JP4908882B2 - ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法 - Google Patents

ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法 Download PDF

Info

Publication number
JP4908882B2
JP4908882B2 JP2006065086A JP2006065086A JP4908882B2 JP 4908882 B2 JP4908882 B2 JP 4908882B2 JP 2006065086 A JP2006065086 A JP 2006065086A JP 2006065086 A JP2006065086 A JP 2006065086A JP 4908882 B2 JP4908882 B2 JP 4908882B2
Authority
JP
Japan
Prior art keywords
group
general formula
μmol
formula
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065086A
Other languages
English (en)
Other versions
JP2007238530A (ja
Inventor
茂弘 山口
淳志 若宮
隆史 梶原
利久 井手
益隆 新免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Central Glass Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Central Glass Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Central Glass Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2006065086A priority Critical patent/JP4908882B2/ja
Publication of JP2007238530A publication Critical patent/JP2007238530A/ja
Application granted granted Critical
Publication of JP4908882B2 publication Critical patent/JP4908882B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Description

本発明は、有機EL素子や有機トランジスタなどの電子材料に適用可能な高効率発光特性または半導体特性を有するベンゾビスアゾール骨格をもつπ共役有機化合物およびその製造方法に関する。
従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究されている。特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能をもつ有機材料の開発は、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。さらに、有機トランジスタを駆動素子とする、有機材料のみからなるEL発光素子の研究開発も試みられている。
しかし、色純度、発光効率、あるいは電荷輸送特性および電荷注入効率の点で、本当に優れた特性をもつ有機材料は依然限られているのが現状である。特にこれまで多くの高いホール輸送能を有する有機材料が開発されている一方で、高い電子輸送能をもつ有機材料の開発は遅れている。このように有機EL素子や有機トランジスタなどの電子材料に適用可能な、真に優れた電子特性をもつ有機材料を実現するためには、高い電子注入効率や電子移動度を達成する必要がある。
そのためには、電子構造の修飾だけでなく、分子間の配向をいかに制御するかが重要になる。電子求引性であるベンゾビスアゾール骨格をもつ多量体は低い最低空軌道をもち、n型の半導体特性を示すことが知られており、電子輸送性材料として期待される化合物群であるが、その多量体の構造はフレキシビリティが高い2,6−位を介した直線型がほとんどである(非特許文献1、非特許文献2)。
一方、4,8−位で連結された交差型は、より剛直な分子構造を構築する場合には有利である。交差型分子構造をもつ低分子系有機化合物として報告されているものに、パラフェニレンエチニレン誘導体(非特許文献3)、4,8−ジブロモベンゾビスオキサゾール誘導体(非特許文献4)、4,8−アリールベンゾビスオキサゾール誘導体(非特許文献5)、4,8−置換ベンゾビスチアゾール誘導体(特許文献2、特許文献3)などがあるが、ベンゾビスアゾールが複数個導入された多量体に関しての記載はない。
唯一、特許文献1のベンゾビスイミダゾール化合物において4,8位置で連結された共重合体が報告されているが、イミダゾールのN上の置換基や連結基が嵩高いため、高い平面性を保つことができないため、分子間配向を制御しているとは言い難い。
特開2004-231709号公報 特許第3503403号 特開平10-340786号公報 Macromolecules 1981, 14, 915. Polymer Journal 1986, 18, 117. Chem.Commun. 2004, 2962. J.Org.Chem.1982, 47, 2607. J.Am.Chem.Soc. 2003, 125, 6030.
ベンゾビスアゾール骨格をもつπ共役有機化合物は、電子輸送性材料として期待される化合物群であるが、分子間の配向制御を考えた場合、平面性の高いπ共役骨格が必要となる。本発明は、ベンゾビスアゾール骨格を有し、且つ平面性の高いπ共役骨格を有する架橋多量体構造よりなる電子材料用π共役有機化合物および当該有機化合物の工業的な製造方法を提供することにある。
本発明者は、上記課題を解決すべく鋭意検討した結果、特定のベンゾビスアゾール骨格を有し、且つ4,8−位で連結基を介して連結された交差型多量体である化合物を見出し、オルトメタル化反応を利用したベンゾビスアゾールの4,8−位の官能基化、カップリング反応等を用い、4,8−置換ベンゾビスチアゾールの一般的合成法を確立し、連結基を介して交差型に繋げた多量体を合成する方法を開発した。得られた架橋多量体は高い平面性を確保するとともに、π共役を拡張することにより最低空軌道レベルを低下させることを可能にする。この手法に基づき、ベンゾビスアゾールの2,6−位に様々なπ共役置換基もつ、4,8−架橋ベンゾビスアゾール多量体の効率的合成法を新たに開発し、その構造を明らかにした。
すなわち、本発明は、一般式(1)
Figure 0004908882
[式中、Aは連結基を指しエチニレン基、オリゴエチニレン基を示すAr、Ar、Arはそれぞれ独立に炭素数1〜18のアリーレン基、ヘテロアリーレン基、オリゴアリーレン基、オリゴヘテロアリーレン基または2価のアセン基を示し、R、R、Rは、それぞれ独立に炭素数1〜18のアリール基、ヘテロアリール基、オリゴアリール基、オリゴヘテロアリール基、アセン基(ただしこれらは炭素数1〜40のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基で置換されていてもよい)、炭素数1〜40のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基、ニトロ基、水素原子、またはハロゲン原子を示す。ただし、Ar〜Arおよび 同一でも異なっていてもよい。Y〜Y はSを示し、nは0または1である]で表される電子材料用π共役有機化合物であり、一般式(2)
Figure 0004908882
[一般式(2)中、Ar、Ar、Ar、R、R、R 、Y 1〜3 またはnは一般式(1)と同じ]で示される電子材料用π共役有機化合物である。
さらに本発明は、以下の四工程を含む、上記電子材料用π共役有機化合物の製造方法である。
第一工程: 一般式(3)
Figure 0004908882
[式中、X1はハロゲン原子を示す]で表されるベンゾビスチアゾール化合物と一般式(4)
Figure 0004908882
[一般式(4)中、Ar、Ar、Ar、R またはR 一般式(1)と同じ。Mはハロゲン化マグネシウム、ハロゲン化亜鉛、ボロン酸、ボロン酸エステル、アルキルシランまたはアルキルすずを示す]で表される芳香族メタル化物をクロスカップリング反応することを特徴とする一般式(5)
Figure 0004908882
[一般式(5)中、Ar、Ar、Ar、R、RまたはRは一般式(1)と同じ]を合成する工程
第二工程: アルキルリチウム、リチウムアルキルアミド、またはリチウム-亜鉛アート錯体を塩基として用いてメタル化した一般式(6)または(7)
Figure 0004908882
[一般式(6)および(7)中、Ar、Ar、Ar、R 、R またはRは一般式(1)と同じ]を、ハロゲン化試薬で処理することによる一般式(8)または(9)
Figure 0004908882
[一般式(8)および(9)中、Ar、Ar、Ar、R 、R またはRは一般式(1)と同じ。Xは、ハロゲン原子を示す]を合成する工程
第三工程:一般式(8)または(9)金属触媒存在下、エチニルトリメチルシランと反応させ、一般式(16)または(17)
Figure 0004908882
[一般式(16)および(17)中、Ar 、Ar 、Ar 、R 、R またはR は一般式(1)と同じ。]
を合成し、次いで、一般式(16)または(17)をメタノール中、炭酸カリウムと反応させることにより、一般式(11)または(12)
Figure 0004908882
[一般式(11)および(12)中、Ar、Ar、Ar、R またはR 一般式(1)と同じ]で表される化合物を合成する工程
第四工程: 一般式(8)、(9)、(11)または(12)の組み合わせのクロスカップリング反応による工程
後述のように、理論計算の結果、ベンゾビスチアゾールのアセチレン架橋二量体および三量体の構造は完全に平面であることが示唆されている。実際に合成したベンゾビスチアゾール二量体は分子全体で高い平面性をもつことがX線結晶構造解析によりわかった。
またベンゾビスチアゾール二量体の最低空軌道レベルは単量体と比べて約0.3 eV低下することが理論計算により示された。具体例としておよびAr、Arがフェニレン基、R、Rがジドデシルアミノ基のベンゾビスチアゾール二量体および三量体について物性評価の結果を示す。サイクリックボルタンメトリー測定より二量体の第一還元電位は−2.19V、三量体の第一還元電位は−1.98Vと高い値を示し、計算結果を支持する結果が得られた。さらに三量体の光物性評価の結果、530nm付近に強い蛍光ピークが観測された。以上のことから、有機EL材料や有機トランジスタなどの有機電子材料として、極めて高い性能を示す可能性があることが明らかとなった。
本発明により、ベンゾビスアゾール骨格を有し、且つ平面性の高いπ共役骨格を有する架橋多量体構造よりなる電子材料用π共役有機化合物が、工業的な製造方法で得られた。
本発明の実施の形態について説明すると以下の通りである。
本発明におけるベンゾビスアゾール化合物は、下記の反応式に示すように合成できる。すなわち、第一工程として、下記一般式(I)と(II)をクロスカップリング反応させ、一般式(III)とし、第二工程として、一般式(III)を有機金属塩基にてメタル化し、次いでハロゲン化試薬で補足してハロゲン化、第三工程として、カップリング反応試薬などに用いる置換基を導入、第四工程として、第二工程で得られたハロゲン化物と第三工程で得られたカップリング試薬をクロスカップリング反応させることにより得られものである。
Figure 0004908882
ここで連結基となるAはエチニレン基、オリゴエチニレン基のπ共役骨格である。高い平面性を保つためにはエチニレン基がさらに好ましい。
一般式(1)においてY1〜3は、硫黄原子をとる。アゾール系の中でもチアゾールはもっともLUMOが低くなる(密度汎関数法による理論計算)ことが知られているため、電子輸送材料やn型半導体を志向した場合、硫黄原子が最も好ましい。
以下、一般式(1)においてY1〜3が硫黄原子であるベンゾビスチアゾール誘導体を具体例に挙げて、詳細に説明する。
まず、第一工程として、本発明で用いられる一般式(5)で示されるベンゾビスチアゾール誘導体を合成する。
Figure 0004908882
[式中、Ar、Ar、Arはそれぞれ独立に炭素数1〜18のアリーレン基、ヘテロアリーレン基、オリゴアリーレン基、オリゴヘテロアリーレン基または2価のアセン基を示し、R 、R 、Rは、それぞれ独立に炭素数1〜18のアリール基、ヘテロアリール基、オリゴアリール基、オリゴヘテロアリール基、アセン基(ただしこれらは炭素数1〜18のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基で置換されていてもよい)、炭素数1〜40のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基、ニトロ基、水素原子、またはハロゲン原子を示す]
このようなベンゾビスアゾール誘導体は、例えば非特許文献1などに示されるジアミノベンゼンジチオール塩酸塩とカルボン酸誘導体との手法を用いて合成することができるが、反応基質が制限される欠点がある。本発明では下図に示すようなクロスカップリング法を用いることにより、より汎用性が高い基質の導入が可能である。
Figure 0004908882
ここで示される一般式(4)において、R1〜3およびAr1〜3は一般式(1)の場合と同じであり、Mはハロゲン化マグネシウム、ハロゲン化亜鉛、ボロン酸、ボロン酸エステル、アルキルシランまたはアルキルすずが挙げられ、好ましくはアルキルすず、ボロン酸およびボロン酸エステルであり、より好ましくはボロン酸エステルである。ボロン酸エステルとして具体的には置換または無置換のフェニルボロン酸エステル、ナフチルボロン酸エステル、フルオレニルボロン酸エステル、アセナフテニルボロン酸エステル、アントリルボロン酸エステル、アクリジルボロン酸エステル、ピレニルボロン酸エステル、フェナントリルボロン酸エステル、クリセニルボロン酸エステル、フルオランテニルボロン酸エステル、3−ピリジルボロン酸エステル、2−ピリジルボロン酸エステル、チエニルボロン酸エステルなどが挙げられる。好ましくは、フェニルボロン酸エステル、3−ピリジルボロン酸エステル、2−ピリジルボロン酸エステル、チエニルボロン酸エステルである。ボロン酸エステル部はジメトキシボリル基、ピナコラトボリル基、カテコラトボリル基などが挙げられるが、ピナコラトボリル基が好ましい。
合成したベンゾビスチアゾール誘導体(一般式(5))は、第二工程として、下式により官能基Xを導入する。
Figure 0004908882
まず一般式(5)で示される化合物を有機金属塩基と反応させることにより4,8−位または4位をメタル化し、次いで求電子剤で処理することにより達成される。このとき用いるメタル化剤はアルキルリチウム、リチウムアミド、リチウム−亜鉛アート錯体が挙げられる。アルキルリチウムとしては、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウムが挙げられ、リチウムアミドとしては、リチウムジイソプロピルアミド、リチウムジエチルアミド、リチウムテトラメチルピペリジド(LiTMP)などが挙げられ、リチウム−亜鉛アート錯体としては、LiTMPとジ(tert−ブチル)亜鉛から調製した塩基(LitBu2ZnTMP)が挙げられる。好ましくはリチウムジイソプロピルアミド、LitBu2ZnTMPを用いる。求電子剤は塩素、臭素、ヨウ素などを用い、好ましくはヨウ素を用いる。
さらに官能基化された(8)または(9)は、第三工程として、下式によって誘導体化することができる。
Figure 0004908882
式(8)または(9)から(11)または(12)への変換反応は以下の手法によって達成される。すなわち一般式(8)または(9)を金属触媒存在下、エチニルトリメチルシランと反応させ、一般式(16)または(17)を合成し、次いで、一般式(16)または(17)をメタノール中、炭酸カリウムと反応させることで合成が可能である。
クロスカップリング反応用の触媒としては、鉄系触媒、銅触媒、コバルト触媒、ニッケル触媒やパラジウム触媒、ルテニウム触媒、ロジウム触媒などの遷移金属触媒が挙げられるが、ニッケル触媒、パラジウム触媒、銅触媒が好ましく、パラジウム触媒がさらに好ましい。
パラジウム触媒としては、例えばパラジウムブロマイド、パラジウムクロライド、パラジウムヨージド、パラジウムシアニド、パラジウムアセテート、パラジウムトリフルオロアセテート、パラジウムアセチルアセトナト[Pd(acac)2]、ジアセテートビス(トリフェニルホスフィン)パラジウム[Pd(OAc)2(PPh32]、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh34]、ジクロロビス(アセトニトリル)パラジウム[Pd(CH3CN)2Cl2]、ジクロロビス(ベンゾニトリル)パラジウム[Pd(PhCN)2Cl2]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl2]、ジクロロ[1,1−ビス(ジフェニルホスフィノ)フェロセン]パラジウム[Pd(dppf)Cl2]、ジクロロビス(トリシクロヘキシルホスフィン)パラジウム〔Pd[P(C61132Cl2〕、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPh32Cl2]、トリス(ジベンジリデンアセトン)ジパラジウム[Pd2(dba)3]、ビス(ジベンジリデンアセトン)パラジウム[Pd(dba)2]、等が挙げられるが、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh34]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl2]、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPh32Cl2]等のホスフィン系触媒が好ましい。
上記の他にパラジウム触媒として、反応系中においてパラジウム錯体と配位子の反応により合成されるパラジウム触媒を用いることができる。配位子としては、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリス(n−ブチル)ホスフィン、トリス(tert−ブチル)ホスフィン、ビス(tert−ブチル)メチルホスフィン、トリス(i−プロピル)ホスフィン、トリシクロヘキシルホスフィン、トリス(o−トリル)ホスフィン、トリス(2−フリル)ホスフィン、2−ジシクロヘキシルホスフィノビフェニル、2−ジシクロヘキシルホスフィノ−2’−メチルビフェニル、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピル−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−ジフェニルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−メチルビフェニル、ジフェニルホスフィノエタン、ジフェニルホスフィノプロパン、ジフェニルホスフィノブタン、ジフェニルホスフィノエチレン、ジフェニルホスフィノフェロセン、エチレンジアミン、N,N’,N’’,N’’’−テトラメチルエチレンジアミン、2,2’−ビピリジル、1,3−ジフェニルジヒドロイミダゾリリデン、1,3−ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3−ビス(2,4,6−トリメチルフェニル)ジヒドロイミダゾリリデン、1,3−ビス(2,6−ジイソプロピルフェニル)ジヒドロイミダゾリリデンが挙げられ、これらの配位子のいずれかが配位したパラジウム触媒をクロスカップリング触媒として用いることができる。
カップリング反応の反応溶媒としては、反応に影響を及ぼさない限り特に限定されないが、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジイソプロピルエーテル等のエーテル類、トリエチルアミン、ジエチルアミン等のアミン類、塩化メチル、クロロホルム、ジクロロメタン、ジクロロエタン、ジブロモエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、アセトニトリル等のニトリル類、ジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、二種以上適宜組み合わせて用いてもよい。またこれらの溶媒はあらかじめ乾燥、脱気処理を行うことが望ましい。
また、本反応の反応温度は、通常0〜200℃で行うことができ、好ましくは20〜150℃であり、さらに好ましくは50〜100℃である。反応温度が高すぎると反応の制御が困難になり、低すぎると反応速度が遅くなるため好ましくない。
反応時間は、反応温度や反応基質及びクロスカップリング反応用金属触媒等の種類等により異なるが、通常1分〜24時間、好ましくは10分〜12時間である。
上記反応工程において、塩基を用いたメタル化は30℃以下の温度で実施可能であるが用いる塩基によっては0℃以下に冷却して行うのが好ましい。また−80℃以下では極端に反応が遅くなるので、−80℃以上が好ましい。具体的には、−5℃の氷-塩化ナトリウムバスで冷却し、金属アミドと反応を行うか、ドライアイス−アセトンバス中−78℃でアルキルリチウムを加え、徐々に0℃まで昇温しながら反応を行うのが好ましい。求電子試薬との反応は、40℃以下の温度で実施可能であるが、副反応の抑制のため、混合するのは0℃以下で行うのが好ましく、−80℃以下では反応が極端に遅くなるため−80〜0℃が好ましい。具体的には、ドライアイス−アセトンバスで−78℃に冷却して求電子試薬を加え、徐々に室温まで昇温しながら反応を行うことが好ましい。反応は溶媒中で行われ、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン等のエーテル系溶媒、ペンタン、ヘキサン、トルエン等の炭化水素系溶媒、およびこれらの混合溶媒を用いることができるが、特にテトラヒドロフランが好ましい。これらの溶媒はあらかじめ脱水されたものであることが望ましい。
第四工程は下図に示すように、第一および第二工程で得られた一般式(8)、(9)、(11)および(12)のいずれかをクロスカップリング反応させることで、本発明のベンゾビスチアゾール化合物を得ることができる。
Figure 0004908882
この反応において、混合方法は特に限定されないが、ハロゲン化物、パラジウム触媒、ハロゲン化銅、の溶液にアセチレン誘導体を滴下するのが好ましい。滴下は、−80〜120℃で行うことができるが、反応開始を温和に進めるためには、−80℃〜50℃付近が好ましく、さらに−20〜5℃が好ましい。クロスカップリング反応用の触媒としては、鉄系触媒、銅触媒、コバルト触媒、ニッケル触媒やパラジウム触媒、ルテニウム触媒、ロジウム触媒などの遷移金属触媒が挙げられるが、ニッケル触媒、パラジウム触媒、銅触媒が好ましく、パラジウム触媒がさらに好ましい。
パラジウム触媒としては、例えばパラジウムブロマイド、パラジウムクロライド、パラジウムヨージド、パラジウムシアニド、パラジウムアセテート、パラジウムトリフルオロアセテート、パラジウムアセチルアセトナト[Pd(acac)2]、ジアセテートビス(トリフェニルホスフィン)パラジウム[Pd(OAc)2(PPh32]、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh34]、ジクロロビス(アセトニトリル)パラジウム[Pd(CH3CN)2Cl2]、ジクロロビス(ベンゾニトリル)パラジウム[Pd(PhCN)2Cl2]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl2]、ジクロロ[1,1−ビス(ジフェニルホスフィノ)フェロセン]パラジウム[Pd(dppf)Cl2]、ジクロロビス(トリシクロヘキシルホスフィン)パラジウム〔Pd[P(C61132Cl2〕、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPh32Cl2]、トリス(ジベンジリデンアセトン)ジパラジウム[Pd2(dba)3]、ビス(ジベンジリデンアセトン)パラジウム[Pd(dba)2]、等が挙げられるが、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh34]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl2]、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPh32Cl2]等のホスフィン系触媒が好ましい。
上記の他にパラジウム触媒として、反応系中においてパラジウム錯体と配位子の反応により合成されるパラジウム触媒を用いることができる。配位子としては、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリス(n−ブチル)ホスフィン、トリス(tert−ブチル)ホスフィン、ビス(tert−ブチル)メチルホスフィン、トリス(i−プロピル)ホスフィン、トリシクロヘキシルホスフィン、トリス(o−トリル)ホスフィン、トリス(2−フリル)ホスフィン、2−ジシクロヘキシルホスフィノビフェニル、2−ジシクロヘキシルホスフィノ−2’−メチルビフェニル、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピル−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−ジフェニルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−メチルビフェニル、ジフェニルホスフィノエタン、ジフェニルホスフィノプロパン、ジフェニルホスフィノブタン、ジフェニルホスフィノエチレン、ジフェニルホスフィノフェロセン、エチレンジアミン、N,N’,N’’,N’’’−テトラメチルエチレンジアミン、2,2’−ビピリジル、1,3−ジフェニルジヒドロイミダゾリリデン、1,3−ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3−ビス(2,4,6−トリメチルフェニル)ジヒドロイミダゾリリデン、1,3−ビス(2,6−ジイソプロピルフェニル)ジヒドロイミダゾリリデンが挙げられ、これらの配位子のいずれかが配位したパラジウム触媒をクロスカップリング触媒として用いることができる。
カップリング反応の反応溶媒としては、反応に影響を及ぼさない限り特に限定されないが、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジイソプロピルエーテル等のエーテル類、トリエチルアミン、ジエチルアミン等のアミン類、塩化メチル、クロロホルム、ジクロロメタン、ジクロロエタン、ジブロモエタン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、アセトニトリル等のニトリル類、ジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、二種以上適宜組み合わせて用いてもよい。またこれらの溶媒はあらかじめ乾燥、脱気処理を行うことが望ましい。
また、本反応の反応温度は、通常0〜200℃で行うことができ、好ましくは20〜150℃であり、さらに好ましくは50〜100度である。反応温度が高すぎると反応の制御が困難になり、低すぎると反応速度が遅くなるため好ましくない。
反応時間は、反応温度や反応基質及びクロスカップリング反応用金属触媒等の種類等により異なるが、通常1分〜24時間、好ましくは10分〜12時間である。
第三工程において、例えば、一般式(10)にトリアルキルシリルアセチレンなどのエチニル化試薬を用いてエチニル基を導入すると、下記一般式(15)に示すようなアセチレンを連結基とするベンゾビスチアゾール化合物を合成することができる。
Figure 0004908882
[一般式(15)中、Ar、Ar、Ar 、R1 、R2 たはnは一般式(1)と同じ]
本発明のベンゾビスチアゾール化合物は、理論計算の結果、高い平面性を有することがわかっている。具体的には、n=0である一般式(15)のベンゾビスチアゾール二量体においてAr フェニレン基、 ブチル基のベンゾビスチアゾール二量体を熱トルエンにて再結晶を行い得られた単結晶、およびAr フェニレン基、 ジドデシルアミノ基のベンゾビスチアゾール二量体をクロロホルム−エタノールにて再結晶を行い得られた単結晶は、X線結晶構造解析の結果、高い平面性を有することが明らかとなった。
本発明のベンゾビスチアゾール誘導体のサイクリックボルタンメトリーを測定することにより、電気化学特性を見ることができる。n=0で、Ar フェニレン基、 ジドデシルアミノ基のベンゾビスチアゾール二量体、ジアセチレン架橋二量体、n=1で、Ar、Ar、Arがフェニレン基、R、R、Rがジドデシルアミノ基のベンゾビスチアゾール三量体、およびAr、Arがチエニル基、R、Rがトリイソプロピルシリル基のベンゾビスチアゾール二量体のサイクリックボルタンメトリー測定の結果、第一還元波は概ね−2.1〜−2.7V(フェロセン/フェロセニウムイオン基準)と高い還元ピーク電位を示す。これは電子輸送材料として十分利用可能なレベルである。
本発明のベンゾビスチアゾール誘導体の紫外・可視吸収スペクトルと蛍光スペクトルを測定することにより、光特性を見ることができる。Ar、Arがフェニレン基、R、Rがジドデシルアミノ基のベンゾビスチアゾール二量体、ジアセチレン架橋二量体、Ar、Ar、Arがフェニレン基、R、R、Rがジドデシルアミノ基のベンゾビスチアゾール三量体、およびAr、Arがチエニル基、R、Rがトリイソプロピルシリル基のベンゾビスチアゾール二量体のおよび蛍光スペクトル分析の結果、450nm〜550nmの青〜緑色の発光を示した。
よって、これらのベンゾビスチアゾール誘導体は発光特性や電子輸送性をもつ新規な化合物として有用であり、有機EL素子や有機トランジスタなどに好適に応用可能な材料である。
以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
まず、合成中間体である2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]ベンゾ[1,2−d:4,5−d’]ビスチアゾール(1a)および2,6−ビス(5−トリイソプロピル−2−チエニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール(1b)の合成について[実施例1]〜[実施例7]で説明する。
4−ブロモ−N,N−ジドデシルアニリン(C30H54BrN).
Figure 0004908882
4−ブロモアニリン(6.90 g, 40.1 mmol)、1−ヨードドデカン (25.0 g, 84.5 mmol)、K2CO3 (11.7 g, 85.0 mmol)の混合物にEtOH (40 mL)を加えて加熱、36時間還流した。室温に冷却し、ろ過、固体をヘキサンで洗浄した。ろ液をヘキサンで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン)により目的物(13.7 g, 27.0 mmol)を得た(67%)。
1H NMR (270 MHz, CDCl3): δ 0.92 (t, 3JHH = 6.1 Hz, 6H), 1.30 (br, 36H), 1.57 (br, 4H), 3.23 (t, 3JHH = 7.4 Hz, 4H), 6.51 (d, 3JHH = 8.6 Hz, 2H), 7.26 (d, 3JHH = 8.6 Hz, 2H). 13C NMR (68 MHz, CDCl3): δ 14.22 (q), 22.76 (t), 22.80 (t), 27.17 (t), 27.23 (t), 29.46 (t), 29.62 (t), 29.71 (t), 29.76 (t), 31.69 (t), 32.02 (t), 51.17 (t), 106.69 (s), 113.22 (d), 131.65 (d), 146.96 (s). LRMS (EI): m/z 507 and 509 [M+], 352 and 354 [(MC11H23)+], 274 [(MC11H23Br+H)+], 198 and 200 [(M2C11H23+H)+].
4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−N,N−ジドデシルアニリン(C36H66NO2).
Figure 0004908882
4−ブロモ−N,N−ジドデシルアニリン(13.3 g, 26.1 mmol)のTHF (250 mL)溶液に、t−ブチルリチウムのペンタン溶液(1.46 M, 39.0 mL, 56.9 mmol)を−78℃で滴下した。−78℃で2時間撹拌した後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン (11.0 mL, 53.7 mmol)を−78℃で滴下した.1時間撹拌した後、ゆっくりと室温に昇温した。混合物に水を加え、エーテルで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン= 1:2)により目的物(12.8 g, 23.0 mmol)を得た(88%)。
1H NMR (400 MHz, CDCl3): δ 0.88 (t, 3JHH = 6.8 Hz, 6H), 1.26 (s, 28H), 1.27−1.38 (m, 12+8H), 1.56 (br, 4H), 3.27 (t, 3JHH = 7.6 Hz, 4H), 6.59 (d, 3JHH = 8.8 Hz, 2H), 7.65 (d, 3JHH = 8.8 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ 14.11 (q), 22.68 (t), 24.81 (q), 27.11 (t), 27.18 (t), 29.34 (t), 29.50 (t), 29.60 (t), 29.63 (t2), 29.64 (t), 31.92 (t), 50.79 (t), 83.01 (s), 110.57 (d), 136.28 (d), 150.28 (s), the signal of BC was not observed. 11B NMR (128 MHz, CDCl3): δ 34.4. LRMS (EI): m/z 556 [M+], 471 [(M−C6H12)+], 401 [(M−C11H23)+], 246 [(M−2C11H23+H)+].
5−ブロモ−2−トリイソプロピルシリルチオフェン(C13H23BrSSi).
Figure 0004908882
2−ブロモチオフェン(23.5 mL, 243 mmol)のTHF (120 mL)溶液にクロロトリイソプロピルシラン(54.5 mL, 255 mmol)を加え、−30℃に冷却した。リチウムジイソプロピルアミドのヘキサン/THF溶液(248 mmol)を滴下し−30℃で1時間撹拌した後、ゆっくりと室温に昇温した。混合物に水を加え、エーテルで抽出、Na2SO4で乾燥、濃縮し、減圧蒸留により目的物(63.3 g, 198 mmol)を得た(82%)。
1H NMR (270 MHz, CDCl3): δ 1.13 (d, 3JHH = 7.0 Hz, 18H), 1.34 (sept, 3JHH = 7.0 Hz, 3H), 7.04 (d, 3JHH = 3.6 Hz, 1H), 7.13 (d, 3JHH = 3.6 Hz, 1H). 13C NMR (68 MHz, CDCl3): δ 11.79 (d), 18.59 (q), 116.47 (s), 130.81 (d), 135.93 (d), 137.09 (s). LRMS (EI): m/z 318 and 320 [M+], 275 and 277 [(M−C3H7)+], 233 and 235 [(M−2C3H7+H)+], 197 [(M−C3H7−Br+H)+].
5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2−トリイソプロピルシリルチオフェン(C19H35BO2SSi).
Figure 0004908882
5−ブロモ−2−トリイソプロピルシリルチオフェン(16.0 g, 50.1 mmol)のTHF (300mL)溶液に、n−ブチルリチウムのヘキサン溶液(1.6 M, 33.0 mL, 52.8 mmol)を−78℃で滴下した。−78℃で1.5時間撹拌した後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(20.0 mL, 97.8 mmol)を−78℃で滴下した。1時間撹拌した後、ゆっくりと室温に昇温した。混合物にNH4Cl水溶液を加え、エーテルで抽出、MgSO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=2:3)により目的物(16.8 g, 45.9 mmol)を得た(92%)。
1H NMR (270 MHz, CDCl3): δ 1.11 (d, 3JHH = 7.3 Hz, 18H), 1.29−1.45 (m, 12+3H), 7.36 (d, 3JHH = 3.3 Hz, 1H), 7.74 (d, 3JHH = 3.3 Hz, 1H). 13C NMR (68 MHz, CDCl3): δ 11.91 (d), 18.66 (q), 24.86 (q), 83.95 (s), 136.46 (d), 137.48 (d), 142.27 (s), the signal of BC was not observed. 11B NMR (128 MHz, CDCl3): δ 28.3. LRMS (EI): m/z 366 [M+], 323 [(M−C3H7)+], 281 [(M−2C3H7+H)+].
2,6−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール(C8H2I2N2S2).
Figure 0004908882
2,6−ジアミノベンゾ[1,2−d:4,5−d’]ビスチアゾール(4.45 g, 20.0 mmol)とヨウ素(50.8 g, 200 mmol)のMeCN (300 mL)懸濁液に、t-ブチルニトリト(90%, 10.6 mL, 80.2 mmol)を室温で滴下した。混合物を加熱し、10時間還流させた。室温に冷却し、Na2S2O3水溶液を加え、ろ過、固体を水、アセトン、クロロホルムで洗浄した。真空乾燥し、目的物(5.80 g, 13.1 mmol)を得た(66%)。
1H NMR (400 MHz, DMSO-d6): δ 8.79 (s, 2H). LRMS (EI): m/z 444 [M+], 317 [(M−I)+], 190 [(M−2I)+].
2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]ベンゾ[1,2−d:4,5−d’]ビスチアゾール(C68H1104S2, 1a).
Figure 0004908882
2,6−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール(89.5 mg, 202 μmol)、Pd2(dba)3・CHCl3 (9.2 mg, 8.9 μmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル(7.2 mg, 18 μmol)、K3PO4 (227 mg, 1.07mmol)、4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−N,N−ジドデシルアニリン(289 mg, 520 μmol)の混合物にDMF (4.0 mL)と水(400 μL)を加えて加熱、31時間還流した。室温に冷却し、塩化メチレンを加えてショートカラムを通した。溶媒を留去し、GPC-HPLC (LC-918, CHCl3)により目的物1a (144 mg, 137μmol)を得た(68%)。
1H NMR (270 MHz, CDCl3): δ0.90 (t, 3JHH = 6.6 Hz, 12H), 1.29 (s, 56H), 1.33 (br, 16H), 1.62 (br, 8H), 3.32 (t, 3JHH = 7.3 Hz, 8H), 6.67 (d, 3JHH = 8.9 Hz, 4H), 7.93 (d, 3JHH = 8.9 Hz, 4H), 8.35 (s, 2H). 13C NMR (68 MHz, CDCl3): δ14.21 (q), 22.76 (t), 27.17 (t), 27.31 (t), 29.42 (t), 29.57 (t), 29.67 (t), 29.71 (t2), 29.73 (t), 31.98 (t), 51.07 (t), 111.07 (d), 113.71 (d), 120.27 (s), 128.97 (d), 133.49 (s), 150.00 (s), 151.73 (s), 168.57 (s). LRMS (FAB): m/z 1048 [(M+H)+].
2,6−ビス(5−トリイソプロピルシリル−2−チエニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C34H48N2S4Si2,1b).
2,6−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール(111 mg, 250
μmol)、Pd2(dba)3・CHCl3 (10.4 mg, 10.0 μmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル(8.2 mg, 20 μmol)、K2CO3 (233 mg, 1.69 mmol)、5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2−トリイソプロピルシリルチオフェン(229 mg, 625 μmol)の混合物にDME (10.0 mL)と水(2.5 mL)を加えて加熱、12時間還流した。室温に冷却し、固体をセライトろ過により除いた。ろ液に水を加えて塩化メチレンで抽出、MgSO4で乾燥、濃縮した。ヘキサンを加え、ろ過により目的物1b (115 mg, 172 μmol)を得た。さらにろ液からシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=1:1)により目的物1b (10 mg, 15μmol)を得た(合計125 mg, 187 μmol, 75%)。
1H NMR (270 MHz, CDCl3): δ1.15 (d, 3JHH = 7.3 Hz, 36H), 1.41 (sept, 3JHH = 7.3 Hz, 6H), 7.30 (d, 3JHH = 3.6 Hz, 2H), 7.76 (d, 3JHH = 3.6 Hz, 2H), 8.45 (s, 2H). 13C NMR (68 MHz, CDCl3): δ11.86, 18.64, 114.80, 129.84, 134.19, 136.26, 140.62, 141.50, 151.65, 161.88. LRMS (EI): m/z 668 [M+], 625 [(M−C3H7)+], 583 [(M−2C3H7+H)+].
次に、下式に示すベンゾビスチアゾールの4,8−位のヨウ素化について[実施例8]〜[実施例10]で説明する。
Figure 0004908882
2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]−4−ヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール (C68H109IN4S2, 2a)および2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]−4,8−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール (C68H108I2N4S2, 3a).
化合物(1a) (223 mg, 213 μmol)のTHF (21.0 mL)懸濁液に、n-ブチルリチウムのヘキサン溶液(1.6 M, 150 μL, 240 μmol)を−78℃で滴下した。懸濁液を−78℃で1時間撹拌した後、赤色溶液になるまでゆっくりと昇温しながら撹拌した。溶液を再び−78℃に冷却し、ヨウ素 (83.4 mg, 329 μmol)のTHF (3.0 mL)溶液を滴下した。−78℃で0.5時間撹拌した後、ゆっくりと室温に昇温した。混合物にNa2SO3水溶液を加え、塩化メチレンで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:CHCl = 1:1)により原料1a (43.6 mg, 41.6 μmol, 20%回収)、目的物2a (179 mg, 153 μmol, 72%)および目的物3a (20.6 mg, 15.9 μmol, 7%)を得た。
2a:1H NMR (270 MHz, CDCl3): δ0.89 (t, 3JHH = 6.6 Hz, 12H), 1.28 (s, 56H), 1.33 (br, 16H), 1.61 (br, 8H), 3.33 (t, 3JHH = 7.4 Hz, 8H), 6.66 (d, 3JHH = 8.9 Hz, 4H), 7.91 (d, 3JHH = 8.9 Hz, 2H), 7.95 (d, 3JHH = 8.9 Hz, 2H), 8.25 (s, 1H). 13C NMR (68 MHz, CDCl3): δ14.23 (q), 22.79 (t), 27.20 (t), 27.34 (t), 29.44 (t), 29.58 (t), 29.69 (t), 29.72 (t2), 29.75 (t), 32.00 (t), 51.11 (t), 77.96 (s), 111.08 (d), 113.61 (d), 120.15 (s), 128.95 (d), 129.22 (d), 131.56 (s), 141.66 (s), 148.78 (s), 150.17 (s), 150.23 (s), 152.61 (s), 166.94 (s), 168.19 (s). LRMS (FAB): m/z 1174 [(M+H)+].
3a:1H NMR (270 MHz, CDCl3): δ0.89 (t, 3JHH = 6.6 Hz, 12H), 1.28 (s, 56H), 1.33 (br, 16H), 1.61 (br, 8H), 3.33 (t, 3JHH = 7.4 Hz, 8H), 6.66 (d, 3JHH = 8.6 Hz, 4H), 7.94 (d, 3JHH = 8.6 Hz, 4H).
2,6−ビス(5−トリイソプロピルシリル−2−チエニル)−4−ヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール (C34H47IN2S4Si2,2b)および2,6−ビス(5−トリイソプロピルシリル−2−チエニル)−4,8−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール(C34H46I2N2S4Si2, 3b).
化合物(1b) (335 mg, 501 μmol)にTHF (24.0 mL)を加え、−5℃に冷却した。リチウムジイソプロピルアミドのヘキサン/THF溶液(1.00 mmol)を滴下し、−5℃で1時間撹拌した後、−78℃に冷却した。ヨウ素(190 mg, 749 μmol)を加え、撹拌しながらゆっくりと室温に昇温した。混合物にNa2S2O3水溶液を加え、エーテルで抽出、MgSO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン = 2:1)により原料1b (9.0 mg, 13 μmol, 3%回収),目的物2b (292 mg, 367 μmol, 73%)および目的物3b (56.1 mg, 60.9 μmol, 12%)を得た。
2b:1H NMR (270 MHz, CDCl3): δ 1.15 (d, 3JHH = 7.3 Hz, 36H), 1.396 (sept, 3JHH = 7.3 Hz, 3H), 1.403 (sept, 3JHH = 7.3 Hz, 3H), 7.29 (d, 3JHH = 3.6 Hz, 1H), 7.30 (d, 3JHH = 3.6 Hz, 1H), 7.77 (d, 3JHH = 3.6 Hz, 2H), 8.36 (s, 1H). LRMS (EI): m/z 794 [M+], 751 [(M−C3H7)+], 709 [(M−2C3H7+H)+].
3b:1H NMR (270 MHz, CDCl3): δ 1.15 (d, 3JHH = 7.3 Hz, 36H), 1.40 (sept, 3JHH = 7.3 Hz, 6H), 7.29 (d, 3JHH = 3.6 Hz, 2H), 7.78 (d, 3JHH = 3.6 Hz, 2H). 13C NMR (68 MHz, CDCl3): δ 11.90, 18.66, 78.91, 130.34, 136.37, 140.44, 141.27, 141.86, 149.86, 159.62. LRMS (EI): m/z 920 [M+], 877 [(M−C3H7)+].
2,6−ビス(4−ブチルフェニル)−4−ヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール (C28H27IN2S2, 2c)および2,6−ビス(4−ブチルフェニル)−4,8−ジヨードベンゾ[1,2−d:4,5−d’]ビスチアゾール (C28H26I2N2S2, 3c)。
化合物(1c) (2.31 g, 5.06 mmol)にTHF (300 mL)を加えた。LitBu2ZnTMPのヘキサン/THF溶液(5.57 mmol)を滴下し、室温で75分撹拌した後、0 ℃に冷却した。ヨウ素 (12.8 g, 50.4 mmol)を加え、撹拌しながらゆっくりと室温に昇温した。混合物にNa2S2O3水溶液を加え、クロロホルムで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(トルエン)により原料1c (230 mg, 504 μmol, 10%rec.)、目的物2c (2.06 g, 3.54 mmol, 70%)を得た。
2c:1H NMR (270 MHz, CDCl3): δ 0.95 (t, 3JHH = 7.3 Hz, 6H), 1.39 (sext, 3JHH = 7.3 Hz, 4H), 1.65 (m, 4H), 2.70 (t, 3JHH = 7.8 Hz, 4H), 7.32 (d, 3JHH = 8.1 Hz, 2H), 7.34 (d, 3JHH = 8.1 Hz, 2H), 8.04 (d, 3JHH = 8.1 Hz, 2H), 8.06 (d, 3JHH = 8.1 Hz, 2H), 8.47 (s, 1H). LRMS (EI): m/z 582 [M+], 539 [(M−C3H7)+], 496 [(M−2C3H7)+].
化合物(1c) (2.46 g, 5.39 mmol)にTHF (300 mL)を加えた。LitBu2ZnTMPのヘキサン/THF溶液(21.6 mmol)を滴下し、室温で75分撹拌した後、−78℃に冷却した。ヨウ素 (27.4 g, 108 mmol)を加え、撹拌しながらゆっくりと室温に昇温した。混合物にNa2S2O3水溶液を加え、クロロホルムで抽出、Na2SO4で乾燥、濃縮し、ジクロロメタンを加え、沈殿物をろ過することにより、目的物3c (3.01 g, 5.17 mmol, 96%)を得た。
3c:1H NMR (270 MHz, CDCl3): δ 0.96 (t, 3JHH = 7.3 Hz, 6H), 1.39 (sext, 3JHH = 7.3 Hz, 4H), 1.66 (m, 4H), 2.70 (t, 3JHH = 7.6 Hz, 4H), 7.32 (d, 3JHH = 8.0 Hz, 4H), 8.04 (d, 3JHH = 8.0 Hz, 4H). LRMS (EI): m/z 708 [M+], 665 [(M−C3H7)+], 622 [(M−2C3H7)+].
次に、アセチレンスペーサーの導入に関して、[実施例11]〜[実施例16]で説明する。
Figure 0004908882
2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]−4−(トリメチルシリルエチニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール(C73H118N4S2Si, 4a).
化合物2a (118 mg, 101 μmol),PdCl2(PPh3)2 (3.6 mg, 5.1 μmol)、エチニルトリメチルシラン (20 μL, 142 μmol)、Et3N (450 μL)の混合物をTHF (4.5 mL)に溶解した。CuI (1.1 mg, 5.8 μmol)を加え、室温で15分撹拌した後加熱、12時間還流した。室温に冷却し、水を加えて塩化メチレンで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:CHCl = 1:1)により目的物4a (102 mg, 88.9 μmol)を得た(88%)。
1H NMR (400 MHz, CDCl3): δ 0.43 (s, 9H), 0.90 (t, 3JHH = 6.6 Hz, 12H), 1.28 (s, 56H), 1.34 (br, 16H), 1.62 (br, 8H), 3.32 (t, 3JHH = 7.3 Hz, 8H), 6.67 (d, 3JHH = 8.5 Hz, 4H), 7.95 (d, 3JHH = 8.5 Hz, 2H), 7.99 (d, 3JHH = 8.5 Hz, 2H), 8.30 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 0.16 (q), 14.10 (q), 22.68 (t), 27.09 (t), 27.10 (t), 27.23 (t), 27.25 (t), 29.34 (t), 29.48(t), 29.50 (t), 29.60 (t), 29.62 (t), 29.64 (t), 31.91 (t), 51.04 (t), 100.83 (s), 103.47 (s), 109.00 (s), 111.04 (d), 111.13 (d), 114.24 (d), 120.27 (s), 120.37 (s), 129.09 (d), 129.41 (d), 133.81 (s), 138.07 (s), 150.20 (s), 150.29 (s), 150.67 (s), 152.49 (s), 169.07 (s), 169.23 (s). LRMS (FAB): m/z 1144 [(M+H)+].
2,6−ビス(5−トリイソプロピルシリル−2−チエニル)−4−(トリメチルシリルエチニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C39H56N2S4Si3, 4b).
化合物2b (275 mg, 346 μmol)、PdCl2(PPh3)2 (7.2 mg, 10 μmol)、CuI (3.9 mg, 20 μmol)、THF (15 mL)、Et3N (5.0 mL)の混合物にエチニルトリメチルシラン(70 μL, 495 μmol)を加えた。室温で20分撹拌した後加熱、18時間還流した。室温に冷却し、水を加えてクロロホルムで抽出、MgSO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン = 2:1)により目的物4b (221 mg, 289 μmol)を得た(84%)。
1H NMR (270 MHz, CDCl3): δ 0.41 (s, 9H), 1.15 (d, 3JHH = 7.3 Hz, 36H), 1.39 (sept, 3JHH = 7.3 Hz, 6H), 7.29 (d, 3JHH = 3.6 Hz, 1H), 7.30 (d, 3JHH = 3.6 Hz, 1H), 7.79 (d, 3JHH = 3.6 Hz, 2H), 8.38 (s, 1H). LRMS (EI): m/z 764 [M+], 721 [(M−C3H7)+].
2,6−ビス(4−ブチルフェニル)−4−(トリメチルシリルエチニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C33H36N2S2Si, 4c).
化合物2c (504 mg, 865 μmol)、PdCl2(PPh3)2 (18.9 mg, 26.9 μmol)、CuI (7.0 mg, 37 μmol)、THF (30 mL)、Et3N (10 mL)の混合物にエチニルトリメチルシラン (190 μL, 1.34 mmol)を0℃で加え加熱、18時間還流した。室温に冷却し、水を加えてジクロロメタンで抽出、Na2SO4で乾燥、濃縮した。粗生成物にヘキサンを加え、沈殿物をろ過し、目的物を得た。さらにろ液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン = 2:1)により精製し、目的物4cを得た。合計収量451 mg(815 μmol)、収率94%。
1H NMR (270 MHz, CDCl3): δ 0.42 (s, 9H), 0.96 (t, 3JHH = 7.3 Hz, 6H), 1.40 (sext, 3JHH = 7.3 Hz, 4H), 1.66 (m, 4H), 2.70 (t, 3JHH = 7.6 Hz, 4H), 7.33 (d, 3JHH = 7.8 Hz, 4H), 8.04 (d, 3JHH = 7.8 Hz, 2H), 8.08 (d, 3JHH = 7.8 Hz, 2H), 8.46 (s, 1H).
2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]−4−エチニルベンゾ[1,2−d:4,5−d’]ビスチアゾール(C70H110N4S2, 5a).
Figure 0004908882
化合物4a (102 mg, 88.9 μmol)とK2CO3 (1.9 mg, 14 μmol)の混合物にメタノール(1.0 mL)とTHF (2.0 mL)を加え、室温で6時間撹拌した。NH4Cl水溶液を加え、塩化メチレンで抽出、Na2SO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:CHCl = 1:1)により目的物5a (95.0 mg, 88.6 μmol)を得た(quant.) 。
1H NMR (400 MHz, CDCl3): δ 0.88 (t, 3JHH = 6.6 Hz, 12H), 1.27 (s, 56H), 1.33 (br, 16H), 1.60 (br, 8H), 3.33 (t, 3JHH = 7.4 Hz, 8H), 3.82 (s, 1H), 6.66 (d, 3JHH = 9.0 Hz, 2H), 6.67 (d, 3JHH = 9.0 Hz, 2H), 7.93 (d, 3JHH = 9.0 Hz, 2H), 7.99 (d, 3JHH = 9.0 Hz, 2H), 8.32 (s, 1H). LRMS (FAB): m/z 1072 [(M+H)+].
2,6−ビス(5−トリイソプロピルシリル−2−チエニル)−4−エチニルベンゾ[1,2−d:4,5−d’]ビスチアゾール (C36H48N2S4Si2, 5b).
化合物4b (170 mg, 222 μmol)とK2CO3 (4.6 mg, 33 μmol)の混合物にメタノール (1.25 mL)とTHF (2.5 mL)を加え、室温で6時間撹拌した。水を加え、塩化メチレンで抽出、MgSO4で乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン = 5:3)により目的物5b (150 mg, 216 μmol)を得た(97%)。
1H NMR (270 MHz, CDCl3): δ 1.15 (d, 3JHH = 7.3 Hz, 36H), 1.40 (sept, 3JHH = 7.3 Hz, 6H), 3.87 (s, 1H), 7.29 (d, 3JHH = 3.6 Hz, 1H), 7.30 (d, 3JHH = 3.6 Hz, 1H), 7.78 (d, 3JHH = 3.6 Hz, 1H), 7.79 (d, 3JHH = 3.6 Hz, 1H), 8.41 (s, 1H). LRMS (EI): m/z 692 [M+], 649 [(M−C3H7)+], 607 [(M−2C3H7+H)+].
2,6−ビス(4−ブチルフェニル)−4−エチニルベンゾ[1,2−d:4,5−d’]ビスチアゾール (C30H28N2S2, 5c).
化合物4c (442 mg, 800 μmol)とK2CO3 (10.7 mg, 77.4 μmol)の混合物にメタノール (20 mL)とTHF (80 mL)を加え、室温で11時間撹拌した。塩化アンモニウム水を加え、ジクロロメタンで抽出、Na2SO4で乾燥、濃縮し、目的物5c (363 mg, 623μmol)を得た(76%)。
1H NMR (270 MHz, CDCl3): δ 0.96 (t, 3JHH = 7.4 Hz, 6H), 1.39 (sext, 3JHH = 7.4 Hz, 4H), 1.66 (m, 4H), 2.70 (t, 3JHH = 7.7 Hz, 4H), 3.88 (s, 1H), 7.32 (d, 3JHH = 8.0 Hz, 2H), 7.33 (d, 3JHH = 8.0 Hz, 2H), 8.03 (d, 3JHH = 8.0 Hz, 2H), 8.08 (d, 3JHH = 8.0 Hz, 2H), 8.50 (s, 1H). LRMS (EI): m/z 480 [M+], 437 [(M−C3H7)+], 394 [(M−2C3H7)+].
次に、アセチレン架橋ベンゾビスチアゾール二量体の合成に関して、[実施例17]〜[実施例19]で説明する。
Figure 0004908882
ビス{2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル} アセチレン (C138H218N8S4, 6a).
化合物2a (128 mg, 109 μmol)、Pd(PPh3)4 (6.6 mg, 5.7 μmol)、化合物5a (127 mg, 119 μmol)、Et3N (500 μL)の混合物をTHF (5.0 mL)に溶解した。CuI (1.5 mg, 7.9 μmol)を加え、室温で15分撹拌した後加熱、11時間還流した。室温に冷却し、水を加えてクロロホルムで抽出、Na2SO4で乾燥、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム = 3:4)で分離し、さらにPTLC (ヘキサン:クロロホルム = 2:5)により精製を行い目的物6a (81.3 mg, 38.4 μmol)を得た(35%)。
1H NMR (400 MHz, CDCl3): δ 0.88 (t, 3JHH = 6.8 Hz, 24H), 1.21−1.33 (m, 144H), 1.58 (br, 16H), 3.26 (br, 16H), 6.63 (d, 3JHH = 8.7 Hz, 4H), 6.64 (d, 3JHH = 8.7 Hz, 4H), 7.99 (d, 3JHH = 8.7 Hz, 4H), 8.12 (d, 3JHH = 8.7 Hz, 4H), 8.34 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 14.09 (q), 22.67 (t), 27.11 (t), 27.26 (t), 29.35 (t), 29.46 (t), 29.48 (t), 29.60 (t), 29.64 (t), 29.67 (t), 31.91 (t), 50.96 (t), 51.03 (t), 94.14 (s), 109.37 (s), 111.09 (d), 111.18 (d), 114.19 (d), 120.46 (s), 120.66 (s), 129.14 (d), 129.56 (d), 133.83 (s), 137.70 (s), 150.11 (s), 150.18 (s), 151.05 (s), 152.53 (s), 169.07 (s), 169.28 (s). LRMS (FAB): m/z 2118 [(M+H)+].
ビス[2,6−ビス(5−トリイソプロピルシリル−2−チエニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル] アセチレン (C70H94N4S8Si4, 6b).
化合物2b (159 mg, 200 μmol)、化合物5b (138 mg, 199 μmol)、Pd(PPh3)4 (6.9 mg, 6.0 μmol)、 CuI (2.3 mg, 12 μmol)の混合物にTHF (10.0 mL)とEt3N (3.3 mL)を加えた。室温で10分撹拌した後加熱、24時間還流した。室温に冷却し、溶媒を留去して塩化メチレンを加え、セライトろ過により不溶物を取り除いた。ろ液に水を加えて塩化メチレンで抽出、MgSO4で乾燥、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン = 1:1)により精製を行い目的物6b (110 mg, 80.9 μmol)を得た(41%)。
1H NMR (270 MHz, CDCl3): δ 1.13 (d, 3JHH = 7.5 Hz, 36H), 1.17 (d, 3JHH = 7.5 Hz, 36H), 1.40 (sept, 3JHH = 7.5 Hz, 12H), 7.28 (d, 3JHH = 3.6 Hz, 2H), 7.33 (d, 3JHH = 3.6 Hz, 2H), 7.82 (d, 3JHH = 3.6 Hz, 2H), 7.97 (d, 3JHH = 3.6 Hz, 2H), 8.47 (s, 2H). 13C NMR (68 MHz, CDCl3): δ 11.89, 11.92, 18.67, 94.20, 110.21, 115.32, 130.06, 130.13, 134.61, 136.20, 136.35, 138.30, 140.85, 141.13, 141.67, 141.82, 150.83, 152.36, 162.37, 162.58.
ビス[2,6−ビス(4−ブチルフェニル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル]アセチレン (C58H54N4S4, 6c).
化合物2c (36.1 mg, 75.1 μmol)、化合物5c (44.7 mg, 76.7 μmol)、Pd(PPh3)4 (4.6 mg, 4.0 μmol)、 CuI (1.4 mg, 7.4 μmol)の混合物にTHF:Et3N = 3:1溶液(5 mL)を加えた。室温で5時間撹拌した後加熱、7時間還流した。室温に冷却し、塩化アンモニウム水を加え、不溶物を採取し、トルエン、エタノール、クロロホルムの順に洗浄し、目的物6c (37.7 mg, 40.3 μmol)を得た(54%)。
1H NMR (270 MHz, CS2/CDCl3): δ 1.03 (t, 3JHH = 7.3 Hz, 12H), 1.46 (m, 8H), 1.73 (m, 8H), 2.76 (t, 3JHH = 7.6 Hz, 8H), 7.34 (d, 3JHH = 8.1 Hz, 8H), 8.10 (d, 3JHH = 8.1 Hz, 4H), 8.25 (d, 3JHH = 8.1 Hz, 4H), 8.49 (s, 2H). LRMS (EI): m/z 934 [M+].
化合物6bおよび6cについてはX線結晶構造解析によりその構造を明らかにした。[実施例20]および[実施例21]でその結果を示す。
得られた化合物6bについて室温でクロロホルム-エタノールから再結晶を行ったところ、クロロホルムを0.5分子含む単結晶が得られたので、この結晶のX線結晶構造解析を行った。その結果、ベンゾビスチアゾールの平面に対し、2,6位の置換基およびスペーサーを介した隣接ユニットがいずれも同一平面上にあり、高い平面性を有することがわかった。「図1」に構造を示す。
得られた化合物6cについて110℃でトルエンから再結晶を行ったところ黄色の単結晶が得られたので、この結晶のX線結晶構造解析を行った。その結果、ベンゾビスチアゾールの平面に対し、2,6位の置換基およびスペーサーを介した隣接ユニットがいずれも同一平面上にあり、高い平面性を有することがわかった。「図2」に構造を示す。
次に、ジアセチレン架橋ベンゾビスチアゾール二量体の合成について[実施例22]で示す。
1,4−ビス{2,6−ビス[4−(N,N−ジドデシルアミノ)フェニル]ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル}−1,3−ブタジイン (C140H218N8S4, 7a).
Figure 0004908882
化合物5a (96.0 mg, 89.6 μmol)、PdCl2(PPh3)2 (3.2 mg, 4.6 μmol)、ヨウ素 (12.6 mg, 49.6 μmol)、CuI (1.2 mg, 6.3 μmol)の混合物に、THF (3.8 mL)とi-Pr2NH (380 μL)を加えて室温で24時間撹拌した。Na2SO3水溶液を加えて塩化メチレンで抽出、Na2SO4で乾燥、濃縮した。GPC-HPLC (LC-918, CHCl3)により精製を行い目的物7a (80.8 mg, 37.7 μmol)を得た(84%)。
1H NMR (400 MHz, CDCl3): δ 0.84−0.89 (m, 24H), 1.23−1.34 (m, 144H), 1.62 (br, 16H), 3.33 (br, 16H), 6.67 (d, 3JHH = 8.7 Hz, 8H), 7.96 (d, 3JHH = 8.7 Hz, 4H), 8.05 (d, 3JHH = 8.7 Hz, 4H), 8.35 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 14.13 (q), 22.69 (t), 27.09 (t), 27.23 (t), 29.35 (t), 29.50 (t), 29.58 (t), 29.60 (t), 29.65 (t), 31.89 (t), 31.91 (t), 51.04 (t), 80.29 (s), 82.40 (s), 107.68 (s), 111.06 (d), 111.14 (d), 114.94 (d), 120.01 (s), 120.15 (s), 129.19 (d), 129.60 (d), 133.91 (s), 138.58 (s), 150.26 (s), 150.35 (s), 150.79 (s), 153.84 (s), 169.26 (s), 169.74 (s). LRMS (FAB): m/z 2143 [(M+H)+].
次に、アセチレン架橋ベンゾビスチアゾール三量体の合成について、[実施例23]〜[実施例25]で示す。
Figure 0004908882
2,6−ビス(N,N−ジドデシルアニリン−4−イル)−4,8−ビス{[2,6−(N,N−ジドデシルアニリン−4−イル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル]エチニル}ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C208H326N12S6, 8a).
化合物3a (45.4 mg, 34.9 μmol)、Pd(PPh3)4 (2.1 mg, 1.8 μmol)、化合物5a (80.2 mg, 74.8 μmol)、Et3N (320 μL)の混合物をTHF (3.2 mL)に溶解した。CuI (1.4 mg, 7.4 μmol)を加え、室温で15分撹拌した後加熱、11時間還流した。室温に冷却し、水を加えてクロロホルムで抽出、Na2SO4で乾燥、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム = 2:3)で分離し、さらにGPC-HPLC (LC-918, CHCl3)により精製を行い目的物8a (41.7 mg, 13.1 μmol)を得た(38%)。
1H NMR (400 MHz, CDCl3): δ 0.83−0.90 (m, 36H), 1.18−1.33 (m, 216H), 1.59 (br, 24H), 3.29 (br, 24H), 6.60−6.71 (m, 12H), 8.02 (d, 3JHH = 8.8 Hz, 4H), 8.15 (d, 3JHH = 8.8 Hz, 4H), 8.22 (d, 3JHH = 8.8 Hz, 4H), 8.36 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 14.13 (q), 22.68 (t), 27.10 (t), 27.13 (t), 27.26 (t), 29.37 (t), 29.49 (t), 29.51 (t), 29.63 (t), 29.65 (t), 29.69 (t), 31.92 (t), 50.99 (t), 51.04 (t), 94.36 (s), 95.33 (s), 109.25 (s), 109.59 (s), 111.06 (d), 111.12 (d), 111.13 (d), 114.29 (d), 120.40 (s), 120.58 (s), 120.73 (s), 129.16 (d), 129.59 (d), 129.67 (d), 133.82 (s), 137.73 (s), 137.75 (s), 150.06 (s), 150.08 (s), 150.14 (s), 151.02 (s), 151.65 (s), 152.55 (s), 169.17 (s), 169.32 (s), 169.57 (s).
2,6−ビス(5−トリイソプロピルシリルチオフェン−2−イル)−4,8−ビス{[2,6−(5−トリイソプロピルシリルチオフェン−2−イル)ベンゾ[1,2−d:4,5−d’]ビスチアゾール−4−イル]エチニル}ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C106H140N6S12Si6, 8b).
化合物3b (99.8 mg, 108 μmol)、Pd(PPh3)4 (6.3 mg, 5.5 μmol)、CuI (2.1 mg, 11 μmol)、THF (10 mL)、Et3N (3.3 mL)の混合物に、化合物5b (150 mg, 216 μmol)のTHF (3 mL)溶液を加えた.室温で20分撹拌した後加熱、7時間還流した。室温に冷却し、溶媒を留去しクロロホルムを加え、セライトろ過により不溶物を取り除いた。ろ液を濃縮し、ヘキサンを加えてろ過、エーテル、水で洗浄し目的物8b (82.1 mg, 40.0 μmol)を得た(37%)。
1H NMR (270 MHz, CDCl3): δ 1.11−1.19 (m, 108H), 1.31−1.48 (m, 18H), 7.29 (d, 3JHH = 3.6 Hz, 2H), 7.31 (d, 3JHH = 3.6 Hz, 2H), 7.34 (d, 3JHH = 3.6 Hz, 2H), 7.83 (d, 3JHH = 3.6 Hz, 2H), 7.96 (d, 3JHH = 3.6 Hz, 2H), 8.01 (d, 3JHH = 3.6 Hz, 2H), 8.49 (s, 2H). LRMS (MALDI-TOF): m/z 2052.
2,6−ビス(4−ブチルフェニル)−4,8−ビス{[2,6−(4−ブチルフェニル)ベンゾ[1,2−d:4,5−d’]ビス−チアゾール−4−イル]エチニル}ベンゾ[1,2−d:4,5−d’]ビスチアゾール (C88H80N6S6, 8c).
化合物3c (71.0 mg, 100 μmol)、Pd(PPh3)4 (5.7 mg, 4.9 μmol)、CuI (2.2 mg, 12 μmol)、の混合物に、化合物5c (98.9 mg, 206 μmol)のTHF:Et3N = 3:1溶液(20 mL)を加え加熱、6時間還流した。室温に冷却し、沈殿物をろ過により採取し、塩化アンモニア水、水、エタノール、クロロホルムの順に洗浄し目的物8c (88.7 mg, 63 μmol)を得た(63%)。
1H NMR (270 MHz, CS2/CDCl3): δ 1.04 (m, 18H), 1.48 (m, 12H), 1.72 (m, 12H), 2.75 (m, 12H), 7.34 (m, 12H), 8.10 (m, 8H), 8.22 (m, 4H), 8.48 (s, 2H). LRMS (MALDI-TOF): m/z 1415.
実施例17、18、22、23で得られた化合物6a、6b、7a、8aに関し、サイクリックボルタンメトリー測定を行った。その結果を表に示す。
Figure 0004908882
実施例17、18、22、23で得られた化合物6a、6b、7a、8aに関し、紫外・可視吸収スペクトル及び蛍光スペクトル測定を行った。その結果を表2に示す。
Figure 0004908882
X線結晶構造解析による化合物6bの単結晶オルテップ図である。 X線結晶構造解析による化合物6cの単結晶オルテップ図である。

Claims (6)

  1. 一般式(1)で表されるベンゾビスアゾール骨格を有する電子材料用π共役有機化合物。
    Figure 0004908882
    [式中、Aは連結基を指しエチニレン基、オリゴエチニレン基を示すAr、Ar、Arはそれぞれ独立に炭素数1〜18のアリーレン基、ヘテロアリーレン基、オリゴアリーレン基、オリゴヘテロアリーレン基または2価のアセン基を示し、R、R、Rは、それぞれ独立に炭素数1〜18のアリール基、ヘテロアリール基、オリゴアリール基、オリゴヘテロアリール基、アセン基(ただしこれらは炭素数1〜40のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基で置換されていてもよい)、炭素数1〜40のアルキル基、パーフルオロアルキル基、アルコキシ基、パーフルオロアルコキシ基、アリールオキシ基、シアノ基、シリル基、アミノ基、ボリル基、スタンニル基、ニトロ基、水素原子、またはハロゲン原子を示す。ただし、Ar〜Arおよび 同一でも異なっていてもよい。Y〜Y はSを示し、nは0または1である]
  2. 一般式(2)で表される骨格を有することを特徴とする請求項1に記載の電子材料用π共役有機化合物。
    Figure 0004908882
    [一般式(2)中、Ar、Ar、Ar、R、R、R 、Y 1〜3 またはnは一般式(1)と同じ]
  3. 下記式(6a)、(6b)、(6c)で表される電子材料用π共役有機化合物。
    Figure 0004908882
    [式中、Arはそれぞれ下記式、
    Figure 0004908882
    である。i-Prはイソプロピル基を、n-Buはノルマルブチル基を表す。]
  4. 下記式(7a)で表される電子材料用π共役有機化合物。
    Figure 0004908882
    [式中、Arは下記式、
    Figure 0004908882
    である。]
  5. 下記式(8a)、(8b)、(8c)で表される電子材料用π共役有機化合物。
    Figure 0004908882
    [式中、Arはそれぞれ下記式、
    Figure 0004908882
    である。i-Prはイソプロピル基を、n-Buはノルマルブチル基を表す。]
  6. 以下の4工程を有する請求項1乃至5の何れかに記載の電子材料用π共役有機化合物の製造方法。
    第一工程: 一般式(3)
    Figure 0004908882
    [式中、Xはハロゲン原子を示す]で表されるベンゾビスチアゾール化合物と一般式(4)
    Figure 0004908882
    [一般式(4)中、Ar、Ar、Ar、R、R またはR 一般式(1)と同じ。Mはハロゲン化マグネシウム、ハロゲン化亜鉛、ボロン酸、ボロン酸エステル、アルキルシランまたはアルキルすずを示す]で表される芳香族メタル化物をクロスカップリング反応することを特徴とする一般式(5)
    Figure 0004908882
    [一般式(5)中、Ar、Ar、Ar、R、RまたはRは一般式(1)と同じ]を合成する工程
    第二工程:アルキルリチウム、リチウムアルキルアミド、またはリチウム−亜鉛アート錯体を塩基として用いてメタル化した一般式(6)または(7)
    Figure 0004908882
    [一般式(6)および(7)中、Ar、Ar、Ar、R、RまたはRは一般式(1)と同じ]を、ハロゲン化試薬で処理することによる一般式(8)または(9)
    Figure 0004908882
    [一般式(8)および(9)中、Ar、Ar、Ar、R、RまたはRは一般式(1)と同じ。Xはハロゲン原子を示す]を合成する工程
    第三工程:
    一般式(8)または(9)、金属触媒存在下、エチニルトリメチルシランと反応させ、一般式(16)または(17)
    Figure 0004908882
    [一般式(16)および(17)中、Ar 、Ar 、Ar 、R 、R またはR は一般式(1)と同じ。]
    を合成し、次いで、一般式(16)または(17)をメタノール中、炭酸カリウムと反応させることにより、一般式(11)または(12)
    Figure 0004908882
    [一般式(11)および(12)中、Ar、Ar、Ar、R、R またはR 一般式(1)と同じ]で表される化合物を合成する工程。
    第4工程:一般式(8)、(9)、(11)または(12)の組み合わせクロスカップリング反応による工程
JP2006065086A 2006-03-10 2006-03-10 ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法 Active JP4908882B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065086A JP4908882B2 (ja) 2006-03-10 2006-03-10 ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065086A JP4908882B2 (ja) 2006-03-10 2006-03-10 ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法

Publications (2)

Publication Number Publication Date
JP2007238530A JP2007238530A (ja) 2007-09-20
JP4908882B2 true JP4908882B2 (ja) 2012-04-04

Family

ID=38584411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065086A Active JP4908882B2 (ja) 2006-03-10 2006-03-10 ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法

Country Status (1)

Country Link
JP (1) JP4908882B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286454A1 (ja) 2021-07-12 2023-01-19 東洋紡株式会社 芳香族ジハロゲン化合物の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053093A (ja) * 2008-08-29 2010-03-11 Ricoh Co Ltd 新規なベンゾビスチアゾール骨格を有するスズ化合物
US9023964B2 (en) 2013-03-13 2015-05-05 Iowa State University Research Foundation, Inc. Conjugated polymer and semiconductor devices including the same
JP6146214B2 (ja) * 2013-09-04 2017-06-14 東洋紡株式会社 ベンゾビスチアゾール化合物
JP6459971B2 (ja) * 2013-10-25 2019-01-30 東洋紡株式会社 有機半導体材料
JP6500786B2 (ja) * 2014-02-14 2019-04-17 東洋紡株式会社 有機半導体材料
JP6688453B2 (ja) * 2015-01-27 2020-04-28 東洋紡株式会社 有機半導体材料
WO2016125822A1 (ja) * 2015-02-06 2016-08-11 東洋紡株式会社 光電変換素子、およびこれに用いられる有機半導体化合物
JP6658727B2 (ja) * 2015-02-18 2020-03-04 東洋紡株式会社 光電変換素子、および有機薄膜太陽電池
US20190088891A1 (en) 2016-03-15 2019-03-21 Merck Patent Gmbh Organic semiconductors
JP6892076B2 (ja) * 2017-08-31 2021-06-18 東洋紡株式会社 n型半導体として使用可能な化合物
CN114709557B (zh) * 2022-04-13 2023-10-27 南京工业大学 一种后修饰碳硼烷的共价有机框架材料的设计合成及其在锂硫电池隔膜中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597890A (en) * 1993-11-01 1997-01-28 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
JPH10340786A (ja) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4017533B2 (ja) * 2003-01-29 2007-12-05 Jfeケミカル株式会社 ベンゾジイミダゾール化合物およびその製造方法
JP4306379B2 (ja) * 2003-09-09 2009-07-29 東洋インキ製造株式会社 有機エレクトロルミネッセンス用素子材料およびそれを用いた有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286454A1 (ja) 2021-07-12 2023-01-19 東洋紡株式会社 芳香族ジハロゲン化合物の製造方法

Also Published As

Publication number Publication date
JP2007238530A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4908882B2 (ja) ベンゾビスアゾール骨格をもつ有機π電子系材料およびその製造方法
KR102444324B1 (ko) 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
Yamashita et al. Synthesis and properties of benzobis (thiadiazole) s with nonclassical π-electron ring systems
KR20200041832A (ko) 유기 전계 발광 소자
Aleksanyan et al. Synthesis, catalytic activity, and photophysical properties of 5, 6-membered Pd and Pt SCS′-pincer complexes based on thiophosphorylated 3-amino (hydroxy) benzoic acid thioanilides
WO2003084973A1 (fr) Complexes metalliques et dispositifs electroluminescents organiques
JP5504454B2 (ja) 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP5294560B2 (ja) 過アリール化ボランをベースとする、ポリマー燐光性有機半導体エミッター物質、その製法及びその使用
KR20140141970A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP4408416B2 (ja) 多環縮環型π共役有機材料、およびその合成中間体、並びに多環縮環型π共役有機材料の製造方法
Wheeler et al. Evaluating the Role of Molecular Heredity in the Optical and Electronic Properties of Cross-Conjugated Benzo [1, 2-d: 4, 5-d′] bisoxazoles
JP4273236B2 (ja) 有機ホウ素π電子系化合物及びその合成中間体
WO2016102413A1 (en) Process for the manufacture of spirodibenzosuberane compounds
WO2017155042A1 (ja) ジチエノホスホリン化合物及びそれを用いた蛍光色素
JP4835852B2 (ja) π共役系芳香環含有化合物及び有機エレクトロルミネッセンス素子
Zhao et al. Fluoro-benzenesulfonyl-functionalized 2-phenylthiazole-type iridium (iii) complexes for efficient solution-processed organic light-emitting diodes
Jia et al. Efficient green phosphorescent organic light-emitting diodes enabled with new and thermally stable carbazole/pyridine derivatives as hosts
Zhang et al. A new series of pyrenyl-based triarylamines: syntheses, structures, optical properties, electrochemistry and electroluminescence
Wang et al. Tetrahedral silicon-based luminescent molecules: Synthesis and comparison of thermal and photophysical properties by various effect factors
KR102629455B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
JP2012176928A (ja) ピレン誘導体、ピレン誘導体の製造方法、錯体、触媒、電子材料、発光材料および色素
JP2017190315A (ja) ホウ素含有化合物、およびその用途
KR102243624B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
Zhang et al. Synthesis and characterization of pyrimidine-containing hexaarylbenzene derivatives
JP5633873B2 (ja) フラーレン二量体およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350