20F includes a brake rotor 21, a brake pad (not shown), and a wheel cylinder 23 that presses the brake pad against the brake rotor 21 using hydraulic pressure output from a master cylinder MF to generate braking force (braking force).
  • the Lord is preparing.
  • the hydraulic unit 10 is a unit for generating the braking force of the front brake 20F by applying hydraulic pressure to the front brake 20F.
  • the hydraulic unit 10 includes various electromagnetic valves and the like arranged on a pump body 11, which is a base body having an oil passage (hydraulic passage) through which brake fluid flows. Under normal conditions, an oil passage is connected from the input port 11a to the output port 11b of the pump body 11, so that the hydraulic pressure output from the master cylinder MF is transmitted to the front brake 20F. There is.
  • a pressure regulating valve 7 is provided on the hydraulic pressure path connecting the input port 11a and the output port 11b to change the hydraulic pressure applied to the front brake 20F according to the value of the command current value output from the control unit 100.
  • the pressure regulating valve 7 is a normally open proportional solenoid valve, and is capable of adjusting the difference in hydraulic pressure upstream and downstream thereof according to the command current value.
  • the pressure regulating valve 7 is configured to increase the difference in hydraulic pressure upstream and downstream of the pressure regulating valve 7 as the command current value increases.
  • the pressure regulating valve 7 is provided in parallel with a check valve 7a that allows flow only to the output port 11b side.
  • An inlet valve 1 which is a normally open electromagnetic valve, is disposed on the hydraulic pressure path between the pressure regulating valve 7 and the output port 11b.
  • the inlet valve 1 is provided in parallel with a check valve 1a that allows flow only to the pressure regulating valve 7 side.
  • a return hydraulic pressure path 19B is connected from the hydraulic pressure path between the output port 11b and the inlet valve 1 to the hydraulic pressure path between the pressure regulating valve 7 and the inlet valve 1 via the outlet valve 2 which is a normally closed electromagnetic valve. It is provided.
  • a reservoir 3 for temporarily absorbing excess brake fluid, a check valve 3a, a pump 4, and an orifice 4a are arranged on this return hydraulic pressure path 19B in this order from the outlet valve 2 side.
  • the check valve 3a is arranged to allow flow only toward the hydraulic pressure path between the pressure regulating valve 7 and the inlet valve 1.
  • the pump 4 is driven by a motor 6 and is provided to generate pressure toward a hydraulic path between the pressure regulating valve 7 and the inlet valve 1.
  • the orifice 4a attenuates the pressure pulsations of the brake fluid discharged from the pump 4 and the pulsations generated when the pressure regulating valve 7 operates.
  • An introduction hydraulic pressure path 19A connecting the input port 11a and the pressure regulating valve 7 and a portion of the return hydraulic pressure path 19B between the check valve 3a and the pump 4 are connected by a suction hydraulic pressure path 19C.
  • a mechanical suction valve 8 is disposed in the suction hydraulic pressure path 19C.
  • the suction valve 8 switches the suction hydraulic pressure path 19C between an open state and a closed state.
  • the suction valve 8 is normally closed, and is caused by the difference between the hydraulic fluid pressure on the master cylinder MF side and the hydraulic fluid pressure on the suction port side of the pump 4, which becomes negative pressure due to the operation of the pump 4.
  • the valve is configured to open.
  • each solenoid valve is not normally energized, and the brake fluid pressure introduced from the input port 11a passes through the pressure regulating valve 7 and the inlet valve 1 to the output port 11b. It is output and applied as is to the front brake 20F.
  • the inlet valve 1 is closed and the outlet valve 2 is opened to drain the brake fluid into the reservoir through the return fluid pressure path 19B. 3 to drain the brake fluid from the front brake 20F.
  • the suction valve 8 is opened, and the pressurizing force of the pump 4 is used to actively pressurize the front brake 20F.
  • Brake fluid can be supplied to the front brake 20F.
  • it is desired to adjust the degree of pressurization of the front brake 20F this can be done by adjusting the current flowing through the pressure regulating valve 7.
  • the brake system BR mainly includes a rear brake lever LR as an example of a brake operator, an angle sensor 53, a rear brake 20R, and a wire W connecting the rear brake lever LR and the rear brake 20R. There is.
  • the rear brake lever LR is an operation lever for operating the rear brake 20R, and is arranged on the left side of the handlebar of the motorcycle MC, and can be operated with the driver's left hand.
  • the rear brake lever LR is connected to the rear brake 20R via a wire W.
  • the angle sensor 53 is a sensor for detecting the operating angle of the rear brake lever LR.
  • the rear brake 20R is a brake that brakes the rear wheel WR, and is a mechanical brake that is activated by transmitting the force when gripping the rear brake lever LR via the wire W.
  • the rear brake 20R cannot be operated with the front brake lever LF.
  • the rear brake 20R is, for example, a drum brake, and includes a drum 25, a brake shoe, and a return spring (not shown).
  • the drum 25 is rotatable together with the rear wheel WR.
  • the brake shoe is rotatable between a contact position where it contacts the inner circumferential surface of the drum 25 and a separated position where it separates from the inner circumferential surface of the drum 25.
  • the return spring urges the brake shoe from the contact position to the separation position.
  • the control unit 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input/output circuit, and the like.
  • the control unit 100 controls the hydraulic unit 10 by performing various calculation processes based on inputs from the wheel speed sensor 51, speed detection sensor 52, angle sensor 53, and throttle sensor 54, as well as programs and data stored in the ROM. control.
  • the control unit 100 is capable of executing braking force control that controls the braking force of the front brake 20F based on the operation amount of the rear brake lever LR.
  • the control unit 100 obtains the operation angle ⁇ of the rear brake lever LR detected by the angle sensor 53 as the operation amount.
  • the control unit 100 starts braking force control when the operating angle ⁇ becomes greater than or equal to the start threshold value ⁇ s.
  • the control unit 100 ends the braking force control when the operating angle ⁇ becomes equal to or less than the second predetermined value ⁇ th2 during execution of the braking force control.
  • the control unit 100 executes pressurization control, release determination, and pressure reduction control during braking force control.
  • the brake control method by the control unit 100 includes a pressurization process for performing pressurization control, a release determination process for performing release determination, and a pressure reduction process for performing pressure reduction control.
  • Pressurization control is control to make the hydraulic pressure of the front brake 20F higher than when the hydraulic unit 10 is not controlled by the control section 100.
  • the control unit 100 controls the braking force (hydraulic pressure) of the front brake 20F based on the operation of the rear brake lever LR.
  • control unit 100 executes the pressurization control by driving the motor 6 and controlling the pressure regulating valve 7.
  • the control unit 100 calculates the command current value to be output to the pressure regulating valve 7 based on the operating angle ⁇ and the vehicle body deceleration.
  • the vehicle body deceleration can be calculated based on the wheel speed acquired from the wheel speed sensor 51, for example.
  • the control unit 100 increases the command current value as the operating angle ⁇ becomes larger, and increases the command current value as the vehicle body deceleration decreases.
  • the control unit 100 limits the increase in the braking force so that the amount of increase per unit time in the braking force (hydraulic pressure) of the front brake 20F is equal to or less than the upper limit value. Specifically, for example, the control unit 100 limits the increase in the braking force of the front brake 20F by calculating the command current value using the following equation (1).
  • a n min(A n , A n-1 +Au) ...
  • a n Current value of indicated current value A n-1 : Previous value of indicated current value Au: Upper limit value (fixed value) That is, the control unit 100 compares the current value A n of the instructed current value with the value obtained by adding the upper limit value Au to the previous value A n-1 of the instructed current value, and selects the smaller value as the indicated current value. This time value A is determined as n .
  • the release determination is a process of determining whether or not the rear brake lever LR has been loosened during pressurization control.
  • the control unit 100 starts release determination when the operating angle ⁇ of the rear brake lever LR becomes equal to or less than the first predetermined value ⁇ th1.
  • the control unit 100 determines that the rear brake lever LR has been loosened if the operating angle ⁇ has decreased from the first predetermined value ⁇ th1.
  • the control unit 100 determines that the rear brake lever LR has been loosened if the operating angle ⁇ continues to decrease for the first predetermined time T1 during the release determination.
  • the control loop of pressurization control is performed multiple times, and in all of the multiple control loops, the current value of the operating angle ⁇ is determined to be the same as the previous value.
  • a method may be adopted in which it is determined that the operation angle ⁇ is continuously decreasing for the first predetermined time T1 when the operation angle ⁇ is smaller than the value. Specifically, for example, when the operation angle ⁇ becomes equal to or less than the first predetermined value ⁇ th1, the timer starts measuring time, and the timer starts counting all the times executed multiple times until the timer reaches the first predetermined time T1. In the control cycle, it may be determined whether the current value of the operation angle ⁇ is smaller than the previous value. Note that the timer may be reset when the measured time exceeds the first predetermined time T1.
  • the operation angle ⁇ is determined based on the history of the operation angle ⁇ by referring to the history of a plurality of operation angles ⁇ in a period going back a first predetermined time T1 from the start of the release determination.
  • One example is a method in which it is determined that the number continues to decrease for a first predetermined time T1. This method does not require the use of a timer.
  • control unit 100 determines that the rear brake lever LR has been loosened, it sets a release flag F indicating that the rear brake lever LR has been loosened, and executes pressure reduction control while the release flag F is set. .
  • the pressure reduction control is a control that gradually reduces the braking force of the front brake 20F when it is determined in the release determination that the rear brake lever LR has been loosened.
  • grade reducing the braking force of the front brake 20F means reducing the braking force of the front brake 20F at a lower gradient than the gradient at which the braking force of the front brake 20F is reduced at the fastest speed.
  • the control unit 100 executes pressure reduction control by controlling the pressure regulating valve 7 while the motor 6 is stopped.
  • the control unit 100 sets the first pressure reduction amount D1 when the command current value A n to the pressure regulating valve 7 when it is determined that the rear brake lever LR is loosened is equal to or greater than the threshold value Ath.
  • the "instruction current value A n when it is determined that the rear brake lever LR is released" is also simply referred to as the "instruction current value A n at the time of release determination.”
  • the control unit 100 sets a second pressure reduction amount D2 smaller than the first pressure reduction amount D1.
  • the control unit 100 calculates the value obtained by subtracting the set pressure reduction amount D (the first pressure reduction amount D1 or the second pressure reduction amount D2) from the previous value A n-1 of the command current value as the command current value. This time, the value is A n .
  • the control unit 100 lowers the release flag F when the operating angle ⁇ becomes equal to or less than a second predetermined value ⁇ th2, which is smaller than the first predetermined value ⁇ th1, during pressure reduction control, that is, when the release flag F is set. Then, the pressure reduction control (braking force control) is ended. Further, if the operating angle ⁇ increases during the pressure reduction control, that is, when the release flag F is set, the control unit 100 lowers the release flag F, ends the pressure reduction control, and restarts the pressure control. . In this embodiment, the control unit 100 lowers the release flag F when the operating angle ⁇ continues to increase for a second predetermined time T2 while the release flag F is set.
  • the determination as to whether or not the operating angle ⁇ has increased continuously for the second predetermined time T2 can be made, for example, by performing the pressure reduction control control loop multiple times, and in all of the multiple control loops, the current value of the operating angle ⁇ is determined as the previous value.
  • a method may be adopted in which it is determined that the operation angle ⁇ is continuously decreasing for the second predetermined time T2 when the operation angle ⁇ is larger than the value.
  • the second predetermined time T2 may be the same value as the first predetermined time T1, or may be a different value.
  • control unit 100 constantly repeatedly executes the process shown in FIG.
  • the control unit 100 first starts acquiring the operating angle ⁇ of the rear brake lever LR from the angle sensor 53 (S1). After step S1, the control unit 100 determines whether the operating angle ⁇ has become equal to or greater than the start threshold value ⁇ s (S2). If it is determined in step S2 that ⁇ s (No), the control unit 100 ends this process.
  • step S2 If it is determined in step S2 that ⁇ s (Yes), the control unit 100 starts pressurization control (S3 to S6).
  • the control unit 100 calculates the command current value A n based on the operation angle ⁇ and the vehicle body deceleration (S3).
  • the control unit 100 compares the instructed current value A n calculated in step S3 with the value obtained by adding the upper limit value Au to the previous value A n-1 of the instructed current value, and selects the smaller value. , the current value of the instructed current value A n (S4).
  • control unit 100 outputs the command current value to the pressure regulating valve 7 and also drives the motor 6, but the timing for starting driving the motor 6 may be set to an appropriate timing.
  • step S4 the control unit 100 determines whether the operating angle ⁇ has become equal to or less than the first predetermined value ⁇ th1 (S5). If it is determined in step S5 that ⁇ th1 (Yes), the control unit 100 performs a release determination (S6, S7).
  • step S5 If the determination is No in step S5 or step S6, the control unit 100 returns to the process of step S3. After step S7, the control unit 100 executes pressure reduction control (S8 to S15). Note that when starting the pressure reduction control, the control unit 100 stops the motor 6, but the timing of stopping the motor 6 may be set to an appropriate timing.
  • the control unit 100 determines whether the instruction current value An at the time of release determination is equal to or greater than the threshold value Ath (S8). If it is determined in step S8 that A n ⁇ Ath (Yes), the control unit 100 sets the first pressure reduction amount D1 as the pressure reduction amount D (S9). If it is determined in step S8 that A n ⁇ Ath (No), the control unit 100 sets the second pressure reduction amount D2, which is smaller than the first pressure reduction amount D1, as the pressure reduction amount D (S10).
  • step S9 or step S10 the control unit 100 sets a value obtained by subtracting the pressure reduction amount D from the previous value A n-1 of the command current value as the current value A n of the command current value (S11). After step S11, the control unit 100 determines whether the operating angle ⁇ continues to increase for a second predetermined time T2 (S12).
  • step S12 determines whether the operating angle ⁇ has become equal to or less than the second predetermined value ⁇ th2. Determination is made (S13). If it is determined in step S13 that ⁇ th2 (No), the control unit 100 returns to the process of step S11.
  • step S12 If it is determined in step S12 that the operating angle ⁇ has increased continuously for the second predetermined time T2 (Yes), the control unit 100 sets the release flag F to 0 (S16) and returns to the process of step S3. That is, if the operating angle ⁇ continues to increase for the second predetermined time T2 during the pressure reduction control, the control unit 100 ends the pressure reduction control and restarts the pressure increase control.
  • the control unit 100 sets the command current value A n mainly based on the operation angle ⁇ and the vehicle deceleration, as shown in FIG. By doing so, pressurization control is executed (times t0 to t1).
  • pressurization control is executed (times t0 to t1).
  • the control unit 100 starts measuring time with a timer and starts release determination. (Time t1).
  • the control unit 100 determines that the operation of the rear brake lever LR has been loosened, and sets the release flag F. is set, and pressure reduction control is started (time t2).
  • the control unit 100 decreases the commanded current value A n by the first pressure reduction amount D1, as shown by the solid line.
  • the command current value A n gradually decreases at the first gradient G1 corresponding to the first pressure reduction amount D1, so the hydraulic pressure of the front brake 20F gradually decreases at the first hydraulic pressure gradient corresponding to the first gradient G1. can be done.
  • the control unit 100 reduces the commanded current value A n by a second pressure reduction amount D2 that is smaller than the first pressure reduction amount D1, as shown by the two-dot chain line. I'll let you do it.
  • the command current value A n gradually decreases at the second gradient G2, which is gentler than the first gradient G1, so that the hydraulic pressure of the front brake 20F is reduced to a gentle second hydraulic pressure gradient corresponding to the second gradient G2. It can be gradually reduced.
  • the control unit 100 lowers the release flag F, ends the pressure reduction control, and ends the braking force control.
  • the command current value A n to be lowered at the first slope G1 or the second slope G2 is shown to be exactly 0 at the end of braking force control, but the command at the time of release judgment Depending on the value of the current value A n , the command current value A n may become 0 before the braking force control ends, or the command current value A n may become a value larger than 0 at the end of the braking force control. If the command current value A n is larger than 0 at the end of the braking force control, the command current value A n is set to 0 in step S15 described above.
  • the following effects can be obtained.
  • the braking force of the front brake 20F is gradually reduced, so that the uncomfortable feeling given to the driver when the rear brake lever LR is released can be reduced.
  • step S4 restricts a sudden increase in the braking force of the front brake 20F during the pressure control. Therefore, the vehicle behavior can be stabilized.
  • the release determination is made based on the operation amount of the rear brake lever LR, even if the vehicle brake control device C does not include a pressure sensor, the release determination of the rear brake lever LR can be performed satisfactorily.
  • the determination accuracy of the release determination can be improved.
  • the pressure reduction control performed when the release flag F is set is ended at an appropriate timing. be able to.
  • the release flag F is lowered, so the pressure reduction control performed when the release flag F is set is triggered by the re-input of the rear brake lever LR. can be terminated.
  • the re-input of the rear brake lever LR is determined based on the fact that the operation angle ⁇ continues to increase for the second predetermined time T2, the accuracy of the determination of the re-input of the rear brake lever LR can be improved.
  • the method of gradually decreasing the command current value in pressure reduction control is not limited to the method described in the above embodiment.
  • the control unit 100 sets the operation angle ⁇ of the rear brake lever LR to a second predetermined value based on the command current value Ar and the operation angle ⁇ r when it is determined that the rear brake lever LR is loosened.
  • the command current value A n may be gradually decreased as the operating angle ⁇ decreases so that the command current value A n becomes 0 when ⁇ th2 is reached.
  • command current value A n during pressure reduction control may be calculated using the following equation (2).
  • a n a ⁇ ( ⁇ th2) (2)
  • a Ar/( ⁇ r- ⁇ th2)
  • Ar Indicated current value at the time of release determination
  • ⁇ r Operation angle at the time of release determination
  • the indicated current value A n By calculating the indicated current value A n using such equation (2), the indicated current value A n gradually decreases with the slope a described above as the operating angle ⁇ decreases, and the operating angle ⁇ becomes the 2.
  • the command current value A n can be set to 0 when it reaches the predetermined value ⁇ th2.
  • the control unit 100 in this embodiment may execute the processing shown in FIG. 4 .
  • step S31 The process shown in FIG. 4 has a configuration in which a new step S31 is added instead of steps S8 to S11 in the process shown in FIG.
  • the command current value A n is set using the above-mentioned equation (2).
  • step S7 the control unit 100 executes the process of step S31, and then proceeds to the process of step S12. If the determination in step S13 is No, the control unit 100 returns to the process in step S31.
  • the operation angle ⁇ reaches the second predetermined value ⁇ th2, that is, when the braking force control ends, it is possible to further suppress the instruction current value A n from suddenly becoming 0, so that the driver It is possible to further reduce the discomfort caused to the user.
  • the upper limit value Au for limiting the increase in the braking force of the front brake 20F is set to a fixed value, but the upper limit value Au may be made variable.
  • the upper limit value Au1 during the first pressurization control in the braking force control may be different from the upper limit value Au2 during the pressurization control when the pressurization control is resumed from the pressure reduction control.
  • the release determination it is determined that the operation angle ⁇ is released when the operation angle ⁇ continuously decreases during the first predetermined time T1. It may be determined that the signal has been released even if the signal is intermittently lowered.
  • the number of control loops in which the current value of the operating angle ⁇ is smaller than the previous value Examples include a method in which it is determined that the operating angle ⁇ has intermittently decreased when the value is greater than the number of control loops that are larger than the previous value. Note that the method of determining whether the operating angle ⁇ is continuously increasing may be changed to a method of determining whether the operating angle ⁇ is increasing intermittently. The determination as to whether the operating angle ⁇ has intermittently increased can be performed using the same method as the method for determining that the operating angle ⁇ has intermittently decreased.
  • the operation angle ⁇ of the rear brake lever LR is exemplified as the operation amount, but the operation amount may be, for example, a stroke amount detected by a stroke sensor that detects the stroke of an operator such as a brake lever or a foot brake.
  • the distance may be detected by a distance sensor such as an infrared sensor that detects the distance between the operator and a support member that movably supports the operator.
  • the wheel brakes are not limited to hydraulic brakes, and may be, for example, electromagnetic brakes.
  • the rear brake is not limited to a mechanical brake, and may be an electromagnetic brake or a hydraulic brake, for example. Further, when the rear brake is an electromagnetic brake or a hydraulic brake, the braking force of the rear brake may be controlled based on the amount of operation of the brake operator for the front wheels.
  • the vehicle provided with wheel brakes is not limited to the motorcycle MC, and may be any vehicle.
  • the vehicle may be a bar handle vehicle operated with a bar handle.
  • the bar handle vehicle may be, for example, a tricycle or a four-wheel vehicle.
  • the brake operator is not limited to a lever, and may be, for example, a foot brake pedal.
  • the suction valve may be a normally closed solenoid valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両用ブレーキ制御装置は、ブレーキ操作子の操作量に基づいて車輪ブレーキの制動力を制御する制御部を備える。制御部は、ブレーキ操作子の操作量(操作角θ)が第1所定値θth1以下になった場合に、ブレーキ操作子が緩められたか否かを判定するリリース判定(S6,S7)を開始し、リリース判定中において、操作量が第1所定値θth1から減少している場合に(S6:Yes)、ブレーキ操作子が緩められたと判定する(S7)。

Description

車両用ブレーキ制御装置
 本発明は、車両用ブレーキ制御装置、特に二輪自動車用の車両用ブレーキ制御装置に関する。
 従来、車両用ブレーキ制御装置として、圧力センサで検知したホイールシリンダ圧に基づいてブレーキレバーが緩められたかを判定するリリース判定を行うものが知られている(特開2008-195138号公報参照)。
 しかしながら、圧力センサを備えない車両用ブレーキ制御装置では、従来のようなリリース判定を行うことができない。
 そこで、本発明は、圧力センサを備えない車両用ブレーキ制御装置であっても、ブレーキ操作子のリリース判定を良好に行うことを目的とする。
 前記課題を解決するため、本発明に係る車両用ブレーキ制御装置は、ブレーキ操作子の操作量に基づいて車輪ブレーキの制動力を制御する制御部を備える。
 制御部は、ブレーキ操作子の操作量が第1所定値以下になった場合に、ブレーキ操作子が緩められたか否かを判定するリリース判定を開始し、リリース判定中において、操作量が第1所定値から減少している場合に、ブレーキ操作子が緩められたと判定する。
 この構成によれば、ブレーキ操作子の操作量に基づいてリリース判定を行うので、圧力センサを備えない車両用ブレーキ制御装置であっても、ブレーキ操作子のリリース判定を良好に行うことができる。
 また、制御部は、リリース判定中において操作量が第1所定時間継続して減少している場合にブレーキ操作子が緩められたと判定してもよい。
 この構成によれば、リリース判定において操作量が第1所定時間継続して減少していることを判定するので、リリース判定の判定精度を向上させることができる。
 また、制御部は、ブレーキ操作子が緩められたと判定した場合に、リリースフラグを立て、操作量が、第1所定値よりも小さい第2所定値以下になった場合に、リリースフラグを下ろしてもよい。
 この構成によれば、操作量が第1所定値よりも小さい第2所定値以下になった場合にリリースフラグを下ろすので、例えばリリースフラグが立っているときに行われる減圧制御を適切なタイミングで終了することができる。
 また、制御部は、リリースフラグが立っているときに操作量が増加した場合に、リリースフラグを下ろしてもよい。
 この構成によれば、リリースフラグが立っているときに操作量が増加した場合にリリースフラグを下ろすので、例えばリリースフラグが立っているときに行われる減圧制御を、ブレーキ操作子の再入力をきっかけにして終了することができる。
 また、制御部は、リリースフラグが立っているときに操作量が第2所定時間継続して増加した場合に、リリースフラグを下ろしてもよい。
 この構成によれば、操作量が第2所定時間継続して増加したことに基づいてブレーキ操作子の再入力を判定するので、ブレーキ操作子の再入力の判定の判定精度を向上させることができる。
 また、車両用ブレーキ制御装置は、ブレーキ操作子の角度を検出するアングルセンサをさらに備え、制御部は、操作量として、アングルセンサで検出した角度を取得してもよい。
 この構成によれば、アングルセンサを用いることで、安価な車両用ブレーキ制御装置を提供することができる。
実施形態に係る車両用ブレーキ制御装置を備えた自動二輪車の構成を示す図である。 制御部の動作を示すフローチャートである。 制御部の動作の具体例を示すタイムチャートである。 変形例に係る制御部の動作を示すフローチャートである。 変形例に係る制御部による指示電流値の設定方法を示す図である。
 以下、実施形態について、適宜図面を参照しながら詳細に説明する。
 図1に示すように、自動二輪車MCは、エンジンENGと、トランスミッションTMと、車両用ブレーキ制御装置Cとを備えている。
 エンジンENGは、後輪WRに駆動力を付与する駆動源であり、トランスミッションTMを介して後輪WRに連結されている。つまり、本実施形態の自動二輪車MCは、後輪WRが駆動輪、前輪WFが従動輪となっている。エンジンENGには、エンジンENGのスロットルバルブの開度を検出するスロットルセンサ54が設けられている。スロットルバルブの開度は、アクセルACの操作量が大きいほど大きい。トランスミッションTMは、エンジンENGの駆動力を変速して後輪WRに伝達する機構であり、その出力軸付近には、速度検出センサ52が設けられている。
 速度検出センサ52は、後輪WRの車輪速度を検出するセンサ(いわゆるスピードメータセンサ)であり、図示せぬスピードメータで表示する速度に対応した車輪速度を検出している。速度検出センサ52は、前輪WFの車輪速度を検出する車輪速度センサ51と検出形式が異なる。車輪速度センサ51は、車輪の回転に伴ってパルス波を発生するセンサである。
 車両用ブレーキ制御装置Cは、前輪WFのブレーキ系統BFと、後輪WRのブレーキ系統BRと、制御部100とを備えている。
 ブレーキ系統BFは、フロントブレーキレバーLFと、マスタシリンダMFと、液圧ユニット10と、車輪ブレーキの一例としてのフロントブレーキ20Fと、マスタシリンダMFと液圧ユニット10の入力ポート11aを繋ぐ配管30と、液圧ユニット10の出力ポート11bとフロントブレーキ20Fを繋ぐ配管40とを主に有して構成されている。
 フロントブレーキレバーLFは、フロントブレーキ20Fを作動させるための操作レバーであり、自動二輪車MCのハンドルの右側に配置され、運転者の右手で操作可能となっている。フロントブレーキレバーLFは、マスタシリンダMF、配管30、液圧ユニット10および配管40を介してフロントブレーキ20Fに接続されている。
 マスタシリンダMFは、フロントブレーキレバーLFの操作量に応じた液圧を出力する装置である。
 フロントブレーキ20Fは、前輪WFを制動するブレーキである。フロントブレーキ20Fは、ブレーキロータ21と、図示しないブレーキパッドと、マスタシリンダMFから出力された液圧によりブレーキパッドをブレーキロータ21に押し当ててブレーキ力(制動力)を発生するホイールシリンダ23とを主に備えている。
 液圧ユニット10は、フロントブレーキ20Fに液圧を付与することで、フロントブレーキ20Fの制動力を発生させるためのユニットである。液圧ユニット10は、ブレーキ液が流通する油路(液圧路)を有する基体であるポンプボディ11に各種の電磁バルブ等が配置されることで構成されている。そして、通常時はポンプボディ11の入力ポート11aから出力ポート11bまでが連通した油路となっていることで、マスタシリンダMFから出力された液圧がフロントブレーキ20Fに伝達されるようになっている。
 入力ポート11aと出力ポート11bを繋ぐ液圧路上には、制御部100から出力される指示電流値の値に応じてフロントブレーキ20Fに付与される液圧を変化させる調圧弁7が設けられている。調圧弁7は、常開型比例電磁弁であり、指示電流値の値に応じてその上下流の液圧の差を調整可能となっている。詳しくは、調圧弁7は、指示電流値の大きさが大きいほど、調圧弁7の上下流の液圧の差を大きくするように構成されている。調圧弁7には、並列して、出力ポート11b側へのみの流れを許容するチェック弁7aが設けられている。
 調圧弁7と出力ポート11bの間の液圧路上には、常開型電磁弁である入口弁1が配設されている。入口弁1には、並列して、調圧弁7側へのみの流れを許容するチェック弁1aが設けられている。
 出力ポート11bと入口弁1の間の液圧路からは、常閉型電磁弁からなる出口弁2を介して調圧弁7と入口弁1の間の液圧路に繋がる還流液圧路19Bが設けられている。
 この還流液圧路19B上には、出口弁2側から順に、過剰なブレーキ液を一時的に吸収するリザーバ3、チェック弁3a、ポンプ4およびオリフィス4aが配設されている。チェック弁3aは、調圧弁7と入口弁1の間の液圧路へ向けての流れのみを許容するように配置されている。ポンプ4は、モータ6により駆動され、調圧弁7と入口弁1の間の液圧路へ向けての圧力を発生するように設けられている。オリフィス4aは、ポンプ4から吐出されたブレーキ液の圧力の脈動および調圧弁7が作動することにより発生する脈動を減衰させている。
 入力ポート11aと調圧弁7を繋ぐ導入液圧路19Aと、還流液圧路19Bにおけるチェック弁3aとポンプ4の間の部分とは、吸入液圧路19Cにより接続されている。そして、吸入液圧路19Cには、機械式の吸入弁8が配設されている。
 吸入弁8は、吸入液圧路19Cを開放する状態と遮断する状態とに切り換えるものである。吸入弁8は、通常は閉弁しており、マスタシリンダMF側の作動液の液圧と、ポンプ4の作動で負圧となるポンプ4の吸入口側の作動液の液圧との差によって開弁するように構成されている。
 以上のような構成の液圧ユニット10は、通常時には、各電磁弁に通電がなされず、入力ポート11aから導入されたブレーキ液圧は、調圧弁7、入口弁1を通って出力ポート11bに出力され、フロントブレーキ20Fにそのまま付与される。そして、アンチロックブレーキ制御を行う場合など、フロントブレーキ20Fの過剰なブレーキ液圧を減圧する場合には、入口弁1を閉じ、出口弁2を開くことで還流液圧路19Bを通してブレーキ液をリザーバ3へと流し、フロントブレーキ20Fのブレーキ液を抜くことができる。また、例えば運転者のフロントブレーキレバーLFの操作が無い場合にフロントブレーキ20Fの加圧を行う場合には、モータ6を駆動することで、吸入弁8が開き、ポンプ4の加圧力により積極的にフロントブレーキ20Fへブレーキ液を供給することができる。さらに、フロントブレーキ20Fの加圧の程度を調整したい場合には、調圧弁7に流す電流を調整することで調整することができる。
 ブレーキ系統BRは、ブレーキ操作子の一例としてのリアブレーキレバーLRと、アングルセンサ53と、リアブレーキ20Rと、リアブレーキレバーLRとリアブレーキ20Rを繋ぐワイヤWとを主に有して構成されている。
 リアブレーキレバーLRは、リアブレーキ20Rを作動させるための操作レバーであり、自動二輪車MCのハンドルの左側に配置され、運転者の左手で操作可能となっている。リアブレーキレバーLRは、ワイヤWを介して、リアブレーキ20Rに接続されている。
 アングルセンサ53は、リアブレーキレバーLRの操作角を検出するためのセンサである。
 リアブレーキ20Rは、後輪WRを制動するブレーキであり、リアブレーキレバーLRを握ったときの力がワイヤWを介して伝達されることで作動する機械式ブレーキとなっている。リアブレーキ20Rは、フロントブレーキレバーLFでは操作できない。リアブレーキ20Rは、例えばドラムブレーキであり、ドラム25と、図示せぬブレーキシューおよびリターンスプリングとを有している。
 ドラム25は、後輪WRと一体に回転可能となっている。ブレーキシューは、ドラム25の内周面に接触する接触位置と、ドラム25の内周面から離れる離間位置との間で回動可能となっている。リターンスプリングは、ブレーキシューを接触位置から離間位置に向けて付勢する。運転者がリアブレーキレバーLRを握ると、ワイヤWがリアブレーキレバーLRで引っ張られることで、ブレーキシューがリターンスプリングの付勢力に抗して離間位置から接触位置に向けて回動する。
 制御部100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入出力回路などを備えて構成されている。制御部100は、車輪速度センサ51、速度検出センサ52、アングルセンサ53およびスロットルセンサ54からの入力や、ROMに記憶されたプログラム、データなどに基づいて各種演算処理を行うことによって液圧ユニット10を制御する。
 制御部100は、リアブレーキレバーLRの操作量に基づいてフロントブレーキ20Fの制動力を制御する制動力制御を実行可能となっている。制御部100は、操作量として、アングルセンサ53で検出したリアブレーキレバーLRの操作角θを取得する。制御部100は、操作角θが開始閾値θs以上になった場合に制動力制御を開始する。制御部100は、制動力制御の実行中において操作角θが、第2所定値θth2以下になった場合に、制動力制御を終了する。
 制御部100は、制動力制御中において、加圧制御と、リリース判定と、減圧制御と、を実行する。言い換えると、制御部100によるブレーキ制御方法は、加圧制御を実行する加圧工程と、リリース判定を行うリリース判定工程と、減圧制御を実行する減圧工程と、を備える。
 加圧制御は、フロントブレーキ20Fの液圧を、制御部100によって液圧ユニット10を制御していないときよりも加圧した状態にする制御である。制御部100は、加圧制御中、リアブレーキレバーLRの操作に基づいてフロントブレーキ20Fの制動力(液圧)を制御する。
 詳しくは、制御部100は、モータ6を駆動し、かつ、調圧弁7を制御することで、加圧制御を実行する。制御部100は、調圧弁7に出力する指示電流値の値を、操作角θと車体減速度とに基づいて算出する。ここで、車体減速度は、例えば、車輪速度センサ51から取得した車輪速度に基づいて算出することができる。制御部100は、操作角θが大きいほど指示電流値の値を大きくし、車体減速度の大きさが小さいほど指示電流値の値を大きくする。
 制御部100は、加圧制御において、フロントブレーキ20Fの制動力(液圧)の単位時間当たりの増加量が上限値以下となるように、制動力の増加を制限する。具体的には、例えば、制御部100は、以下の式(1)により指示電流値を算出することで、フロントブレーキ20Fの制動力の増加を制限する。
=min(A,An-1+Au)   ・・・(1)
:指示電流値の今回値
n-1:指示電流値の前回値
Au:上限値(固定値)
 つまり、制御部100は、指示電流値の今回値Aと、指示電流値の前回値An-1に上限値Auを加えた値とを比較し、小さい値の方を、指示電流値の今回値Aとして決定する。
 リリース判定は、加圧制御中にリアブレーキレバーLRが緩められたか否かを判定する処理である。制御部100は、リアブレーキレバーLRの操作角θが第1所定値θth1以下になった場合にリリース判定を開始する。制御部100は、リリース判定中において、操作角θが第1所定値θth1から減少している場合に、リアブレーキレバーLRが緩められたと判定する。詳しくは、制御部100は、リリース判定中において操作角θが第1所定時間T1継続して減少している場合にリアブレーキレバーLRが緩められたと判定する。
 操作角θが第1所定時間T1継続して減少しているかの判定は、例えば、加圧制御の制御ループを複数回行い、複数回のすべての制御ループにおいて、操作角θの今回値が前回値よりも小さい場合に、操作角θが第1所定時間T1継続して減少していると判定する方法を採用することができる。具体的には、例えば、操作角θが第1所定値θth1以下になったときにタイマによる時間計測を開始し、タイマが第1所定時間T1になるまでの間に実行した複数回のすべての制御サイクルにおいて、操作角θの今回値が前回値よりも小さいか否かを判定すればよい。なお、タイマは、計測時間が第1所定時間T1以上になった場合にリセットすればよい。
 他の判定方法としては、例えば、リリース判定の開始時から過去に第1所定時間T1遡った期間における複数の操作角θの履歴を参照し、操作角θの履歴に基づいて、操作角θが第1所定時間T1継続して減少していると判定する方法が挙げられる。この方法では、タイマを利用する必要がない。
 制御部100は、リアブレーキレバーLRが緩められたと判定した場合には、リアブレーキレバーLRが緩められたことを示すリリースフラグFを立て、リリースフラグFが立っている間、減圧制御を実行する。
 減圧制御は、リリース判定においてリアブレーキレバーLRが緩められたと判定した場合に、フロントブレーキ20Fの制動力を漸減させる制御である。ここで、「フロントブレーキ20Fの制動力を漸減させる」とは、フロントブレーキ20Fの制動力を最も早い速度で低下させるときの勾配よりも低い勾配で低下させることをいう。
 制御部100は、モータ6を停止した状態で、調圧弁7を制御することで減圧制御を実行する。制御部100は、リアブレーキレバーLRが緩められたと判定したときの調圧弁7への指示電流値Aが閾値Ath以上の場合には、第1減圧量D1を設定する。なお、以下の説明では、「リアブレーキレバーLRが緩められたと判定したときの指示電流値A」を、単に「リリース判定時の指示電流値A」ともいう。
 制御部100は、リリース判定時の指示電流値Aが閾値Ath未満の場合には、第1減圧量D1よりも小さい第2減圧量D2を設定する。制御部100は、減圧制御中において、指示電流値の前回値An-1から、設定した減圧量D(第1減圧量D1または第2減圧量D2)を引いた値を、指示電流値の今回値Aとする。
 制御部100は、減圧制御中、つまりリリースフラグFが立っているときに、操作角θが、第1所定値θth1よりも小さい第2所定値θth2以下になった場合に、リリースフラグFを下ろして、減圧制御(制動力制御)を終了する。また、制御部100は、減圧制御中、つまりリリースフラグFが立っているときに操作角θが増加した場合には、リリースフラグFを下ろして、減圧制御を終了し、加圧制御を再開する。本実施形態では、制御部100は、リリースフラグFが立っているときに操作角θが第2所定時間T2継続して増加した場合に、リリースフラグFを下ろす。
 なお、操作角θが第2所定時間T2継続して増加したかの判定は、例えば、減圧制御の制御ループを複数回行い、複数回のすべての制御ループにおいて、操作角θの今回値が前回値よりも大きい場合に、操作角θが第2所定時間T2継続して減少していると判定する方法を採用することができる。第2所定時間T2は、第1所定時間T1と同じ値であってもよいし、異なる値であってもよい。
 次に、制御部100の動作について詳細に説明する。制御部100は、図2に示す処理を常時繰り返し実行している。
 図2の処理において、制御部100は、まず、アングルセンサ53からのリアブレーキレバーLRの操作角θの取得を開始する(S1)。ステップS1の後、制御部100は、操作角θが開始閾値θs以上になったか否かを判定する(S2)。ステップS2においてθ<θsであると判定した場合には(No)、制御部100は、本処理を終了する。
 ステップS2においてθ≧θsになったと判定した場合には(Yes)、制御部100は、加圧制御(S3~S6)を開始する。加圧制御において、制御部100は、操作角θと車体減速度に基づいて指示電流値Aを算出する(S3)。ステップS3の後、制御部100は、ステップS3で算出した指示電流値Aと、指示電流値の前回値An-1に上限値Auを加えた値とを比較し、小さいほうの値を、指示電流値の今回値Aとする(S4)。
 なお、加圧制御においては、制御部100は、調圧弁7に指示電流値を出力する他、モータ6を駆動させるが、モータ6の駆動開始のタイミングは、適宜なタイミングに設定すればよい。
 ステップS4の後、制御部100は、操作角θが第1所定値θth1以下になったか否かを判定する(S5)。ステップS5においてθ≦θth1になったと判定した場合には(Yes)、制御部100は、リリース判定を行う(S6,S7)。
 リリース判定において、制御部100は、操作角θが第1所定時間T1継続して低下したか否かを判定する(S6)。ステップS6において操作角θが第1所定時間T1継続して低下したと判定した場合には(Yes)、制御部100は、リアブレーキレバーLRが緩められたと判定して、リリースフラグFを立てる、つまりF=1とする(S7)。
 ステップS5またはステップS6においてNoと判定した場合には、制御部100は、ステップS3の処理に戻る。ステップS7の後、制御部100は、減圧制御(S8~S15)を実行する。なお、減圧制御を開始する場合には、制御部100は、モータ6を停止させるが、モータ6の停止のタイミングは、適宜なタイミングに設定すればよい。
 減圧制御において、制御部100は、リリース判定時の指示電流値Aが閾値Ath以上であるか否かを判定する(S8)。ステップS8においてA≧Athであると判定した場合には(Yes)、制御部100は、第1減圧量D1を減圧量Dとして設定する(S9)。ステップS8においてA<Athであると判定した場合には(No)、制御部100は、第1減圧量D1よりも小さい第2減圧量D2を、減圧量Dとして設定する(S10)。
 ステップS9またはステップS10の後、制御部100は、指示電流値の前回値An-1から減圧量Dを引いた値を、指示電流値の今回値Aとする(S11)。ステップS11の後、制御部100は、操作角θが第2所定時間T2継続して増加したか否かを判定する(S12)。
 ステップS12において操作角θが第2所定時間T2継続して増加していないと判定した場合には(No)、制御部100は、操作角θが第2所定値θth2以下になったか否かを判定する(S13)。ステップS13においてθ≦θth2でないと判定した場合には(No)、制御部100は、ステップS11の処理に戻る。
 ステップS13においてθ≦θth2になったと判定した場合には(Yes)、制御部100は、リリースフラグFを下ろす、つまりF=0にする(S14)。ステップS14の後、制御部100は、指示電流値Aを0にして(S15)、本処理を終了する。
 ステップS12において操作角θが第2所定時間T2継続して増加したと判定した場合には(Yes)、制御部100は、リリースフラグFを0にして(S16)、ステップS3の処理に戻る。つまり、減圧制御中において操作角θが第2所定時間T2継続して増加した場合には、制御部100は、減圧制御を終了して、加圧制御を再開する。
 次に、制御部100の動作の具体例について詳細に説明する。
 例えば自動二輪車MCの走行中に運転者がリアブレーキレバーLRを操作すると、図3に示すように、制御部100は、主に操作角θと車体減速度に基づいて指示電流値Aを設定することで、加圧制御を実行する(時刻t0~t1)。加圧制御中において運転者がリアブレーキレバーLRの操作を緩めることで操作角θが第1所定値θth1以下になると、制御部100は、タイマによる時間計測を開始して、リリース判定を開始する(時刻t1)。
 リリース判定の開始時から第1所定時間T1の間、操作角θが継続して減少している場合には、制御部100は、リアブレーキレバーLRの操作が緩められたと判定し、リリースフラグFを立てて、減圧制御を開始する(時刻t2)。時刻t2での指示電流値Aが閾値Ath以上の場合、実線で示すように、制御部100は、第1減圧量D1で指示電流値Aを低下させていく。これにより、指示電流値Aが、第1減圧量D1に対応した第1勾配G1で漸減していくので、フロントブレーキ20Fの液圧を第1勾配G1に対応した第1液圧勾配で漸減させることができる。
 時刻t2での指示電流値Aが閾値Ath未満の場合、二点鎖線で示すように、制御部100は、第1減圧量D1よりも小さい第2減圧量D2で指示電流値Aを低下させていく。これにより、指示電流値Aが、第1勾配G1よりも緩やかな第2勾配G2で漸減していくので、フロントブレーキ20Fの液圧を第2勾配G2に対応した緩やかな第2液圧勾配で漸減させることができる。
 その後、操作角θが第2所定値θth2以下になると(時刻t3)、制御部100は、リリースフラグFを下ろして、減圧制御を終了して、制動力制御を終了する。ここで、図では、便宜上、第1勾配G1または第2勾配G2で低下させる指示電流値Aが、制動力制御の終了時にちょうど0となるように図示しているが、リリース判定時の指示電流値Aの値によっては、制動力制御の終了前に指示電流値Aが0になったり、制動力制御の終了時に指示電流値Aが0よりも大きな値になったりする。制動力制御の終了時に指示電流値Aが0よりも大きな値の場合には、前述したステップS15によって指示電流値Aが0に設定される。
 以上、本実施形態によれば以下のような効果を得ることができる。
 リアブレーキレバーLRが緩められた場合にはフロントブレーキ20Fの制動力が漸減されるので、リアブレーキレバーLRのリリース時に運転者に与える違和感を低減することができる。
 リアブレーキレバーLRが緩められたときの指示電流値Aの値に応じた減圧量Dで減圧制御が実行されるので、操作フィーリングを向上することができる。
 減圧制御中にリアブレーキレバーLRが再入力されて、加圧制御が再開された場合であっても、ステップS4の処理により、加圧制御中におけるフロントブレーキ20Fの制動力の急激な増加が制限されるので、車体挙動を安定させることができる。
 リアブレーキレバーLRの操作量に基づいてリリース判定を行うので、圧力センサを備えない車両用ブレーキ制御装置Cであっても、リアブレーキレバーLRのリリース判定を良好に行うことができる。
 リリース判定において操作角θが第1所定時間T1継続して減少していることを判定するので、リリース判定の判定精度を向上させることができる。
 操作角θが第1所定値θth1よりも小さい第2所定値θth2以下になった場合にリリースフラグFを下ろすので、リリースフラグFが立っているときに行われる減圧制御を適切なタイミングで終了することができる。
 リリースフラグFが立っているときに操作角θが増加した場合にリリースフラグFを下ろすので、リリースフラグFが立っているときに行われる減圧制御を、リアブレーキレバーLRの再入力をきっかけにして終了することができる。
 操作角θが第2所定時間T2継続して増加したことに基づいてリアブレーキレバーLRの再入力を判定するので、リアブレーキレバーLRの再入力の判定の判定精度を向上させることができる。
 アングルセンサ53を用いてリリース判定を行うので、安価な車両用ブレーキ制御装置Cを提供することができる。
 なお、本発明は前記実施形態に限定されることなく、以下に例示するように様々な形態で利用できる。以下の説明においては、前記実施形態と略同様の構造となる部材には同一の符号を付し、その説明は省略する。
 減圧制御において指示電流値を漸減させる方法は、前記実施形態のような方法に限定されない。例えば、図5に示すように、制御部100は、リアブレーキレバーLRが緩められたと判定したときの指示電流値Arおよび操作角θrに基づき、リアブレーキレバーLRの操作角θが第2所定値θth2になるときに指示電流値Aが0になるように、操作角θの低下に応じて指示電流値Aを漸減させてもよい。
 具体的には、減圧制御中における指示電流値Aを、以下の式(2)より算出すればよい。
=a・(θ-θth2)   ・・・(2)
a=Ar/(θr-θth2)
Ar:リリース判定時の指示電流値
θr:リリース判定時の操作角
 このような式(2)で指示電流値Aを算出することで、指示電流値Aが、前述した傾きaで、操作角θの低下に応じて漸減していき、操作角θが第2所定値θth2になったときに指示電流値Aを0にすることができる。この形態における制御部100は、図4に示す処理を実行すればよい。
 図4に示す処理は、図2に示す処理におけるステップS8~S11の代わりに、新たなステップS31を加えた構成となっている。ステップS31では、前述した式(2)によって指示電流値Aを設定する。制御部100は、ステップS7の後、ステップS31の処理を実行し、その後、ステップS12の処理に移行する。ステップS13においてNoと判定した場合、制御部100は、ステップS31の処理に戻る。
 この形態によれば、操作角θが第2所定値θth2になったとき、つまり制動力制御の終了時に指示電流値Aが急激に0になることをより抑制することができるので、運転者に与える違和感をより低減することができる。
 前記実施形態では、フロントブレーキ20Fの制動力の増加を制限するための上限値Auを固定値としたが、上限値Auは、可変にしてもよい。例えば、制動力制御における最初の加圧制御中の上限値Au1と、減圧制御から加圧制御を再開したときにおける加圧制御中の上限値Au2とを異なる値にしてもよい。例えば、Au2<Au1としてもよいし、Au2>Au1としてもよい。
 前記実施形態では、リリース判定において、第1所定時間T1の間、操作角θが連続して低下している場合にリリースされたと判定したが、例えば、第1所定時間T1の間、操作角θが断続的に低下した場合でもリリースされたと判定してもよい。なお、操作角θが断続的に低下したかの判定方法としては、例えば、複数の制御ループのうち、操作角θの今回値が前回値よりも小さい制御ループの数が、操作角θの今回値が前回値よりも大きい制御ループの数よりも多い場合に、操作角θが断続的に低下したと判定する方法などが挙げられる。なお、操作角θが連続して増加しているかの判定も、操作角θが断続的に増加したかを判定する方法に変更してもよい。操作角θが断続的に増加したかの判定は、前述した、操作角θが断続的に低下したと判定する方法と同じ方法とすることができる。
 前記実施形態では、操作量としてリアブレーキレバーLRの操作角θを例示したが、操作量は、例えば、ブレーキレバーやフットブレーキなどの操作子のストロークを検出するストロークセンサで検出したストローク量であってもよいし、操作子と、操作子を移動可能に支持する支持部材との間の距離を検出する赤外線センサなどの距離センサで検出した距離であってもよい。
 車輪ブレーキは、液圧式のブレーキに限らず、例えば電磁ブレーキであってもよい。リアブレーキは、機械式のブレーキに限らず、例えば電磁ブレーキや液圧式のブレーキであってもよい。また、リアブレーキを電磁ブレーキや液圧式のブレーキとする場合には、前輪用のブレーキ操作子の操作量に基づいてリアブレーキの制動力を制御してもよい。
 車輪ブレーキが設けられる車両は、自動二輪車MCに限らず、どのような車両であってもよい。例えば、車両は、バーハンドルで操作されるバーハンドル車両であってもよい。バーハンドル車両は、例えば、三輪車、四輪車であってもよい。
 ブレーキ操作子は、レバーに限らず、例えばフットブレーキペダルなどであってもよい。
 吸入弁は、常閉型電磁弁であってもよい。
 前記した実施形態および変形例で説明した各要素を、任意に組み合わせて実施してもよい。

Claims (6)

  1.  ブレーキ操作子の操作量に基づいて車輪ブレーキの制動力を制御する制御部を備えた車両用ブレーキ制御装置であって、
     前記制御部は、
      前記ブレーキ操作子の操作量が第1所定値以下になった場合に、前記ブレーキ操作子が緩められたか否かを判定するリリース判定を開始し、
      前記リリース判定中において、前記操作量が前記第1所定値から減少している場合に、前記ブレーキ操作子が緩められたと判定することを特徴とする車両用ブレーキ制御装置。
  2.  前記制御部は、前記リリース判定中において前記操作量が第1所定時間継続して減少している場合に前記ブレーキ操作子が緩められたと判定することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  3.  前記制御部は、
      前記ブレーキ操作子が緩められたと判定した場合に、リリースフラグを立て、
      前記操作量が、前記第1所定値よりも小さい第2所定値以下になった場合に、前記リリースフラグを下ろすことを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  4.  前記制御部は、
      前記リリースフラグが立っているときに前記操作量が増加した場合に、前記リリースフラグを下ろすことを特徴とする請求項3に記載の車両用ブレーキ制御装置。
  5.  前記制御部は、
      前記リリースフラグが立っているときに前記操作量が第2所定時間継続して増加した場合に、前記リリースフラグを下ろすことを特徴とする請求項4に記載の車両用ブレーキ制御装置。
  6.  前記ブレーキ操作子の角度を検出するアングルセンサをさらに備え、
     前記制御部は、前記操作量として、前記アングルセンサで検出した角度を取得することを特徴とする請求項1から請求項5のいずれか1項に記載の車両用ブレーキ制御装置。
PCT/JP2023/022205 2022-06-28 2023-06-15 車両用ブレーキ制御装置 WO2024004671A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-103933 2022-06-28
JP2022103933 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004671A1 true WO2024004671A1 (ja) 2024-01-04

Family

ID=89382102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022205 WO2024004671A1 (ja) 2022-06-28 2023-06-15 車両用ブレーキ制御装置

Country Status (1)

Country Link
WO (1) WO2024004671A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067910A (ja) * 2000-08-31 2002-03-08 Aisin Seiki Co Ltd 車両用制動制御装置
US20180099649A1 (en) * 2016-10-11 2018-04-12 Mando Corporation Electric brake system and method thereof
JP2022062856A (ja) * 2020-10-09 2022-04-21 トヨタ自動車株式会社 車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067910A (ja) * 2000-08-31 2002-03-08 Aisin Seiki Co Ltd 車両用制動制御装置
US20180099649A1 (en) * 2016-10-11 2018-04-12 Mando Corporation Electric brake system and method thereof
JP2022062856A (ja) * 2020-10-09 2022-04-21 トヨタ自動車株式会社 車両の制御装置

Similar Documents

Publication Publication Date Title
JP4462153B2 (ja) 制動力配分制御装置
JP7133618B2 (ja) ブレーキ液圧制御装置、鞍乗型車両、及び、ブレーキ液圧制御方法
JP4899796B2 (ja) アンチスキッド制御装置
JP5632442B2 (ja) 車両用ブレーキ液圧制御装置
CN114007935A (zh) 控制装置及控制方法
US20110118949A1 (en) Vehicle brake fluid pressure control apparatus
WO2024004671A1 (ja) 車両用ブレーキ制御装置
WO2024004670A1 (ja) 車両用ブレーキ制御装置およびブレーキ制御方法
JP4790744B2 (ja) 車両用ブレーキ液圧制御装置
JP5456526B2 (ja) 自動二輪車の制動装置
JP4972575B2 (ja) 車両用ブレーキ液圧制御装置
JPH09290719A (ja) 制動力制御装置
WO2023167295A1 (ja) バーハンドル車両用ブレーキ液圧制御装置
JP3405765B2 (ja) ブレーキの制御装置
US20230311824A1 (en) Vehicle brake fluid pressure control device
JP4258273B2 (ja) 車両用制動システム
JP7125905B2 (ja) 車両用ブレーキ制御装置
JP4561511B2 (ja) 自動二輪車両におけるabs制御装置
US20230256950A1 (en) Parking brake control device
JP3567634B2 (ja) 制動圧力制御装置
WO2024100932A1 (ja) 車両用ブレーキ制御装置
US20230264662A1 (en) Vehicle brake fluid pressure control device
WO2024100931A1 (ja) 車両用ブレーキ制御装置
EP2311702B1 (en) Braking system for motorcycle
JP6091266B2 (ja) 車両用ブレーキ液圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831119

Country of ref document: EP

Kind code of ref document: A1