WO2023284311A1 - 一种高电性能pc/聚酯材料及其制备方法 - Google Patents

一种高电性能pc/聚酯材料及其制备方法 Download PDF

Info

Publication number
WO2023284311A1
WO2023284311A1 PCT/CN2022/079624 CN2022079624W WO2023284311A1 WO 2023284311 A1 WO2023284311 A1 WO 2023284311A1 CN 2022079624 W CN2022079624 W CN 2022079624W WO 2023284311 A1 WO2023284311 A1 WO 2023284311A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical performance
performance additive
additive
polyester material
polyester
Prior art date
Application number
PCT/CN2022/079624
Other languages
English (en)
French (fr)
Inventor
赵体鹏
万虎
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2023284311A1 publication Critical patent/WO2023284311A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the invention relates to the technical field of modified plastics, in particular to a PC/polyester material with high electrical performance and a preparation method thereof.
  • PC polycarbonate
  • polyester mainly PET, PBT, PLA, PCTG and other types of polyester
  • This type of alloy material has the advantages of high impact strength, high dimensional stability, and easy carbonization during combustion of PC. It also has high chemical resistance and high processability of polyester, and its heat distortion temperature is between the two types. Between the resins, the specific value can be effectively regulated by the resin ratio.
  • the present invention provides a kind of high electric performance PC/polyester material and preparation method thereof for overcoming at least one deficiency described in the above-mentioned prior art, solves the problem that the amount of conductive filler in PC/polyester material is large, but the electrical conductivity The problem of insufficient improvement and difficulty in ensuring proper mechanical properties.
  • the present invention adopts the following technical solutions:
  • a high electrical performance PC/polyester material includes the following raw material components in parts by weight:
  • electrical performance additive 1# has a continuous spherical structure or sheet structure, and after surface treatment, it is blended with other raw material components except electrical performance additive 2#; electrical performance additive 2# has a fiber shape, After successive surface treatment and at least part of PC masterbatch treatment, it is then blended with the rest of the raw material components that have been melted and plasticized.
  • the present invention not only compounded and used electrical performance additives with different structures and shapes, but also effectively improved the electrical conductivity of the system through their synergistic effect; more importantly, it also carried out effective surface treatment on the electrical performance additives.
  • Performance additive 2# has also been masterbatched to effectively improve the compatibility between the electrical performance additive and the polymer material, and at the same time ensure that it can be effectively dispersed in the polymer material matrix, so that it can be used at a lower dosage , it endows the system with high electrical properties in antistatic and conductive aspects.
  • transesterification stabilizers can effectively avoid the chemical reaction between the polymer material matrix and the electrical performance additives, thereby ensuring the stability of the overall performance of the material system, thereby preparing a class of high electrical properties, high chemical resistance, Excellent material with high mechanical properties, its surface resistivity can be effectively adjusted between 101 ⁇ 109 ⁇ , ISO impact strength is above 40kJ/m2, after soaking in hydrochloric acid and NaOH (both 10% mass fraction) solution for 48h The strength retention rate is still above 90%.
  • This type of material can be effectively applied in markets such as electronic appliances, smart homes, smart wearables, and 5G.
  • the electrical performance additive 1# with a continuous spherical structure or sheet structure and the electrical performance additive 2# with a fiber shape form an effective compounding effect in shape and size, construct a conductive network in the system, and impart high Molecular materials have better electrical conductivity. Due to the poor compatibility between these two types of electrical performance additives and polymer materials, it is difficult to disperse when directly added to the polymer material system. At the same time, the interface strength is low, which will greatly sacrifice the mechanical properties of the material. Only in this way can the electrical conductivity of the material be qualitatively improved.
  • the present invention has carried out effective surface treatment to electrical performance additives 1# and electrical performance additives 2#, thereby improving their performance in polymer materials.
  • Effective dispersion and interfacial compatibility of the system on the other hand, the surface-treated electrical performance additive 2# is masterbatched, and added to it after melting and plasticizing other raw material components to ensure its long-fiber
  • the structure will not be destroyed by the shear force of the extruder, and at the same time, it can ensure effective dispersion, so as to form an effective compound effect with electrical performance additive 1# to ensure that the polymer material system is endowed with excellent performance under a small amount of addition. electrical properties without significantly sacrificing the mechanical properties of the material system.
  • electrical performance aid 1# and electrical performance aid 2# are surface treated with a surface treatment agent, which is polyvinyl alcohol, polyethylene wax or hyperbranched polymer with a molecular weight below 5000.
  • This kind of treatment agent has more end groups or branched short carbon chains, which has better interfacial interaction with electrical performance additives, and also has better interaction with polymer materials in polarity matching.
  • the mass ratio of electrical performance aid 1# to surface treatment agent is 80:20-99:1, and the mass ratio of electrical performance aid 2# to surface treatment agent is preferably 80:20-99:1.
  • the surface-treated electrical performance additive 2# and PC are processed in a master batch at a mass ratio of 5:95 to 30:70.
  • PC bisphenol A polycarbonate, which is one of the five major engineering plastics. It has high impact strength, high heat distortion temperature, and high light transmittance. It has a wide range of applications in the fields of electronics, construction, transportation, and optics. .
  • polyester is a polymer whose molecular chain structural unit is dominated by ester groups, mainly single polyester or copolyester such as PET, PBT, PCTG, PLA, PCT, etc., which are generally crystalline polymers, and adjacent molecules
  • ester groups between the chains can form a strong dipole-dipole mutual attraction, so the molecular chains are tightly packed after crystallization, which endows this type of polymer with excellent chemical resistance, and in addition, the melt viscosity is low and the processability is good.
  • the toughening agent is preferably MBS, ABS high rubber powder, silicone rubber and other types of toughening agents, which have better compatibility with the system and are used to improve the impact strength of the alloy.
  • electrical performance additive 1# is preferably an additive with a continuous spherical structure such as organic conductive carbon black or conductive graphite, or a conductive metal oxide, such as conductive titanium dioxide, conductive tin oxide, etc. .
  • electrical performance additive 2# is an additive with a fiber shape such as conductive polymer, single-walled carbon nanotube, multi-walled carbon nanotube or carbon fiber.
  • the transesterification stabilizer is preferably an oligomer/polymer or a phosphate compound with an epoxy group graft content of more than 5%, which is used to inhibit the chemical reaction between PC and polyester, thereby ensuring the stability of the system stability.
  • the primary antioxidants are preferably hindered phenolic antioxidants such as 1010, 1076, and 245, and the secondary antioxidants are preferably phosphite antioxidants such as 168 and PEP36.
  • Antioxidants are used to inhibit PC and polyester from melting. Aging reaction occurs during processing to ensure the performance and appearance of the material.
  • lubricants are preferably polyol esters, silicones and stearic acids, etc., which can reduce the melt viscosity of PC and polyester in the melt blending process, and can ensure that the PC/polyester material can be used in subsequent processing. It has good mold release performance during the molding process.
  • a kind of preparation method of high electrical performance PC/polyester material as above comprises the steps:
  • step S3 According to the high electrical performance PC/polyester material formula, add PC, polyester, toughening agent, electrical performance auxiliary agent 1# for surface prognosis obtained in step S1, transesterification stabilizer, main antioxidant, auxiliary antioxidant , lubricants, premixing, and premixing materials;
  • step S4 Melt and plasticize the premixed material obtained in step S3, add the masterbatch of electrical performance additive 2# obtained in step S2, melt blend and granulate, and obtain a PC/polyester material with high electrical performance.
  • step S1 the surface treatment is as follows: electrical performance additive 1# and electrical performance additive 2# are mixed with PC carbon powder and surface treatment agent at 260-280 °C and 300-500 rpm for 10-30 minutes, Crushed and granulated.
  • step S2 the masterbatch treatment is as follows: first dry mix the electrical performance additive 2# with PC at 300-1000rpm in an eccentric vibrating powder machine at 300-1000rpm for 5-30min, and then dry mix it under weak shear strength and strong dispersion effect 1. Melt and granulate in a twin-screw extruder with a temperature of 270-300°C in each section and a host speed of 300-600rpm.
  • step S3 the premixing is as follows: first, high-speed stirring at 2000-5000 rpm for 1-10 minutes, then low-speed stirring at 500-1000 rpm for 1-5 minutes, and finally discharging at 300-1000 rpm. This premixing process is carried out in a high-speed mixer.
  • step S4 is carried out in the twin-screw extruder, the premix is added from the main feeding port of the twin-screw extruder, and the electrical performance additive 2# masterbatch is added from the side feeding port of the twin-screw extruder .
  • the main engine speed of the twin-screw extruder is 300-600rpm, and the temperature of each zone is controlled at 240-280°C.
  • twin-screw extruder relies on the pressure and shear force generated by the screw rotation, so that the material can be fully plasticized and uniformly mixed, and finally extruded through the head die.
  • the material is usually fed from the main feeding port of the extruder, and there is often a side feeding port between the main feeding port of the extruder and the machine head.
  • the side feeding method feeds the material from the side feeding port of the screw extruder to reduce the shearing effect of the screw on the 2# masterbatch of the electrical performance additive, and greatly reduce the damage to the long fiber structure of the 2# masterbatch of the electrical performance additive , so that the electrical performance additive 2# can effectively build a conductive network with the electrical performance additive 1#.
  • preparation method of high electrical performance PC/polyester material comprises the following steps:
  • step S2 Use part of the PC in the formula of high electrical performance PC/polyester material to perform masterbatch treatment on the electrical performance additive 2# obtained in step S1: first dry mix it in a 300-1000rpm eccentric vibrating powder machine for 5-30min , and then melted and granulated in a twin-screw extruder with weak shear strength and strong dispersion effect, the temperature of each section is 270-300°C, and the main engine speed is 300-600rpm to obtain the masterbatch of electrical performance additive 2#;
  • step S3 Add PC, polyester, toughening agent, electrical performance auxiliary agent 1# of surface prognosis obtained in step S1, transesterification stabilizer, and main antioxidant to the high-speed mixer in sequence according to the high electrical performance PC/polyester material formula , auxiliary antioxidant, lubricant, premixing: firstly stir at a high speed of 2000 ⁇ 5000rpm for 1 ⁇ 10min, then stir at a low speed of 500 ⁇ 1000rpm for 1 ⁇ 5min, and finally discharge at 300 ⁇ 1000rpm to obtain a premix material;
  • step S4 Add the premixed material obtained in step S3 from the main feeding port into the twin-screw extruder for melting and plasticization, and add the electrical performance additive 2# masterbatch obtained in step S2 from the side feeding port of the twin-screw extruder, Melt blending and granulation at the speed of the host machine at 300-600rpm and the temperature of each zone at 240-280°C to obtain PC/polyester materials with high electrical properties.
  • the high electrical performance PC/polyester material provided by the present invention has no special limitation on subsequent molding processing methods, and conventional molding techniques can be used, such as injection molding, compression molding, and the like.
  • the present invention has the following beneficial effects:
  • the high electrical performance PC/polyester material announced by the present invention effectively uses electrical performance additives with different superstructures, and has carried out effective surface treatment and masterbatch treatment on it, so that it can be added in less amount It endows the material system with excellent electrical properties and at the same time ensures the excellent impact strength of the system;
  • the high electrical performance PC/polyester material disclosed in the present invention can be processed and formed by various conventional methods, has excellent antistatic or conductive properties, and is a high toughness material with excellent chemical resistance;
  • the PC/polyester material with high electrical performance prepared by the solution of the present invention has excellent comprehensive performance measured, and can be used in various electronic appliances, home appliances, smart wearables, 5G and other fields, increasing the added value of various products, and has a good market prospect.
  • the polyester is an example of a PET matrix, which includes the following raw materials in parts by weight: 100 parts of PC, 40 parts of PET, 20 parts of MBS toughening agent M521, 20 parts Organic conductive carbon black (electrical performance additive 1#), 10 parts of multi-walled carbon nanotubes (electrical performance additive 2#), 1 part of transesterification stabilizer, 0.3 part of main antioxidant 1010, 0.5 part of auxiliary antioxidant 168, 1 part lubricant PETS.
  • the preparation method of this high electrical performance PC/polyester material comprises the steps:
  • the mass ratio of (electrical performance additive 1# or electrical performance additive 2#) to polyethylene wax is 95:5, and the electrical performance additive (electrical performance additive 1# or electrical performance additive 2 #), polyethylene wax and 10 parts of PC carbon powder, banburying and mixing at a temperature of 270°C and a host speed of 300rpm for 15 minutes, crushing and granulating after mixing, and obtaining the surface prognosis electrical performance additive 1# and the surface prognosis electrical performance additive Agent 2#.
  • step S1 According to the raw material ratio of high electrical performance PC/polyester material, PC, polyester, toughening agent, and step S1 are used to prepare electrical performance auxiliary agent 1#, transesterification stabilizer, main antioxidant, auxiliary antioxidant, etc. Oxygen and lubricant were added to the high-speed mixer in sequence, first stirred at a high speed of 3000rpm for 6 minutes, then stirred at a low speed of 1000rpm for 5 minutes, and finally discharged at 300rpm to obtain a premix.
  • the premix prepared in step S3 is added to the twin-screw extruder from the main feeding port to melt and plasticize, and the electrical performance additive 2# prepared in step S2
  • the masterbatch is fed into the twin-screw extruder from the side feed port, and melted and granulated with the melted and plasticized premixed material.
  • the main engine speed of the extruder is 400rpm, and the temperature of each zone is controlled within the range of 250-270°C to obtain high electrical properties. PC/polyester material.
  • the pretreatment of the electrical performance additives in Examples 2 to 6 (including the surface treatment of the electrical performance additives and the masterbatch treatment of the electrical performance additive 2#) and the extrusion process of the materials are basically the same as those in the examples 1.
  • the present embodiment provides a kind of high electrical performance PC/polyester material, and it comprises the raw material of following parts by weight: 80 parts of PC, 100 parts of PET, 15 parts of MBS toughening agent M521, 30 parts of organic conductive carbon black (electrical performance auxiliary Agent 1#), 20 parts of multi-walled carbon nanotubes (electrical performance additive 2#), 3 parts of transesterification stabilizer, 0.2 part of primary antioxidant 1010, 0.1 part of secondary antioxidant 168, 2 parts of lubricant PETS.
  • the present embodiment provides a kind of high electrical performance PC/polyester material, and it comprises the raw material of following parts by weight: 120 parts of PC, 60 parts of PET, 10 parts of MBS toughening agent M521, 10 parts of organic conductive carbon black (electrical performance auxiliary agent 1#), 8 parts of multi-walled carbon nanotubes (electric performance additive 2#), 2 parts of transesterification stabilizer, 3 parts of primary antioxidant 1010, 2 parts of secondary antioxidant 168, and 2 parts of lubricant PETS.
  • the present embodiment provides a kind of high electrical performance PC/polyester material, and it comprises the raw material of following parts by weight: 50 parts of PC, 80 parts of PET, 30 parts of MBS toughening agent M521, 30 parts of organic conductive carbon black (electrical performance auxiliary agent 1#), 40 parts of multi-walled carbon nanotubes (electric performance additive 2#), 5 parts of transesterification stabilizer, 1 part of primary antioxidant 1010, 3 parts of secondary antioxidant 168, and 2 parts of lubricant PETS.
  • the present embodiment provides a kind of high electrical performance PC/polyester material, and it comprises the raw material of following parts by weight: 30 parts of PC, 20 parts of PET, 1 part of MBS toughening agent M521, 5 parts of organic conductive carbon black (electrical performance auxiliary Agent 1#), 5 parts of multi-walled carbon nanotubes (electrical performance additive 2#), 0.1 part of transesterification stabilizer, 0.1 part of primary antioxidant 1010, 0.1 part of secondary antioxidant 168, 0.1 part of lubricant PETS.
  • the present embodiment provides a kind of high electrical performance PC/polyester material, and it comprises the raw material of following parts by weight: 150 parts of PC, 100 parts of PET, 30 parts of MBS toughener M521, 50 parts of organic conductive carbon black (electrical performance auxiliary agent 1#), 50 parts of multi-walled carbon nanotubes (electric performance additive 2#), 5 parts of transesterification stabilizer, 5 parts of primary antioxidant 1010, 5 parts of secondary antioxidant 168, and 5 parts of lubricant PETS.
  • Example 1 Compared with Example 1, in this comparative example, the electrical performance additive 1# was subjected to surface treatment, and the electrical performance additive 2# was subjected to surface treatment and masterbatch treatment, but all were added from the main feeding port of the extruder.
  • Example 1 Compared with Example 1, in this comparative example, the electrical performance additive 1# is not subjected to surface treatment, the electrical performance additive 2# is not subjected to surface treatment and masterbatch treatment, and the electrical performance additive 2# is fed from the side of the extruder The feed port is added.
  • Example 1 Compared with Example 1, in this comparative example, the electrical performance additive 1# was subjected to surface treatment, and the electrical performance additive 2# was not subjected to surface treatment and masterbatch treatment, and was added from the feeding port on the side of the extruder.
  • Example 1 Compared with Example 1, in this comparative example, the electrical performance additive 1# is not subjected to surface treatment, and the electrical performance additive 2# is subjected to surface treatment and masterbatch treatment, and is added from the feeding port on the side of the extruder.
  • Example 2 Compared with Example 1, in this comparative example, only the electrical performance additive 2# that has undergone surface and masterbatch treatment is added.
  • the prepared high electrical performance PC/polyester material has excellent comprehensive performance, and the surface resistivity can be effectively adjusted between 101 and 109 ⁇ , so as to achieve antistatic or conductive effects, and the ISO impact of the system
  • the strength is above 40kJ/m2, which is a high-toughness material.
  • the ISO impact strength retention rate of the system is also above 90%, and the chemical resistance is very excellent.
  • Example 1 Compared with Example 1, it can be seen from Comparative Examples 1 to 6 that a, even though the long-fibrous electrical performance additive 2# has undergone surface and masterbatch treatment, but does not choose side feeding, the electrical performance of the material system is poor, which means It is because the shearing action of the extruder destroys its long fiber structure, and it cannot effectively build a conductive network with the electrical performance additive 1#; b. If all or one of the electrical performance additive 1# and the electrical performance additive 2# are not Surface treatment or electrical performance additive 2# without masterbatch treatment, the electrical and mechanical properties of the material system are poor; c. If only one of the two is added to electrical performance additive 1# and electrical performance additive 2# , the electrical performance of the material system is poor.
  • the present invention prefers two types of electrical performance additives with different shapes and structures to be compounded, and the electrical performance additive 1# with continuous spherical structure or sheet structure has been surface treated with a surface treatment agent, and the electrical performance additive 1# with fiber structure
  • the shape of electrical performance additive 2# is not only surface treated with surface treatment agent, but also pre-prepared into masterbatch with part of PC in the formula after surface treatment, and added to the extruder by side feeding Among the remaining raw material components melted and plasticized in the medium, the electrical performance additive 1# and the electrical performance additive 2# can achieve an effective compounding effect, and effectively build a conductive network in the system to ensure that with a small amount of addition, It endows the polymer material system with excellent electrical properties without significantly sacrificing the mechanical properties of the material system.
  • the polyester in addition to the raw material components specifically selected in the above examples, can also be selected from PBT, PCTG, PLA, PCT and other compounds whose molecular chain structural units are mainly ester groups.
  • Toughening agent can also be selected from ABS high rubber powder, silicone rubber, etc.
  • Electrical performance additive 1# can also be selected from additives with continuous spherical structure such as organic conductive carbon black or conductive graphite , or conductive metal oxides, such as conductive titanium dioxide, conductive tin oxide, etc., which have a sheet structure
  • the electrical performance additive 2# can also be selected from conductive polymers, single-walled carbon nanotubes or carbon fibers, which have fibers Shape assistant
  • transesterification stabilizer can be selected from oligomers/polymers or phosphate compounds with epoxy group graft content above 5%
  • main antioxidant can also be selected from 1076, 245 and other hindered Phenolic antioxidants and auxiliary antioxidants can also be selected from phosphite antioxidants such as PEP36, and lubricants can be selected from polyol esters, silicones, and stearic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及改性塑料技术领域,公开了一种高电性能PC/聚酯材料及其制备方法。该高电性能PC/聚酯材料,包括如下重量份数的各原料组分:PC 30~150、聚酯20~100、增韧剂1~30、电性能助剂1#5~50、电性能助剂2#5~50、酯交换稳定剂0.1~5主抗氧剂0.1~5、辅抗氧剂0.1~5、润滑剂0.1~5,其中,电性能助剂1#具备连续球形结构或片状结构,经过表面处理后,再与除电性能助剂2#外的其余原料组分共混;电性能助剂2#具备纤维形状,依次经过表面处理、用至少部分PC母粒化处理后,再与已熔融塑化的其余原料组分共混。本发明有效使用了不同超结构的电性能助剂,并对其进行了有效的表面处理和母粒化处理,从而可以在更少添加量下赋予材料体系优异电性能,与此同时保证了体系优异的冲击强度。

Description

一种高电性能PC/聚酯材料及其制备方法
说明书本申请要求于2021年07月12日提交中国专利局、申请号为202110785876.1、发明名称为“一种高电性能PC/聚酯材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及改性塑料技术领域,更具体地,涉及一种高电性能PC/聚酯材料及其制备方法。
背景技术
聚碳酸酯(PC)和聚酯(主要是PET、PBT、PLA、PCTG等类型聚酯)复合制备成合金之后,二者可以有效互相取长补短,制备出一类综合性能优异的PC/聚酯合金材料,该类合金材料具备PC的高冲击强度、高尺寸稳定性、燃烧过程中易成碳等优势,同时具备聚酯的高耐化学性能、高可加工流动性能,热变形温度介于两类树脂之间,具体数值可以通过树脂比例进行有效调控。
虽然高分子材料在一些产品领域以其低密度、高可加工性能、无或者较少的后加工流程等优势有效实现了以塑代钢,但绝大部分高分子及其合金材料的电性能都比较差,这就限制了高分子材料在一些要求高电性能产品领域的推广及有效替换金属制件。
单纯将一些导电助剂如炭黑、金属粉、碳纤维等加入高分子材料,一方面这些导电助剂和高分子材料相容性不好,往往界面强度比较差,会大幅度牺牲高分子材料原有的拉伸、弯曲、冲击等性能,降低导电助剂添加量,在保证适当力学性能情况下,高分子材料体系的电性能又得不到质的提升,与此同时这些导电助剂在高分子材料体系的有效分散也是一个难题。此外,PC/聚酯合金加工过程中不可避免的还会发生酯交换反应,该反应控制不理想,体系综合性能也会比较差。
因此,有必要对PC/聚酯材料的配方和制备工艺进行改进。
发明内容
鉴于此,本发明为克服上述现有技术所述的至少一种不足,提供一种高电性能PC/聚酯材料及其制备方法,解决PC/聚酯材料中导电填料用量大,但导电性能改善不足、难以保证适当力学性能的问题。
为了解决上述存在的技术问题,本发明采用下述技术方案:
第一方面,一种高电性能PC/聚酯材料,包括如下重量份数的各原料组分:
Figure PCTCN2022079624-appb-000001
其中,电性能助剂1#具备连续球形结构或片状结构,经过表面处理后,再与除电性能助剂2#外的其余原料组分共混;电性能助剂2#具备纤维形状,依次经过表面处理、用至少部分PC母粒化处理后,再与已熔融塑化的其余原料组分共混。
本发明不仅复配使用了不同结构和形状的电性能助剂,通过其协效作用来有效提升体系的导电性能;更重要的是,还对电性能助剂进行了有效的表面处理,其中电性能助剂2#还进行了母粒化处理,从而有效提升电性能助剂和高分子材料的相容性,同时保证其可以在高分子材料基体中有效分散,由此在较低添加量下,就赋予体系抗静电、导电方面的高电性能。另外通过酯交换稳定剂的合理使用,有效避免高分子材料基体和电性能助剂之间的化学反应,从而保证材料体系综合性能的稳定,由此制备出一类高电性能、高耐化学、高力学性能的优异材料,其表面电阻率可以在101~109Ω之间进行有效调控,ISO冲击强度在40kJ/m2以上,在盐酸和NaOH(均为10%质量分数)溶液中浸泡48h之后,冲击强度保持率还在90%以上。该类材料可以在电子电器、智能家居、智能穿戴、5G等市场有效应用。
本发明中,具备连续球形结构或片状结构的电性能助剂1#与具备纤维形状的电性能助剂2#在形状和尺寸上形成有效的复配效应,在体系构建导电网络,赋予高分子材料较好的导电性能。由于这两类电性能助剂和高分子材料相容性比较差,直接加入高分子材料体系,分散比较困难,同时界面强度较低,会大幅度牺牲材料的力学性能,要在很高添加量下,才能使得材料的导电性能得到质的提升。基于此,在电性能助剂和高分子材料共混之前,本发明一方面分别 对电性能助剂1#和电性能助剂2#进行了有效的表面处理,从而提升了其在高分子材料体系的有效分散以及界面相容性;另一方面对经过表面处理的电性能助剂2#进行母粒化处理,并使其在其他原料组分熔融塑化后再加入其中,保证其长纤结构不被挤出机的剪切力破坏掉,同时还能保证有效分散,从而和电性能助剂1#形成有效的复配效果,以保证在较少添加量下,赋予高分子材料体系优异的电性能,与此同时不明显牺牲材料体系的力学性能。
进一步地,电性能助剂1#和电性能助剂2#采用表面处理剂进行表面处理,表面处理剂为分子量在5000以下的聚乙烯醇、聚乙烯蜡或超支化聚合物。这类处理剂有含量较多的端基或者支化短碳链,其和电性能助剂有较好的界面相互作用,同时和高分子材料极性匹配,也有较好的相互作用。电性能助剂1#与表面处理剂的质量比为80:20~99:1,电性能助剂2#与表面处理剂的质量比优选为80:20~99:1。
进一步地,经过表面处理的电性能助剂2#与PC按质量比5:95~30:70进行母粒化处理。
进一步地,PC为双酚A型聚碳酸酯,其是五大工程塑料之一,具备高冲击强度、高热变形温度、高透光率,在电子电器、建筑、交通、光学等领域有广泛的应用。
进一步地,聚酯为分子链结构单元以酯基为主的聚合物,主要是PET、PBT、PCTG、PLA、PCT等单一聚酯或者共聚酯,其一般是结晶型聚合物,相邻分子链之间的酯基可以形成较强的偶极-偶极相互吸引作用,所以结晶之后分子链堆砌紧密,赋予这类聚合物优异的耐化学性能,另外熔体粘度低,可加工性能较好。
进一步地,增韧剂优选MBS、ABS高胶粉、硅橡胶等类型增韧剂,其和体系相容性较好,用于提升合金的冲击强度。
进一步地,电性能助剂1#优选有机导电炭黑或导电石墨这类具备连续球形结构的助剂,或者导电金属氧化物,如导电二氧化钛、导电氧化锡等这类具备片状结构的助剂。
进一步地,电性能助剂2#是导电聚合物、单壁碳纳米管、多壁碳纳米管或碳纤维这类具备纤维形状的助剂。
进一步地,酯交换稳定剂优选环氧基团接枝含量在5%以上的齐聚物/聚合物、或磷酸盐类化合物,其用于抑制PC和聚酯之间的化学反应,从而保证体 系的稳定性。
进一步地,主抗氧剂优选1010、1076、245等受阻酚类抗氧剂,辅抗氧剂优选168、PEP36等亚磷酸酯类抗氧剂,抗氧剂用于抑制PC和聚酯在熔融加工过程中发生老化反应,保证材料的性能和外观。
进一步地,润滑剂优选多元醇酯类、硅酮类和硬脂酸类等,其可以降低PC和聚酯在熔融共混过程中的熔体粘度,另外可以保证PC/聚酯材料在后续加工成型过程中具备较好的脱模性能。
第二方面,一种如上所述高电性能PC/聚酯材料的制备方法,包括如下步骤:
S1.以PC碳粉为粘结载体,用表面处理剂分别对电性能助剂1#和电性能助剂2#进行表面处理,得到表面预后的电性能助剂1#和表面预后的电性能助剂2#;
S2.用高电性能PC/聚酯材料配方中的部分PC对步骤S1所得表面预后的电性能助剂2#进行母粒化处理,得电性能助剂2#母粒;
S3.按高电性能PC/聚酯材料配方依次加入PC、聚酯、增韧剂、步骤S1所得表面预后的电性能助剂1#、酯交换稳定剂、主抗氧剂、辅抗氧剂、润滑剂,预混,得预混料;
S4.将步骤S3所得预混料熔融塑化,加入步骤S2所得电性能助剂2#母粒,熔融共混造粒,得高电性能PC/聚酯材料。
进一步地,步骤S1中,表面处理为:电性能助剂1#和电性能助剂2#分别与PC碳粉、表面处理剂在260~280℃、300~500rpm下密炼混合10~30min,破碎造粒。
进一步地,步骤S2中,母粒化处理为:表面预后的电性能助剂2#与PC先在300~1000rpm偏心震荡打粉机中干混5~30min,再在剪切强度弱、分散效果强、各段温度270~300℃、主机转速300~600rpm的双螺杆挤出机中熔融造粒。
进一步地,步骤S3中,预混为:先在2000~5000rpm速度下高速搅拌1~10min,再在500~1000rpm速度下低速搅拌1~5min,最后在300~1000rpm下出料。该预混过程在高速混合机中进行。
进一步地,步骤S4在双螺杆挤出机中进行,预混料从双螺杆挤出机的主喂料口加入,电性能助剂2#母粒从双螺杆挤出机的侧喂料口加入。其中,双螺杆挤出机的主机转速为300~600rpm,各区温度控制在240~280℃。
需要说明的是,双螺杆挤出机是依靠螺杆旋转产生的压力及剪切力,使得物料可以充分进行塑化以及均匀混合,最后通过机头口模挤出成型。物料通常从挤出机的主喂料口进料,在挤出机的主喂料口和机头之间往往还设有侧喂料口,本发明特别使电性能助剂2#母粒以侧喂的方式从螺杆挤出机的侧喂料口进料,以减少螺杆对电性能助剂2#母粒的剪切作用,大大降低对电性能助剂2#母粒长纤结构的破坏,从而使得电性能助剂2#能够与电性能助剂1#有效构建导电网络。
进一步地,高电性能PC/聚酯材料的制备方法,包括如下步骤:
S1.以PC碳粉为粘结载体,用表面处理剂分别对电性能助剂1#和电性能助剂2#进行表面处理:在260~280℃、主机转速300~500rpm下密炼混合10~30min,破碎造粒,得到表面预后的电性能助剂1#和表面预后的电性能助剂2#;
S2.用高电性能PC/聚酯材料配方中的部分PC对步骤S1所得表面预后的电性能助剂2#进行母粒化处理:先在300~1000rpm偏心震荡打粉机中干混5~30min,再在剪切强度弱、分散效果强、各段温度270~300℃、主机转速300~600rpm的双螺杆挤出机中熔融造粒,得电性能助剂2#母粒;
S3.按高电性能PC/聚酯材料配方依次向高速混合机中加入PC、聚酯、增韧剂、步骤S1所得表面预后的电性能助剂1#、酯交换稳定剂、主抗氧剂、辅抗氧剂、润滑剂,预混:先在2000~5000rpm速度下高速搅拌1~10min,再在500~1000rpm速度下低速搅拌1~5min,最后在300~1000rpm下出料,得预混料;
S4.将步骤S3所得预混料从主喂料口加入双螺杆挤出机中熔融塑化,从该双螺杆挤出机的侧喂料口加入步骤S2所得电性能助剂2#母粒,在主机转速300~600rpm、各区温度控制在240~280℃下熔融共混造粒,得高电性能PC/聚酯材料。
此外,本发明提供的高电性能PC/聚酯材料对后续的成型加工方法没有特别地限定,可以采用常规的成型工艺,例如注塑成型、压塑成型等。
本发明与现有技术相比较有如下有益效果:
1、本发明所公布的高电性能PC/聚酯材料,有效使用了不同超结构的电性能助剂,并对其进行了有效的表面处理和母粒化处理,从而可以在更少添加量下赋予材料体系优异电性能,与此同时保证了体系优异的冲击强度;
2、本发明所公布的高电性能PC/聚酯材料,可通过各种常规方式加工成型, 具备优异的抗静电或导电性能,同时是一种高韧性材料,兼具优异的耐化学性能;
3、由本发明方案制备的高电性能PC/聚酯材料,实测综合性能优异,可用于各类电子电器、家电、智能穿戴、5G等领域,增加各类产品的附加值,市场前景好。
具体实施方式
为了让本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种高电性能PC/聚酯材料,聚酯以PET基体为例,其包括以下重量份数的原料:100份PC,40份PET,20份MBS增韧剂M521,20份有机导电炭黑(电性能助剂1#),10份多壁碳纳米管(电性能助剂2#),1份酯交换稳定剂,0.3份主抗氧剂1010,0.5份辅抗氧剂168,1份润滑剂PETS。
该高电性能PC/聚酯材料的制备方法包括如下步骤:
S1.电性能助剂表面处理
以分子量在5000以下的聚乙烯蜡为表面处理剂,以PC碳粉为粘结载体,分别将电性能助剂1#和电性能助剂2#进行表面处理,具体为:按电性能助剂(电性能助剂1#或电性能助剂2#)与聚乙烯蜡的质量比为95:5,在密炼机中加入电性能助剂(电性能助剂1#或电性能助剂2#)、聚乙烯蜡和10份PC碳粉,在温度270℃、主机转速300rpm下密炼混合15min,混合之后破碎造粒,得到表面预后的电性能助剂1#和表面预后的电性能助剂2#。
S2.电性能助剂2#母粒化处理
按表面预后的电性能助剂2#与PC质量比30:70,将表面预后的电性能助剂2#、PC称量之后加入偏心震荡打粉机,在转速500rpm下混合20min,将混合好的物料加入双螺杆挤出机熔融造粒,挤出机螺杆选择剪切强度弱但分散效果强的螺纹元件,挤出机各段温度270~280℃之间,主机转速400rpm,制得电性能助剂2#母粒。
S3.制备预混料
按高电性能PC/聚酯材料的原料配比,将PC、聚酯、增韧剂、步骤S1制得表面预后的电性能助剂1#、酯交换稳定剂、主抗氧剂、辅抗氧剂、润滑剂依次加入高速混合机中,先在3000rpm速度下高速搅拌6min,再在1000rpm速 度下低速搅拌5min,最后在300rpm下出料,制得预混料。
S4.制备高电性能PC/聚酯材料
按高电性能PC/聚酯材料的原料配比,将步骤S3制得的预混料由主喂料口加入双螺杆挤出机熔融塑化,将步骤S2制得的电性能助剂2#母粒由侧喂料口加入双螺杆挤出机,与经过熔融塑化的预混料熔融造粒,挤出机主机转速400rpm,各区温度控制在250~270℃区间内,制得高电性能PC/聚酯材料。
上述制备方法中,步骤S2和S3可调换顺序。
除了配方,实施例2~6中电性能助剂的预处理(包括电性能助剂的表面处理和电性能助剂2#的母粒化处理)以及材料的挤出加工工艺基本上同实施例1。
实施例2
本实施例提供一种高电性能PC/聚酯材料,其包括以下重量份数的原料:80份PC,100份PET,15份MBS增韧剂M521,30份有机导电炭黑(电性能助剂1#),20份多壁碳纳米管(电性能助剂2#),3份酯交换稳定剂,0.2份主抗氧剂1010,0.1份辅抗氧剂168,2份润滑剂PETS。
实施例3
本实施例提供一种高电性能PC/聚酯材料,其包括以下重量份数的原料:120份PC,60份PET,10份MBS增韧剂M521,10份有机导电炭黑(电性能助剂1#),8份多壁碳纳米管(电性能助剂2#),2份酯交换稳定剂,3份主抗氧剂1010,2份辅抗氧剂168,2份润滑剂PETS。
实施例4
本实施例提供一种高电性能PC/聚酯材料,其包括以下重量份数的原料:50份PC,80份PET,30份MBS增韧剂M521,30份有机导电炭黑(电性能助剂1#),40份多壁碳纳米管(电性能助剂2#),5份酯交换稳定剂,1份主抗氧剂1010,3份辅抗氧剂168,2份润滑剂PETS。
实施例5
本实施例提供一种高电性能PC/聚酯材料,其包括以下重量份数的原料:30份PC,20份PET,1份MBS增韧剂M521,5份有机导电炭黑(电性能助剂1#),5份多壁碳纳米管(电性能助剂2#),0.1份酯交换稳定剂,0.1份主抗氧剂1010,0.1份辅抗氧剂168,0.1份润滑剂PETS。
实施例6
本实施例提供一种高电性能PC/聚酯材料,其包括以下重量份数的原料: 150份PC,100份PET,30份MBS增韧剂M521,50份有机导电炭黑(电性能助剂1#),50份多壁碳纳米管(电性能助剂2#),5份酯交换稳定剂,5份主抗氧剂1010,5份辅抗氧剂168,5份润滑剂PETS。
除了电性能助剂的预处理(包括电性能助剂的表面处理和电性能助剂2#的母粒化处理)及其喂料方式,对比例1~6配方中的其他原料组分及其添加比例、挤出加工工艺基本上同实施例1。
对比例1
与实施例1相比,本对比例中电性能助剂1#进行表面化处理,电性能助剂2#进行表面化和母粒化处理,但全部由挤出机主喂料口加入。
对比例2
与实施例1相比,本对比例中电性能助剂1#不进行表面处理,电性能助剂2#不进行表面处理和母粒化处理,电性能助剂2#由挤出机侧喂料口加入。
对比例3
与实施例1相比,本对比例中电性能助剂1#进行表面处理,电性能助剂2#不进行表面处理和母粒化处理,由挤出机侧喂料口加入。
对比例4
与实施例1相比,本对比例中电性能助剂1#不进行表面处理,电性能助剂2#进行表面处理并母粒化处理,由挤出机侧喂料口加入。
对比例5
与实施例1相比,本对比例中只加入经过表面和母粒化处理的电性能助剂2#。
对比例6
与实施例1相比,本对比例中只加入经过表面化处理的电性能助剂1#。
实施例1~4以及对比例1~6的配方如下表所示。
Figure PCTCN2022079624-appb-000002
Figure PCTCN2022079624-appb-000003
对实施例1~4和对比例1~6制备得到的PC/聚酯材料及注塑样条进行性能检测,检测结果如下表所示。
Figure PCTCN2022079624-appb-000004
由以上各实施例可以看到,制备的高电性能PC/聚酯材料综合性能优异,表面电阻率可以在101~109Ω之间进行有效调控,从而实现抗静电或导电的效果,体系的ISO冲击强度在40kJ/m2以上,属于高韧性材料,经过盐酸和NaOH溶液浸泡之后,体系的ISO冲击强度保持率也在90%以上,耐化学性能非常优 异。
和实施例1对比,由对比例1~6可以看到,a、长纤维状电性能助剂2#即使经过表面和母粒化处理,但不选择侧喂,材料体系电性能较差,这是因为挤出机剪切作用破坏了其长纤维结构,其不能和电性能助剂1#有效构建导电网络;b、电性能助剂1#和电性能助剂2#如果全部或者之一不进行表面处理或电性能助剂2#不进行母粒化处理,材料体系电性能和力学性能均较差;c、电性能助剂1#和电性能助剂2#如果只添加二者之一,材料体系电性能较差。
由此可见,本发明优选形状结构不同的两类电性能助剂进行复配,并用表面处理剂对具备连续球形结构或片状结构的电性能助剂1#进行了表面处理,而对具备纤维形状的电性能助剂2#,不仅用表面处理剂进行了表面处理,而且在表面处理后用配方中的部分PC预先将其制备成母粒,并以侧喂的方式添加到在挤出机中熔融塑化的其余原料组分中,使得电性能助剂1#和电性能助剂2#能够达到有效的复配效果,在体系中有效构建导电网络,以保证在较少添加量下,赋予高分子材料体系优异的电性能,与此同时不明显牺牲材料体系的力学性能。
此外,本发明高电性能PC/聚酯材料配方中,除了上述实施例具体选用的原料组分,聚酯还可以选自PBT、PCTG、PLA、PCT等分子链结构单元以酯基为主的单一聚酯或者共聚酯;增韧剂还可以选自ABS高胶粉、硅橡胶等;电性能助剂1#还可以选自有机导电炭黑或导电石墨这类具备连续球形结构的助剂,或者导电金属氧化物,如导电二氧化钛、导电氧化锡等这类具备片状结构的助剂;电性能助剂2#还可以选自导电聚合物、单壁碳纳米管或碳纤维这类具备纤维形状的助剂;酯交换稳定剂可以选自环氧基团接枝含量在5%以上的齐聚物/聚合物、或磷酸盐类化合物;主抗氧剂还可以选自1076、245等受阻酚类抗氧剂,辅抗氧剂还可以选自PEP36等亚磷酸酯类抗氧剂,润滑剂可以选自多元醇酯类、硅酮类和硬脂酸类等。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种高电性能PC/聚酯材料,其特征在于,包括如下重量份数的各原料组分:
    Figure PCTCN2022079624-appb-100001
    其中,所述电性能助剂1#具备连续球形结构或片状结构,经过表面处理后,再与除电性能助剂2#外的其余原料组分共混;所述电性能助剂2#具备纤维形状,依次经过表面处理、用至少部分所述PC母粒化处理后,再与已熔融塑化的其余原料组分共混。
  2. 根据权利要求1所述的高电性能PC/聚酯材料,其特征在于,所述电性能助剂1#和电性能助剂2#采用表面处理剂进行表面处理,所述表面处理剂为分子量在5000以下的聚乙烯醇、聚乙烯蜡或超支化聚合物中的至少一种。
  3. 根据权利要求2所述的高电性能PC/聚酯材料,其特征在于,所述电性能助剂1#与表面处理剂的质量比为80:20~99:1;和/或电性能助剂2#与表面处理剂的质量比为80:20~99:1。
  4. 根据权利要求1所述的高电性能PC/聚酯材料,其特征在于,经过表面处理的所述电性能助剂2#与PC按质量比5:95~30:70进行母粒化处理。
  5. 根据权利要求1所述的高电性能PC/聚酯材料,其特征在于,
    所述PC为双酚A型聚碳酸酯;和/或
    所述聚酯为分子链结构单元以酯基为主的聚合物;和/或
    所述增韧剂为MBS、ABS高胶粉或硅橡胶中的至少一种;和/或
    所述电性能助剂1#为有机导电炭黑、导电石墨或导电金属氧化物中的至少一种;和/或
    所述电性能助剂2#为导电聚合物、单壁壁碳纳米管、多壁碳纳米管或碳纤维中的至少一种;和/或
    所述酯交换稳定剂为环氧基团接枝含量在5%以上的齐聚物/聚合物或磷酸盐类化合物;和/或
    所述主抗氧剂为受阻酚类抗氧剂;和/或
    所述辅抗氧剂为亚磷酸酯类抗氧剂;和/或
    所述润滑剂为多元醇酯类、硅酮类或硬脂酸类润滑剂中的至少一种。
  6. 一种如权利要求1~5任一项所述高电性能PC/聚酯材料的制备方法,其特征在于,包括如下步骤:
    S1.以PC碳粉为粘结载体,用表面处理剂分别对电性能助剂1#和电性能助剂2#进行表面处理,得到表面预后的电性能助剂1#和表面预后的电性能助剂2#;
    S2.用高电性能PC/聚酯材料配方中的部分PC对步骤S1所得表面预后的电性能助剂2#进行母粒化处理,得电性能助剂2#母粒;
    S3.按高电性能PC/聚酯材料配方依次加入PC、聚酯、增韧剂、步骤S1所得表面预后的电性能助剂1#、酯交换稳定剂、主抗氧剂、辅抗氧剂、润滑剂,预混,得预混料;
    S4.将步骤S3所得预混料熔融塑化,加入步骤S2所得电性能助剂2#母粒,熔融共混造粒,得所述高电性能PC/聚酯材料。
  7. 根据权利要求6所述的高电性能PC/聚酯材料的制备方法,其特征在于,步骤S1中,所述表面处理为所述电性能助剂1#和电性能助剂2#分别与PC碳粉、表面处理剂在260~280℃、转速300~500rpm下密炼混合10~30min,破碎造粒。
  8. 根据权利要求6所述的高电性能PC/聚酯材料的制备方法,其特征在于,步骤S2中,所述母粒化处理为所述表面预后的电性能助剂2#与PC先在转速300~1000rpm偏心震荡打粉机中干混5~30min,再在剪切强度弱、分散效果强、各段温度270~300℃、主机转速300~600rpm的双螺杆挤出机中熔融造粒。
  9. 根据权利要求6所述的高电性能PC/聚酯材料的制备方法,其特征在于,步骤S3中,所述预混为先在转速2000~5000rpm下高速搅拌1~10min,再在转速500~1000rpm下低速搅拌1~5min,最后在转速300~1000rpm下出料。
  10. 根据权利要求6所述的高电性能PC/聚酯材料的制备方法,其特征在于,步骤S4在双螺杆挤出机中进行,所述预混料从双螺杆挤出机的主喂料口加入,所述电性能助剂2#母粒从双螺杆挤出机的侧喂料口加入;其中,双螺杆挤出机的主机转速为300~600rpm,各区温度控制在240~280℃。
PCT/CN2022/079624 2021-07-12 2022-03-07 一种高电性能pc/聚酯材料及其制备方法 WO2023284311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110785876.1A CN115612270A (zh) 2021-07-12 2021-07-12 一种高电性能pc/聚酯材料及其制备方法
CN202110785876.1 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284311A1 true WO2023284311A1 (zh) 2023-01-19

Family

ID=84855891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079624 WO2023284311A1 (zh) 2021-07-12 2022-03-07 一种高电性能pc/聚酯材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115612270A (zh)
WO (1) WO2023284311A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187658A (ja) * 2003-12-25 2005-07-14 Wintech Polymer Ltd 樹脂組成物及びエレクトロニクス分野の搬送用治具
CN103013075A (zh) * 2012-11-16 2013-04-03 深圳市科聚新材料有限公司 Pet复合材料、其制备方法和应用
CN103443204A (zh) * 2011-01-18 2013-12-11 巴斯夫欧洲公司 热塑性模塑组合物
KR20160083365A (ko) * 2014-12-30 2016-07-12 코오롱플라스틱 주식회사 폴리에스터 수지 조성물 및 이를 이용한 플라스틱 성형체 제조
CN106751676A (zh) * 2016-12-23 2017-05-31 东莞市奥能工程塑料有限公司 一种高强度抗静电合金及其制备方法
CN108117727A (zh) * 2017-12-19 2018-06-05 罗洪梅 一种高刚高韧耐热低翘曲导电pc/pct合金及其制备方法
CN111808412A (zh) * 2020-07-29 2020-10-23 江苏新奥碳纳米材料应用技术研究院有限公司 电子载带用石墨烯增强导电pc/pbt合金
CN112175378A (zh) * 2020-11-09 2021-01-05 段嘉敏 一种环保耐磨高分子材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384213A (zh) * 2018-03-22 2018-08-10 疆合材料科技(苏州)有限公司 一种高导电率的聚碳酸酯复合材料及其制备方法
CN109265955B (zh) * 2018-08-28 2020-11-10 佳易容相容剂江苏有限公司 一种高抗冲高耐候pc/pbt树脂组合物及其制备方法
CN109825041B (zh) * 2018-12-30 2020-03-20 上海锦湖日丽塑料有限公司 一种可抛光的与金属连接的塑料复合材料及其制备方法
CN112457646A (zh) * 2020-11-09 2021-03-09 广州视源电子科技股份有限公司 一种高导热导电pc/abs复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187658A (ja) * 2003-12-25 2005-07-14 Wintech Polymer Ltd 樹脂組成物及びエレクトロニクス分野の搬送用治具
CN103443204A (zh) * 2011-01-18 2013-12-11 巴斯夫欧洲公司 热塑性模塑组合物
CN103013075A (zh) * 2012-11-16 2013-04-03 深圳市科聚新材料有限公司 Pet复合材料、其制备方法和应用
KR20160083365A (ko) * 2014-12-30 2016-07-12 코오롱플라스틱 주식회사 폴리에스터 수지 조성물 및 이를 이용한 플라스틱 성형체 제조
CN106751676A (zh) * 2016-12-23 2017-05-31 东莞市奥能工程塑料有限公司 一种高强度抗静电合金及其制备方法
CN108117727A (zh) * 2017-12-19 2018-06-05 罗洪梅 一种高刚高韧耐热低翘曲导电pc/pct合金及其制备方法
CN111808412A (zh) * 2020-07-29 2020-10-23 江苏新奥碳纳米材料应用技术研究院有限公司 电子载带用石墨烯增强导电pc/pbt合金
CN112175378A (zh) * 2020-11-09 2021-01-05 段嘉敏 一种环保耐磨高分子材料的制备方法

Also Published As

Publication number Publication date
CN115612270A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN113088055A (zh) 一种高性能聚乙醇酸基复合材料及其制备方法
CN107099077B (zh) 导电树脂组合物的制备方法
JPH022898B2 (zh)
CN113637299B (zh) 一种耐热耐冲击聚乳酸复合材料及其制备方法与应用
CN102643528A (zh) 一种高温防静电聚苯醚复合工程材料及其制备方法
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
JP4869615B2 (ja) 微細炭素繊維含有樹脂組成物の製造方法
TW202244117A (zh) 用於射出成型的聚酯樹脂組成物、其製備方法及射出成型品
WO2023284311A1 (zh) 一种高电性能pc/聚酯材料及其制备方法
JP4404702B2 (ja) カーボンナノ線条体分散樹脂組成物の製造方法
CN107312304B (zh) 一种二维增强的聚碳酸酯复合材料及其制备方法
CN115572477B (zh) 一种高导热尼龙复合材料及其制备方法
CN114350129A (zh) 一种全生物基高降解复合材料及其制备方法
CN100532451C (zh) 一种高冲击性增强pet组合物及其制备方法
CN113831641A (zh) 低线性膨胀系数和高表面硬度的聚丙烯材料复合材料及其制备方法
JP2003103517A (ja) 熱可塑性樹脂組成物の製造方法
JP4399525B2 (ja) カーボンナノ線条体分散樹脂組成物の製造方法
CN104419153A (zh) 抗静电增韧增强级pbt和pet合金
CN107739497B (zh) 一种增强超静电聚酯组合物及其制备方法
EP4108716A1 (en) Electrically conductive compositions including carbon fiber-filled semi-crystalline polymers
CN114410086B (zh) 一种通用型生物可降解塑料抗菌母粒及其制备方法和应用
CN114133736B (zh) 一种工程塑料用母粒及其制备方法
CN117986817A (zh) 一种pbat-石墨烯强韧化复合材料及其制备方法和应用
KR102084641B1 (ko) 전도성 수지 조성물 및 그 제조방법
CN1274761C (zh) 一种聚对苯二甲酸乙二醇酯组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE