WO2023286454A1 - 芳香族ジハロゲン化合物の製造方法 - Google Patents

芳香族ジハロゲン化合物の製造方法 Download PDF

Info

Publication number
WO2023286454A1
WO2023286454A1 PCT/JP2022/021138 JP2022021138W WO2023286454A1 WO 2023286454 A1 WO2023286454 A1 WO 2023286454A1 JP 2022021138 W JP2022021138 W JP 2022021138W WO 2023286454 A1 WO2023286454 A1 WO 2023286454A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
nitrite
aromatic
reaction
aromatic dihalogen
Prior art date
Application number
PCT/JP2022/021138
Other languages
English (en)
French (fr)
Inventor
康博 坂本
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020247004354A priority Critical patent/KR20240035518A/ko
Priority to CN202280047863.7A priority patent/CN117651704A/zh
Priority to EP22841801.8A priority patent/EP4371990A1/en
Priority to JP2023535158A priority patent/JPWO2023286454A1/ja
Publication of WO2023286454A1 publication Critical patent/WO2023286454A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/02Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D497/04Ortho-condensed systems

Definitions

  • the present invention relates to a method for producing an industrially producible aromatic dihalogen compound.
  • Aromatic dihalogen compounds are useful compounds used as organic electronic materials.
  • an aromatic dihalogen compound is synthesized by reacting an aromatic diamine compound with a halogenating agent such as iodine or cupric bromide in the presence of tert-butyl nitrite at room temperature.
  • a halogenating agent such as iodine or cupric bromide
  • Patent Documents 1 and 2 required the use of the designated drug tert-butyl nitrite. Since tert-butyl nitrite is a designated drug, it is subject to very strict controls and is highly toxic. Therefore, it has been desired to develop a reaction capable of obtaining a highly pure aromatic dihalogen compound using a nitrite which is not a designated drug.
  • an object of the present invention is to provide an industrial production method capable of obtaining a highly pure aromatic dihalogen compound using a nitrite ester compound that is not a designated drug.
  • the present inventors have completed the present invention as a result of intensive studies to achieve this purpose. That is, it is a production method for obtaining an aromatic dihalogen compound using one or more selected from the group consisting of ethyl nitrite, hexyl nitrite and amyl nitrite, which are not designated drugs, among nitrite ester compounds.
  • the nitrite compound is one or more selected from the group consisting of ethyl nitrite, hexyl nitrite and amyl nitrite
  • a method for producing an aromatic dihalogen compound comprising reaction step 1, wherein the reaction is performed at a reaction temperature of 35°C or higher.
  • the method for producing an aromatic dihalogen compound according to [1] which includes, after the reaction step 1, a reaction step 2 at a temperature higher than that of the reaction step 1.
  • each X independently represents a halogen.
  • the halogenating agent is one or more selected from the group consisting of iodine, bromine, chlorine, copper halides and quaternary ammonium halide salts. A method for producing the described aromatic dihalogen compound.
  • tett-butyl nitrite which is a designated drug with high toxicity and strict control
  • an aromatic diamine compound with a nitrite ester compound that is not a designated drug under appropriate conditions. After that, a highly pure aromatic dihalogen compound can be industrially obtained.
  • the method for producing an aromatic dihalogen compound of the present invention comprises reacting an aromatic diamine compound, a nitrite compound and a halogenating agent, wherein the nitrite compound is prepared from ethyl nitrite, hexyl nitrite and amyl nitrite. It is characterized by being one or more selected from the group consisting of (hereinafter also referred to as a specific nitrite compound).
  • the aromatic diamine compound is not particularly limited as long as it is a compound having an aromatic ring and two amino groups, but is preferably a compound in which two amino groups are directly bonded to an aromatic ring, more preferably a compound of the general formula (1 ) is a compound shown in
  • the aromatic dihalogen compound is not particularly limited as long as it is a compound having an aromatic ring and two halogens, but is preferably a compound in which two halogens are directly bonded to the aromatic ring, more preferably general formula (2) It is a compound shown in The aromatic diamine compound and the aromatic dihalogen compound preferably have corresponding structures.
  • each R is independently hydrogen, halogen or an alkyl group.
  • Halogen in R is preferably iodine, bromine or chlorine.
  • the alkyl group may be linear or branched, and preferably has 1-30 carbon atoms, more preferably 5-20 carbon atoms.
  • Each A is independently nitrogen or oxygen. Both A's are preferably nitrogen or oxygen, and more preferably both A's are nitrogen.
  • R and A are as defined above, and each X is independently halogen.
  • Halogen in X is preferably iodine, bromine or chlorine.
  • an aromatic diamine, a halogenating agent, and a nitrite ester compound are put into a reaction vessel and reacted.
  • nitrite ester compound it is necessary to use one or more selected from the group consisting of ethyl nitrite, hexyl nitrite and amyl nitrite.
  • drugs are not designated drugs.
  • a designated drug is defined as a drug that excites or depresses the central nervous system or has a hallucinogenic effect (including the effect of maintaining or enhancing such effect) according to the Act on Securing Quality, Efficacy and Safety of Pharmaceuticals and Medical Devices. It is defined as a substance that has a high probability of causing health hazards when used on the human body, and is related to ensuring the quality, efficacy and safety of pharmaceuticals and medical devices.
  • tert-butyl nitrite is a designated drug under Japanese laws and regulations, and although the laws and regulations differ from country to country, it is required to avoid its use in any case because of its toxicity. On the other hand, when the specific nitrite compound is used, complicated and sophisticated storage management rules are not required, and special detoxification equipment is not required, and can be safely handled.
  • the specific nitrite compounds may be used alone, or two or more of them may be used in combination.
  • the amount of the specific nitrite compound used is preferably 1.5 mol or more per 1 mol of the aromatic diamine compound. It is more preferably 2 mol or more, still more preferably 2.5 mol or more, because the reaction rate can be improved and the reaction time can be expected to be shortened. Also, even if it is used too excessively, the effect of improving the reaction rate is saturated, and the post-treatment process may become complicated. less than a mole.
  • the total amount is calculated as the specific nitrite compound amount.
  • a common halogenating agent can be used as the halogenating agent.
  • iodine, bromine, chlorine, copper halide, quaternary ammonium halide salts, N-halogenated succinimide and the like are preferred, and iodine, bromine, chlorine, copper halide and quaternary ammonium halide salts are preferred.
  • One or more selected from the group consisting of is particularly preferred.
  • the copper halide is not particularly limited, and includes cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide and the like. Copper is preferred.
  • Halide salts of quaternary ammonium include tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), tetrabutylammonium iodide (TBAI), and the like.
  • N-halogenated succinimide include N-bromosuccinimide (NBS), N-chlorosuccinimide (NCS), N-iodosuccinimide (NIS) and the like.
  • the halogenating agent may be used alone, or two or more of them may be used in combination.
  • the amount of the halogenating agent to be used is preferably 1.5 mol to 6 mol, more preferably 2 mol to 4 mol, per 1 mol of the aromatic diamine compound.
  • an organic sulfonic acid compound may be used in combination to promote halogenation.
  • the organic sulfonic acid compound is not particularly limited, and includes p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid and the like.
  • the amount is preferably 1.5 mol to 6 mol, more preferably 2 mol to 4 mol, per 1 mol of the aromatic diamine compound.
  • a solvent may be used in this reaction. It is important that the solvent used in this reaction should not interfere with the reaction. Preferred specific examples include acetonitrile (AN), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), chloroform, ethyl acetate, hexane, heptane, toluene, tetrahydrofuran and the like. These solvents may be used alone or in combination of two or more. The amount of the solvent used is preferably 2 to 100 parts by mass, more preferably 4 to 50 parts by mass, and still more preferably 6 to 30 parts by mass, relative to 1 part by mass of the aromatic diamine compound. .
  • reaction step 1 in which the reaction temperature is 35°C or higher.
  • the reaction temperature in reaction step 1 is preferably 40° C. or higher, more preferably 45° C. or higher. Also, it is preferably 70°C or lower, more preferably 60°C or lower, and still more preferably lower than 60°C.
  • the reaction time of reaction step 1 is preferably 30 minutes or longer, more preferably 1 hour or longer, and still more preferably 2 hours or longer. Also, it is preferably 5 hours or less, more preferably 4 hours or less, and still more preferably 3 hours or less.
  • a high-quality aromatic dihalogen compound can be obtained by including reaction step 1 under the above conditions.
  • reaction step 2 it is preferable to include a reaction step 2 at a higher temperature than the reaction step 1 after the reaction step 1.
  • the reaction temperature of reaction step 2 is not limited as long as it is higher than that of reaction step 1, but is preferably 60° C. or higher, more preferably 70° C. or higher, and still more preferably 80° C. or higher. Also, it is preferably 130° C. or lower, more preferably 120° C. or lower, and still more preferably 110° C. or lower.
  • the reaction time of reaction step 2 is preferably 1 hour or longer, more preferably 3 hours or longer, and still more preferably 5 hours or longer.
  • reaction step 2 it is preferably 20 hours or less, more preferably 18 hours or less, and still more preferably 16 hours or less.
  • the difference in reaction temperature between the reaction step 1 and the reaction step 2 is preferably 25°C or higher, more preferably 30°C or higher, and still more preferably 40°C or higher. Also, it is preferably 90° C. or lower, more preferably 80° C. or lower, and still more preferably 70° C. or lower.
  • the aromatic dihalogen compound produced is preferably subjected to solid-liquid separation such as filtration.
  • a crude product can be easily obtained by solid-liquid separation.
  • the crude product is preferably purified by crystallization, suspension washing, recrystallization, etc. By performing the purification, a highly pure aromatic dihalogen compound can be obtained.
  • the same solvent as the reaction solvent can be used for the suspension washing.
  • DMSO, NMP, DMF, DMAc, etc. can be used as the recrystallization solvent.
  • HPLC high performance liquid chromatography
  • Example 2 2,6-Dibromobenzo[1,2-d:4,5-d']bisthiazole
  • 2,6-dibromobenzo[1 ,2-d:4,5-d']bisthiazoles were prepared. Table 1 shows the results.
  • Example 3 2,6-Dibromobenzo[1,2-d:4,5-d′]bisthiazole
  • 2,6-dibromobenzo[1 ,2-d:4,5-d']bisthiazoles were prepared. Table 1 shows the results.
  • Example 4 2,6-Diiodobenzo[1,2-d:4,5-d′]bisthiazole In the same manner as in Example 1, using the reagents listed in Table 1, 2,6-diiodobenzo[1,2-d:4,5-d′]bisthiazole 1,2-d:4,5-d']bisthiazoles were prepared. Table 1 shows the results.
  • Example 5 2,6-dibromobenzo[1,2-d:4,5-d′]bisthiazole A 200 ml flask was charged with acetonitrile (63.0 g), p-toluenesulfonic acid monohydrate (16.4 g, 86 .3 mmol), tetrabutylammonium bromide (46.4 g, 143.9 mmol), benzo[1,2-d:4,5-d′]bisthiazole-2,6-diamine (8.0 g, 36.0 mmol). ), cupric bromide (0.24 g, 1.0 mmol) was added and stirred at 20° C. for 15 minutes.
  • Example 7 2,6-Dibromobenzo[1,2-d:4,5-d']bisthiazole
  • 2,6-dibromobenzo[1 ,2-d:4,5-d']bisthiazoles were prepared. Table 1 shows the results.
  • Examples 1 to 7 a nitrite compound, which is not a designated drug, was used and produced under appropriate reaction conditions, so a high-purity aromatic dihalogen compound could be produced safely.
  • the reaction temperature was low and the purity of the aromatic dihalogen compound was low.
  • tert-butyl nitrite was used in Comparative Example 2, the quality deteriorated, and since it is a designated drug, there is a safety problem. Therefore, for industrial mass use, it is necessary to install drug control and abatement equipment, which is complicated.
  • a high-purity aromatic dihalogen compound can be safely obtained using a nitrite compound that is not a designated drug.
  • the aromatic dihalogen compound obtained by the production method of the present invention is an important skeleton component for Suzuki cross-coupling reaction and Heck-type reaction. These are useful compounds utilized as organic electronic materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

指定薬物である亜硝酸tett-ブチルを使用せずに、芳香族ジアミン化合物から高純度な芳香族ジハロゲン化合物を工業的に製造する方法を提供する。 芳香族ジアミン化合物、亜硝酸エステル化合物およびハロゲン化剤を反応させる芳香族ジハロゲン化合物の製造方法であって、前記亜硝酸エステル化合物が、亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上であり、前記反応が反応温度35℃以上である反応工程1を含む芳香族ジハロゲン化合物の製造方法。

Description

芳香族ジハロゲン化合物の製造方法
 本発明は、工業的に製造可能な芳香族ジハロゲン化合物の製造方法に関する。芳香族ジハロゲン化合物は、有機電子材料として利用される有用な化合物である。
 従来、芳香族ジハロゲン化合物は、芳香族ジアミン化合物を亜硝酸tert-ブチル存在下、ヨウ素や臭化第二銅などのハロゲン化剤にて室温で反応させることで合成するという技術が知られていた(例えば、特許文献1および特許文献2参照)。
特許4908882号公報 国際公開第2014/031295号
 しかしながら、特許文献1や特許文献2に開示の方法では、指定薬物である亜硝酸tert-ブチルを使用する必要があった。亜硝酸tert-ブチルは、指定薬物であるため管理が非常に厳しく、毒性も高い。このため、指定薬物ではない亜硝酸エステルを用い、高純度な芳香族ジハロゲン化合物を得ることのできる反応の開発が望まれていた。
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、指定薬物ではない亜硝酸エステル化合物を用い、高純度な芳香族ジハロゲン化合物を得ることのできる工業的な製造方法を提供することにある。
 本発明者らは、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち、亜硝酸エステル化合物のうち、指定薬物ではない亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上を用いた芳香族ジハロゲン化合物を得る製造方法である。
[1] 芳香族ジアミン化合物、亜硝酸エステル化合物およびハロゲン化剤を反応させる芳香族ジハロゲン化合物の製造方法であって、
 前記亜硝酸エステル化合物が、亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上であり、
 前記反応が反応温度35℃以上である反応工程1を含む芳香族ジハロゲン化合物の製造方法。
[2] 前記反応工程1の後に、前記反応工程1よりも高温の反応工程2を含む[1]に記載の芳香族ジハロゲン化合物の製造方法。
[3] 前記反応工程2の温度が60℃以上である[1]または[2]に記載の芳香族ジハロゲン化合物の製造方法。
[4] 前記芳香族ジアミン化合物が一般式(1)の構造を有し、前記芳香族ジハロゲン化合物が一般式(2)の構造を有する[1]~[3]のいずれかに記載の芳香族ジハロゲン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、Rはそれぞれ独立に、水素、ハロゲンまたはアルキル基を示し、Aはそれぞれ独立に、窒素または酸素を示す。一般式(2)中、RおよびAは前記と同義であり、Xはそれぞれ独立にハロゲンを示す。)
[5] 前記ハロゲン化剤が、ヨウ素、臭素、塩素、ハロゲン化銅および第四級アンモニウムのハロゲン化塩からなる群より選択された1種以上である[1]~[4]のいずれかに記載の芳香族ジハロゲン化合物の製造方法。
 本発明によれば、芳香族ジアミン化合物を、指定薬物ではない亜硝酸エステル化合物と適切な条件で反応することで、毒性が高く、管理の厳しい指定薬物である亜硝酸tett-ブチルの使用を回避した上で、高純度な芳香族ジハロゲン化合物を工業的に得ることができる。
 以下に本発明を詳細に説明する。
 本発明の芳香族ジハロゲン化合物の製造方法は、芳香族ジアミン化合物、亜硝酸エステル化合物およびハロゲン化剤を反応させるものであり、前記亜硝酸エステル化合物が亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上(以下、特定の亜硝酸エステル化合物ともいう。)であることを特徴とする。
 前記芳香族ジアミン化合物は、芳香環とアミノ基を2個有する化合物であれば特に限定されないが、好ましくは芳香環に2個のアミノ基が直接結合する化合物であり、より好ましくは一般式(1)に示す化合物である。また、芳香族ジハロゲン化合物は、芳香環とハロゲンを2個有する化合物であれば特に限定されないが、好ましくは芳香環に2個のハロゲンが直接結合する化合物であり、より好ましくは一般式(2)に示す化合物である。芳香族ジアミン化合物と芳香族ジハロゲン化合物はそれぞれ対応する構造であることが好ましい。
 上記一般式(1)、(2)におけるR、AおよびXについて説明する。まず、一般式(1)中、Rはそれぞれ独立に、水素、ハロゲンまたはアルキル基である。Rにおけるハロゲンは、ヨウ素、臭素、または塩素が好ましい。アルキル基は直鎖状でも、分岐鎖状でも良く、好ましい炭素数は1~30であり、より好ましくは5~20である。Aはそれぞれ独立に、窒素または酸素である。2個のAがともに窒素または酸素であることが好ましく、2個のAがともに窒素であることがより好ましい。一般式(2)中、RおよびAは前記と同義であり、Xはそれぞれ独立にハロゲンである。Xにおけるハロゲンは、ヨウ素、臭素、または塩素が好ましい。
 芳香族ジハロゲン化合物の合成は、反応容器内に芳香族ジアミン、ハロゲン化剤、および亜硝酸エステル化合物をそれぞれ投入して反応させる。
 亜硝酸エステル化合物としては、亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上を用いることが必要である。これら特定の亜硝酸エステル化合物は、指定薬物に該当しない。指定薬物とは、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律では中枢神経系の興奮若しくは抑制又は幻覚の作用(当該作用の維持又は強化の作用を含む。)を有する蓋然性が高く、かつ、人の身体に使用された場合に保健衛生上の危害が発生するおそれがある物として定義されており、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律第2条第15項に規定する指定薬物及び同法第76条の4に規定する医療等の用途を定める省令(平成19年厚生労働省令第14号)で物質名を定めている。このように日本の法令では、亜硝酸tert-ブチルは指定薬物に該当しており、国ごとに法令は異なるものの、その毒性からいずれにしてもその使用を回避することが求められる。一方、上記特定の亜硝酸エステル化合物を使用する場合、煩雑で高度な保管管理規則が必要なく、さらに特殊な除害設備等の必要もなく、安全に取り扱いができる。
 前記特定の亜硝酸エステル化合物は単独で用いても良いし、2種類以上を併用しても良い。当該特定の亜硝酸エステル化合物の使用量は、芳香族ジアミン化合物1モルに対して、1.5モル以上であることが好ましい。反応速度が向上し、反応時間の短縮が期待できることからより好ましくは2モル以上であり、さらに好ましくは2.5モル以上である。また、あまり過剰に使用しても反応速度向上の効果が飽和し、後処理工程が煩雑となり得ることから、10モル以下であることが好ましく、より好ましくは6モル以下であり、さらに好ましくは4モル以下である。なお、特定の亜硝酸エステル化合物を2種以上併用する場合は、その合計量を特定の亜硝酸エステル化合物量として計算する。
 ハロゲン化剤としては、一般的なハロゲン化剤を用いることができる。これらの中でヨウ素、臭素、塩素、ハロゲン化銅、第四級アンモニウムのハロゲン化塩、N-ハロゲン化スクシンイミド等が好ましく、ヨウ素、臭素、塩素、ハロゲン化銅および第四級アンモニウムのハロゲン化塩からなる群より選択された1種以上であることが特に好ましい。また、ハロゲン化銅としては、特に限定されず、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅等が挙げられ、中でも臭化第二銅が好ましい。また、第四級アンモニウムのハロゲン化塩としては、臭化テトラブチルアンモニウム(TBAB)、塩化テトラブチルアンモニウム(TBAC)、ヨウ化テトラブチルアンモニウム(TBAI)等が挙げられる。また、N-ハロゲン化スクシンイミドとしては、N-ブロモスクシンイミド(NBS)、N-クロロスクシンイミド(NCS)、N-ヨードスクシンイミド(NIS)等が挙げられる。当該ハロゲン化剤は単独で用いても良いし、2種類以上を併用しても良い。当該ハロゲン化剤の使用量は、芳香族ジアミン化合物1モルに対して、1.5モル~6モルが好ましく、2モル~4モルがより好ましい。
 また、ハロゲン化を促進させるため、有機スルホン酸化合物を併用しても良い。有機スルホン酸化合物としては、特に限定されず、p-トルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。有機スルホン酸化合物を併用する場合は、芳香族ジアミン化合物1モルに対して、1.5モル~6モルであることが好ましく、2モル~4モルであることがより好ましい。
 本反応には、溶媒(反応溶媒)を用いても良い。この反応に用いる溶媒としては、反応を阻害しない溶媒であることが重要である。好適な具体例としては、アセトニトリル(AN)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、クロロホルム、酢酸エチル、ヘキサン、ヘプタン、トルエン、テトラヒドロフランなどが挙げられる。これら溶媒は、単独で用いても良いし、2種類以上を併用しても良い。前記溶媒の使用量は、芳香族ジアミン化合物1質量部に対して、2~100質量部であることが好ましく、より好ましくは4~50質量部であり、さらに好ましくは6~30質量部である。
 前記特定の亜硝酸エステル化合物は、亜硝酸tert-ブチルに比べて反応性が低いため、反応は少なくとも反応温度が35℃以上である反応工程1を含むことが必要である。反応工程1の反応温度を35℃以上にすることで、反応性が向上し、高品質の芳香族ジハロゲン化合物が得られる。反応工程1の反応温度は40℃以上であることが好ましく、より好ましくは45℃以上である。また、70℃以下であることが好ましく、より好ましくは60℃以下であり、さらに好ましくは60℃未満である。反応工程1の反応時間は30分以上であることが好ましく、より好ましくは1時間以上であり、さらに好ましくは2時間以上である。また、5時間以下であることが好ましく、より好ましくは4時間以下であり、さらに好ましくは3時間以下である。上記条件の反応工程1を含むことで高品質の芳香族ジハロゲン化合物が得られる。
 本発明では、前記反応工程1の後に、前記反応工程1よりも高温の反応工程2を含むことが好ましい。反応工程2を行うことで、芳香族ジハロゲン化合物の品質がさらに向上する。反応工程2の反応温度は、反応工程1よりも高温であれば限定されないが、60℃以上であることが好ましく、より好ましくは70℃以上であり、さらに好ましくは80℃以上である。また、130℃以下であることが好ましく、より好ましくは120℃以下であり、さらに好ましくは110℃以下である。反応工程2の反応時間は1時間以上であることが好ましく、より好ましくは3時間以上であり、さらに好ましくは5時間以上である。また、20時間以下であることが好ましく、より好ましくは18時間以下であり、さらに好ましくは16時間以下である。上記条件の反応工程2を、前記反応工程1の後にさらに行うことで、不純物(副生成物)の生成を抑制することができ、芳香族ジハロゲン化合物の品質がさらに向上する。
 前記反応工程1と前記反応工程2の反応温度の差は、25℃以上であることが好ましく、より好ましくは30℃以上であり、さらに好ましくは40℃以上である。また、90℃以下であることが好ましく、より好ましくは80℃以下であり、さらに好ましくは70℃以下である。上記反応温度の差を設けることで、不純物の生成を抑制することができ、芳香族ジハロゲン化合物の品質がさらに向上する。
 反応終了後、生成した芳香族ジハロゲン化合物は、ろ過等の固液分離をすることが好ましい。固液分離することで粗生成物が容易に得られる。次いで、必要に応じて、前記粗生成物を晶析、懸濁洗浄、再結晶等の精製をすることが好ましく、前記精製をすることで高純度の芳香族ジハロゲン化合物が得られる。
 前記懸濁洗浄の溶媒は、前記反応溶媒と同じものを使用することができる。また再結晶溶媒は溶解性の観点から、DMSO、NMP、DMF、DMAc等を使用することができる。
 以下の実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<高速液体クロマトグラフィー(HPLC)純度の測定>
 芳香族ジハロゲン化合物の純度について、下記の測定条件によりHPLC分析法で測定した。測定値は面積百分率である。
 測定装置:高速液体クロマトグラフ Prominence LC20システム(株式会社島津製作所製)
 カラム:Inertsill ODS-3 5μm、4.6×250mm(GLサイエンス社製)、カラムオーブンは40℃に設定した。
 測定波長:UV検出器、290 nm
 流量:1.0 ml/分
 移動相組成:A=アセトニトリル、B=0.01M KHPO水溶液(pH=4)
 グラジエントプログラム:
     0~5分    A/B=40/60のイソクラティックス
     5~7.5分  A/B=75/25までグラジエント
     7.5~35分 A/B=75/25のイソクラティックス
 測定サンプル:芳香族ジハロゲン化合物1mgをDMSO20mlに溶解し、測定した。
 注入量:20μl
 芳香族ジハロゲン化合物の品質は下記の通り評価した。
 ◎:HPLC純度が95%以上
 ○:HPLC純度が90%以上、95%未満
 △:HPLC純度が85%以上、90%未満
 ×:HPLC純度が85%未満
実施例1 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールの製造
 200mlフラスコにN,N-ジメチルホルムアミド(74.0g)、臭化第二銅(27.3g、122.4mmol)を加え、20℃で撹拌した後、さらに亜硝酸ヘキシル(14.2g、102.5mmol)を加え、15分撹拌した。続いて、ベンゾ[1,2-d:4,5-d’]ビスチアゾール-2,6-ジアミン(8.0g、36.0mmol)を30分かけて、ゆっくり加えた後、40℃で3時間反応した。反応終了後、8.7質量%臭化水素水溶液(48.0g)を加えた後、ろ過することで、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールの粗結晶を得た。この粗結晶を35質量%塩酸で洗浄した後、ジメチルスルホキシド(80.0g)で懸濁洗浄した。さらに酢酸エチル(40.0g)で懸濁洗浄した後、40℃にて減圧乾燥することで2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを薄茶色結晶として得た。結果を表1に示す。
実施例2 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
実施例3  2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
実施例4 2,6-ジヨードベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の試剤を使用して、2,6-ジヨードベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
実施例5 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 200mlフラスコにアセトニトリル(63.0g)、p-トルエンスルホン酸一水和物(16.4g、86.3mmol)、臭化テトラブチルアンモニウム(46.4g、143.9mmol)、ベンゾ[1,2-d:4,5-d’]ビスチアゾール-2,6-ジアミン(8.0g、36.0mmol)、臭化第二銅(0.24g、1.0mmol)を加え、20℃で15分撹拌した。続いて、亜硝酸ヘキシル(12.5g、95.4mmol)を30分かけて、ゆっくり加えた後、40℃で3時間反応した。反応終了後、ろ過することで、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールの粗結晶を得た。この粗結晶を50質量%アセトニトリル水溶液(33.6g)で懸濁洗浄し、40℃にて減圧乾燥することで2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを薄茶色結晶として得た。結果を表1に示す。
実施例6 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 200mlフラスコにN,N-ジメチルホルムアミド(74.0g)、臭化第二銅(27.3g、122.4mmol)を加え、20℃で撹拌した後、さらに亜硝酸ヘキシル(14.2g、102.5mmol)を加え、15分撹拌した。続いて、ベンゾ[1,2-d:4,5-d’]ビスチアゾール-2,6-ジアミン(8.0g、36.0mmol)を30分かけて、ゆっくり加えた後、40℃で3時間反応した。その後、100℃で15時間撹拌した。反応終了後、8.7質量%臭化水素水溶液(48.0g)を加えた後、ろ過することで、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールの粗結晶を得た。この粗結晶を35質量%塩酸で洗浄した後、ジメチルスルホキシド(80.0g)で懸濁洗浄した。さらに酢酸エチル(40.0g)で懸濁洗浄した後、40℃にて減圧乾燥することで2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを薄茶色結晶として得た。結果を表1に示す。
実施例7 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
比較例1 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
比較例2 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
比較例3 2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾール
 実施例1と同様の方法で、表1に記載の条件で、2,6-ジブロモベンゾ[1,2-d:4,5-d’]ビスチアゾールを製造した。結果を表1に示す。
 実施例1~7は、指定薬物ではない亜硝酸エステル化合物を用い、適切な反応条件で製造したため、高純度な芳香族ジハロゲン化合物を安全に製造することができた。比較例1は、反応温度が低く、芳香族ジハロゲン化合物の純度が低かった。比較例2は亜硝酸tert-ブチルを使用したため、品質は低下し、かつ、指定薬物であるため、安全上問題がある。そのため、工業的に大量使用するには薬物管理や除害設備等の設置が必要であり、煩雑である。
Figure JPOXMLDOC01-appb-T000005
 本発明の製造方法によれば、指定薬物でない亜硝酸エステル化合物を用い、高純度の芳香族ジハロゲン化合物を安全に得ることができる。本発明の製造方法によって得られた芳香族ジハロゲン化合物は、鈴木クロスカップリング反応やヘック型反応の重要な骨格成分である。これらは、有機電子材料として利用される有用な化合物である。
 

Claims (5)

  1.  芳香族ジアミン化合物、亜硝酸エステル化合物およびハロゲン化剤を反応させる芳香族ジハロゲン化合物の製造方法であって、
     前記亜硝酸エステル化合物が、亜硝酸エチル、亜硝酸ヘキシルおよび亜硝酸アミルからなる群より選択された1種以上であり、
     前記反応が反応温度35℃以上である反応工程1を含む芳香族ジハロゲン化合物の製造方法。
  2.  前記反応工程1の後に、前記反応工程1よりも高温の反応工程2を含む請求項1に記載の芳香族ジハロゲン化合物の製造方法。
  3.  前記反応工程2の温度が60℃以上である請求項1または2に記載の芳香族ジハロゲン化合物の製造方法。
  4.  前記芳香族ジアミン化合物が一般式(1)の構造を有し、前記芳香族ジハロゲン化合物が一般式(2)の構造を有する請求項1または2に記載の芳香族ジハロゲン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Rはそれぞれ独立に、水素、ハロゲンまたはアルキル基を示し、Aはそれぞれ独立に、窒素または酸素を示す。一般式(2)中、RおよびAは前記と同義であり、Xはそれぞれ独立にハロゲンを示す。)
  5.  前記ハロゲン化剤が、ヨウ素、臭素、塩素、ハロゲン化銅および第四級アンモニウムのハロゲン化塩からなる群より選択された1種以上である請求項1または2に記載の芳香族ジハロゲン化合物の製造方法。
     
PCT/JP2022/021138 2021-07-12 2022-05-23 芳香族ジハロゲン化合物の製造方法 WO2023286454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247004354A KR20240035518A (ko) 2021-07-12 2022-05-23 방향족 디할로겐 화합물의 제조 방법
CN202280047863.7A CN117651704A (zh) 2021-07-12 2022-05-23 芳香族二卤化合物的制造方法
EP22841801.8A EP4371990A1 (en) 2021-07-12 2022-05-23 Method for producing aromatic dihalogen compound
JP2023535158A JPWO2023286454A1 (ja) 2021-07-12 2022-05-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115028 2021-07-12
JP2021115028 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286454A1 true WO2023286454A1 (ja) 2023-01-19

Family

ID=84919971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021138 WO2023286454A1 (ja) 2021-07-12 2022-05-23 芳香族ジハロゲン化合物の製造方法

Country Status (5)

Country Link
EP (1) EP4371990A1 (ja)
JP (1) JPWO2023286454A1 (ja)
KR (1) KR20240035518A (ja)
CN (1) CN117651704A (ja)
WO (1) WO2023286454A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238530A (ja) * 2006-03-10 2007-09-20 Central Glass Co Ltd ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法
CN102633748A (zh) * 2012-03-22 2012-08-15 盛世泰科生物医药技术(苏州)有限公司 2-甲酸乙酯-5-溴-1,3,4-噻二唑的合成方法
WO2014031295A1 (en) 2012-08-23 2014-02-27 Phillips 66 Company Process of manufacturing benzobisthiazole building blocks for conjugated polymers
CN106117067A (zh) * 2016-06-28 2016-11-16 江苏扬农化工集团有限公司 一种重氮化制备3,5‑二氟‑4‑氯硝基苯的方法
WO2017082246A1 (ja) * 2015-11-10 2017-05-18 国立大学法人九州大学 ジシアノピラジン化合物、発光材料、それを用いた発光素子、および2,5-ジシアノ-3,6-ジハロゲノピラジンの製造方法
WO2017205193A1 (en) * 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Substituted tetrahydroisoquinoline compounds useful as gpr120 agonists

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031295A (ja) 2012-08-03 2014-02-20 Sumitomo Electric Ind Ltd 光ファイバ線引装置および光ファイバ線引方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238530A (ja) * 2006-03-10 2007-09-20 Central Glass Co Ltd ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法
JP4908882B2 (ja) 2006-03-10 2012-04-04 セントラル硝子株式会社 ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法
CN102633748A (zh) * 2012-03-22 2012-08-15 盛世泰科生物医药技术(苏州)有限公司 2-甲酸乙酯-5-溴-1,3,4-噻二唑的合成方法
WO2014031295A1 (en) 2012-08-23 2014-02-27 Phillips 66 Company Process of manufacturing benzobisthiazole building blocks for conjugated polymers
WO2017082246A1 (ja) * 2015-11-10 2017-05-18 国立大学法人九州大学 ジシアノピラジン化合物、発光材料、それを用いた発光素子、および2,5-ジシアノ-3,6-ジハロゲノピラジンの製造方法
WO2017205193A1 (en) * 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Substituted tetrahydroisoquinoline compounds useful as gpr120 agonists
CN106117067A (zh) * 2016-06-28 2016-11-16 江苏扬农化工集团有限公司 一种重氮化制备3,5‑二氟‑4‑氯硝基苯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PÉREZ-GARCÍA R. MANUEL, GRØNNEVIK GAUTE, RISS PATRICK J.: "A General Protocol for Cu-Mediated Fluoro-deamination: Sandmeyer Fluorination of Diverse Aromatic Substrates", ORGANIC LETTERS, vol. 23, no. 3, 5 February 2021 (2021-02-05), US , pages 1011 - 1015, XP093024606, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.0c04209 *

Also Published As

Publication number Publication date
KR20240035518A (ko) 2024-03-15
JPWO2023286454A1 (ja) 2023-01-19
CN117651704A (zh) 2024-03-05
EP4371990A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US20180016359A1 (en) Sugammadex preparation and purification method
US10526422B2 (en) Process for preparation and purification of Sugammades sodium
JP2008511684A (ja) アナストロゾール中間体についての精製方法
EP2940002B1 (en) Halogenated aniline and method for producing same
WO2023286454A1 (ja) 芳香族ジハロゲン化合物の製造方法
TWI281920B (en) Cephalosporin intermediates
KR101741235B1 (ko) 디아미노페노티아지니움 화합물을 정제하는 방법
CN107556266B (zh) 一种2-巯基-4-取代-6-氟苯并噻唑及其制法、应用
WO2017013865A1 (ja) 2-アセチル-4H,9H-ナフト[2,3-b]フラン-4,9-ジオンの製造方法
US10752608B2 (en) Method for producing crystal of uracil compound
US20240368187A1 (en) Method for producing aromatic dihalogen compound
TW201625632A (zh) Pi3k抑制劑及其鹽之合成
CA2508341C (en) Processes for preparing quinolonecarboxylate derivatives
JP2549931B2 (ja) ピリミドベンズイミダゾール誘導体
WO2018012573A1 (ja) ウラシル化合物結晶の製造方法
CN113461615B (zh) 一种4-氟-1h-吡唑的制备方法
JP4514017B2 (ja) 塩酸エピナスチンの製造方法
WO2005014531A1 (ja) N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法
CZ162298A3 (cs) Způsob výroby dioxoazabicyklohexanů
JP7173911B2 (ja) ヨウ化芳香族化合物の製造方法
KR20080062412A (ko) 순도 및 수율이 향상된3-아미노-9,13b디하이드로-1H-디벤즈-[c,f]이미다조[1,5-a]-아제핀 염산염의 제조방법
JP5940418B2 (ja) 3−ハロゲン化アニリンの製造方法
JP3646223B2 (ja) 求電子反応による芳香族化合物の製造方法及び芳香族化合物
JP4664903B2 (ja) 4,10β−ジアセトキシ−2α−ベンゾイルオキシ−5β,20−エポキシ−1,13α−ジヒドロキシ−9−オキソ−19−ノルシクロプロパ[g]タキサ−11−エンの製造方法
CN103502211A (zh) 亲电子烷基化试剂及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535158

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047863.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247004354

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004354

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022841801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841801

Country of ref document: EP

Effective date: 20240212