WO2024100931A1 - 車両用ブレーキ制御装置 - Google Patents

車両用ブレーキ制御装置 Download PDF

Info

Publication number
WO2024100931A1
WO2024100931A1 PCT/JP2023/026514 JP2023026514W WO2024100931A1 WO 2024100931 A1 WO2024100931 A1 WO 2024100931A1 JP 2023026514 W JP2023026514 W JP 2023026514W WO 2024100931 A1 WO2024100931 A1 WO 2024100931A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
brake
control unit
control
deceleration
Prior art date
Application number
PCT/JP2023/026514
Other languages
English (en)
French (fr)
Inventor
熱田大樹
山岡拓実
津田郁也
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024100931A1 publication Critical patent/WO2024100931A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/08Mechanisms specially adapted for braking more than one wheel

Definitions

  • the present invention relates to a vehicle brake control device.
  • a vehicle brake control device that performs automatic deceleration control to automatically decelerate the vehicle based on the distance from the motorcycle to an obstacle ahead (see Patent Documents 1 and 2). Also, a vehicle brake control device is known that is equipped with a hydraulic front wheel brake, a mechanical rear wheel brake, and a rear wheel brake lever for operating the rear wheel brake, and performs braking force control to control the braking force of the front wheel brake based on the amount of operation of the rear wheel brake lever (see Patent Documents 3 and 4).
  • Patent No. 6817417 Japanese Patent No. 6850863 International Publication No. 2020/026678 International Publication No. 2022/025095
  • the present invention aims to appropriately decelerate a vehicle using automatic deceleration control that is not affected by braking force control.
  • the vehicle brake control device of the present invention comprises a first brake operator for operating a first brake that brakes a first wheel, a second brake operator for operating a second brake that brakes a second wheel, a first detection device that detects a first operation amount that varies due to operation of the first brake operator, an external environment information acquisition device that acquires external environment information around the vehicle, and a control unit.
  • the control unit is capable of executing braking force control that controls the braking force of the second brake based on the first operating amount when the first operating amount is equal to or greater than a first threshold value, and automatic deceleration control that decelerates the vehicle based on a required deceleration of the vehicle set based on external information and a vehicle deceleration obtained by detection or calculation.
  • the control unit executes the automatic deceleration control on the condition that the braking force control is not being executed.
  • the control unit may further determine whether the second brake operator is being operated, and if it determines that the second brake operator is not being operated, may execute automatic deceleration control.
  • the control unit may also calculate the vehicle deceleration based on the wheel speed.
  • vehicle deceleration can be calculated from wheel speed detected by a wheel speed sensor or a GPS (Global Positioning System), etc.
  • the control unit may also calculate the distance between the vehicle and an obstacle ahead of the vehicle and the relative speed, which is the speed of the vehicle relative to the obstacle, based on external information, and execute automatic deceleration control on the condition that a first condition is satisfied in which the distance is equal to or less than a first distance threshold and the absolute value of the relative speed is equal to or greater than a first speed threshold.
  • This configuration allows automatic deceleration control to be appropriately performed based on distance and relative speed.
  • the vehicle brake control device may further include an alarm device for issuing an alarm to prompt the driver to operate the vehicle to decelerate, and the control unit may issue an alarm by the alarm device on the condition that a second condition is satisfied, that is, the distance is equal to or less than a second distance threshold that is greater than the first distance threshold, and the absolute value of the relative speed is equal to or greater than a second speed threshold.
  • control unit may output a request to the drive source for driving the vehicle to decelerate the vehicle before executing the automatic deceleration control.
  • the drive source decelerates the vehicle before executing automatic deceleration control, making it easier to decelerate the vehicle quickly.
  • the vehicle brake control device may further include a vehicle state detection device that measures the state of the vehicle, including the vehicle's attitude, and the control unit may limit the deceleration of the vehicle during automatic deceleration control based on the state of the vehicle detected by the vehicle state detection device.
  • the control unit limits the deceleration of the vehicle during automatic deceleration control, thereby preventing the vehicle from becoming unstable.
  • the alarm device may also display the distance and emit a warning light.
  • the first brake may be a mechanical brake that is mechanically connected to the first brake operator, and the second brake may be a hydraulic brake that generates a braking force by hydraulic pressure.
  • the first brake is a mechanical brake
  • the number of parts in the vehicle brake control device can be reduced and it can be made smaller than, for example, a structure in which both the first and second brakes are hydraulic brakes.
  • 1 is a diagram showing a configuration of a bar handle type vehicle equipped with a vehicle brake control device according to an embodiment
  • 4 is a flowchart showing the operation of a control unit.
  • 13 is a flowchart showing a warning flag setting process.
  • 10 is a flowchart showing an automatic brake flag setting process.
  • 4 is a flowchart showing an output adjustment process.
  • 11 is a map showing a relationship between a vehicle speed, a first distance threshold, and a second distance threshold.
  • a motorcycle MC which is a bar-handle type vehicle, is equipped with a rear wheel WR as an example of a first wheel, a front wheel WF as an example of a second wheel, an engine ENG, a transmission TM, and a vehicle brake control device C.
  • the engine ENG is a drive source for propelling the motorcycle MC.
  • the engine ENG is connected to the rear wheel WR via the transmission TM. That is, in this embodiment of the motorcycle MC, the rear wheel WR is the drive wheel and the front wheel WF is the driven wheel.
  • the engine ENG is provided with a throttle sensor 54 that detects the opening of the throttle valve of the engine ENG. The opening of the throttle valve increases as the amount of operation of the accelerator AC increases.
  • the transmission TM is a mechanism that changes the speed and transmits the drive force of the engine ENG to the rear wheel WR, and a speed detection sensor 52 is provided near the output shaft.
  • the speed detection sensor 52 is a sensor (a so-called speedometer sensor) that detects the wheel speed of the rear wheels WR, and detects the wheel speed corresponding to the speed displayed on a speedometer (not shown).
  • the speed detection sensor 52 has a different detection method from the wheel speed sensor 51 that detects the wheel speed of the front wheels WF.
  • the wheel speed sensor 51 is a sensor that generates a pulse wave in response to the rotation of the wheels.
  • the vehicle brake control device C includes a brake system BF for the front wheels WF, a brake system BR for the rear wheels WR, an angle sensor 53 as an example of a first detection device, a camera 55 as an example of an external information acquisition device, an HMI 56 as an example of an alarm device, an IMU 57 as an example of a vehicle state detection device, and a control unit 100.
  • the brake system BF is mainly composed of a front brake lever LF as an example of a second brake operator, a master cylinder MF, a hydraulic unit 10, a front brake 20F as an example of a second brake, a pipe 30 connecting the master cylinder MF and the input port 11a of the hydraulic unit 10, and a pipe 40 connecting the output port 11b of the hydraulic unit 10 and the front brake 20F.
  • the front brake lever LF is an operating lever for operating the front brake 20F, and is disposed on the right side of the handlebar of the motorcycle MC so as to be operable by the right hand of the rider.
  • the front brake lever LF is connected to the front brake 20F via the master cylinder MF, a pipe 30, a hydraulic unit 10, and a pipe 40.
  • the master cylinder MF is a device that outputs a hydraulic pressure according to the amount of operation of the front brake lever LF.
  • Front brake 20F is a brake that applies brakes to the front wheels WF.
  • Front brake 20F is a hydraulic brake that generates braking force by hydraulic pressure.
  • Front brake 20F mainly comprises a brake rotor 21, brake pads (not shown), and a wheel cylinder 23 that generates a braking force (braking force) by pressing the brake pads against brake rotor 21 by hydraulic pressure output from master cylinder MF.
  • the hydraulic unit 10 is a unit for generating the braking force of the front brake 20F by applying hydraulic pressure to the front brake 20F.
  • the hydraulic unit 10 is configured by arranging various electromagnetic valves and the like in a pump body 11, which is a base having an oil passage (hydraulic pressure passage) through which brake fluid flows. Under normal circumstances, a connected oil passage runs from the input port 11a to the output port 11b of the pump body 11, so that the hydraulic pressure output from the master cylinder MF is transmitted to the front brake 20F.
  • a pressure regulating valve 7 is provided on the hydraulic path connecting the input port 11a and the output port 11b to change the hydraulic pressure applied to the front brake 20F according to the value of the command current output from the control unit 100.
  • the pressure regulating valve 7 is a normally open proportional solenoid valve, and is capable of adjusting the difference in hydraulic pressure upstream and downstream according to the value of the command current.
  • the pressure regulating valve 7 is configured to increase the difference in hydraulic pressure upstream and downstream of the pressure regulating valve 7 as the magnitude of the command current value increases.
  • a check valve 7a is provided in parallel with the pressure regulating valve 7 to allow flow only toward the output port 11b.
  • Inlet valve 1 which is a normally open solenoid valve, is disposed on the hydraulic path between pressure regulating valve 7 and output port 11b. In parallel with inlet valve 1, a check valve 1a is provided that allows flow only to the pressure regulating valve 7 side.
  • a return hydraulic line 19B is provided from the hydraulic line between the output port 11b and the inlet valve 1, which is connected to the hydraulic line between the pressure regulating valve 7 and the inlet valve 1 via the outlet valve 2, which is a normally closed solenoid valve.
  • a reservoir 3 that temporarily absorbs excess brake fluid
  • a check valve 3a is positioned so as to allow flow only toward the hydraulic line between the pressure regulating valve 7 and the inlet valve 1.
  • the pump 4 is driven by a motor 6, and is provided so as to generate pressure toward the hydraulic line between the pressure regulating valve 7 and the inlet valve 1.
  • the orifice 4a dampens the pressure pulsation of the brake fluid discharged from the pump 4 and the pulsation generated by the operation of the pressure regulating valve 7.
  • the intake hydraulic pressure line 19A which connects the input port 11a and the pressure regulating valve 7, and the portion of the return hydraulic pressure line 19B between the check valve 3a and the pump 4 are connected by the intake hydraulic pressure line 19C.
  • a mechanical intake valve 8 is provided in the intake hydraulic pressure line 19C.
  • the suction valve 8 switches the suction hydraulic line 19C between an open state and a closed state.
  • the suction valve 8 is normally closed, and is configured to open depending on the difference between the hydraulic pressure of the hydraulic fluid on the master cylinder MF side and the hydraulic pressure of the hydraulic fluid on the suction port side of the pump 4, which becomes negative pressure when the pump 4 is activated.
  • the brake fluid pressure introduced from the input port 11a is output to the output port 11b through the pressure regulator valve 7 and the inlet valve 1, and is directly applied to the front brake 20F.
  • the inlet valve 1 is closed and the outlet valve 2 is opened to allow the brake fluid to flow through the return hydraulic line 19B to the reservoir 3, and the brake fluid of the front brake 20F can be drained.
  • the intake valve 8 is opened by driving the motor 6, and the brake fluid can be actively supplied to the front brake 20F by the pressure of the pump 4.
  • the current flowing through the pressure regulator valve 7 can be adjusted.
  • the brake system BR is mainly composed of a rear brake lever LR as an example of a first brake operator, an angle sensor 53, a rear brake 20R as an example of a first brake, and a wire W connecting the rear brake lever LR and the rear brake 20R.
  • the rear brake lever LR is an operating lever for operating the rear brake 20R, and is located on the left side of the handlebar of the motorcycle MC so that it can be operated with the rider's left hand.
  • the rear brake lever LR is mechanically connected to the rear brake 20R via a wire W.
  • the angle sensor 53 is a sensor for detecting the operation angle of the rear brake lever LR as an example of a first operation amount.
  • the operation angle of the rear brake lever LR varies depending on the operation of the rear brake lever LR.
  • the second angle sensor 58 is a sensor for detecting the operating angle of the front brake lever LF as an example of the second operating amount.
  • the operating angle of the front brake lever LF varies depending on the operation of the front brake lever LF. By detecting the variation in the operating angle of the front brake lever LF, it is possible to determine whether the front brake lever LF is being operated.
  • the rear brake 20R is a brake that applies brakes to the rear wheel WR, and is a mechanical brake that operates when the force exerted when the rear brake lever LR is gripped is transmitted via a wire W.
  • the rear brake 20R cannot be operated by the front brake lever LF.
  • the rear brake 20R is, for example, a drum brake, and has a drum 25 and a brake shoe and return spring (not shown).
  • the drum 25 can rotate integrally with the rear wheel WR.
  • the brake shoe can rotate between a contact position where it contacts the inner circumferential surface of the drum 25 and a spaced position where it is separated from the inner circumferential surface of the drum 25.
  • the return spring urges the brake shoe from the contact position toward the spaced position.
  • the camera 55 is a device that acquires external environment information around the motorcycle MC.
  • the camera 55 captures an image in front of the motorcycle MC and outputs the captured image information to the control unit 100 as external environment information.
  • HMI 56 is a "Human Machine Interface” that is a device for issuing a notification to the driver to prompt the driver to slow down the motorcycle MC.
  • HMI 56 is equipped with a monitor that can display the distance from the motorcycle MC to an obstacle ahead of the motorcycle MC, and a lamp that can emit a warning light.
  • the IMU 57 is an "Inertial Measurement Unit” that measures the state of the motorcycle MC, including the attitude of the motorcycle MC. In order to detect three-dimensional inertial motion (translational motion and rotational motion in three axial directions), the IMU 57 is equipped with an acceleration sensor that detects translational motion and an angular velocity sensor that detects rotational motion. The IMU 57 outputs the detected information to the control unit 100.
  • the control unit 100 is configured with, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), input/output circuits, etc.
  • the control unit 100 controls the hydraulic unit 10 by performing various arithmetic processing based on inputs from the wheel speed sensor 51, the speed detection sensor 52, the angle sensor 53, the throttle sensor 54, the camera 55, and the IMU 57, as well as programs and data stored in the ROM.
  • the control unit 100 is capable of executing braking force control and automatic deceleration control.
  • the braking force control is a control for controlling the braking force of the front brake 20F based on the operating angle ⁇ of the rear brake lever LR when the operating angle ⁇ is equal to or greater than a first threshold value ⁇ th.
  • control unit 100 executes braking force control by driving the motor 6 and controlling the pressure regulating valve 7.
  • the control unit 100 calculates the value of the command current value to be output to the pressure regulating valve 7 based on the operating angle ⁇ and the actual vehicle deceleration (hereinafter also referred to as "actual deceleration Dr").
  • the actual deceleration Dr can be calculated, for example, based on the wheel speed obtained from the wheel speed sensor 51.
  • the control unit 100 increases the command current value as the operating angle ⁇ increases, and increases the command current value as the magnitude of the actual deceleration Dr decreases.
  • the automatic deceleration control is a control that decelerates the motorcycle MC based on the required deceleration Dc of the motorcycle MC, which is set based on image information acquired from the camera 55, and the actual deceleration Dr.
  • the control unit 100 executes the automatic deceleration control on the condition that braking force control is not being executed.
  • the control unit 100 also has a function of calculating the distance D between the motorcycle MC and an obstacle ahead of the motorcycle MC, and the relative speed VD, which is the speed of the motorcycle MC relative to the obstacle, based on image information acquired from the camera 55.
  • the control unit 100 executes automatic deceleration control on the condition that a first condition is satisfied, that is, the distance D is equal to or smaller than a first distance threshold Dth1, and the absolute value of the relative speed VD is equal to or larger than a first speed threshold.
  • the control unit 100 calculates the relative speed VD by subtracting the speed of the motorcycle MC from the speed of the obstacle ahead. Therefore, when the motorcycle MC approaches an obstacle ahead, the relative speed VD is calculated as a negative value.
  • the control unit 100 determines whether the absolute value of the relative speed VD is equal to or greater than a first speed threshold (positive value) by determining whether the relative speed VD is equal to or less than a speed threshold VDth, which is a negative value.
  • the control unit 100 issues an alert via the HMI 56 on the condition that the distance D is equal to or less than a second distance threshold Dth2 that is greater than the first distance threshold Dth1, and the absolute value of the relative speed VD is equal to or greater than the second speed threshold.
  • the first speed threshold and the second speed threshold are set to the same value. Therefore, by determining whether the relative speed VD is equal to or less than the speed threshold VDth, the control unit 100 also determines whether the absolute value of the relative speed VD is equal to or greater than the second speed threshold (positive value).
  • the control unit 100 has a function of setting the first distance threshold Dth1 and the second distance threshold Dth2 based on the vehicle speed.
  • the vehicle speed can be calculated based on the wheel speed obtained from the wheel speed sensor 51, for example.
  • the control unit 100 stores the map shown in FIG. 6.
  • This map shows the relationship between the vehicle speed (V1, V2, V3, where V1 ⁇ V2 ⁇ V3), the first distance threshold Dth1, and the second distance threshold Dth2.
  • the relationship in magnitude between the values D1, D2, and D3 is D1 ⁇ D2 ⁇ D3
  • the relationship in magnitude between the values D4, D5, and D6 is D4 ⁇ D5 ⁇ D6.
  • the first distance threshold Dth1 and the second distance threshold Dth2 are set to larger values as the vehicle speed increases. Furthermore, at a given vehicle speed (e.g., V1, V2, or V3), the second distance threshold Dth2 is greater than the first distance threshold Dth1. In other words, D4>D1, D5>D2, and D6>D3.
  • the map values D1 to D6 are set based on the time to collision (TTC).
  • TTC refers to the remaining time Tr until a collision occurs between the motorcycle MC and an obstacle ahead if the motorcycle MC maintains its current speed.
  • the control unit 100 has a function of outputting a request to the engine ENG to decelerate the motorcycle MC.
  • the control unit 100 outputs a request to a vehicle control unit (not shown) that controls the engine ENG to reduce the amount of fuel injected into the engine ENG (hereinafter also referred to as an "FI cut request").
  • the control unit 100 outputs a request to the vehicle control unit to stop fuel injection, and the vehicle control unit performs control to reduce the opening of the throttle valve and stops fuel injection by the fuel injection device. When fuel injection is stopped, the vehicle is gently decelerated by engine braking.
  • the control unit 100 also has a function of limiting the deceleration of the motorcycle MC during automatic deceleration control, based on the state of the motorcycle MC detected by the IMU 57. Specifically, the control unit 100 sets a limit value Dlim for the deceleration of the motorcycle MC, based on the state of the motorcycle MC detected by the IMU 57. For example, the control unit 100 can determine whether the rear of the motorcycle MC is likely to lift based on the state of the motorcycle MC detected by the IMU 57, and if it determines that the rear of the motorcycle MC is likely to lift, sets the limit value Dlim to a deceleration that will not cause the rear of the motorcycle MC to lift.
  • control unit 100 constantly and repeatedly executes the process shown in FIG. 2.
  • control unit 100 first executes a warning flag setting process (S1). After step S1, the control unit 100 executes an automatic brake flag setting process (S2).
  • step S2 the control unit 100 executes a request calculation process for braking force control (S3). After step S3, the control unit 100 executes an output adjustment process (S4) and ends this process.
  • the control unit 100 first uses the map shown in FIG. 6 to set a first distance threshold Dth1 and a second distance threshold Dth2 according to the vehicle speed (S21). After step S21, the control unit 100 determines whether an object in front of the motorcycle MC is a control target for automatic deceleration control based on the image information acquired from the camera 55 (S22).
  • the image acquired from the camera 55 is an image of an uphill slope, it is determined that the uphill slope is not an object to be controlled. Also, if the image acquired from the camera 55 is an image of a car or the like, it is determined that the car is an object to be controlled.
  • step S22 If it is determined in step S22 that the object captured by camera 55 is a controlled object (Yes), the control unit 100 calculates the distance D and the relative speed VD based on the image information acquired from camera 55, and determines whether the distance D is equal to or less than the second distance threshold Dth2 and the relative speed VD is equal to or less than the speed threshold VDth (S23). If it is determined in step S23 that D ⁇ Dth2 and VD ⁇ VDth (Yes), the control unit 100 turns on, i.e., sets, the warning flag Low (S24).
  • control unit 100 displays the distance D on the monitor of the HMI 56 and causes the lamp of the HMI 56 to blink (S25).
  • control unit 100 determines whether the distance D is equal to or less than the first distance threshold Dth1 and whether the relative speed VD is equal to or less than the speed threshold VDth (S26).
  • step S26 If it is determined in step S26 that D ⁇ Dth1 and VD ⁇ VDth (Yes), the control unit 100 turns on the warning flag High (S27) and ends this process. If it is determined in step S22 or step S23 that No, the control unit 100 turns off the warning flag Low and the warning flag High, i.e., lowers them, stops the HMI 56 (S28), and ends this process. If it is determined in step S26 that No, the control unit 100 ends this process while keeping the warning flag Low.
  • the control unit 100 first determines whether the vehicle body is in an upright state based on information from the IMU 57 (S41). If it is determined in step S41 that the vehicle body is in an upright state (Yes), the control unit 100 determines whether braking force control is being performed (S42).
  • step S42 If it is determined in step S42 that braking force control is not in progress (No), the control unit 100 determines whether the front brake lever LF is being operated (S43). Note that the determination of whether the front brake lever LF is being operated can be made based on information from, for example, an angle sensor that detects the operating angle of the front brake lever LF or a hydraulic pressure sensor that detects the hydraulic pressure in the brake system BF.
  • step S43 If it is determined in step S43 that the front brake lever LF has not been operated (No), the control unit 100 determines whether the warning flag High is on (S44). If it is determined in step S44 that the warning flag High is on (Yes), the control unit 100 determines whether the operation amount of the accelerator AC is equal to or greater than a threshold value based on information from the throttle sensor 54 (S45).
  • the threshold value of the accelerator AC operation amount is set to, for example, a value close to the maximum value of the accelerator AC operation amount.
  • step S45 determines whether the operation amount of the accelerator AC is not equal to or greater than the threshold value (No). If it is determined in step S45 that the operation amount of the accelerator AC is not equal to or greater than the threshold value (No), the control unit 100 determines whether the vehicle speed is equal to or greater than a predetermined value (S46). If it is determined in step S46 that the vehicle speed is equal to or greater than the predetermined value (Yes), the control unit 100 outputs an FI cut request to a vehicle control unit (not shown) to reduce the amount of fuel injected into the engine ENG (S47).
  • step S47 the control unit 100 determines whether a certain amount of time has passed since the FI cut request was output (S48). If it is determined in step S48 that the certain amount of time has passed (Yes), the control unit 100 turns on the automatic braking flag for executing automatic deceleration control (hereinafter also referred to as "automatic braking") (S51) and ends this process. If it is determined in step S48 that the certain amount of time has not passed (No), the control unit 100 does not turn on the automatic braking flag and ends this process.
  • automatic braking automatic deceleration control
  • step S42 or step S43 determines whether automatic braking was performed last time (S49). If the answer to step S49 is Yes, the control unit 100 proceeds to the process of step S44 to enable continuous automatic braking.
  • step S46 determines whether automatic braking was performed last time (S50). If the result of step S50 is Yes, the control unit 100 proceeds to the process of step S47 to enable continuation of automatic braking.
  • step S41 If the result of step S41 is No, i.e., if the vehicle body is tilted while turning, the control unit 100 turns off the automatic brake flag (S53), stops the FI cut request (S54), and ends this process. Similarly, if the result of step S44, step S49, or step S50 is No, or if the result of step S45 is Yes, the control unit 100 executes the processes of steps S53 and S54 and ends this process.
  • the control unit 100 determines whether the operating angle ⁇ of the rear brake lever LR obtained from the angle sensor 53 is equal to or greater than the first threshold value ⁇ th. If the control unit 100 determines that ⁇ th, it determines that there is a request for braking force control.
  • the control unit 100 first determines whether the automatic brake flag is on (S71). If it is determined in step S71 that the automatic brake flag is on (Yes), the control unit 100 determines whether at least one of the front brake lever LF and the rear brake lever LR has been operated based on information from the rear angle sensor 53 and the front angle sensor (or hydraulic pressure sensor, etc.) (S72).
  • step S72 If it is determined in step S72 that at least one of the brake levers LF, LR has been operated (Yes), the control unit 100 calculates a tentative target deceleration Dt of the motorcycle MC during automatic braking using the following equation (2) (S73).
  • Dt Dc - Db - Dr ...
  • Dc required deceleration by camera 55
  • Db required deceleration by brake operation Dr: actual deceleration
  • the required deceleration Dc by the camera 55 is set based on the image information acquired from the camera 55.
  • the required deceleration Dc is a deceleration that can avoid a collision between the motorcycle MC and an obstacle ahead, and is set based on, for example, the vehicle speed, the relative speed VD, and the distance D.
  • the required deceleration Db due to brake operation is set based on the amount of operation of the front brake lever LF and the amount of operation of the rear brake lever LR.
  • the required deceleration based on the amount of operation of the rear brake lever LR is the deceleration corresponding to the braking force of the mechanical rear brake 20R that increases in proportion to the operating angle ⁇ when the operating angle ⁇ of the rear brake lever LR is less than the first threshold value ⁇ th (when braking force control is not being executed).
  • the required deceleration based on the amount of operation of the rear brake lever LR is the deceleration corresponding to the braking force of the mechanical rear brake 20R and the hydraulic front brake 20F that is increased in pressure during braking force control when the operating angle ⁇ of the rear brake lever LR is equal to or greater than the first threshold value ⁇ th (when braking force control is being executed).
  • control unit 100 sets the deceleration limit value Dlim based on information from the IMU 57, and determines the target deceleration DT of the motorcycle MC during automatic braking using the following equation (3) (S74).
  • DT MIN (Dt, Dlim) ...
  • step S74 the control unit 100 sets the target deceleration DT to the smaller magnitude (absolute value) of the tentative target deceleration Dt or the limit value Dlim.
  • step S74 the control unit 100 controls the current flowing to the motor 6 and the pressure regulating valve 7 based on the target deceleration DT (S75), and ends this process. Specifically, in step S75, the control unit 100 converts the target deceleration DT into a target hydraulic pressure for the front brakes 20F, for example, and sets the current value to the motor 6 and the command current value to the pressure regulating valve 7 so that the hydraulic pressure for the front brakes 20F becomes the target hydraulic pressure.
  • the required deceleration Dbr due to braking force control is the deceleration corresponding to the braking force of the mechanical rear brake 20R and the hydraulic front brake 20F, which is boosted in braking force control.
  • step S78 the control unit 100 proceeds to the process of step S74. If it is determined in step S77 that there is no request for braking force control (No), the control unit 100 skips the processes of steps S74 and S75 and ends this process.
  • the motorcycle MC can be appropriately decelerated by automatic braking that is not affected by braking force control.
  • the control unit 100 calculates the actual deceleration Dr based on the wheel speed, so the actual deceleration Dr can be calculated from the wheel speed detected by the wheel speed sensor 51.
  • the control unit 100 calculates the distance D between the obstacle ahead of the motorcycle MC and the motorcycle MC, and the relative speed VD, which is the speed of the motorcycle MC relative to the obstacle, based on the image information from the camera 55, so that automatic braking can be appropriately performed based on the distance D and the relative speed VD.
  • the driver is notified and the automatic brakes are applied in stages, allowing the driver and the vehicle brake control device C to decelerate and stop the motorcycle MC comfortably and safely.
  • the engine ENG decelerates the motorcycle MC before automatic braking is performed, making it easier to decelerate the motorcycle MC quickly.
  • the control unit 100 limits the deceleration of the motorcycle MC during automatic braking to the limit value Dlim, thereby suppressing rear lift, etc. of the motorcycle MC.
  • the rear brake 20R is a mechanical brake
  • the number of parts in the vehicle brake control device C can be reduced and the device can be made smaller than in a structure in which, for example, both the first and second brakes are hydraulic brakes.
  • warning flag High is ON, if the amount of accelerator AC operation is equal to or greater than the threshold, it can be determined that the driver does not intend to decelerate, and by not executing automatic braking, the vehicle can be operated in accordance with the driver's intention.
  • step S48 By performing the processing of step S48, it is possible to perform gentle deceleration using engine braking unconditionally for a certain period of time before automatic braking is performed, and then perform automatic braking. Also, if, during the certain period of time before automatic braking, the conditions of distance D or relative speed VD change and the warning flag High is turned off, or if an operation is performed by the driver, or if a system error occurs, it is possible to end the process without performing automatic braking.
  • the present invention is not limited to the above embodiment, but can be used in various forms, as exemplified below.
  • the first brake is a mechanical brake and the second brake is a hydraulic brake, but for example, both the first brake and the second brake may be hydraulic brakes.
  • the vehicle brake control device may further include a second detection device that detects a second operation amount that varies depending on the operation of the second brake operator, and the control unit may control the braking force of the first brake based on the second operation amount when the second operation amount is equal to or greater than a second threshold value.
  • both the first and second brakes can be activated by operating either the first or second brake operator.
  • Wheel speed may be detected using a GPS (Global Positioning System) or similar.
  • GPS Global Positioning System
  • the operation amount may be any parameter that varies with the operation of the brake operator, and may be hydraulic pressure, for example, if hydraulic pressure varies with the operation of the brake operator.
  • the detection device may be a sensor that detects hydraulic pressure.
  • the color of the warning light may be different when the warning flag Low is on and when the warning flag High is on. Specifically, for example, when the warning flag Low is on, the warning light may be yellow, and when the warning flag High is on, the warning light may be red.
  • the external information acquisition device may be a distance sensor capable of detecting the distance to an obstacle ahead of the vehicle.
  • the actual deceleration Dr may be detected by an acceleration sensor, etc.
  • the first speed threshold and the second speed threshold may be different values.
  • the first speed threshold and the second speed threshold may each be set according to the vehicle speed.
  • the operating angle ⁇ of the rear brake lever LR is exemplified as the operating amount, but the operating amount may be, for example, a stroke amount detected by a stroke sensor that detects the stroke of an operating element such as a brake lever or foot brake, or a distance detected by a distance sensor such as an infrared sensor that detects the distance between the operating element and a support member that movably supports the operating element.
  • the second brake is not limited to a hydraulic brake and may be, for example, an electromagnetic brake.
  • the first brake is not limited to a mechanical brake and may be, for example, an electromagnetic brake or a hydraulic brake.
  • the second brake may be a brake for the rear wheels and the first brake may be a brake for the front wheels.
  • the vehicle on which the first brake and the second brake are provided is not limited to a motorcycle MC, but may be any type of vehicle.
  • the vehicle may be a bar-handle vehicle operated with a bar handle.
  • the bar-handle vehicle may be, for example, a three-wheeled vehicle or a four-wheeled vehicle.
  • the brake operator is not limited to a lever, but may be, for example, a foot brake pedal.
  • the suction valve may be a normally closed solenoid valve.
  • the drive source may be a motor for propelling the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両用ブレーキ制御装置は、第1車輪を制動する第1ブレーキを操作するための第1ブレーキ操作子と、第2車輪を制動する第2ブレーキを操作するための第2ブレーキ操作子と、第1ブレーキ操作子の操作によって変動する第1操作量を検出する第1検出装置と、車両の周囲の外界情報を取得する外界情報取得装置と、制御部と、を備える。制御部は、第1操作量が第1閾値以上の場合に、第1操作量に基づいて第2ブレーキの制動力を制御する制動力制御と、外界情報に基づいて設定した車両の要求減速度と、検出または算出により得られる車両減速度とに基づいて、車両を減速させる自動減速制御と、を実行可能である。制御部は、制動力制御を実行していないことを条件(S42:No)として自動減速制御を実行する(S51)。

Description

車両用ブレーキ制御装置
 本発明は、車両用ブレーキ制御装置に関する。
 従来、車両用ブレーキ制御装置として、モータサイクルから前方の障害物までの距離に基づいて車両を自動的に減速させる自動減速制御を実行するものが知られている(特許文献1,2参照)。また、従来、車両用ブレーキ制御装置として、液圧式の前輪ブレーキと、機械式の後輪ブレーキと、後輪ブレーキを操作するための後輪用のブレーキレバーと、を備え、後輪用のブレーキレバーの操作量に基づいて、前輪ブレーキの制動力を制御する制動力制御を実行するものが知られている(特許文献3,4参照)。
特許第6817417号公報 特許第6850863号公報 国際公開第2020/026678号 国際公開第2022/025095号
 ところで、仮に前述した制動力制御を実行可能な車両用ブレーキ制御装置に、前述した自動減速制御の機能を持たせた場合において、制動力制御と自動減速制御を同時に行うと、自動減速制御が制動力制御の影響を受けるおそれがある。
 そこで、本発明は、制動力制御の影響を受けない自動減速制御により車両を適切に減速させることを目的とする。
 課題を解決するため、本発明に係る車両用ブレーキ制御装置は、第1車輪を制動する第1ブレーキを操作するための第1ブレーキ操作子と、第2車輪を制動する第2ブレーキを操作するための第2ブレーキ操作子と、第1ブレーキ操作子の操作によって変動する第1操作量を検出する第1検出装置と、車両の周囲の外界情報を取得する外界情報取得装置と、制御部と、を備える。
 制御部は、第1操作量が第1閾値以上の場合に、第1操作量に基づいて第2ブレーキの制動力を制御する制動力制御と、外界情報に基づいて設定した車両の要求減速度と、検出または算出により得られる車両減速度とに基づいて、車両を減速させる自動減速制御と、を実行可能である。
 制御部は、制動力制御を実行していないことを条件として自動減速制御を実行する。
 この構成によれば、制動力制御が実行されていないときに自動減速制御が実行されるので、制動力制御の影響を受けない自動減速制御により車両を適切に減速させることができる。
 また、制御部は、更に、第2ブレーキ操作子の操作があるか否かを判定し、操作が無いと判定した場合に、自動減速制御を実行してもよい。
 この構成によれば、制動力制御が実行されていないときに加えて、更に第2ブレーキ操作子の操作があるか否かを判定し、操作が無いと判定した場合に自動減速制御が実行されるので、第2ブレーキ操作子の操作、制動力制御の影響を受けない自動減速制御により車両を適切に減速させることができる。
 また、制御部は、車両減速度を車輪速度に基づいて算出してもよい。
 この構成によれば、車輪速度センサやGPS(Global Positioning System)などで検出した車輪速度から車両減速度を算出することができる。
 また、制御部は、外界情報に基づいて、車両の前方の障害物と車両との間の距離と、障害物に対する車両の速度である相対速度を算出し、距離が第1距離閾値以下、かつ、相対速度の絶対値が第1速度閾値以上という第1条件を満たすことを条件として、自動減速制御を実行してもよい。
 この構成によれば、距離と相対速度に基づいて自動減速制御を適切に実行することができる。
 また、車両用ブレーキ制御装置は、運転者に車両を減速させる操作を促す報知を行うための報知装置をさらに備え、制御部は、距離が第1距離閾値よりも大きな第2距離閾値以下、かつ、相対速度の絶対値が第2速度閾値以上という第2条件を満たすことを条件として、報知装置による報知を実行してもよい。
 この構成によれば、運転者への報知と自動減速制御とが段階的に行われるので、運転者および車両用ブレーキ制御装置により快適・安全に車両を減速・停止させることができる。
 また、制御部は、第1条件が満たされた場合には、自動減速制御を実行する前に、車両を走行させるための駆動源に対して、車両を減速させるための要求を出力してもよい。
 この構成によれば、第1条件が満たされた場合には、自動減速制御を実行する前に、駆動源による車両の減速が行われるので、車両を迅速に減速させやすい。
 また、車両用ブレーキ制御装置は、車両の姿勢を含む車両の状態を測定する車両状態検出装置をさらに備え、制御部は、車両状態検出装置で検出した車両の状態に基づいて、自動減速制御における車両の減速度を制限してもよい。
 この構成によれば、例えば、車両状態検出装置で検出した車両の状態がリアリフトしそうな状態であるなど、不安定な場合に、制御部が自動減速制御における車両の減速度を制限するので、車両が不安定になるのを抑制することができる。
 また、報知装置は、距離を表示するとともに警告用の光を発してもよい。
 また、第1ブレーキは、第1ブレーキ操作子と機械的に接続される機械式ブレーキであり、第2ブレーキは、液圧により制動力を発生させる液圧式ブレーキであってもよい。
 この構成によれば、第1ブレーキが機械式ブレーキであるため、例えば、第1ブレーキと第2ブレーキの両方を液圧式ブレーキとする構造に比べ、車両用ブレーキ制御装置の部品点数を減らし、小型化することができる。
実施形態に係る車両用ブレーキ制御装置を備えたバーハンドル型車両の構成を示す図である。 制御部の動作を示すフローチャートである。 警告フラグ設定処理を示すフローチャートである。 自動ブレーキフラグ設定処理を示すフローチャートである。 出力調整処理を示すフローチャートである。 車体速度、第1距離閾値および第2距離閾値の関係を示すマップである。
 以下、実施形態について、適宜図面を参照しながら詳細に説明する。
 図1に示すように、バーハンドル型車両である自動二輪車MCは、第1車輪の一例としての後輪WRと、第2車輪の一例としての前輪WFと、エンジンENGと、トランスミッションTMと、車両用ブレーキ制御装置Cとを備えている。
 エンジンENGは、自動二輪車MCを走行させるための駆動源である。エンジンENGは、トランスミッションTMを介して後輪WRに連結されている。つまり、本実施形態の自動二輪車MCは、後輪WRが駆動輪、前輪WFが従動輪となっている。エンジンENGには、エンジンENGのスロットルバルブの開度を検出するスロットルセンサ54が設けられている。スロットルバルブの開度は、アクセルACの操作量が大きいほど大きい。トランスミッションTMは、エンジンENGの駆動力を変速して後輪WRに伝達する機構であり、その出力軸付近には、速度検出センサ52が設けられている。
 速度検出センサ52は、後輪WRの車輪速度を検出するセンサ(いわゆるスピードメータセンサ)であり、図示せぬスピードメータで表示する速度に対応した車輪速度を検出している。速度検出センサ52は、前輪WFの車輪速度を検出する車輪速度センサ51と検出形式が異なる。車輪速度センサ51は、車輪の回転に伴ってパルス波を発生するセンサである。
 車両用ブレーキ制御装置Cは、前輪WFのブレーキ系統BFと、後輪WRのブレーキ系統BRと、第1検出装置の一例としてのアングルセンサ53と、外界情報取得装置の一例としてのカメラ55と、報知装置の一例としてのHMI56と、車両状態検出装置の一例としてのIMU57と、制御部100とを備えている。
 ブレーキ系統BFは、第2ブレーキ操作子の一例としてのフロントブレーキレバーLFと、マスタシリンダMFと、液圧ユニット10と、第2ブレーキの一例としてのフロントブレーキ20Fと、マスタシリンダMFと液圧ユニット10の入力ポート11aを繋ぐ配管30と、液圧ユニット10の出力ポート11bとフロントブレーキ20Fを繋ぐ配管40とを主に有して構成されている。
 フロントブレーキレバーLFは、フロントブレーキ20Fを操作するための操作レバーであり、自動二輪車MCのハンドルの右側に配置され、運転者の右手で操作可能となっている。フロントブレーキレバーLFは、マスタシリンダMF、配管30、液圧ユニット10および配管40を介してフロントブレーキ20Fに接続されている。
 マスタシリンダMFは、フロントブレーキレバーLFの操作量に応じた液圧を出力する装置である。
 フロントブレーキ20Fは、前輪WFを制動するブレーキである。フロントブレーキ20Fは、液圧により制動力を発生させる液圧式ブレーキである。フロントブレーキ20Fは、ブレーキロータ21と、図示しないブレーキパッドと、マスタシリンダMFから出力された液圧によりブレーキパッドをブレーキロータ21に押し当ててブレーキ力(制動力)を発生するホイールシリンダ23とを主に備えている。
 液圧ユニット10は、フロントブレーキ20Fに液圧を付与することで、フロントブレーキ20Fの制動力を発生させるためのユニットである。液圧ユニット10は、ブレーキ液が流通する油路(液圧路)を有する基体であるポンプボディ11に各種の電磁バルブ等が配置されることで構成されている。そして、通常時はポンプボディ11の入力ポート11aから出力ポート11bまでが連通した油路となっていることで、マスタシリンダMFから出力された液圧がフロントブレーキ20Fに伝達されるようになっている。
 入力ポート11aと出力ポート11bを繋ぐ液圧路上には、制御部100から出力される指示電流値の値に応じてフロントブレーキ20Fに付与される液圧を変化させる調圧弁7が設けられている。調圧弁7は、常開型比例電磁弁であり、指示電流値の値に応じてその上下流の液圧の差を調整可能となっている。詳しくは、調圧弁7は、指示電流値の大きさが大きいほど、調圧弁7の上下流の液圧の差を大きくするように構成されている。調圧弁7には、並列して、出力ポート11b側へのみの流れを許容するチェック弁7aが設けられている。
 調圧弁7と出力ポート11bの間の液圧路上には、常開型電磁弁である入口弁1が配設されている。入口弁1には、並列して、調圧弁7側へのみの流れを許容するチェック弁1aが設けられている。
 出力ポート11bと入口弁1の間の液圧路からは、常閉型電磁弁からなる出口弁2を介して調圧弁7と入口弁1の間の液圧路に繋がる還流液圧路19Bが設けられている。
 この還流液圧路19B上には、出口弁2側から順に、過剰なブレーキ液を一時的に吸収するリザーバ3、チェック弁3a、ポンプ4およびオリフィス4aが配設されている。チェック弁3aは、調圧弁7と入口弁1の間の液圧路へ向けての流れのみを許容するように配置されている。ポンプ4は、モータ6により駆動され、調圧弁7と入口弁1の間の液圧路へ向けての圧力を発生するように設けられている。オリフィス4aは、ポンプ4から吐出されたブレーキ液の圧力の脈動および調圧弁7が作動することにより発生する脈動を減衰させている。
 入力ポート11aと調圧弁7を繋ぐ導入液圧路19Aと、還流液圧路19Bにおけるチェック弁3aとポンプ4の間の部分とは、吸入液圧路19Cにより接続されている。そして、吸入液圧路19Cには、機械式の吸入弁8が配設されている。
 吸入弁8は、吸入液圧路19Cを開放する状態と遮断する状態とに切り換えるものである。吸入弁8は、通常は閉弁しており、マスタシリンダMF側の作動液の液圧と、ポンプ4の作動で負圧となるポンプ4の吸入口側の作動液の液圧との差によって開弁するように構成されている。
 以上のような構成の液圧ユニット10は、通常時には、各電磁弁に通電がなされず、入力ポート11aから導入されたブレーキ液圧は、調圧弁7、入口弁1を通って出力ポート11bに出力され、フロントブレーキ20Fにそのまま付与される。そして、アンチロックブレーキ制御を行う場合など、フロントブレーキ20Fの過剰なブレーキ液圧を減圧する場合には、入口弁1を閉じ、出口弁2を開くことで還流液圧路19Bを通してブレーキ液をリザーバ3へと流し、フロントブレーキ20Fのブレーキ液を抜くことができる。また、ポンプ4によりフロントブレーキ20Fの加圧を行う場合には、モータ6を駆動することで、吸入弁8が開き、ポンプ4の加圧力により積極的にフロントブレーキ20Fへブレーキ液を供給することができる。さらに、フロントブレーキ20Fの加圧の程度を調整したい場合には、調圧弁7に流す電流を調整することで調整することができる。
 ブレーキ系統BRは、第1ブレーキ操作子の一例としてのリアブレーキレバーLRと、アングルセンサ53と、第1ブレーキの一例としてのリアブレーキ20Rと、リアブレーキレバーLRとリアブレーキ20Rを繋ぐワイヤWとを主に有して構成されている。
 リアブレーキレバーLRは、リアブレーキ20Rを操作するための操作レバーであり、自動二輪車MCのハンドルの左側に配置され、運転者の左手で操作可能となっている。リアブレーキレバーLRは、ワイヤWを介して、リアブレーキ20Rに機械的に接続されている。
 アングルセンサ53は、第1操作量の一例としてのリアブレーキレバーLRの操作角を検出するためのセンサである。リアブレーキレバーLRの操作角は、リアブレーキレバーLRの操作によって変動する。
 第2アングルセンサ58は、第2操作量の一例としてのフロントブレーキレバーLFの操作角を検出するためのセンサである。フロントブレーキレバーLFの操作角は、フロントブレーキレバーLFの操作によって変動する。フロントブレーキレバーLFの操作角の変動を検出することでフロントブレーキレバーLFの操作があるか否かを判定することができる。
 リアブレーキ20Rは、後輪WRを制動するブレーキであり、リアブレーキレバーLRを握ったときの力がワイヤWを介して伝達されることで作動する機械式ブレーキとなっている。リアブレーキ20Rは、フロントブレーキレバーLFでは操作できない。リアブレーキ20Rは、例えばドラムブレーキであり、ドラム25と、図示せぬブレーキシューおよびリターンスプリングとを有している。
 ドラム25は、後輪WRと一体に回転可能となっている。ブレーキシューは、ドラム25の内周面に接触する接触位置と、ドラム25の内周面から離れる離間位置との間で回動可能となっている。リターンスプリングは、ブレーキシューを接触位置から離間位置に向けて付勢する。運転者がリアブレーキレバーLRを握ると、ワイヤWがリアブレーキレバーLRで引っ張られることで、ブレーキシューがリターンスプリングの付勢力に抗して離間位置から接触位置に向けて回動する。
 カメラ55は、自動二輪車MCの周囲の外界情報を取得する装置である。カメラ55は、自動二輪車MCの前方を撮像し、撮像した画像情報を外界情報として制御部100に出力する。
 HMI56は、「Human Machine Interface」であり、運転者に自動二輪車MCを減速させる操作を促す報知を行うための装置である。HMI56は、自動二輪車MCから当該自動二輪車MCの前方の障害物までの距離を表示可能なモニタと、警告用の光を発することが可能なランプとを備えている。
 IMU57は、「Inertial Measurement Unit」であり、自動二輪車MCの姿勢を含む自動二輪車MCの状態を測定する装置である。IMU57は、3次元の慣性運動(3軸方向の並進運動および回転運動)を検出するために、並進運動を検出する加速度センサと、回転運動を検出する角速度センサとを備えている。IMU57は、検出した情報を、制御部100に出力する。
 制御部100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入出力回路などを備えて構成されている。制御部100は、車輪速度センサ51、速度検出センサ52、アングルセンサ53、スロットルセンサ54、カメラ55およびIMU57からの入力や、ROMに記憶されたプログラム、データなどに基づいて各種演算処理を行うことによって液圧ユニット10を制御する。
 制御部100は、制動力制御と、自動減速制御と、を実行可能である。
 制動力制御は、リアブレーキレバーLRの操作角θが第1閾値θth以上の場合に、操作角θに基づいてフロントブレーキ20Fの制動力を制御する制御である。
 詳しくは、制御部100は、モータ6を駆動し、かつ、調圧弁7を制御することで、制動力制御を実行する。制御部100は、調圧弁7に出力する指示電流値の値を、操作角θと実際の車体減速度(以下、「実減速度Dr」ともいう。)とに基づいて算出する。ここで、実減速度Drは、例えば、車輪速度センサ51から取得した車輪速度に基づいて算出することができる。制御部100は、操作角θが大きいほど指示電流値の値を大きくし、実減速度Drの大きさが小さいほど指示電流値の値を大きくする。
 自動減速制御は、カメラ55から取得した画像情報に基づいて設定した自動二輪車MCの要求減速度Dcと、実減速度Drとに基づいて、自動二輪車MCを減速させる制御である。制御部100は、制動力制御を実行していないことを条件として自動減速制御を実行する。
 また、制御部100は、カメラ55から取得した画像情報に基づいて、自動二輪車MCの前方の障害物と自動二輪車MCとの間の距離Dと、障害物に対する自動二輪車MCの速度である相対速度VDを算出する機能を有する。制御部100は、距離Dが第1距離閾値Dth1以下、かつ、相対速度VDの絶対値が第1速度閾値以上という第1条件を満たすことを条件として、自動減速制御を実行する。
 なお、本実施形態では、制御部100は、前方の障害物の速度から自動二輪車MCの速度を引くことで、相対速度VDを算出していることとする。そのため、自動二輪車MCが前方の障害物に近づいていく場合には、相対速度VDは負の値として算出される。制御部100は、相対速度VDが、負の値である速度閾値VDth以下であるかを判定することで、相対速度VDの絶対値が第1速度閾値(正の値)以上であるかを判定している。
 制御部100は、距離Dが第1距離閾値Dth1よりも大きな第2距離閾値Dth2以下、かつ、相対速度VDの絶対値が第2速度閾値以上という第2条件を満たすことを条件として、HMI56による報知を実行する。なお、本実施形態では、第1速度閾値と第2速度閾値を同じ値に設定することとする。そのため、制御部100は、相対速度VDが速度閾値VDth以下であるかを判定することで、相対速度VDの絶対値が第2速度閾値(正の値)以上であるかも判定している。
 制御部100は、車体速度に基づいて、第1距離閾値Dth1および第2距離閾値Dth2を設定する機能を有する。なお、車体速度は、例えば、車輪速度センサ51から取得した車輪速度に基づいて算出することができる。
 具体的に、制御部100は、図6に示すマップを記憶している。このマップは、車体速度(V1,V2,V3。なお、V1<V2<V3。)と、第1距離閾値Dth1と、第2距離閾値Dth2との関係を示すマップである。このマップにおいて、値D1,D2,D3の大きさの関係は、D1<D2<D3となっており、値D4,D5,D6の大きさの関係は、D4<D5<D6となっている。
 つまり、第1距離閾値Dth1および第2距離閾値Dth2は、それぞれ車体速度が大きいほど大きな値に設定されている。また、所定の車体速度(例えばV1,V2,V3のいずれか)において、第2距離閾値Dth2は第1距離閾値Dth1よりも大きい。つまり、D4>D1,D5>D2,D6>D3となっている。
 このマップの値D1~D6は、TTC(Time To Collision)に基づいて設定されている。ここで、TTCとは、自動二輪車MCと前方の障害物が現在の速度を維持した場合の衝突までの残り時間Trをいう。残り時間Trは、以下の式(1)より算出される。
 Tr=D÷(Vs-Vf) ・・・(1)
D:自動二輪車MCの前方の障害物と自動二輪車MCとの間の距離
Vs:自動二輪車MCの速度
Vf:前方の障害物の速度
 また、制御部100は、第1条件が満たされた場合には、エンジンENGに対して、自動二輪車MCを減速させるための要求を出力する機能を有する。例えば、制御部100は、エンジンENGを制御する図示せぬ車両制御部に対して、エンジンENGへの燃料噴射の量を低くする要求(以下、「FIカット要求」ともいう。)を出力する。例えば、制御部100は、車両制御部に対し、燃料噴射を停止する要求を出力し、車両制御部は、スロットルバルブの開度を絞る制御を行うとともに、燃料噴射装置による燃料噴射を停止する。燃料噴射が停止すると、車両は、エンジンブレーキにより緩やかに減速する。
 また、制御部100は、IMU57で検出した自動二輪車MCの状態に基づいて、自動減速制御における自動二輪車MCの減速度を制限する機能を有する。具体的には、制御部100は、IMU57で検出した自動二輪車MCの状態に基づいて、自動二輪車MCの減速度の制限値Dlimを設定する。例えば、制御部100は、IMU57で検出した自動二輪車MCの状態に基づいて、自動二輪車MCがリアリフトしそうか否かを判定可能であり、リアリフトしそうであると判定した場合には、自動二輪車MCがリアリフトしないような大きさの減速度を制限値Dlimとして設定する。
 次に、制御部100の動作について詳細に説明する。制御部100は、図2に示す処理を常時繰り返し実行している。
 図2に示す処理において、制御部100は、まず、警告フラグ設定処理を実行する(S1)。ステップS1の後、制御部100は、自動ブレーキフラグ設定処理を実行する(S2)。
 ステップS2の後、制御部100は、制動力制御の要求演算処理を実行する(S3)。ステップS3の後、制御部100は、出力調整処理を実行して(S4)、本処理を終了する。
 図3に示すように、警告フラグ設定処理において、制御部100は、まず、図6に示すマップを用いて、車体速度に応じて第1距離閾値Dth1および第2距離閾値Dth2を設定する(S21)。ステップS21の後、制御部100は、カメラ55から取得した画像情報に基づいて、自動二輪車MCの前方にある物が、自動減速制御の制御対象物であるか否かを判定する(S22)。
 具体的には、例えば、カメラ55から取得した画像が上り坂の画像である場合、上り坂を制御対象物ではないと判定する。また、カメラ55から取得した画像が自動車などである場合、自動車を制御対象物であると判定する。
 ステップS22においてカメラ55で撮像された物が制御対象物であると判定した場合には(Yes)、制御部100は、カメラ55から取得した画像情報に基づいて距離Dと相対速度VDを算出し、距離Dが第2距離閾値Dth2以下、かつ、相対速度VDが速度閾値VDth以下であるか否かを判定する(S23)。ステップS23において、D≦Dth2、かつ、VD≦VDthであると判定した場合には(Yes)、制御部100は、警告フラグLowを、オンにする、つまり立てる(S24)。
 ステップS24の後、制御部100は、HMI56のモニタに距離Dを表示するとともに、HMI56のランプを点滅させる(S25)。ステップS25の後、制御部100は、距離Dが第1距離閾値Dth1以下、かつ、相対速度VDが速度閾値VDth以下であるか否かを判定する(S26)。
 ステップS26においてD≦Dth1、かつ、VD≦VDthであると判定した場合には(Yes)、制御部100は、警告フラグHighをオンにして(S27)、本処理を終了する。ステップS22またはステップS23でNoと判定した場合には、制御部100は、警告フラグLowおよび警告フラグHighをオフ、つまり降ろすとともに、HMI56を停止させて(S28)、本処理を終了する。制御部100は、ステップS26でNoと判定した場合には、警告フラグLowを維持したまま、本処理を終了する。
 図4に示すように、自動ブレーキフラグ設定処理において、制御部100は、まず、IMU57からの情報に基づいて、車体が直立状態か否かを判定する(S41)。ステップS41において車体が直立状態であると判定した場合には(Yes)、制御部100は、制動力制御中であるか否かを判定する(S42)。
 ステップS42において制動力制御中でないと判定した場合には(No)、制御部100は、フロントブレーキレバーLFの操作があるか否かを判定する(S43)。なお、フロントブレーキレバーLFの操作の有無の判定は、例えば、フロントブレーキレバーLFの操作角を検出するアングルセンサまたはブレーキ系統BF内の液圧を検出する液圧センサなどからの情報に基づいて行うことができる。
 ステップS43においてフロントブレーキレバーLFの操作がないと判定した場合には(No)、制御部100は、警告フラグHighがオンであるか否かを判定する(S44)。ステップS44において警告フラグHighがオンであると判定した場合には(Yes)、制御部100は、スロットルセンサ54からの情報に基づいて、アクセルACの操作量が閾値以上であるか否かを判定する(S45)。
 ここで、アクセルACの操作量の閾値は、例えば、アクセルACの操作量の最大値に近い値に設定される。
 ステップS45においてアクセルACの操作量が閾値以上でないと判定した場合には(No)、制御部100は、車体速度が所定値以上であるか否かを判定する(S46)。ステップS46において車体速度が所定値以上であると判定した場合には(Yes)、制御部100は、エンジンENGへの燃料噴射の量を低くするためのFIカット要求を図示せぬ車両制御部に対して出力する(S47)。
 ステップS47の後、制御部100は、FIカット要求を出力してから一定時間が経過したか否かを判定する(S48)。ステップS48において一定時間が経過したと判定した場合には(Yes)、制御部100は、自動減速制御(以下、「自動ブレーキ」ともいう。)を実行するための自動ブレーキフラグをオンにして(S51)、本処理を終了する。ステップS48において一定時間が経過していないと判定した場合には(No)、制御部100は、自動ブレーキフラグをオンにせずに、本処理を終了する。
 ステップS42またはステップS43においてYesと判定した場合には、制御部100は、前回自動ブレーキを実行しているか否かを判定する(S49)。ステップS49において前回自動ブレーキを実行していると判定した場合には(Yes)、制御部100は、自動ブレーキを継続可能にするため、ステップS44の処理に進む。
 ステップS46においてNoと判定した場合には、制御部100は、前回自動ブレーキを実行しているか否かを判定する(S50)。ステップS50において前回自動ブレーキを実行していると判定した場合には(Yes)、自動ブレーキを継続可能にするため、制御部100は、ステップS47の処理に進む。
 ステップS41においてNoと判定した場合、つまり車体が旋回中などにおいて傾いている場合には、制御部100は、自動ブレーキフラグをオフにするとともに(S53)、FIカット要求を停止して(S54)、本処理を終了する。また、ステップS44、ステップS49またはステップS50でNoと判定した場合や、ステップS45でYesと判定した場合も同様に、制御部100は、ステップS53,S54の処理を実行して、本処理を終了する。
 図示は省略するが、制動力制御の要求演算処理において、制御部100は、アングルセンサ53から取得したリアブレーキレバーLRの操作角θが第1閾値θth以上であるか否かを判定する。制御部100は、θ≧θthであると判定した場合に、制動力制御の要求ありと判定する。
 図5に示すように、出力調整処理において、制御部100は、まず、自動ブレーキフラグがオンであるか否かを判定する(S71)。ステップS71において自動ブレーキフラグがオンであると判定した場合には(Yes)、制御部100は、リア側のアングルセンサ53やフロント側のアングルセンサ(または液圧センサ等)からの情報に基づいて、フロントブレーキレバーLFおよびリアブレーキレバーLRの少なくとも一方の操作があるか否かを判定する(S72)。
 ステップS72においてブレーキレバーLF,LRの少なくとも一方の操作があると判定した場合には(Yes)、制御部100は、以下の式(2)により、自動ブレーキ時における自動二輪車MCの仮目標減速度Dtを算出する(S73)。
 Dt=Dc-Db-Dr ・・・(2)
Dc:カメラ55による要求減速度
Db:ブレーキ操作による要求減速度
Dr:実減速度
 ここで、カメラ55による要求減速度Dcは、カメラ55から取得した画像情報に基づいて設定される。具体的に、要求減速度Dcは、前方の障害物と自動二輪車MCの衝突を回避することが可能な減速度であり、例えば、車体速度と、相対速度VDと、距離Dとに基づいて、設定される。
 また、ブレーキ操作による要求減速度Dbは、フロントブレーキレバーLFの操作量とリアブレーキレバーLRの操作量とに基づいて設定される。ここで、リアブレーキレバーLRの操作量に基づく要求減速度は、リアブレーキレバーLRの操作角θが第1閾値θth未満の場合、(制動力制御が実行されていない場合)、操作角θに比例して大きくなる機械式のリアブレーキ20Rの制動力に対応した減速度である。また、リアブレーキレバーLRの操作量に基づく要求減速度は、リアブレーキレバーLRの操作角θが第1閾値θth以上の場合(制動力制御中の場合)、機械式のリアブレーキ20Rの制動力と、制動力制御において増圧される液圧式のフロントブレーキ20Fとに対応した減速度である。
 ステップS73の後、制御部100は、IMU57からの情報に基づいて減速度の制限値Dlimを設定し、以下の式(3)により、自動ブレーキ時における自動二輪車MCの目標減速度DTを決定する(S74)。
 DT=MIN(Dt,Dlim) ・・・(3)
 つまり、制御部100は、ステップS74において、仮目標減速度Dtと制限値Dlimのうち大きさ(絶対値)が小さい方の値を、目標減速度DTとする。
 ステップS74の後、制御部100は、目標減速度DTに基づいて、モータ6および調圧弁7に流す電流を制御して(S75)、本処理を終了する。具体的に、制御部100は、ステップS75において、例えば、目標減速度DTをフロントブレーキ20Fの目標液圧に変換し、フロントブレーキ20Fの液圧が目標液圧となるように、モータ6への電流値および調圧弁7への指示電流値を設定する。
 ステップS72においてブレーキ操作がないと判定した場合には(No)、制御部100は、以下の式(4)により、自動ブレーキ時における自動二輪車MCの仮目標減速度Dtを算出する(S76)。
 Dt=Dc-Dr ・・・(4)
 ステップS76の後、制御部100は、ステップS74の処理に進む。
 ステップS71において自動ブレーキフラグがオンでないと判定した場合には(No)、制御部100は、制動力制御の要求があるか否かを判定する(S77)。ステップS77において制動力制御の要求があると判定した場合には(Yes)、制御部100は、以下の式(5)により、制動力制御時における自動二輪車MCの仮目標減速度Dtを算出する(S78)。
 Dt=Dbr-Dr ・・・(5)
Dbr:制動力制御による要求減速度
 ここで、制動力制御による要求減速度Dbrは、機械式のリアブレーキ20Rの制動力と、制動力制御において増圧される液圧式のフロントブレーキ20Fとに対応した減速度である。
 ステップS78の後、制御部100は、ステップS74の処理に進む。ステップS77において制動力制御の要求がないと判定した場合には(No)、制御部100は、ステップS74,S75の処理を飛ばして、本処理を終了する。
 以上、本実施形態によれば以下のような効果を得ることができる。
 制動力制御を実行していないことを条件(S42:No)として自動ブレーキを実行する(S51)ので、制動力制御の影響を受けない自動ブレーキにより自動二輪車MCを適切に減速させることができる。
 制動力制御が実行されていないときに加えて、更にフロントブレーキレバーLFの操作があるか否かを判定し、操作が無いと判定した場合に自動減速制御が実行されるので、フロントブレーキレバーLFの操作、制動力制御の影響を受けない自動減速制御により車両を適切に減速させることができる。
 制御部100が実減速度Drを車輪速度に基づいて算出するので、車輪速度センサ51で検出したで車輪速度から実減速度Drを算出することができる。
 制御部100が、カメラ55からの画像情報に基づいて、自動二輪車MCの前方の障害物と自動二輪車MCとの間の距離Dと、障害物に対する自動二輪車MCの速度である相対速度VDを算出するので、距離Dと相対速度VDに基づいて自動ブレーキを適切に実行することができる。
 運転者への報知と自動ブレーキとが段階的に行われるので、運転者および車両用ブレーキ制御装置Cにより快適・安全に自動二輪車MCを減速・停止させることができる。
 第1条件が満たされた場合には、自動ブレーキを実行する前に、エンジンENGによる自動二輪車MCの減速が行われるので、自動二輪車MCを迅速に減速させやすい。
 IMU57で検出した自動二輪車MCの状態がリアリフト等の、減速度をあまり大きく出せない状態である場合に、制御部100が自動ブレーキにおける自動二輪車MCの減速度を制限値Dlimで制限するので、自動二輪車MCのリアリフト等を抑制することができる。
 リアブレーキ20Rが機械式ブレーキであるため、例えば、第1ブレーキと第2ブレーキの両方を液圧式ブレーキとする構造に比べ、車両用ブレーキ制御装置Cの部品点数を減らし、小型化することができる。
 警告フラグHighがONであっても、アクセルACの操作量が閾値以上の場合には、運転者が減速する意図がないと判定できるので、自動ブレーキを実行しないことで、運転者の意図に沿った操作を行うことができる。
 ステップS48の処理を行うことで、自動ブレーキを実行する前の一定時間の間は、無条件で、エンジンブレーキによる緩やかな減速を行い、その後に自動ブレーキを実行することができる。また、自動ブレーキを実行する前の一定時間の間に、距離Dや相対速度VDの条件が変わって警告フラグHighがオフになった場合や、運転者の操作があった場合や、システムエラーがあった場合には、自動ブレーキを実行せずに、そのまま終了させることができる。
 なお、本発明は前記実施形態に限定されることなく、以下に例示するように様々な形態で利用できる。
 前記実施形態では、第1ブレーキを機械式ブレーキ、第2ブレーキを液圧式ブレーキとしたが、例えば、第1ブレーキと第2ブレーキの両方を液圧式ブレーキとしてもよい。この場合、車両用ブレーキ制御装置は、第2ブレーキ操作子の操作によって変動する第2操作量を検出する第2検出装置をさらに備え、制御部は、第2操作量が第2閾値以上の場合に、第2操作量に基づいて第1ブレーキの制動力を制御してもよい。
 この構成によれば、第1ブレーキ操作子および第2ブレーキ操作子のいずれかを操作すれば、第1ブレーキと第2ブレーキの両方を作動させることができる。
 車輪速度は、GPS(Global Positioning System)などで検出してもよい。
 操作量は、ブレーキ操作子の操作によって変動するパラメータであればよく、例えば、ブレーキ操作子の操作によって液圧が変動する場合には、液圧であってもよい。この場合、検出装置は、液圧を検出するセンサであってもよい。
 警告フラグLowがオンのときと、警告フラグHighがオンのときとで警告の光の色を変えてもよい。具体的には、例えば、警告フラグLowがオンの場合には、警告の光を黄色とし、警告フラグHighがオンの場合には、警告の光を赤色としてもよい。
 外界情報取得装置は、車両の前方の障害物までの距離を検出可能な距離センサなどであってもよい。
 実減速度Drは、加速度センサ等によって検出してもよい。
 第1速度閾値と第2速度閾値は、異なる値であってもよい。第1速度閾値および第2速度閾値は、それぞれ、車体速度に応じて設定されていてもよい。
 前記実施形態では、操作量としてリアブレーキレバーLRの操作角θを例示したが、操作量は、例えば、ブレーキレバーやフットブレーキなどの操作子のストロークを検出するストロークセンサで検出したストローク量であってもよいし、操作子と、操作子を移動可能に支持する支持部材との間の距離を検出する赤外線センサなどの距離センサで検出した距離であってもよい。
 第2ブレーキは、液圧式のブレーキに限らず、例えば電磁ブレーキであってもよい。第1ブレーキは、機械式のブレーキに限らず、例えば電磁ブレーキや液圧式のブレーキであってもよい。また、第2ブレーキを、後輪用のブレーキとし、第1ブレーキを、前輪用のブレーキとしてもよい。
 第1ブレーキおよび第2ブレーキが設けられる車両は、自動二輪車MCに限らず、どのような車両であってもよい。例えば、車両は、バーハンドルで操作されるバーハンドル車両であってもよい。バーハンドル車両は、例えば、三輪車、四輪車であってもよい。
 ブレーキ操作子は、レバーに限らず、例えばフットブレーキペダルなどであってもよい。
 吸入弁は、常閉型電磁弁であってもよい。
 駆動源は、車両を走行させるためのモータなどであってもよい。
 前記した実施形態および変形例で説明した各要素を、任意に組み合わせて実施してもよい。
 

Claims (9)

  1.  第1車輪を制動する第1ブレーキを操作するための第1ブレーキ操作子と、
     第2車輪を制動する第2ブレーキを操作するための第2ブレーキ操作子と、
     前記第1ブレーキ操作子の操作によって変動する第1操作量を検出する第1検出装置と、
     車両の周囲の外界情報を取得する外界情報取得装置と、
     制御部と、を備え、
     前記制御部は、
      前記第1操作量が第1閾値以上の場合に、前記第1操作量に基づいて前記第2ブレーキの制動力を制御する制動力制御と、
      前記外界情報に基づいて設定した車両の要求減速度と、検出または算出により得られる車両減速度とに基づいて、車両を減速させる自動減速制御と、を実行可能であり、
      前記制動力制御を実行していないことを条件として前記自動減速制御を実行することを特徴とする車両用ブレーキ制御装置。
  2.  前記制御部は、更に、前記第2ブレーキ操作子の操作があるか否かを判定し、操作が無いと判定した場合に、前記自動減速制御を実行することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  3.  前記制御部は、前記車両減速度を車輪速度に基づいて算出することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  4.  前記制御部は、
      前記外界情報に基づいて、車両の前方の障害物と前記車両との間の距離と、前記障害物に対する前記車両の速度である相対速度を算出し、
      前記距離が第1距離閾値以下、かつ、前記相対速度の絶対値が第1速度閾値以上という第1条件を満たすことを条件として、前記自動減速制御を実行することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  5.  運転者に車両を減速させる操作を促す報知を行うための報知装置をさらに備え、
     前記制御部は、
      前記距離が前記第1距離閾値よりも大きな第2距離閾値以下、かつ、前記相対速度の絶対値が第2速度閾値以上という第2条件を満たすことを条件として、前記報知装置による報知を実行することを特徴とする請求項4に記載の車両用ブレーキ制御装置。
  6.  前記制御部は、前記第1条件が満たされた場合には、前記自動減速制御を実行する前に、車両を走行させるための駆動源に対して、車両を減速させるための要求を出力することを特徴とする請求項4に記載の車両用ブレーキ制御装置。
  7.  車両の姿勢を含む車両の状態を測定する車両状態検出装置をさらに備え、
     前記制御部は、前記車両状態検出装置で検出した車両の状態に基づいて、前記自動減速制御における車両の減速度を制限することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
  8.  前記報知装置は、前記距離を表示するとともに警告用の光を発することを特徴とする請求項5に記載の車両用ブレーキ制御装置。
  9.  前記第1ブレーキは、前記第1ブレーキ操作子と機械的に接続される機械式ブレーキであり、
     前記第2ブレーキは、液圧により制動力を発生させる液圧式ブレーキであることを特徴とする請求項1に記載の車両用ブレーキ制御装置。
     
PCT/JP2023/026514 2022-11-07 2023-07-20 車両用ブレーキ制御装置 WO2024100931A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178485 2022-11-07
JP2022-178485 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024100931A1 true WO2024100931A1 (ja) 2024-05-16

Family

ID=91032106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026514 WO2024100931A1 (ja) 2022-11-07 2023-07-20 車両用ブレーキ制御装置

Country Status (1)

Country Link
WO (1) WO2024100931A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134991A (ja) * 2017-02-22 2018-08-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御装置、制御方法及びブレーキシステム
WO2019131504A1 (ja) * 2017-12-28 2019-07-04 本田技研工業株式会社 鞍乗り型車両
WO2020026678A1 (ja) * 2018-07-31 2020-02-06 日信工業株式会社 バーハンドル車両用ブレーキ装置
WO2022025095A1 (ja) * 2020-07-31 2022-02-03 日立Astemo株式会社 車両用ブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134991A (ja) * 2017-02-22 2018-08-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御装置、制御方法及びブレーキシステム
WO2019131504A1 (ja) * 2017-12-28 2019-07-04 本田技研工業株式会社 鞍乗り型車両
WO2020026678A1 (ja) * 2018-07-31 2020-02-06 日信工業株式会社 バーハンドル車両用ブレーキ装置
WO2022025095A1 (ja) * 2020-07-31 2022-02-03 日立Astemo株式会社 車両用ブレーキ装置

Similar Documents

Publication Publication Date Title
JP4547793B2 (ja) 車両の運動制御装置
JPWO2019025886A1 (ja) 制御装置、車体挙動制御システム、モータサイクル、及び、制御方法
CN112424036B (zh) 控制装置及控制方法
JP2006224740A (ja) 車両用走行支援装置
JP5589872B2 (ja) 車両の運動制御装置
JP2018176861A (ja) 制御装置、制御方法及びブレーキシステム
JP2006218935A (ja) 車両用走行支援装置
JP7113898B2 (ja) 制御装置及び制御方法
JPH0769188A (ja) 自動ブレーキ装置
US20080295506A1 (en) Vehicle behavior control apparatus
JP2006264465A (ja) 車両用走行支援装置
CN112313132A (zh) 用于摩托车的驾驶辅助系统的控制装置及控制方法及用于摩托车的驾驶辅助系统
WO2024100931A1 (ja) 車両用ブレーキ制御装置
WO2024100932A1 (ja) 車両用ブレーキ制御装置
US11628814B2 (en) Controller and control method for controlling behavior of motorcycle
JP6417877B2 (ja) 車両用ブレーキ制御装置
JP5446685B2 (ja) 車両の運動制御装置
WO2024004670A1 (ja) 車両用ブレーキ制御装置およびブレーキ制御方法
WO2020039289A2 (ja) 制御装置及び制御方法
WO2024004671A1 (ja) 車両用ブレーキ制御装置
JP3841044B2 (ja) 制動制御装置
JP3627328B2 (ja) 車両の運動制御装置
US20230382357A1 (en) Controller and control method
JP5333119B2 (ja) 車両運動制御装置
JP6578791B2 (ja) ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888286

Country of ref document: EP

Kind code of ref document: A1