WO2024004128A1 - 表示装置及びその製造方法 - Google Patents

表示装置及びその製造方法 Download PDF

Info

Publication number
WO2024004128A1
WO2024004128A1 PCT/JP2022/026198 JP2022026198W WO2024004128A1 WO 2024004128 A1 WO2024004128 A1 WO 2024004128A1 JP 2022026198 W JP2022026198 W JP 2022026198W WO 2024004128 A1 WO2024004128 A1 WO 2024004128A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrode
display device
inorganic insulating
film
Prior art date
Application number
PCT/JP2022/026198
Other languages
English (en)
French (fr)
Inventor
駿介 小林
正悟 村重
和泉 石田
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2022/026198 priority Critical patent/WO2024004128A1/ja
Publication of WO2024004128A1 publication Critical patent/WO2024004128A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present disclosure relates to a display device and a method for manufacturing the same.
  • organic EL display devices using organic electroluminescence (hereinafter also referred to as "EL") elements have been attracting attention as display devices that can replace liquid crystal display devices.
  • EL organic electroluminescence
  • TFTs thin film transistors
  • the semiconductor layer constituting the TFT for example, a semiconductor layer made of polysilicon with high mobility, a semiconductor layer made of an oxide semiconductor such as In-Ga-Zn-O with low leakage current (hereinafter referred to as "oxide semiconductor layer”), etc. (also referred to as “semiconductor layer”) etc. are well known.
  • Patent Document 1 describes a TFT having a gate electrode and/or source/drain electrode made of copper wiring that has good adhesion to a substrate or a semiconductor film, and a display using the TFT. A device has been proposed.
  • the molybdenum layer and the oxide semiconductor layer are formed in the same layer, so the oxide semiconductor layer is usually
  • An inorganic insulating film (silicon oxide film) made of silicon oxide is provided directly below the semiconductor layer in order to suppress conduction.
  • oxygen is released from the silicon oxide film due to annealing treatment in a post-process after the formation of the silicon oxide film, which may cause the molybdenum layer to oxidize.
  • silicon nitride film made of silicon nitride, which has excellent adhesion to the molybdenum layer
  • the silicon nitride film and the oxide semiconductor layer are in contact with each other.
  • hydrogen desorbed from the silicon nitride film reaches the oxide semiconductor layer, which may cause a depression shift in which the threshold voltage of the TFT shifts to the negative side.
  • Patent Document 1 Note that the TFT and display device described in Patent Document 1 are assumed to include copper wiring, and Patent Document 1 does not mention the adhesion between the molybdenum layer and the substrate or semiconductor film. .
  • the present invention has been made in view of the above, and an object of the present invention is to provide a display device including a TFT having a semiconductor layer made of an oxide semiconductor, in which a metal layer containing molybdenum as a main component and a substrate are combined.
  • the objective is to improve adhesion and suppress depression shift.
  • a display device includes a base substrate, a first inorganic insulating film provided on the base substrate and made of a first inorganic material, and a first inorganic insulating film different from the first inorganic material.
  • a second inorganic insulating film made of two inorganic materials a first metal film made of a metal material containing molybdenum as a main component, an oxide semiconductor film made of an oxide semiconductor, a gate insulating film, and a second metal film.
  • the thin film transistor layer includes a thin film transistor provided corresponding to each subpixel constituting the display area, and the thin film transistor is arranged on the first inorganic insulating film in a first direction. a first electrode and a second electrode extending parallel to each other and formed of the first metal film; and a first electrode disposed on the first inorganic insulating film, the first electrode, and the second electrode. and an oxide semiconductor layer formed of the oxide semiconductor film, extending in a second direction intersecting the second electrode, and extending in the first direction on the oxide semiconductor layer and the oxide semiconductor layer.
  • a display device comprising a gate electrode provided via the gate insulating film and formed of the second metal film, the display device comprising: the first inorganic insulating film and the first electrode and the second electrode.
  • the above-mentioned second inorganic insulating films are respectively provided.
  • a method for manufacturing a display device provides a display device including a base substrate and a thin film transistor layer provided on the base substrate and having a thin film transistor provided corresponding to each sub-pixel constituting a display area.
  • the manufacturing method includes a thin film transistor layer forming step of forming the thin film transistor layer on the base substrate, the thin film transistor layer forming step comprising: a first inorganic insulating film made of a first inorganic material; includes an insulating film forming step of sequentially forming a second inorganic insulating film made of a different second inorganic material, and a substrate surface on which the first inorganic insulating film and the second inorganic insulating film are formed contains molybdenum as a main component.
  • Forming a first metal layer forming a first metal film made of a metal material and then patterning the first metal film to form a first electrode and a second electrode, respectively, so as to extend parallel to each other in a first direction.
  • the first metal layer forming step by etching the first metal film and then etching the second inorganic insulating film, the first inorganic insulating film and the The second inorganic insulating film is left between the first electrode and the second electrode.
  • the method for manufacturing a display device provides a display device including a base substrate and a thin film transistor layer provided on the base substrate and having a thin film transistor provided corresponding to each sub-pixel constituting a display area.
  • the method for manufacturing a device includes a thin film transistor layer forming step of forming the thin film transistor layer on the base substrate, the thin film transistor layer forming step comprising: a first inorganic insulating film made of a first inorganic material; an insulating film forming step of sequentially forming a second inorganic insulating film made of a second inorganic material different from the material; and a step of forming molybdenum as a main component on the substrate surface on which the first inorganic insulating film and the second inorganic insulating film are formed.
  • a first metal film is formed by forming a first metal film made of a metal material, and then patterning the first metal film to form a first electrode and a second electrode, respectively, so as to extend parallel to each other in a first direction.
  • the oxide semiconductor film is patterned to form an oxide semiconductor layer extending in a second direction intersecting the first electrode and the second electrode.
  • an oxide semiconductor layer forming step a gate insulating film forming step of forming a gate insulating film so as to extend in the first direction on the surface of the substrate on which the oxide semiconductor layer is formed; and the gate insulating film is formed.
  • a gate electrode forming step of forming a second metal film on the substrate surface and then patterning the second metal film to form a gate electrode on the gate insulating film, the oxide semiconductor layers being spaced apart from each other; a first conductor region and a second conductor region that are electrically connected to the first electrode and the second electrode, respectively; , comprising a channel region overlapping with the gate electrode in plan view, and in the second inorganic insulating film patterning step, the second inorganic insulating film is provided between the first inorganic insulating film and the first electrode and the second electrode.
  • the present invention is characterized in that the extended portions of the two inorganic insulating films are left such that their end portions on the channel region side are spaced apart from the channel region.
  • a display device including a TFT having a semiconductor layer made of an oxide semiconductor, it is possible to improve the adhesion between a metal layer containing molybdenum as a main component and a substrate, and to suppress depression shift.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the display area of the organic EL display device according to the first embodiment of the invention.
  • FIG. 3 is an enlarged plan view of the vicinity of the first TFT constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3, showing the display area of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram of the TFT layer forming the organic EL display device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an organic EL layer constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 7 is an enlarged plan view of the vicinity of the first TFT constituting the organic EL display device according to the second embodiment of the present invention, and corresponds to FIG. 3.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7, showing the display area of the organic EL display device according to the second embodiment of the present invention, and corresponds to FIG. 4.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device 50a of this embodiment.
  • FIG. 2 is a plan view of the display area D of the organic EL display device 50a.
  • FIG. 3 is an enlarged plan view of the vicinity of the first TFT 9a that constitutes the organic EL display device 50a.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, showing the display area D of the organic EL display device 50a.
  • FIG. 5 is an equivalent circuit diagram of the TFT layer 20a that constitutes the organic EL display device 50a.
  • FIG. 6 is a cross-sectional view of the organic EL layer 23 constituting the organic EL display device 50a.
  • the organic EL display device 50a includes, for example, a rectangular display area D for displaying an image, and a frame area F provided in a frame shape around the display area D.
  • a rectangular display area D is illustrated, but this rectangular shape may have, for example, a shape with arcuate sides, a shape with arcuate corners, or a shape with a part of the side.
  • a substantially rectangular shape such as a shape with a notch is also included.
  • a plurality of sub-pixels P are arranged in a matrix.
  • a sub-pixel P having a red light-emitting region Lr for displaying red color a sub-pixel P having a green light-emitting region Lg for displaying green color
  • sub-pixels P each having a blue light emitting region Lb for displaying blue color are provided adjacent to each other.
  • one pixel is configured by three adjacent sub-pixels P having, for example, a red light emitting region Lr, a green light emitting region Lg, and a blue light emitting region Lb.
  • the arrangement of the sub-pixels P is not particularly limited, and examples thereof include a pentile arrangement, a stripe arrangement, and the like.
  • a terminal portion T is provided at the right end of the frame area F in FIG. 1 so as to extend in one direction (vertical direction in the figure).
  • a bending part that can be bent, for example, 180 degrees (U-shape) with the vertical direction in the figure as the bending axis.
  • B is provided so as to extend in one direction (vertical direction in the figure).
  • the organic EL display device 50a includes a resin substrate 10 provided as a base substrate and a TFT layer 20a provided on the resin substrate 10.
  • the resin substrate 10 is made of, for example, polyimide resin.
  • the TFT layer 20a includes a first inorganic insulating film 11 provided on the resin substrate 10 and a plurality of first inorganic insulating films 11 provided for each sub-pixel P on the first inorganic insulating film 11.
  • a plurality of gate lines 16g are provided as a second metal layer in the TFT layer 20a so as to extend parallel to each other in the lateral direction in the drawings.
  • the TFT layer 20a includes a plurality of source lines 18f extending parallel to each other in a direction intersecting (orthogonal to) the plurality of gate lines 16g, that is, in the vertical direction in the figure. It is provided as a third metal layer. Furthermore, as shown in FIGS. 2 and 5, a plurality of power supply lines 18g are provided as a third metal layer in the TFT layer 20a so as to extend parallel to each other in the vertical direction in the drawings. As shown in FIG. 2, each power supply line 18g is provided adjacent to each source line 18f.
  • the TFT layer 20a as shown in FIG. 3 and FIG.
  • a third metal film constituting three metal layers and a planarization film 19 are laminated in order on the resin substrate 10.
  • the first inorganic insulating film 11 is made of a first inorganic material (hereinafter also simply referred to as "SiO 2 film", indicating the material of the first inorganic insulating film 11) containing silicon oxide (SiO 2 ) as a main component.
  • SiO 2 film indicating the material of the first inorganic insulating film 11
  • the main component refers to a component whose content in the constituent material exceeds 50% by mass, and may be 100% by mass (containing only the main component).
  • the first TFT 9a is electrically connected to the corresponding gate line 16g and source line 18f in each sub-pixel P.
  • the first TFT 9a includes a source electrode 13a as a first electrode, a drain electrode 13b (first metal layer) as a second electrode, an oxide semiconductor layer 14, and a gate insulating film 15.
  • a gate electrode 16a (second metal layer) is provided.
  • the second TFT 9b is electrically connected to the corresponding first TFT 9a and the power line 18g in each sub-pixel P.
  • the second TFT 9b includes a source electrode (13a), a drain electrode (13b), an oxide semiconductor layer (14), and a gate electrode (16a) provided through a gate insulating film (15). Equipped with.
  • the source electrode 13a and the drain electrode 13b are each provided so as to extend in the vertical direction (first direction) in the figure.
  • the source electrode 13a and the drain electrode 13b are electrically connected to the source line 18f, the power supply line 18g, the third electrode 21, etc. via a contact hole (not shown) formed in the interlayer insulating film 17, etc., for example. .
  • the source electrode 13a and the drain electrode 13b are formed of a first metal film.
  • the first metal film is made of a metal material containing molybdenum (Mo) as a main component (hereinafter also simply referred to as "Mo film", indicating the material of the source electrode 13a and the drain electrode 13b).
  • the first metal film may be, for example, a Mo single layer film or a metal laminate film such as Mo (upper layer)/Al (middle layer)/Mo (lower layer).
  • the oxide semiconductor layer 14 is formed of, for example, an In-Ga-Zn-O-based oxide semiconductor, and as shown in FIGS. It is provided in an island shape so as to extend in the direction of As shown in FIGS. 3 and 4, the oxide semiconductor layer 14 includes a source region (first conductor region) 14a and a drain region (second conductor region) 14b defined to be spaced apart from each other, and a source region 14a and a drain region (second conductor region) 14b. A channel region 14c defined between drain regions 14b. As shown in FIG. 3, the source region 14a and the drain region 14b intersect with the source electrode 13a and the drain electrode 13b, respectively, and are electrically connected to each other.
  • FIG. 3 the source region 14a and the drain region 14b intersect with the source electrode 13a and the drain electrode 13b, respectively, and are electrically connected to each other.
  • the oxide semiconductor layer 14 has a structure in which it straddles the source electrode 13a and the drain electrode 13b, respectively, in the source region 14a and the drain region 14b, that is, has a bottom contact structure.
  • the oxide semiconductor layer 14 is formed in the same layer as the source electrode 13a and the drain electrode 13b.
  • the In-Ga-Zn-O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the proportion (composition ratio) of In, Ga, and Zn is is not particularly limited.
  • the In--Ga--Zn--O based semiconductor may be amorphous or crystalline.
  • the crystalline In-Ga-Zn-O-based semiconductor is preferably a crystalline In-Ga-Zn-O-based semiconductor in which the c-axis is oriented approximately perpendicular to the layer plane.
  • other oxide semiconductors may be included instead of the In-Ga-Zn-O-based semiconductor.
  • Other oxide semiconductors may include, for example, In--Sn--Zn--O based semiconductors (eg, In 2 O 3 --SnO 2 --ZnO; InSnZnO).
  • the In-Sn-Zn-O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • Zn-O-based semiconductors include ZnO amorphous ( It is possible to use a material in an amorphous state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a material to which no impurity element is added.
  • the gate insulating film 15 is provided to extend in the first direction, and intersects with the oxide semiconductor layer 14 at its channel region 14c. As shown in FIG. 4, the gate insulating film 15 is provided on the oxide semiconductor layer 14 so as to overlap the channel region 14c in plan view.
  • the gate insulating film 15 is made of, for example, a single layer or a laminated film of an inorganic insulating film such as silicon nitride (SiNx (x is a positive number)), silicon oxide (SiO 2 ), silicon oxynitride (SiON), or the like. Among these, it is preferable that the gate insulating film 15 is made of a silicon oxide film.
  • the gate electrode 16a is provided so as to overlap the gate insulating film 15 in a plan view. That is, like the gate insulating film 15, the gate electrode 16a is provided to extend in the first direction, and intersects with the oxide semiconductor layer 14 in its channel region 14c. ing. As shown in FIG. 4, the gate electrode 16a is provided on the gate insulating film 15 so as to overlap the channel region 14c in plan view. The gate electrode 16a is configured to control conduction between the source region 14a and drain region 14b of the oxide semiconductor layer 14. Note that the gate electrode 16a is formed of a second metal film similarly to the gate line 16g.
  • the second metal film is, for example, a metal single layer film of molybdenum (Mo), titanium (Ti), aluminum (Al), copper (Cu), tungsten (W), or Mo (upper layer)/Al (middle layer)/ It is composed of metal laminated films such as Mo (lower layer), Ti/Al/Ti, Al (upper layer)/Ti (lower layer), Cu/Mo, and Cu/Ti.
  • Mo molybdenum
  • Ti titanium
  • Al aluminum
  • Cu copper
  • W tungsten
  • a second inorganic insulating film 12a is provided below (directly below) the source electrode 13a and the drain electrode 13b, respectively.
  • the second inorganic insulating film 12a is provided between the first inorganic insulating film 11 and the source electrode 13a and drain electrode 13b, respectively.
  • the source electrode 13a and the drain electrode 13b are provided on the second inorganic insulating film 12a.
  • a stacked film in which the first inorganic insulating film 11 and the second inorganic insulating film 12a are sequentially stacked is provided in a region overlapping with the source electrode 13a and the drain electrode 13b in plan view.
  • the second inorganic insulating film 12a is provided so as to extend in the first direction along the source electrode 13a and the drain electrode 13b.
  • the second inorganic insulating film 12a overlaps the entire source electrode 13a and drain electrode 13b in plan view. That is, the second inorganic insulating film 12a is provided to have the same size (area) or a larger size depending on the shapes of the source electrode 13a and the drain electrode 13b. Further, as shown in FIG. 3, the second inorganic insulating film 12a overlaps the source region 14a and drain region 14b of the oxide semiconductor layer 14, respectively, in a plan view.
  • the second inorganic insulating film 12a is made of a second inorganic material (hereinafter also simply referred to as "SiNx film”) containing silicon nitride (SiNx (x is a positive number)) as a main component, which is different from the first inorganic material. (indicates the material of the insulating film 12a).
  • SiNx film has excellent adhesion to the Mo film.
  • the source electrode 13a and the drain electrode 13b are in contact with the second inorganic insulating film 12a and not in contact with the first inorganic insulating film 11.
  • the source region 14a and the drain region 14b in the portions overlapping with the second inorganic insulating film 12a (and the source electrode 13a and the drain electrode 13b) in a plan view are formed by heat treatment in a subsequent step after the oxide semiconductor layer forming step, which will be described later. A reduction reaction occurs due to hydrogen diffusion, resulting in lower resistance.
  • a low resistance region 14d is provided in the source region 14a and drain region 14b disposed directly above the second inorganic insulating film 12a (and the source electrode 13a and drain electrode 13b). are formed respectively.
  • a second inorganic insulating film is provided below the oxide semiconductor layer 14, except for the portions that overlap with the source electrode 13a and the drain electrode 13b in plan view. 12a is not provided. Specifically, the second inorganic insulating film 12a does not exist in a region overlapping with the channel region 14c in plan view. Therefore, the channel region 14c (its lower surface) is in contact with the first inorganic insulating film 11.
  • the capacitor 9c is electrically connected to the corresponding first TFT 9a and the power supply line 18g in each sub-pixel P.
  • the capacitor 9c includes, for example, a lower conductive layer (not shown) formed of a second metal film, an upper conductive layer (not shown) formed of a third metal film, and a bottom conductive layer (not shown) formed of a third metal film. It includes an interlayer insulating film 17 provided between the side conductive layer and the upper conductive layer. Note that the upper conductive layer is electrically connected to the power supply line 18g.
  • the flattening film 19 has a flat surface in the display area D, and is made of, for example, an organic resin material such as polyimide resin.
  • the organic EL display device 50a includes an organic EL element layer 30 provided as a light emitting element layer on the TFT layer 20a, and a sealing film 35 provided so as to cover the organic EL element layer 30. It is equipped with
  • the organic EL element layer 30 includes a plurality of organic EL elements 25 as a plurality of light emitting elements arranged in a matrix in correspondence with a plurality of sub-pixels P.
  • the organic EL element 25 includes a third electrode 21 provided on the flattening film 19 for each sub-pixel P, and an organic EL layer provided on the third electrode 21 for each sub-pixel P. 23, and a fourth electrode 24 provided on the organic EL layer 23 in common to the plurality of sub-pixels P.
  • the third electrode 21 is electrically connected to the drain electrode 13b of the second TFT 9b of each sub-pixel P through a contact hole formed in the planarization film 19, as shown in FIG. Further, the third electrode 21 has a function of injecting holes into the organic EL layer 23. Moreover, in order to improve the efficiency of hole injection into the organic EL layer 23, the third electrode 21 is more preferably formed of a material with a large work function.
  • materials constituting the third electrode 21 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), and gold (Au).
  • the material constituting the third electrode 21 may be, for example, an alloy such as astatine (At)/astatine oxide (AtO 2 ).
  • the material constituting the third electrode 21 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO). There may be. Further, the third electrode 21 may be formed by laminating a plurality of layers made of the above materials. Note that examples of compound materials with a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the third electrode 21 has its peripheral end covered with an edge cover 22 that is common to the plurality of sub-pixels P and is provided in a grid pattern. As shown in FIG. 4, a part of the surface of the edge cover 22 protrudes upward in the figure to form an island-shaped pixel photo spacer.
  • the material constituting the edge cover 22 include positive photosensitive resin materials such as polyimide resin, acrylic resin, polysiloxane resin, and novolac resin, or polysiloxane-based SOG (spin on glass) materials. .
  • the organic EL layer 23 is provided as a light-emitting functional layer, and as shown in FIG. and an electron injection layer 5.
  • the hole injection layer 1 is also called an anode buffer layer, and has a function of bringing the energy level of the third electrode 21 and the organic EL layer 23 closer together and improving the hole injection efficiency from the third electrode 21 to the organic EL layer 23.
  • examples of the material constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, Examples include hydrazone derivatives and stilbene derivatives.
  • the hole transport layer 2 has a function of improving hole transport efficiency from the third electrode 21 to the organic EL layer 23.
  • examples of materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, and oxadiazole.
  • the light emitting layer 3 when voltage is applied by the third electrode 21 and the fourth electrode 24, holes and electrons are injected from the third electrode 21 and the fourth electrode 24, respectively, and the holes and electrons are recombined. It is an area.
  • the light emitting layer 3 is formed of a material with high luminous efficiency. Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently transporting electrons to the light emitting layer 3.
  • the materials constituting the electron transport layer 4 include, for example, organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , silole derivatives, metal oxinoid compounds, and the like.
  • the electron injection layer 5 has a function of bringing the energy levels of the fourth electrode 24 and the organic EL layer 23 close to each other and improving the efficiency with which electrons are injected from the fourth electrode 24 to the organic EL layer 23. With this function, The driving voltage of the organic EL element 25 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • examples of materials constituting the electron injection layer 5 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride.
  • examples include inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like.
  • the fourth electrode 24 is provided so as to cover the organic EL layer 23 and edge cover 22 of each sub-pixel P, as shown in FIG. Further, the fourth electrode 24 has a function of injecting electrons into the organic EL layer 23. Moreover, in order to improve the efficiency of electron injection into the organic EL layer 23, the fourth electrode 24 is preferably made of a material with a small work function.
  • materials constituting the fourth electrode 24 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), and gold (Au).
  • the fourth electrode 24 is made of, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al), etc. It's okay. Further, the fourth electrode 24 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO). .
  • a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO).
  • the fourth electrode 24 may be formed by laminating a plurality of layers made of the above materials.
  • materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), and sodium.
  • Na potassium
  • K lithium
  • Li lithium
  • LiF lithium fluoride
  • Cu magnesium
  • Mg magnesium/silver
  • Na sodium.
  • Na sodium
  • K lithium (Li)/aluminum (Al)
  • the sealing film 35 is provided on the organic EL element layer 30 so as to cover each organic EL element 25, as shown in FIG.
  • the sealing film 35 includes a first inorganic sealing film 31 provided to cover the fourth electrode 24 and an organic sealing film provided on the first inorganic sealing film 31. It includes a sealing film 32 and a second inorganic sealing film 33 provided so as to cover the organic sealing film 32, and has a function of protecting the organic EL layer 23 from moisture, oxygen, and the like.
  • the first inorganic sealing film 31 and the second inorganic sealing film 33 are made of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), trisilicon tetranitride (Si 3 N 4 ), for example.
  • the organic sealing film 32 is made of an organic material such as acrylic resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
  • the method for manufacturing the organic EL display device 50a includes a TFT layer forming step.
  • the TFT layer forming step is a step of forming the TFT layer 20a on the resin substrate 10.
  • the TFT layer forming process includes an insulating film forming process, a first metal layer forming process, an oxide semiconductor layer forming process, a gate insulating film forming process, and a gate electrode forming process.
  • a SiO 2 film (about 250 nm thick) made of a first inorganic material is formed on the surface (entire surface) of the resin substrate 10 formed on a glass substrate by, for example, plasma CVD (Chemical Vapor Deposition) method. 1. Form an inorganic insulating film 11. Subsequently, a SiNx film (about 100 nm thick) made of a second inorganic material is formed on the surface (entire surface) of the substrate on which the first inorganic insulating film 11 is formed, for example, by plasma CVD.
  • First metal layer forming step After forming a Mo film (first metal film, approximately 200 nm thick) by, for example, photolithography on the substrate surface on which the first inorganic insulating film 11 and the SiNx film are formed, the Mo film is patterned. A source electrode 13a, a drain electrode 13b, etc. are formed as the first metal layer. At this time, the source electrode 13a and the drain electrode 13b are formed to extend parallel to each other in the first direction, intersect with the source region 14a and the drain region 14b, and overlap in a plan view.
  • the type of etching gas is changed. That is, the SiNx film is etched using a different type of gas from the etching gas for the Mo film.
  • the second inorganic insulating film 12a in a region overlapping with the channel region 14c in plan view is removed.
  • the second inorganic insulating film 12a can be left (formed) between the first inorganic insulating film 11 and the source electrode 13a and drain electrode 13b, respectively.
  • the Mo film and the SiNx film are etched in one dry process, so the number of steps does not increase.
  • this manufacturing method by etching the SiNx film, the Mo film immediately below the oxide semiconductor layer 14 is efficiently removed, and the residual Mo film is reduced.
  • etching gas is not particularly limited, and commonly used gases can be used.
  • examples of the etching gas for the Mo film include SF 6 and Cl 2 .
  • Examples of the etching gas for the SiNx film include SF 6 , Ar, and CF 4 .
  • oxide semiconductor layer formation process After forming an oxide semiconductor film (about 30 nm thick) made of an oxide semiconductor such as InGaZnO 4 by sputtering, for example, on the surface of the substrate on which the source electrode 13a, drain electrode 13b, etc. are formed, the oxide The semiconductor film is patterned to form an oxide semiconductor layer 14. At this time, the oxide semiconductor layer 14 is formed to extend in the second direction, intersect with the source electrode 13a and the drain electrode 13b, and overlap with each other in plan view.
  • a silicon oxide film (about 100 nm thick) is formed on the surface of the substrate on which the oxide semiconductor layer 14 is formed by, for example, plasma CVD, and then the silicon oxide film is patterned to form the gate insulating film 15. .
  • the gate insulating film 15 is formed to extend in the first direction, intersect with the channel region 14c, and overlap in plan view.
  • a titanium film (about 10 to 100 nm thick), an aluminum film (about 100 to 400 nm thick), and a titanium film (about 10 to 100 nm thick) are formed on the surface of the substrate on which the gate insulating film 15 is formed, for example, by sputtering. etc., and then patterning the metal laminated film (Ti/Al/Ti film, second metal film) to form the gate electrode 16a, gate line 16g, lower conductive layer, etc. as the second metal layer. do.
  • the gate electrode 16a is formed on the gate insulating film 15 so as to extend in the first direction along the gate insulating film 15 and overlap with the channel region 14c (gate insulating film 15) in plan view.
  • the TFT layer forming step includes an interlayer insulating film forming step, a contact hole forming step, a third metal layer forming step, and a planarization film forming step.
  • a silicon oxide film (approximately 200 to 500 nm thick) and a silicon nitride film (approximately 50 to 400 nm thick) are sequentially formed on the surface (entire surface) of the substrate on which the gate electrode 16a and the like are formed, for example, by plasma CVD. As a result, an interlayer insulating film 17 is formed. Note that by heat treatment after forming the interlayer insulating film 17, part of the oxide semiconductor layer 14 is made conductive, and a source region 14a, a drain region 14b, and a channel region 14c are formed in the oxide semiconductor layer 14.
  • a contact hole is formed by appropriately patterning the interlayer insulating film 17 on the surface of the substrate on which the interlayer insulating film 17 is formed.
  • Ti/Al/Ti film, third metal film is patterned to form the source line 18f, power supply line 18g, upper conductive layer, etc. as the third metal layer.
  • the method for manufacturing the organic EL display device 50a includes an organic EL element layer forming step and a sealing film forming step.
  • Organic EL element layer 30 is formed.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, a silicon oxynitride film, etc. is formed by plasma CVD using a mask on the surface of the substrate on which the organic EL element layer 30 is formed.
  • a first inorganic sealing film 31 is formed.
  • an organic resin material such as acrylic resin is deposited on the surface of the substrate on which the first inorganic sealing film 31 is formed, for example, by an inkjet method, to form an organic sealing film 32.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, a silicon oxynitride film, etc., is formed by plasma CVD using a mask on the substrate on which the organic sealing film 32 is formed.
  • the inorganic sealing film 33 the sealing film 35 is formed.
  • a laser beam is irradiated from the glass substrate side of the resin substrate 10 to remove the glass substrate from the bottom surface of the resin substrate 10.
  • a protective sheet is attached to the lower surface of the resin substrate 10 from which the glass substrate has been peeled off.
  • the organic EL display device 50a includes a first TFT 9a and a second TFT 9b on the first inorganic insulating film 11, each having a bottom contact structure in which the source electrode 13a and the drain electrode 13b are arranged below the oxide semiconductor layer 14.
  • a second inorganic insulating film 12a made of a SiNx film is interposed between the first inorganic insulating film 11 made of an SiO 2 film and the source electrode 13a and drain electrode 13b made of a Mo film. ing.
  • the Mo film constituting the source electrode 13a and the drain electrode 13b is in contact with the SiNx film constituting the second inorganic insulating film 12a, but not in contact with the SiO2 film constituting the first inorganic insulating film 11. Therefore, oxidation of the Mo film caused by desorption of oxygen from the SiO 2 film is suppressed. As a result, the source electrode 13a and the drain electrode 13b are prevented from deteriorating in their adhesion to the underlying layer (second inorganic insulating film 12a, a part of the substrate) (the adhesion between the source electrode 13a and the drain electrode 13b and the substrate is improved). ), film lifting (film peeling) from the substrate is suppressed.
  • the organic EL display device 50a it is possible to suppress the occurrence of display defects such as bright spots due to TFT defects.
  • the second inorganic insulating film 12a formed of the SiNx film is removed and does not exist in a region overlapping with the channel region 14c in plan view (directly under the channel region 14c). Thereby, since the channel region 14c is in contact with the first inorganic insulating film 11 formed of the SiO 2 film, occurrence of depression shift of the oxide semiconductor can be suppressed.
  • the organic EL display device 50a achieves the above two effects (1) and (2), it is possible to improve the manufacturing yield and reliability of the organic EL display device 50a.
  • the display device 50a in the first metal layer forming step, after the Mo film is dry-etched, the type of etching gas is simply changed, that is, the Mo film and the Since the SiNx film is etched (to form the second inorganic insulating film 12a), the display device can be improved without increasing the number of steps.
  • the method for manufacturing the organic EL display device 50a by etching the SiNx film in the first metal layer forming step, the Mo film on the upper layer is efficiently removed, thereby reducing the residual Mo film. be able to.
  • FIG. 7 and 8 show a second embodiment of a display device according to the present invention.
  • FIG. 7 is an enlarged plan view of the vicinity of the first TFT 9b constituting the organic EL display device 50b according to the present embodiment, and corresponds to FIG. 3.
  • FIG. 8 is a sectional view taken along the line VIII-VIII in FIG. 7, showing the display area D of the organic EL display device 50b, and corresponds to FIG. 4.
  • the overall configuration of the organic EL display device 50b is the same as that of the first embodiment except for the second inorganic insulating film 12b that constitutes the TFT layer 20b, so a detailed explanation will be omitted here.
  • the same reference numerals are given to the same components as in the first embodiment, and the explanation thereof will be omitted.
  • the shape and size of the second inorganic insulating film 12b are different from the second inorganic insulating film 12a constituting the organic EL display device 50a.
  • the second inorganic insulating film 12b includes a main body portion 12ba, and a first extending portion 12bb and a second extending portion 12bc that are continuous with the main body portion 12ba. be done.
  • the main body portion 12ba corresponds to the second inorganic insulating film 12a that constitutes the organic EL display device 50a. Therefore, all the configurations described for the second inorganic insulating film 12a are also applied to the main body portion 12ba. As shown in FIGS. 7 and 8, the main body portion 12ba extends in the first direction and is provided so as to overlap the source electrode 13a and the drain electrode 13b in plan view.
  • the first extended portion 12bb and the second extended portion 12bc are provided so as to extend in the second direction along the oxide semiconductor layer 14, as shown in FIGS. 7 and 8. Specifically, as shown in FIG. 7, the first extension portion 12bb protrudes from a region where the source electrode 13a and the drain electrode 13b intersect with the source region 14a and the drain region 14b in a direction approaching the channel region 14c. Each is set up so that On the other hand, the second extending portions 12bc are provided so as to protrude in a direction opposite to the direction in which the first extending portions 12bb protrude from the intersecting region, that is, in a direction away from the channel region 14c. As shown in FIGS. 7 and 8, the first extended portion 12bb and the second extended portion 12bc overlap the source region 14a and the drain region 14b, respectively, in a plan view.
  • the lower layer (directly below) of the source region 14a and the drain region 14b in the portion that does not overlap with the source electrode 13a and the drain electrode 13b in plan view is also , a first extending portion 12bb and a second extending portion 12bc are provided as the second inorganic insulating film 12b, respectively.
  • the first extended portion 12bb and the second extended portion 12bc are provided between the first inorganic insulating film 11 and the source region 14a and drain region 14b, respectively.
  • the source region 14a and the drain region 14b are provided on the first extending portion 12bb and the second extending portion 12bc, respectively.
  • the first extending portion 12bb and the second extending portion 12bc are thinner in thickness (length in the stacking direction) than the main body portion 12ba.
  • the source region 14a and the drain region 14b in the portion that overlaps the first extended portion 12bb, the second extended portion 12bc, and the main body portion 12ba continuous therebetween in a plan view are formed after the oxide semiconductor layer forming step.
  • the heat treatment in the process causes a reduction reaction due to hydrogen diffusion, resulting in lower resistance.
  • low resistance regions 14d are formed in the source region 14a and drain region 14b, respectively, which are arranged directly above the portions 12ba, 12bb, and 12bc.
  • the end of the first extension portion 12bb on the channel region 14c side is spaced apart from the channel region 14c.
  • second inorganic A region also referred to as “insulating film 12b absent region”
  • the second inorganic insulating film 12b absent region is formed between the first extension portion 12bb and the channel region 14c (the gate insulating film 15 disposed directly above the channel region 14c).
  • the source region 14a and drain region 14b (the lower surface thereof), which overlap the region where the second inorganic insulating film 12b is not present in plan view, are in contact with the first inorganic insulating film 11 formed of a SiO 2 film.
  • the source region 14a and the drain region 14b which overlap in plan view with the region where the second inorganic insulating film 12b is not present, undergo a reduction reaction due to hydrogen diffusion due to the heat treatment in the post-process after the oxide semiconductor layer formation step, resulting in lower resistance. be done. Specifically, as shown in FIGS.
  • the source region 14a and the drain region 14b which overlap in plan view with the region where the second inorganic insulating film 12b is not present, are provided with a low resistance region 14d at the same time as the low resistance region 14d is formed.
  • the method for manufacturing the organic EL display device 50b differs from the method for manufacturing the organic EL display device 50a in part of the TFT layer forming process.
  • the TFT layer forming step includes a second inorganic insulating film patterning step after the first metal layer forming step and before the oxide semiconductor layer forming step. Therefore, in the first metal layer forming step, there is no need to change the type of etching gas after dry etching the Mo film.
  • the other steps are the same as the TFT layer forming step in the method of manufacturing the organic EL display device 50a.
  • the SiNx film is patterned by, for example, photolithography, and the first The extended portion 12bb and the second extended portion 12bc are left (formed).
  • the first extended portion 12bb and the second extended portion 12bc are formed to mutually extend in the second direction along the oxide semiconductor layer 14 and overlap with the source region 14a and the drain region 14b in a plan view.
  • the first extending portion 12bb is formed so that its end on the channel region 14c side does not reach the channel region 14c (is spaced apart from the channel region 14c).
  • the organic EL display device 50b according to this embodiment can be manufactured.
  • ⁇ Effect> According to the organic EL display device 50b according to this embodiment, in addition to the effects (1) to (3) above, the following effects can be obtained.
  • a second inorganic insulating film 12b is provided between the first inorganic insulating film 11 formed of a SiO 2 film and the source region 14a and drain region 14b of the oxide semiconductor layer 14.
  • a first extending portion 12bb and a second extending portion 12bc are interposed continuously from the main body portion 12ba.
  • the first extended portion 12bb and the second extended portion 12bc formed of the SiNx film are also present directly below the source region 14a and the drain region 14b, respectively, so that the low resistance region 14d can be expanded.
  • the second inorganic insulating film 12a is not present between the first extending portion 12bb and the second extending portion 12bc and the channel region 14c (gate insulating film 15). A region where the inorganic insulating film 12b does not exist is formed.
  • the LDD regions 14e are formed in the source region 14a and the drain region 14b in regions that overlap in plan view with the region where the second inorganic insulating film 12b is absent, it is possible to improve the breakdown voltage with respect to the drain voltage.
  • the method for manufacturing the organic EL display device 50b by etching the SiNx film in the second inorganic insulating film patterning step, the upper Mo film is efficiently removed, reducing the residual Mo film. can be achieved.
  • the slope of the waveform of the current-voltage characteristic (Id-Vg curve) due to the Mo film residue directly under the oxide semiconductor layer 14 becomes gentle, and the S value (subthreshold coefficient) and its dispersion become large. This inconvenience can be suppressed.
  • the first TFT and the second TFT have a single gate structure, but the first TFT and the second TFT may have a double gate structure.
  • a display device including a first TFT and a second TFT using an oxide semiconductor was illustrated, but the present invention provides a hybrid device including a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor.
  • the present invention can also be applied to a display device having a structure.
  • the organic EL layer has a five-layer stacked structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. It may be a three-layer stacked structure including a hole transport layer that also serves as a layer, a light emitting layer, and an electron injection layer that also serves as an electron transport layer.
  • an organic EL display device is illustrated in which the third electrode is an anode and the fourth electrode is a cathode, but the present invention reverses the stacked structure of the organic EL layer, and uses the third electrode as a cathode, It can also be applied to an organic EL display device in which the fourth electrode is an anode.
  • an organic EL display device is illustrated in which the electrode of the TFT connected to the third electrode is used as the drain electrode.
  • the electrode of the TFT connected to the third electrode is called the source electrode. It can also be applied to EL display devices.
  • an organic EL display is used as the display device, but the present invention can also be applied to a display device such as an active matrix drive type liquid crystal display device.
  • the present invention can be applied to a display device including a plurality of light emitting elements driven by an electric current.
  • QLED Quantum-dot light emitting diode
  • the present invention is useful for display devices including TFTs with a bottom contact structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

表示装置(50a)は、第1無機材料からなる第1無機絶縁膜(11)と、第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜(12a)と、モリブデンを主成分として含む金属材料からなる第1金属膜と、酸化物半導体からなる酸化物半導体膜と、ゲート絶縁膜(15)と、第2金属膜とが順に積層されたTFT層(20a)を備え、第1無機絶縁膜(11)と、第1金属膜により形成された第1電極(13a)及び第2電極(13b)との間には、第2無機絶縁膜(12a)がそれぞれ設けられる。

Description

表示装置及びその製造方法
 本開示は、表示装置及びその製造方法に関するものである。
 近年、液晶表示装置に代わる表示装置として、有機エレクトロルミネッセンス(electroluminescence、以下「EL」とも称する)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置では、画像の最小単位であるサブ画素毎に複数の薄膜トランジスタ(thin film transistor、以下「TFT」とも称する)が設けられている。ここで、TFTを構成する半導体層としては、例えば、移動度が高いポリシリコンからなる半導体層、リーク電流が小さいIn-Ga-Zn-O等の酸化物半導体からなる半導体層(以下「酸化物半導体層」とも称する)等がよく知られている。
 これら半導体層を有するTFTとして、例えば、特許文献1には、基板や半導体膜との密着性が良好な銅配線によるゲート電極および/またはソース/ドレイン電極を具備するTFTや当該TFTを用いた表示装置が提案されている。
特開2013-153093号公報
 ところで、酸化物半導体層の下層にモリブデンからなる金属層(モリブデン層)が設けられたボトムコンタクト構造のTFTでは、モリブデン層と酸化物半導体層とが同一層に形成されるため、通常、酸化物半導体層の直下にその導通を抑制するために酸化シリコンからなる無機絶縁膜(酸化シリコン膜)が設けられる。この構造では、酸化シリコン膜形成以降の後工程でのアニール処理により酸化シリコン膜から酸素が脱離し、それに起因してモリブデン層が酸化することがある。この場合、モリブデン層とその下層の酸化シリコン膜との密着性が低下し、それに起因してモリブデン層と酸化シリコン膜との界面で膜浮き(膜剥がれ)が生じて酸化物半導体層の断線(TFT不良)を引き起こし、表示に輝点等の表示不良が発生するおそれがある。
 一方、酸化物半導体層の直下に、モリブデン層との密着性に優れる窒化シリコンからなる無機絶縁膜(窒化シリコン膜)が設けられる構造では、窒化シリコン膜と酸化物半導体層とが接することになる。この場合、窒化シリコン膜から脱離した水素が酸化物半導体層に到達することにより、TFTの閾値電圧がマイナス側にシフトするデプレッションシフトが発生するおそれがある。
 なお、特許文献1に記載のTFT及び表示装置は、銅配線を具備することを前提するものであり、特許文献1には、モリブデン層と基板や半導体膜との密着性については言及されていない。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、酸化物半導体からなる半導体層を有するTFTを備える表示装置において、モリブデンを主成分として含む金属層と基板との密着性の向上を図ると共にデプレッションシフトを抑制することにある。
 上記目的を達成するために、本発明に係る表示装置は、ベース基板と、上記ベース基板上に設けられ、第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜と、モリブデンを主成分として含む金属材料からなる第1金属膜と、酸化物半導体からなる酸化物半導体膜と、ゲート絶縁膜と、第2金属膜とが順に積層された薄膜トランジスタ層とを備え、上記薄膜トランジスタ層は、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを備え、上記薄膜トランジスタは、上記第1無機絶縁膜上に第1の方向に互いに平行に延びるように設けられ、上記第1金属膜により形成された第1電極及び第2電極と、上記第1無機絶縁膜、上記第1電極及び上記第2電極上に該第1電極及び該第2電極と交差する第2の方向に延びるように設けられ、上記酸化物半導体膜により形成された酸化物半導体層と、上記酸化物半導体層上に上記第1の方向に延びるように上記ゲート絶縁膜を介して設けられ、上記第2金属膜により形成されたゲート電極とを備えた表示装置であって、上記第1無機絶縁膜と上記第1電極及び上記第2電極との間には、上記第2無機絶縁膜がそれぞれ設けられることを特徴とする。
 本発明に係る表示装置の製造方法は、ベース基板と、上記ベース基板上に設けられ、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを有する薄膜トランジスタ層とを備えた表示装置の製造方法であって、上記ベース基板上に上記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程を備え、上記薄膜トランジスタ層形成工程は、第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜とを順に形成する絶縁膜形成工程と、上記第1無機絶縁膜及び上記第2無機絶縁膜が形成された基板表面にモリブデンを主成分として含む金属材料からなる第1金属膜を成膜した後に該第1金属膜をパターニングして、第1の方向に互いに平行に延びるように第1電極及び第2電極をそれぞれ形成する第1金属層形成工程と、上記第1電極及び上記第2電極が形成された基板表面に酸化物半導体からなる酸化物半導体膜を成膜した後に該酸化物半導体膜をパターニングして、該第1電極及び該第2電極と交差する第2の方向に延びるように酸化物半導体層を形成する酸化物半導体層形成工程と、上記酸化物半導体層が形成された基板表面に上記第1の方向に延びるようにゲート絶縁膜を形成するゲート絶縁膜形成工程と、上記ゲート絶縁膜が形成された基板表面に第2金属膜を成膜した後に該第2金属膜をパターニングして、該ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを備え、上記第1金属層形成工程において、上記第1金属膜をエッチングした後に、上記第2無機絶縁膜をエッチングすることにより、上記第1無機絶縁膜と上記第1電極及び上記第2電極との間に該第2無機絶縁膜をそれぞれ残存させることを特徴とする。
 また、本発明に係る表示装置の製造方法は、ベース基板と、上記ベース基板上に設けられ、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを有する薄膜トランジスタ層とを備えた表示装置の製造方法であって、上記ベース基板上に上記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程を備え、上記薄膜トランジスタ層形成工程は、第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜とを順に形成する絶縁膜形成工程と、上記第1無機絶縁膜及び上記第2無機絶縁膜が形成された基板表面にモリブデンを主成分として含む金属材料からなる第1金属膜を成膜した後に該第1金属膜をパターニングして、第1の方向に互いに平行に延びるように第1電極及び第2電極をそれぞれ形成する第1金属層形成工程と、上記第2無機絶縁膜をパターニングする第2無機絶縁膜パターニング工程と、上記第1電極及び上記第2電極が形成され、上記第2無機絶縁膜がパターニングされた基板表面に酸化物半導体からなる酸化物半導体膜を成膜した後に該酸化物半導体膜をパターニングして、該第1電極及び該第2電極と交差する第2の方向に延びるように酸化物半導体層を形成する酸化物半導体層形成工程と、上記酸化物半導体層が形成された基板表面に上記第1の方向に延びるようにゲート絶縁膜を形成するゲート絶縁膜形成工程と、上記ゲート絶縁膜が形成された基板表面に第2金属膜を成膜した後に該第2金属膜をパターニングして、該ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを備え、上記酸化物半導体層は、互いに離間するように規定され、上記第1電極及び上記第2電極に電気的にそれぞれ接続された第1導体領域及び第2導体領域と、該第1導体領域及び該第2導体領域の間に規定され、上記ゲート電極と平面視で重なるチャネル領域とを備え、上記第2無機絶縁膜パターニング工程において、上記第1無機絶縁膜と上記第1電極及び上記第2電極との間に上記第2無機絶縁膜をそれぞれ残存させると共に、上記酸化物半導体層に沿って上記第2の方向に互いに延びるように、該第1無機絶縁膜と上記第1導体領域及び上記第2導体領域との間に該第2無機絶縁膜の延設部をその上記チャネル領域側の端部が該チャネル領域から離間するようにそれぞれ残存させることを特徴とする。
 本発明によれば、酸化物半導体からなる半導体層を有するTFTを備える表示装置において、モリブデンを主成分として含む金属層と基板との密着性の向上を図ると共にデプレッションシフトを抑制することができる。
図1は、本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。 図2は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の平面図である。 図3は、本発明の第1の実施形態に係る有機EL表示装置を構成する第1TFT周辺の拡大平面図である。 図4は、本発明の第1の実施形態に係る有機EL表示装置の表示領域を示す、図3中のIV-IV線に沿った断面図である。 図5は、本発明の第1の実施形態に係る有機EL表示装置を構成するTFT層の等価回路図である。 図6は、本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層の断面図である。 図7は、本発明の第2の実施形態に係る有機EL表示装置を構成する第1TFT周辺の拡大平面図であり、図3に相当する図である。 図8は、本発明の第2の実施形態に係る有機EL表示装置の表示領域を示す、図7中のVIII-VIII線に沿った断面図であり、図4に相当する図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《第1の実施形態》
 図1~図6は、本発明に係る表示装置の第1の実施形態を示している。なお、以下の各実施形態では、発光素子を備えた表示装置として、有機EL素子を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。図2は、有機EL表示装置50aの表示領域Dの平面図である。図3は、有機EL表示装置50aを構成する第1TFT9a周辺の拡大平面図である。図4は、有機EL表示装置50aの表示領域Dを示す、図3中のIV-IV線に沿った断面図である。図5は、有機EL表示装置50aを構成するTFT層20aの等価回路図である。図6は、有機EL表示装置50aを構成する有機EL層23の断面図である。
 有機EL表示装置50aは、図1に示すように、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に枠状に設けられた額縁領域Fとを備える。なお、本実施形態では、矩形状の表示領域Dを例示したが、この矩形状には、例えば、辺が円弧状になった形状、角部が円弧状になった形状、辺の一部に切り欠きがある形状等の略矩形状も含まれる。
 表示領域Dには、図2に示すように、複数のサブ画素Pがマトリクス状に配列されている。また、表示領域Dでは、図2に示すように、例えば、赤色の表示を行うための赤色発光領域Lrを有するサブ画素P、緑色の表示を行うための緑色発光領域Lgを有するサブ画素P、及び青色の表示を行うための青色発光領域Lbを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、例えば、赤色発光領域Lr、緑色発光領域Lg及び青色発光領域Lbを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。なお、サブ画素Pの配列は、特に限定されず、例えば、ペンタイル配列、ストライプ配列等が挙げられる。
 額縁領域Fの図1中の右端部には、端子部Tが一方向(図中の縦方向)に延びるように設けられている。また、額縁領域Fにおいて、図1に示すように、表示領域D及び端子部Tの間には、図中の縦方向を折り曲げの軸として例えば180°(U字状)に折り曲げ可能な折り曲げ部Bが一方向(図中の縦方向)に延びるように設けられている。
 有機EL表示装置50aは、図4に示すように、ベース基板として設けられた樹脂基板10と、樹脂基板10上に設けられたTFT層20aとを備えている。
 樹脂基板10は、例えばポリイミド樹脂等により構成される。
 TFT層20aは、図3及び図4に示すように、樹脂基板10上に設けられた第1無機絶縁膜11と、第1無機絶縁膜11上にサブ画素P毎に設けられた複数の第1TFT9a、複数の第2TFT9b(図5参照)及び複数のキャパシタ9c(図5参照)と、各第1TFT9a、各第2TFT9b及び各キャパシタ9c上に設けられた平坦化膜19とを備えている。ここで、TFT層20aには、図2及び図5に示すように、図中の横方向に互いに平行に延びるように複数のゲート線16gが第2金属層として設けられている。また、TFT層20aには、図2及び図5に示すように、複数のゲート線16gと交差(直交)する方向、すなわち図中の縦方向に互いに平行に延びるように複数のソース線18fが第3金属層として設けられている。また、TFT層20aには、図2及び図5に示すように、図中の縦方向に互いに平行に延びるように複数の電源線18gが第3金属層として設けられている。各電源線18gは、図2に示すように、各ソース線18fと隣り合うように設けられている。ここで、TFT層20aでは、図3及び図4に示すように、第1無機絶縁膜11と、後述する第2無機絶縁膜12aと、第1金属層となる第1金属膜と、酸化物半導体層14となる酸化物半導体膜と、ゲート絶縁膜15と、ゲート線16g等の第2金属層となる第2金属膜と、層間絶縁膜17と、ソース線18f、電源線18g等の第3金属層となる第3金属膜と、平坦化膜19とが樹脂基板10上に順に積層されている。
 第1無機絶縁膜11は、酸化シリコン(SiO)を主成分として含む第1無機材料(以下単に「SiO膜」とも称し、第1無機絶縁膜11の材料を示す)により構成される。なお、本明細書において、主成分とは、構成材料における含有量が50質量%を超過する成分をいい、100質量%(主成分のみを含むもの)でもよい。
 第1TFT9aは、図5に示すように、各サブ画素Pにおいて、対応するゲート線16g及びソース線18fに電気的に接続されている。第1TFT9aは、図3及び図4に示すように、第1電極としてソース電極13a及び第2電極としてドレイン電極13b(第1金属層)と、酸化物半導体層14と、ゲート絶縁膜15を介して設けられたゲート電極16a(第2金属層)とを備える。
 第2TFT9bは、図5に示すように、各サブ画素Pにおいて、対応する第1TFT9a及び電源線18gに電気的に接続されている。第2TFT9bは、第1TFT9aと同様に、ソース電極(13a)及びドレイン電極(13b)と、酸化物半導体層(14)と、ゲート絶縁膜(15)を介して設けられたゲート電極(16a)とを備える。
 ソース電極13a及びドレイン電極13bは、図3に示すように、図中の縦方向(第1の方向)に延びるようにそれぞれ設けられている。ソース電極13a及びドレイン電極13bは、例えば層間絶縁膜17等に形成されたコンタクトホール(不図示)を介して、ソース線18f、電源線18g、第3電極21等に電気的に接続されている。なお、ソース電極13a及びドレイン電極13bは、第1金属膜により形成される。第1金属膜は、モリブデン(Mo)を主成分として含む金属材料(以下単に「Mo膜」とも称し、ソース電極13a及びドレイン電極13bの材料を示す)により構成される。第1金属膜は、例えば、Mo単層膜でもよく、Mo(上層)/Al(中層)/Mo(下層)等の金属積層膜でもよい。
 酸化物半導体層14は、例えばIn-Ga-Zn-O系等の酸化物半導体により形成され、図3及び図4に示すように、図中の横方向(第1の方向と直交する第2の方向)に延びるように島状に設けられる。酸化物半導体層14は、図3及び図4に示すように、互いに離間するように規定されたソース領域(第1導体領域)14a及びドレイン領域(第2導体領域)14bと、ソース領域14a及びドレイン領域14bの間に規定されたチャネル領域14cとを備えている。図3に示すように、ソース領域14a及びドレイン領域14bは、ソース電極13a及びドレイン電極13bとそれぞれ交差し、それぞれ電気的に接続されている。ここで、図4に示すように、酸化物半導体層14は、ソース領域14a及びドレイン領域14bにおいて、ソース電極13a及びドレイン電極13bをそれぞれ跨ぐ構造、つまりボトムコンタクト構造になっている。この構造では、酸化物半導体層14は、ソース電極13a及びドレイン電極13bと同一層に形成される。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されない。また、In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。なお、結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。また、In-Ga-Zn-O系の半導体の代わりに、他の酸化物半導体を含んでいてもよい。他の酸化物半導体としては、例えば、In-Sn-Zn-O系半導体(例えば、In-SnO-ZnO;InSnZnO)を含んでもよい。ここで、In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)及びZn(亜鉛)の三元系酸化物である。また、他の酸化物半導体としては、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1-xO)、酸化カドミウム亜鉛(CdZn1-xO)等を含んでいてもよい。なお、Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素、17族元素等のうち1種又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態のもの、多結晶状態のもの、非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。
 ゲート絶縁膜15は、図3に示すように、第1の方向に延びるように設けられ、酸化物半導体層14とそのチャネル領域14cにおいて交差している。図4に示すように、ゲート絶縁膜15は、チャネル領域14cと平面視で重なるように酸化物半導体層14上に設けられる。ゲート絶縁膜15は、例えば、窒化シリコン(SiNx(xは正数))、酸化シリコン(SiO)、酸窒化シリコン(SiON)等の無機絶縁膜の単層膜又は積層膜により構成される。中でも、ゲート絶縁膜15は、酸化シリコン膜で構成されることが好ましい。
 ゲート電極16aは、図3に示すように、ゲート絶縁膜15と平面視で重なるように設けられる。つまり、ゲート電極16aは、ゲート絶縁膜15と同様に、第1の方向に延びるように設けられ、第1の方向に延びるように設けられ、酸化物半導体層14とそのチャネル領域14cにおいて交差している。図4に示すように、ゲート電極16aは、チャネル領域14cと平面視で重なるようにゲート絶縁膜15上に設けられる。ゲート電極16aは、酸化物半導体層14のソース領域14a及びドレイン領域14bの間の導通を制御するように構成されている。なお、ゲート電極16aは、ゲート線16gと同様に、第2金属膜により形成されている。第2金属膜は、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、銅(Cu)、タングステン(W)等の金属単層膜、又はMo(上層)/Al(中層)/Mo(下層)、Ti/Al/Ti、Al(上層)/Ti(下層)、Cu/Mo、Cu/Ti等の金属積層膜により構成される。中でも、第2金属膜は、Ti/Al/Tiの金属積層膜で構成されることが好ましい。
 ここで、有機EL表示装置50aでは、図4に示すように、ソース電極13a及びドレイン電極13bの下層(直下)に、第2無機絶縁膜12aがそれぞれ設けられる。第2無機絶縁膜12aは、第1無機絶縁膜11と、ソース電極13a及びドレイン電極13bとの間にそれぞれ設けられる。換言すると、第2無機絶縁膜12a上に、ソース電極13a及びドレイン電極13bが設けられる。このように、ソース電極13a及びドレイン電極13bと平面視で重なる領域には、第1無機絶縁膜11及び第2無機絶縁膜12aが順に積層された積層膜が設けられる。
 第2無機絶縁膜12aは、図3に示すように、ソース電極13a及びドレイン電極13bに沿って第1の方向に延びるようにそれぞれ設けられる。第2無機絶縁膜12aは、ソース電極13a及びドレイン電極13bの全体と平面視でそれぞれ重なっている。つまり、第2無機絶縁膜12aは、ソース電極13a及びドレイン電極13bの形状に応じて同じサイズ(面積)かそれよりも大きいサイズに設けられる。また、第2無機絶縁膜12aは、図3に示すように、酸化物半導体層14のソース領域14a及びドレイン領域14bと平面視でそれぞれ重なっている。
 なお、第2無機絶縁膜12aは、第1無機材料とは異なる窒化シリコン(SiNx(xは正数))を主成分として含む第2無機材料(以下単に「SiNx膜」とも称し、第2無機絶縁膜12aの材料を示す)により構成される。SiNx膜は、Mo膜との密着性に優れる。
 このように、有機EL表示装置50aでは、SiNx膜で形成される第2無機絶縁膜12aが、SiO膜で形成される第1無機絶縁膜11と、Mo膜で形成されるソース電極13a及びドレイン電極13bとの間に介在している。この構造では、ソース電極13a及びドレイン電極13b(その下面)は、第2無機絶縁膜12aと接しており、第1無機絶縁膜11とは接していない。なお、第2無機絶縁膜12a(並びにソース電極13a及びドレイン電極13b)と平面視で重なる部分におけるソース領域14a及びドレイン領域14bは、後述する酸化物半導体層形成工程以降の後工程の熱処理によって、水素の拡散による還元反応が起こり低抵抗化される。具体的には、図3及び図4に示すように、第2無機絶縁膜12a(並びにソース電極13a及びドレイン電極13b)の直上に配置されたソース領域14a及びドレイン領域14bに、低抵抗領域14dがそれぞれ形成される。
 なお、有機EL表示装置50aでは、図3及び図4に示すように、ソース電極13a及びドレイン電極13bと平面視で重なる部分を除き、酸化物半導体層14の下層には、第2無機絶縁膜12aが設けられない。具体的には、チャネル領域14cと平面視で重なる領域には、第2無機絶縁膜12aが存在しない。そのため、チャネル領域14c(その下面)は、第1無機絶縁膜11と接している。
 キャパシタ9cは、図5に示すように、各サブ画素Pにおいて、対応する第1TFT9a及び電源線18gに電気的に接続されている。ここで、キャパシタ9cは、例えば、第2金属膜により形成された下側導電層(不図示)と、第3金属膜により形成された設けられた上側導電層(不図示)と、それらの下側導電層及び上側導電層の間に設けられた層間絶縁膜17とを備えている。なお、上側導電層は電源線18gに電気的に接続されている。
 平坦化膜19は、表示領域Dにおいて、平坦な表面を有し、例えば、ポリイミド樹脂等の有機樹脂材料等により構成されている。
 有機EL表示装置50aは、図4に示すように、TFT層20a上に発光素子層として設けられた有機EL素子層30と、有機EL素子層30を覆うように設けられた封止膜35とを備えている。
 有機EL素子層30は、図4に示すように、複数のサブ画素Pに対応してマトリクス状に配列された複数の発光素子として複数の有機EL素子25を備えている。
 有機EL素子25は、図4に示すように、平坦化膜19上に各サブ画素Pに設けられた第3電極21と、第3電極21上に各サブ画素Pに設けられた有機EL層23、有機EL層23上に複数のサブ画素Pに共通して設けられた第4電極24とを備えている。
 第3電極21は、図4に示すように、平坦化膜19に形成されたコンタクトホールを介して、各サブ画素Pの第2TFT9bのドレイン電極13bに電気的に接続されている。また、第3電極21は、有機EL層23にホール(正孔)を注入する機能を有している。また、第3電極21は、有機EL層23への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第3電極21を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第3電極21を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO)等の合金であっても構わない。さらに、第3電極21を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第3電極21は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
 また、第3電極21は、図4に示すように、その周端部が複数のサブ画素Pに共通して格子状に設けられたエッジカバー22で覆われている。エッジカバー22の表面の一部は、図4に示すように、図中の上方に突出して、島状に設けられた画素フォトスペーサになっている。エッジカバー22を構成する材料としては、例えば、ポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂等のポジ型の感光性樹脂材料、又はポリシロキサン系のSOG(spin on glass)材料等が挙げられる。
 有機EL層23は、発光機能層として設けられ、図6に示すように、第3電極21上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。
 正孔注入層1は、陽極バッファ層とも呼ばれ、第3電極21と有機EL層23とのエネルギーレベルを近づけ、第3電極21から有機EL層23への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。
 正孔輸送層2は、第3電極21から有機EL層23への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。
 発光層3は、第3電極21及び第4電極24による電圧印加の際に、第3電極21及び第4電極24から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。
 電子注入層5は、第4電極24と有機EL層23とのエネルギーレベルを近づけ、第4電極24から有機EL層23へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子25の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。
 第4電極24は、図4に示すように、各サブ画素Pの有機EL層23及びエッジカバー22を覆うように設けられている。また、第4電極24は、有機EL層23に電子を注入する機能を有している。また、第4電極24は、有機EL層23への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第4電極24を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第4電極24は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第4電極24は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第4電極24は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。
 封止膜35は、図4に示すように、各有機EL素子25を覆うように有機EL素子層30上に設けられている。ここで、封止膜35は、図4に示すように、第4電極24を覆うように設けられた第1無機封止膜31と、第1無機封止膜31上に設けられた有機封止膜32と、有機封止膜32を覆うように設けられた第2無機封止膜33とを備え、有機EL層23を水分や酸素等から保護する機能を有している。ここで、第1無機封止膜31及び第2無機封止膜33は、例えば、酸化シリコン(SiO)や酸化アルミニウム(Al)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、炭窒化ケイ素(SiCN)等の無機材料により構成されている。また、有機封止膜32は、例えば、アクリル樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の有機材料により構成されている。
 次に、本実施形態の有機EL表示装置50aの製造方法について説明する。有機EL表示装置50aの製造方法は、TFT層形成工程を備える。
 <TFT層形成工程>
 TFT層形成工程は、樹脂基板10上にTFT層20aを形成する工程である。具体的には、TFT層形成工程は、絶縁膜形成工程と、第1金属層形成工程と、酸化物半導体層形成工程と、ゲート絶縁膜形成工程と、ゲート電極形成工程とを備える。
 (絶縁膜形成工程)
 ガラス基板上に形成した樹脂基板10表面(全面)に、例えば、プラズマCVD(Chemical Vapor Deposition)法により、第1無機材料からなるSiO膜(厚さ250nm程度)を成膜することにより、第1無機絶縁膜11を形成する。続いて、第1無機絶縁膜11が形成された基板表面(全面)に、例えば、プラズマCVD法により、第2無機材料からなるSiNx膜(厚さ100nm程度)を成膜する。
 (第1金属層形成工程)
 第1無機絶縁膜11及びSiNx膜が形成された基板表面に、例えば、フォトリソグラフィー法により、Mo膜(第1金属膜、厚さ200nm程度)を成膜した後に、Mo膜をパターニングして、第1金属層としてソース電極13a、ドレイン電極13b等を形成する。このとき、ソース電極13a及びドレイン電極13bは、第1の方向に互いに平行に延び、ソース領域14a及びドレイン領域14bと交差して平面視で重なるように形成する。
 ここで、第1金属層形成工程において、Mo膜をドライエッチングした後に、エッチングガスの種類を変更する。つまり、Mo膜のエッチングガスとは異なる種類のガスを用いてSiNx膜をエッチングする。これにより、例えば、チャネル領域14cと平面視で重なる領域等における第2無機絶縁膜12aは除去される。その結果、第1無機絶縁膜11とソース電極13a及びドレイン電極13bとの間に第2無機絶縁膜12aをそれぞれ残存させる(形成する)ことができる。このように、有機EL表示装置50aの製造方法では、1回のドライでMo膜及びSiNx膜をエッチングするため、工程数が増えない。また、この製造方法では、SiNx膜をエッチングすることで、酸化物半導体層14直下のMo膜が効率的に除去され、残留Mo膜が低減される。
 なお、エッチングガスの種類は、特に限定されず、一般に使用されるガスを使用できる。Mo膜のエッチングガスとしては、例えば、SF、Cl等が挙げられる。SiNx膜のエッチングガスとしては、例えば、SF、Ar、CF等が挙げられる。
 (酸化物半導体層形成工程)
 ソース電極13a、ドレイン電極13b等が形成された基板表面に、例えば、スパッタリング法により、InGaZnO等の酸化物半導体からなる酸化物半導体膜(厚さ30nm程度)を成膜した後に、その酸化物半導体膜をパターニングして、酸化物半導体層14を形成する。このとき、酸化物半導体層14は、第2の方向に延び、ソース電極13a及びドレイン電極13bと交差して平面視で重なるように形成する。
 (ゲート絶縁膜形成工程)
 酸化物半導体層14が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ100nm程度)を成膜した後に、酸化シリコン膜をパターニングして、ゲート絶縁膜15を形成する。このとき、ゲート絶縁膜15は、第1の方向に延び、チャネル領域14cと交差して平面視で重なるように形成する。
 (ゲート電極形成工程)
 ゲート絶縁膜15が形成された基板表面に、例えば、スパッタリング法により、チタン膜(厚さ10~100nm程度)、アルミニウム膜(厚さ100~400nm程度)及びチタン膜(厚さ10~100nm程度)等を順に成膜した後に、その金属積層膜(Ti/Al/Ti膜、第2金属膜)をパターニングして、第2金属層としてゲート電極16a、ゲート線16g、下側導電層等を形成する。このとき、ゲート電極16aは、ゲート絶縁膜15に沿って第1の方向に延び、チャネル領域14c(ゲート絶縁膜15)と平面視で重なるようにゲート絶縁膜15上に形成する。
 <TFT層形成工程におけるその他の工程>
 TFT層形成工程は、上記の工程以外に、層間絶縁膜形成工程と、コンタクトホール形成工程と、第3金属層形成工程と、平坦化膜形成工程とを備える。
 (層間絶縁膜形成工程)
 ゲート電極16a等が形成された基板表面(全面)に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ200~500nm程度)及び窒化シリコン膜(厚さ50~400nm程度)を順に成膜することにより、層間絶縁膜17を形成する。なお、層間絶縁膜17を形成した後の熱処理により、酸化物半導体層14の一部を導体化して、酸化物半導体層14にソース領域14a、ドレイン領域14b及びチャネル領域14cが形成される。
 (コンタクトホール形成工程)
 層間絶縁膜17が形成された基板表面において、層間絶縁膜17を適宜パターニングすることにより、コンタクトホールを形成する。
 (第3金属層形成工程)
 上記コンタクトホールが形成された基板表面に、例えば、スパッタリング法により、チタン膜(厚さ10~100nm程度)、アルミニウム膜(厚さ300~800nm程度)及びチタン膜(厚さ10~100nm程度)等を順に成膜した後に、その金属積層膜(Ti/Al/Ti膜、第3金属膜)をパターニングして、第3金属層としてソース線18f、電源線18g、上側導電層等を形成する。
 (平坦化膜形成工程)
 ソース線18f、電源線18g等が形成された基板表面に、例えば、スピンコート法やスリットコート法により、アクリル系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、平坦化膜19を形成する。
 また、有機EL表示装置50aの製造方法は、有機EL素子層形成工程及び封止膜形成工程を備える。
 <有機EL素子層形成工程>
 上記TFT層形成工程で形成されたTFT層20aの平坦化膜19上に、周知の方法を用いて、第3電極21、エッジカバー22、有機EL層23(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第4電極24を形成することにより、有機EL素子層30を形成する。
 <封止膜形成工程>
 まず、た有機EL素子層30が形成された基板表面に、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第1無機封止膜31を形成する。
 続いて、第1無機封止膜31が形成された基板表面に、例えば、インクジェット法により、アクリル樹脂等の有機樹脂材料を成膜して、有機封止膜32を形成する。
 さらに、有機封止膜32が形成された基板に、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第2無機封止膜33を形成することにより、封止膜35を形成する。
 最後に、封止膜35が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板10のガラス基板側からレーザー光を照射することにより、樹脂基板10の下面からガラス基板を剥離させ、さらに、ガラス基板を剥離させた樹脂基板10の下面に保護シート(不図示)を貼付する。
 以上のようにして、本実施形態に係る有機EL表示装置50aを製造することができる。
<効果>
 本実施形態に係る有機EL表示装置50a及びその製造方法によれば、以下の効果を得ることができる。
(1)有機EL表示装置50aでは、酸化物半導体層14の下層にソース電極13a及びドレイン電極13bが配置されたボトムコンタクト構造を有する第1TFT9a及び第2TFT9bを第1無機絶縁膜11上に備える。そして、SiO膜で形成される第1無機絶縁膜11と、Mo膜で形成されるソース電極13a及びドレイン電極13bとの間に、SiNx膜で形成される第2無機絶縁膜12aが介在している。この構造では、ソース電極13a及びドレイン電極13bを構成するMo膜は、第2無機絶縁膜12aを構成するSiNx膜と接しており、第1無機絶縁膜11を構成するSiO膜とは接しないため、SiO膜からの酸素の脱離に起因するMo膜の酸化が抑制される。その結果、ソース電極13a及びドレイン電極13bは、その下層(第2無機絶縁膜12a、基板の一部)に対する密着性低下が抑制され(ソース電極13a及びドレイン電極13bと基板との密着性が向上し)、基板からの膜浮き(膜剥がれ)が抑制される。このように、有機EL表示装置50aでは、TFT不良に起因する輝点等の表示不良が発生するのを抑制できる。
(2)有機EL表示装置50aでは、チャネル領域14cと平面視で重なる領域(チャネル領域14cの直下)には、SiNx膜で形成される第2無機絶縁膜12aが除去されて存在しない。これにより、チャネル領域14cは、SiO膜で形成される第1無機絶縁膜11と接しているため、酸化物半導体のデプレッションシフトが発生するのを抑制できる。
(3)有機EL表示装置50aでは、上記(1)及び(2)の2つの効果が奏されるため、有機EL表示装置50aの製造歩留まり及び信頼性の改善を図ることができる。
(4)有機EL表示装置50aの製造方法によれば、第1金属層形成工程において、Mo膜をドライエッチングした後に、エッチングガスの種類を変更するだけで、つまり1回のドライでMo膜及びSiNx膜をエッチングする(第2無機絶縁膜12aを形成する)ため、工程数を増やすことなく、表示装置の改善を図ることができる。
(5)有機EL表示装置50aの製造方法によれば、第1金属層形成工程において、SiNx膜をエッチングすることで、その上層のMo膜が効率的に除去され、残留Mo膜の低減を図ることができる。その結果、酸化物半導体層14の直下のMo膜残渣に起因する、電流-電圧特性(Id-Vgカーブ)の波形の傾斜が緩やかになり、S値(サブスレショルド係数)やそのばらつきが大きくなるという不都合を抑制できる。
 《第2の実施形態》
 次に、本発明の第2の実施形態について説明する。図7及び図8は、本発明に係る表示装置の第2の実施形態を示している。図7は、本実施形態に係る有機EL表示装置50bを構成する第1TFT9b周辺の拡大平面図であり、図3に相当する図である。図8は、有機EL表示装置50bの表示領域Dを示す、図7中のVIII-VIII線に沿った断面図であり、図4に相当する図である。
 有機EL表示装置50bの全体構成は、TFT層20bを構成する第2無機絶縁膜12b以外は第1の実施形態の場合と同じであるため、ここでは詳しい説明を省略する。また、第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。
 有機EL表示装置50bでは、第2無機絶縁膜12bの形状、サイズが有機EL表示装置50aを構成する第2無機絶縁膜12aとは異なる。具体的には、図7及び図8に示すように、第2無機絶縁膜12bは、本体部12baと、本体部12baに連続する第1延設部12bb及び第2延設部12bcとから構成される。
 本体部12baは、有機EL表示装置50aを構成する第2無機絶縁膜12aに相当する。そのため、第2無機絶縁膜12aで説明した構成はすべて本体部12baにも適用される。本体部12baは、図7及び図8に示すように、第1の方向に延び、ソース電極13a及びドレイン電極13bと平面視で重なるようにそれぞれ設けられる。
 第1延設部12bb及び第2延設部12bcは、図7及び図8に示すように、酸化物半導体層14に沿って第2の方向に延びるようにそれぞれ設けられる。具体的には、図7に示すように、第1延設部12bbは、ソース電極13a及びドレイン電極13bとソース領域14a及びドレイン領域14bとがそれぞれ交差する領域からチャネル領域14cに近づく方向に突出するようにそれぞれ設けられる。一方、第2延設部12bcは、上記の交差する領域から第1延設部12bbが突出する方向とは反対の方向、つまりチャネル領域14cから離れる方向に突出するようにそれぞれ設けられる。第1延設部12bb及び第2延設部12bcは、図7及び図8に示すように、ソース領域14a及びドレイン領域14bと平面視でそれぞれ重なっている。
 このように、有機EL表示装置50bでは、図7及び図8に示すように、ソース電極13a及びドレイン電極13bと平面視で重ならない部分におけるソース領域14a及びドレイン領域14bの下層(直下)にも、第2無機絶縁膜12bとして第1延設部12bb及び第2延設部12bcがそれぞれ設けられる。第1延設部12bb及び第2延設部12bcは、第1無機絶縁膜11と、ソース領域14a及びドレイン領域14bとの間にそれぞれ設けられる。換言すると、第1延設部12bb及び第2延設部12bc上に、ソース領域14a及びドレイン領域14bがそれぞれ設けられる。なお、図8に示すように、第1延設部12bb及び第2延設部12bcは、本体部12baよりも厚さ(積層方向長さ)が薄くなっている。また、第1延設部12bb及び第2延設部12bcと、その間に連続する本体部12baとに平面視で重なる部分におけるソース領域14a及びドレイン領域14bは、酸化物半導体層形成工程以降の後工程の熱処理によって、水素の拡散による還元反応が起こり低抵抗化される。具体的には、図7及び図8に示すように、当該部12ba、12bb、12bcの直上に配置されたソース領域14a及びドレイン領域14bに、低抵抗領域14dがそれぞれ形成される。
 ここで、有機EL表示装置50bでは、図7及び図8に示すように、第1延設部12bbのチャネル領域14c側の端部は、チャネル領域14cから離間している。これにより、ソース領域14a及びドレイン領域14bの各チャネル領域14c側近傍には、その下層(直下)に第1延設部12bb(第2無機絶縁膜12b)が存在しない領域(以下「第2無機絶縁膜12b不存在領域」とも称する)が形成される。具体的には、第2無機絶縁膜12b不存在領域は、第1延設部12bbとチャネル領域14c(その直上に配置されたゲート絶縁膜15)との間にそれぞれ形成される。第2無機絶縁膜12b不存在領域と平面視で重なるソース領域14a及びドレイン領域14b(その下面)は、SiO膜で形成される第1無機絶縁膜11と接している。また、第2無機絶縁膜12b不存在領域と平面視で重なるソース領域14a及びドレイン領域14bも、酸化物半導体層形成工程以降の後工程の熱処理によって、水素の拡散による還元反応が起こり低抵抗化される。具体的には、図7及び図8に示すように、第2無機絶縁膜12b不存在領域と平面視で重なるソース領域14a及びドレイン領域14bには、低抵抗領域14dの形成と同時に、低抵抗領域14dよりも抵抗の高く、チャネル領域14cよりも抵抗の低い、中抵抗(LDD)領域14eがそれぞれ形成される。
 次に、本実施形態の有機EL表示装置50bの製造方法について説明する。有機EL表示装置50bの製造方法では、TFT層形成工程の一部が有機EL表示装置50aの製造方法とは異なる。
 <TFT層形成工程>
 TFT層形成工程は、第1金属層形成工程の後であって、酸化物半導体層形成工程の前に、第2無機絶縁膜パターニング工程を備える。そのため、第1金属層形成工程において、Mo膜をドライエッチングした後に、エッチングガスの種類を変更する必要はない。それ以外は、有機EL表示装置50aの製造方法におけるTFT層形成工程と同様である。
 (第2無機絶縁膜パターニング工程)
 第1金属層形成工程でソース電極13a、ドレイン電極13b等を形成した後に、例えば、フォトリソグラフィー法により、SiNx膜をパターニングして、第2無機絶縁膜12bを構成する本体部12baと共に、第1延設部12bb及び第2延設部12bcを残存させる(形成する)。このとき、第1延設部12bb及び第2延設部12bcは、酸化物半導体層14に沿って第2の方向に互いに延び、ソース領域14a及びドレイン領域14bと平面視で重なるように形成する。また、第1延設部12bbは、そのチャネル領域14c側の端部がチャネル領域14cに到達しない(チャネル領域14cから離間する)ように形成する。
 以上のようにして、本実施形態に係る有機EL表示装置50bを製造することができる。
<効果>
 本実施形態に係る有機EL表示装置50bによれば、上記(1)~(3)の効果に加えて、以下の効果を得ることができる。
(6)有機EL表示装置50bでは、SiO膜で形成される第1無機絶縁膜11と、酸化物半導体層14のソース領域14a及びドレイン領域14bとの間に、第2無機絶縁膜12bを構成する本体部12baに連続して第1延設部12bb及び第2延設部12bcが介在している。この構造では、ソース領域14a及びドレイン領域14bの直下にもSiNx膜で形成される第1延設部12bb及び第2延設部12bcがそれぞれ存在するため、低抵抗領域14dを拡大できる。
(7)有機EL表示装置50bでは、第1延設部12bb及び第2延設部12bcと、チャネル領域14c(ゲート絶縁膜15)との間に、第2無機絶縁膜12aが存在しない第2無機絶縁膜12b不存在領域が形成される。この構造では、第2無機絶縁膜12b不存在領域と平面視で重なる領域におけるソース領域14a及びドレイン領域14bにLDD領域14eがそれぞれ形成されるため、ドレイン電圧に対する耐圧の向上を図ることができる。
(8)有機EL表示装置50bの製造方法によれば、第2無機絶縁膜パターニング工程において、SiNx膜をエッチングすることで、その上層のMo膜が効率的に除去され、残留Mo膜の低減を図ることができる。その結果、酸化物半導体層14の直下のMo膜残渣に起因する、電流-電圧特性(Id-Vgカーブ)の波形の傾斜が緩やかになり、S値(サブスレショルド係数)やそのばらつきが大きくなるという不都合を抑制できる。
 《その他の実施形態》
 上記実施形態では、シングルゲート構造を有する第1TFT及び第2TFTを例示したが、第1TFT及び第2TFTは、ダブルゲート構造を有していてもよい。
 上記実施形態では、酸化物半導体を用いた第1TFT及び第2TFTを備える表示装置を例示したが、本発明は、ポリシリコン半導体を用いた第1TFTと酸化物半導体を用いた第2TFTとを備えるハイブリッド構造を有する表示装置にも適用することができる。
 上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
 上記各実施形態では、第3電極を陽極とし、第4電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第3電極を陰極とし、第4電極を陽極とした有機EL表示装置にも適用することができる。
 上記各実施形態では、第3電極に接続されたTFTの電極をドレイン電極とした有機EL表示装置を例示したが、本発明は、第3電極に接続されたTFTの電極をソース電極と呼ぶ有機EL表示装置にも適用することができる。
 上記各実施形態では、表示装置として有機EL表示装置したが、本発明は、アクティブマトリクス駆動方式の液晶表示装置等の表示装置にも適用することができる。
 上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置に適用することができる。例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置に適用することができる。
 以上説明したように、本発明は、ボトムコンタクト構造のTFTを備える表示装置について有用である。
D    表示領域
P    サブ画素
9a   第1TFT(第1薄膜トランジスタ)
9b   第2TFT(第2薄膜トランジスタ)
9c   キャパシタ
10   樹脂基板(ベース基板)
11   第1無機絶縁膜
12a,12b   第2無機絶縁膜
12ba  本体部
12bb  第1延設部(延設部)
12bc  第2延設部(延設部)
13a  ソース電極(第1電極)
13b  ドレイン電極(第2電極)
14   酸化物半導体層
14a  ソース領域(第1導体領域)
14b  ドレイン領域(第2導体領域)
14c  チャネル領域
14d  低抵抗領域
14e  中抵抗領域
15   ゲート絶縁膜
16a  ゲート電極
16g  ゲート線
17   層間絶縁膜
18f  ソース線
18g  電源線
19   平坦化膜
20a,20b   TFT層(薄膜トランジスタ層)
21   第3電極
22   エッジカバー
23   有機EL素子層(発光素子層)
24   第4電極
25   有機EL素子(発光素子)
30   有機EL層(有機エレクトロルミネッセンス層)
31   第1無機封止膜
32   有機封止膜
33   第2無機封止膜
35   封止膜
50a,50b  有機EL表示装置

Claims (20)

  1.  ベース基板と、
     上記ベース基板上に設けられ、第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜と、モリブデンを主成分として含む金属材料からなる第1金属膜と、酸化物半導体からなる酸化物半導体膜と、ゲート絶縁膜と、第2金属膜とが順に積層された薄膜トランジスタ層とを備え、
     上記薄膜トランジスタ層は、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを備え、
     上記薄膜トランジスタは、
     上記第1無機絶縁膜上に第1の方向に互いに平行に延びるように設けられ、上記第1金属膜により形成された第1電極及び第2電極と、
     上記第1無機絶縁膜、上記第1電極及び上記第2電極上に該第1電極及び該第2電極と交差する第2の方向に延びるように設けられ、上記酸化物半導体膜により形成された酸化物半導体層と、
     上記酸化物半導体層上に上記第1の方向に延びるように上記ゲート絶縁膜を介して設けられ、上記第2金属膜により形成されたゲート電極とを備えた表示装置であって、
     上記第1無機絶縁膜と上記第1電極及び上記第2電極との間には、上記第2無機絶縁膜がそれぞれ設けられることを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     上記第2無機絶縁膜は、上記第1電極及び上記第2電極の全体と平面視でそれぞれ重なることを特徴とする表示装置。
  3.  請求項1又は2に記載された表示装置において、
     上記第1電極及び上記第2電極は、上記第2無機絶縁膜に接していることを特徴とする表示装置。
  4.  請求項1~3の何れか1つに記載された表示装置において、
     上記第1電極及び上記第2電極は、上記第1無機絶縁膜に接していないことを特徴とする表示装置。
  5.  請求項1~4の何れか1つに記載された表示装置において、
     上記酸化物半導体層は、互いに離間するように規定され、上記第1電極及び上記第2電極に電気的にそれぞれ接続された第1導体領域及び第2導体領域と、該第1導体領域及び該第2導体領域の間に規定され、上記ゲート電極と平面視で重なるチャネル領域とを備え、
     上記チャネル領域と平面視で重なる領域には、上記第2無機絶縁膜が存在しないことを特徴とする表示装置。
  6.  請求項5に記載された表示装置において、
     上記チャネル領域は、上記第1無機絶縁膜に接していることを特徴とする表示装置。
  7.  請求項5又は6に記載された表示装置において、
     上記第2無機絶縁膜には、上記酸化物半導体層に沿って上記第2の方向に互いに延びるように、上記第1無機絶縁膜と上記第1導体領域及び上記第2導体領域との間に延設部がそれぞれ設けられ、
     上記延設部の上記チャネル領域側の端部は、該チャネル領域から離間していることを特徴とする表示装置。
  8.  請求項7に記載された表示装置において、
     上記延設部は、上記第1導体領域及び第2導体領域と平面視でそれぞれ重なることを特徴とする表示装置。
  9.  請求項7又は8に記載された表示装置において、
     上記延設部は、該延設部以外の上記第2無機絶縁膜よりも厚さが薄いことを特徴とする表示装置。
  10.  請求項1~9の何れか1つに記載された表示装置において、
     上記第1無機材料は、酸化シリコンを主成分として含むことを特徴とする表示装置。
  11.  請求項1~10の何れか1つに記載された表示装置において、
     上記第2無機材料は、窒化シリコンを主成分として含むことを特徴とする表示装置。
  12.  請求項1~11の何れか1つに記載された表示装置において、
     上記薄膜トランジスタ層上に設けられ、複数の発光素子が配列された発光素子層と、
     上記発光素子層を覆うように設けられた封止膜とを備えることを特徴とする表示装置。
  13.  請求項12に記載された表示装置において、
     上記各発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置。
  14.  ベース基板と、
     上記ベース基板上に設けられ、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを有する薄膜トランジスタ層とを備えた表示装置の製造方法であって、
     上記ベース基板上に上記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程を備え、
     上記薄膜トランジスタ層形成工程は、
     第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜とを順に形成する絶縁膜形成工程と、
     上記第1無機絶縁膜及び上記第2無機絶縁膜が形成された基板表面にモリブデンを主成分として含む金属材料からなる第1金属膜を成膜した後に該第1金属膜をパターニングして、第1の方向に互いに平行に延びるように第1電極及び第2電極をそれぞれ形成する第1金属層形成工程と、
     上記第1電極及び上記第2電極が形成された基板表面に酸化物半導体からなる酸化物半導体膜を成膜した後に該酸化物半導体膜をパターニングして、該第1電極及び該第2電極と交差する第2の方向に延びるように酸化物半導体層を形成する酸化物半導体層形成工程と、
     上記酸化物半導体層が形成された基板表面に上記第1の方向に延びるようにゲート絶縁膜を形成するゲート絶縁膜形成工程と、
     上記ゲート絶縁膜が形成された基板表面に第2金属膜を成膜した後に該第2金属膜をパターニングして、該ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを備え、
     上記第1金属層形成工程において、上記第1金属膜をエッチングした後に、上記第2無機絶縁膜をエッチングすることにより、上記第1無機絶縁膜と上記第1電極及び上記第2電極との間に該第2無機絶縁膜をそれぞれ残存させることを特徴とする表示装置の製造方法。
  15.  請求項14に記載された表示装置の製造方法において、
     上記第1金属層形成工程において、上記第1金属膜のエッチングガスとは異なる種類のガスを用いて上記第2無機絶縁膜をエッチングすることを特徴とする表示装置の製造方法。
  16.  請求項14又は15に記載された表示装置の製造方法において、
     上記酸化物半導体層は、互いに離間するように規定され、上記第1電極及び上記第2電極に電気的にそれぞれ接続された第1導体領域及び第2導体領域と、該第1導体領域及び該第2導体領域の間に規定され、上記ゲート電極と平面視で重なるチャネル領域とを備え、
     上記第1金属層形成工程において、上記チャネル領域と平面視で重なる領域における上記第2無機絶縁膜を除去することを特徴とする表示装置の製造方法。
  17.  ベース基板と、
     上記ベース基板上に設けられ、表示領域を構成するサブ画素毎に対応して設けられた薄膜トランジスタを有する薄膜トランジスタ層とを備えた表示装置の製造方法であって、
     上記ベース基板上に上記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程を備え、
     上記薄膜トランジスタ層形成工程は、
     第1無機材料からなる第1無機絶縁膜と、該第1無機材料とは異なる第2無機材料からなる第2無機絶縁膜とを順に形成する絶縁膜形成工程と、
     上記第1無機絶縁膜及び上記第2無機絶縁膜が形成された基板表面にモリブデンを主成分として含む金属材料からなる第1金属膜を成膜した後に該第1金属膜をパターニングして、第1の方向に互いに平行に延びるように第1電極及び第2電極をそれぞれ形成する第1金属層形成工程と、
     上記第2無機絶縁膜をパターニングする第2無機絶縁膜パターニング工程と、
     上記第1電極及び上記第2電極が形成され、上記第2無機絶縁膜がパターニングされた基板表面に酸化物半導体からなる酸化物半導体膜を成膜した後に該酸化物半導体膜をパターニングして、該第1電極及び該第2電極と交差する第2の方向に延びるように酸化物半導体層を形成する酸化物半導体層形成工程と、
     上記酸化物半導体層が形成された基板表面に上記第1の方向に延びるようにゲート絶縁膜を形成するゲート絶縁膜形成工程と、
     上記ゲート絶縁膜が形成された基板表面に第2金属膜を成膜した後に該第2金属膜をパターニングして、該ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程とを備え、
     上記酸化物半導体層は、互いに離間するように規定され、上記第1電極及び上記第2電極に電気的にそれぞれ接続された第1導体領域及び第2導体領域と、該第1導体領域及び該第2導体領域の間に規定され、上記ゲート電極と平面視で重なるチャネル領域とを備え、
     上記第2無機絶縁膜パターニング工程において、上記第1無機絶縁膜と上記第1電極及び上記第2電極との間に上記第2無機絶縁膜をそれぞれ残存させると共に、上記酸化物半導体層に沿って上記第2の方向に互いに延びるように、該第1無機絶縁膜と上記第1導体領域及び上記第2導体領域との間に該第2無機絶縁膜の延設部をその上記チャネル領域側の端部が該チャネル領域から離間するようにそれぞれ残存させることを特徴とする表示装置の製造方法。
  18.  請求項17に記載された表示装置の製造方法において、
     上記第2無機絶縁膜パターニング工程において、上記チャネル領域と平面視で重なる領域における上記第2無機絶縁膜を除去することを特徴とする表示装置の製造方法。
  19.  請求項14~18の何れか1つに記載された表示装置の製造方法において、
     上記薄膜トランジスタ層上に、複数の発光素子が配列された発光素子層を形成する発光素子層形成工程と、
     上記発光素子層を覆うように、封止膜を形成する封止膜形成工程とを備えることを特徴とする表示装置の製造方法。
  20.  請求項19に記載された表示装置の製造方法において、
     上記各発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置の製造方法。
PCT/JP2022/026198 2022-06-30 2022-06-30 表示装置及びその製造方法 WO2024004128A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026198 WO2024004128A1 (ja) 2022-06-30 2022-06-30 表示装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026198 WO2024004128A1 (ja) 2022-06-30 2022-06-30 表示装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2024004128A1 true WO2024004128A1 (ja) 2024-01-04

Family

ID=89382493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026198 WO2024004128A1 (ja) 2022-06-30 2022-06-30 表示装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024004128A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258492A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 回路基板、回路基板の製造方法、電気光学装置および電子機器
JP2008085042A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp 半導体装置の製造方法、半導体装置および電子機器
JP2010135542A (ja) * 2008-12-04 2010-06-17 Sharp Corp 有機薄膜トランジスタ
JP2013016782A (ja) * 2011-06-10 2013-01-24 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013138195A (ja) * 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US20150108454A1 (en) * 2013-10-17 2015-04-23 Samsung Display Co., Ltd. Thin film transistor array substrate, organic light-emitting display apparatus, and method of manufacturing the thin film transistor array substrate
JP2018110226A (ja) * 2016-12-30 2018-07-12 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタ基板及び表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258492A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 回路基板、回路基板の製造方法、電気光学装置および電子機器
JP2008085042A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp 半導体装置の製造方法、半導体装置および電子機器
JP2010135542A (ja) * 2008-12-04 2010-06-17 Sharp Corp 有機薄膜トランジスタ
JP2013016782A (ja) * 2011-06-10 2013-01-24 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013138195A (ja) * 2011-11-30 2013-07-11 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US20150108454A1 (en) * 2013-10-17 2015-04-23 Samsung Display Co., Ltd. Thin film transistor array substrate, organic light-emitting display apparatus, and method of manufacturing the thin film transistor array substrate
JP2018110226A (ja) * 2016-12-30 2018-07-12 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタ基板及び表示装置

Similar Documents

Publication Publication Date Title
US11765935B2 (en) Display apparatus
US11957015B2 (en) Display device
WO2019186819A1 (ja) 表示装置及びその製造方法
WO2019186702A1 (ja) 表示装置
WO2024004128A1 (ja) 表示装置及びその製造方法
WO2024154202A1 (ja) 表示装置
WO2023112328A1 (ja) 表示装置
WO2024142278A1 (ja) 表示装置
WO2023175794A1 (ja) 表示装置及びその製造方法
WO2024176386A1 (ja) 薄膜トランジスタ及び表示装置
WO2024176379A1 (ja) 表示装置及びその製造方法
WO2023127165A1 (ja) 表示装置
WO2023062695A1 (ja) 表示装置
WO2023021623A1 (ja) 表示装置及びその製造方法
WO2024166389A1 (ja) 表示装置
WO2023157293A1 (ja) 表示装置
WO2023062696A1 (ja) 表示装置
US20240357887A1 (en) Display device
WO2024127450A1 (ja) 表示装置
JP7543568B2 (ja) 表示装置の製造方法
WO2023013039A1 (ja) 表示装置及びその製造方法
US11925078B2 (en) Display device including frame region, and bending region around display region
US11889729B2 (en) Display device
WO2024013808A1 (ja) 表示装置
JP7494383B2 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949401

Country of ref document: EP

Kind code of ref document: A1