WO2023282608A1 - 다기능 정공층 화합물 및 이를 이용한 유기발광소자 - Google Patents

다기능 정공층 화합물 및 이를 이용한 유기발광소자 Download PDF

Info

Publication number
WO2023282608A1
WO2023282608A1 PCT/KR2022/009726 KR2022009726W WO2023282608A1 WO 2023282608 A1 WO2023282608 A1 WO 2023282608A1 KR 2022009726 W KR2022009726 W KR 2022009726W WO 2023282608 A1 WO2023282608 A1 WO 2023282608A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
mol
layer
substituted
Prior art date
Application number
PCT/KR2022/009726
Other languages
English (en)
French (fr)
Inventor
현서용
윤석근
김현진
장준영
Original Assignee
(주)피엔에이치테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엔에이치테크 filed Critical (주)피엔에이치테크
Publication of WO2023282608A1 publication Critical patent/WO2023282608A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom

Definitions

  • the present invention relates to a compound employed in a hole layer of an organic light emitting device, and more particularly, as a multi-functional HTL (Multi-functional HTL) material compound having a fused structure capable of performing both p-doping and hole transport functions.
  • the present invention relates to an organic light emitting device comprising a multi-functional single hole-layer (MFHL) by using a multi-functional single hole-layer (MFHL), capable of driving at low voltage, and significantly improving luminous efficiency and lifetime characteristics.
  • MFHL multi-functional single hole-layer
  • MFHL multi-functional single hole-layer
  • organic light emitting diodes that are self-emitting and can be driven at low voltage have excellent viewing angles and contrast ratios, do not require a backlight, are lightweight and thin, are advantageous in terms of power consumption, and have a range of color reproduction. It is attracting attention as a next-generation display device because of its wide area.
  • An organic light emitting device is a device that emits light as electrons and holes form pairs when charge is injected into the light emitting layer formed between an electron injection electrode (cathode) and a hole injection electrode (anode), and then disappears. It is a transparent substrate that can be bent like plastic. In addition to being able to form elements on top of it, it can be driven at a low voltage of 10 V or less compared to plasma display panels or inorganic light emitting displays, has the advantage of relatively low power consumption and excellent color sense. In addition, organic light emitting diodes can represent three colors of green, blue, and red, and thus have become a subject of much interest as a next-generation rich color display element.
  • an organic light emitting device In the organic light emitting device, processes for emitting light, that is, charge injection, charge transport, photoexciton formation, and light generation, are divided into roles by using different organic layers. Accordingly, an organic light emitting device having a structure that includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. between the anode and the cathode or is subdivided into more layers is used, and the organic light emitting device has the above characteristics. In order to achieve this, it is necessary that the materials that make up the organic layer in the device, such as hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, and electron blocking materials, be backed by stable and efficient materials. However, the development of an organic layer material for an efficient organic light emitting device has not been sufficiently achieved.
  • doping the organic material forms negative conductivity, so even a thick transport layer can lower the voltage drop in the transport layer, and the thin space charge layer formed by raising the doping level enables effective charge injection by tunneling.
  • doping the hole transport layer it is possible to control the high conductivity of the hole transport layer and the charge density of charge carriers, and eventually, the conductivity of the organic layer is improved to improve the characteristics of the device, so that a device with a low driving voltage and high efficiency can be implemented.
  • the present invention is intended to solve the above problems, and is a multi-functional HTL (Multi-functional HTL) material of a fused structure that can be obtained together with p-doping and hole transport without separately p-doping for the hole transport material.
  • a compound is provided, and an organic light emitting device constituting a multi-functional single hole-layer (MFHL) is provided using the compound, thereby stably realizing characteristics such as improved luminous efficiency and long lifespan, and is equivalent to or equivalent to a conventional device. It is intended to provide an organic light emitting device capable of implementing low voltage driving at a level higher than that.
  • the present invention provides an organic light emitting device including a compound represented by [Chemical Formula I] and one or more compounds thereof in an organic layer.
  • the compound of [Formula I] introduces each moiety (moiety) having a p-doping function and hole transport characteristics into one structure, that is, a hole transport moiety (Hole Transportation Unit) and p-doping It is characterized in that it is a multi-functional HTL (Multi-functional HTL) material compound containing a fused moiety (p-Dopant Unit).
  • a hole transport moiety Hole Transportation Unit
  • p-doping It is characterized in that it is a multi-functional HTL (Multi-functional HTL) material compound containing a fused moiety (p-Dopant Unit).
  • the present invention provides an organic light emitting device comprising an anode, a cathode, and a plurality of organic layers disposed in contact with each other between the anode and the cathode, and including the compound according to the present invention in the plurality of organic layers.
  • the plurality of organic layers are composed of a plurality of layers having various characteristics such as an electron layer, a light emitting layer, and a hole layer.
  • the hole layer is a multi-functional single hole-layer. , MFHL), characterized by employing a multifunctional HTL (Multi-functional HTL) material compound according to the present invention including a hole transport unit and a p-doping moiety (p-Dopant Unit) .
  • the compound according to the present invention is a multi-functional HTL (Multi-functional HTL) material compound in which p-doping function and hole transport characteristics are fused into one, and is characterized in that it can constitute a single hole layer. Compared to conventional devices, it can improve hole transport without additional p-doping, and can realize improved luminous efficiency and low-voltage drive at a level equivalent to or higher than conventional devices, and can be usefully used in various display devices. A process having a separate p-type layer or a p-doping process is not required, so device manufacturing process efficiency can be improved.
  • Multi-functional HTL Multi-functional HTL
  • One aspect of the present invention relates to a compound represented by the following [Formula I], wherein a hole transporting moiety and a p-doping moiety (p-Dopant Unit) are formed as one based on the linking group (L). It is characterized in that it is included in the structure.
  • R 1 to R 4 are the same as or different from each other, and each independently represents a halogen group, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted halogenated alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted halogenated alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms , It is selected from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms.
  • R 1 and R 2 , R 3 and R 4 may be connected to each other to form an alicyclic or aromatic monocyclic or polycyclic ring, and the carbon source of the alicyclic or aromatic monocyclic or polycyclic ring formed above.
  • the group may be substituted with any one or more heteroatoms selected from N, S and O.
  • L is a single bond or is selected from a substituted or unsubstituted arylene group having 6 to 30 carbon atoms and a substituted or unsubstituted heteroarylene group having 2 to 30 carbon atoms, and n is an integer of 0 to 3, respectively, wherein n is 2 In the above case, a plurality of L's are the same as or different from each other.
  • Ar 1 and Ar 2 are the same as or different from each other, and are each independently selected from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, and o and p are each It is an integer of 1 to 3, and when o and p are 2 or more, respectively, a plurality of Ar 1 to Ar 2 are the same as or different from each other.
  • Ar 1 and Ar 2 may be connected to each other to form an alicyclic or aromatic monocyclic or polycyclic ring, and the carbon atom of the formed alicyclic or aromatic monocyclic or polycyclic ring is selected from N, S, and O. It may be substituted with any one or more heteroatoms.
  • R 1 to R 4 , L, Ar 1 and Ar 2 'substituted or unsubstituted' means that R 1 to R 4 , L, Ar 1 and Ar 2 are deuterium, a halogen group, Cyano group, nitro group, hydroxyl group, amine group, alkyl group, halogenated alkyl group, deuterated alkyl group, cycloalkyl group, heterocycloalkyl group, alkoxy group, halogenated alkoxy group, deuterated alkoxy group, aryl group, heteroaryl group, It means that it is substituted with one or two or more substituents selected from the group consisting of an alkylsilyl group and an arylsilyl group, is substituted with a substituent in which two or more substituents are connected, or does not have any substituent.
  • a substituted aryl group refers to a phenyl group, a biphenyl group, a naphthalene group, a fluorenyl group, a pyrenyl group, a phenanthrenyl group, a perylene group, a tetracenyl group, an anthracenyl group, etc. means it has been
  • the substituted heteroaryl group refers to a pyridyl group, a thiophenyl group, a triazine group, a quinoline group, a phenanthroline group, an imidazole group, a thiazole group, an oxazole group, a carbazole group, and condensed heterocyclic groups thereof, such as a benzquinoline group.
  • a benzimidazole group, a benzoxazole group, a benzthiazole group, a benzcarbazole group, a dibenzothiophenyl group, a dibenzofuran group, etc. are substituted with the above substituents.
  • the compound represented by [Chemical Formula I] according to the present invention can be employed in various organic layers in an organic light emitting device, but according to a preferred embodiment, it can be used alone as a material employed in a multifunctional single hole layer in an organic light emitting device. .
  • P-type refers to the characteristics of a p-type semiconductor, and p-type is a characteristic of injecting or transporting holes through the highest occupied molecular orbital (HOMO) energy level, which is a characteristic of a material in which the mobility of holes is greater than that of electrons is defined as P-type doping means doping to have such p-type characteristics.
  • HOMO occupied molecular orbital
  • the compound represented by [Formula 1] is a multifunctional HTL (Multi functional HTL) material compound, which includes both a hole transport structure and a p-doped structure and has both a hole transport function and a hole injection moiety.
  • the hole injection function and the hole transport function are fused to form an organic light emitting device composed of a multi-functional single hole-layer (MFHL) without forming a hole transport layer and a hole injection layer, respectively. It can be implemented, and it is possible to satisfy the low voltage driving and high efficiency characteristics of the organic light emitting device.
  • MFHL multi-functional single hole-layer
  • the alkyl group may be a straight chain or branched chain, and specific examples include a methyl group, an ethyl group, a propyl group, an n-propyl group, an isopropyl group, a butyl group, an n-butyl group, an isobutyl group, a tert-butyl group , sec-butyl group, 1-methyl-butyl group, 1-ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1 -Methylpentyl group, 2-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhex
  • the alkoxy group may be straight chain or branched chain. Specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, i-propyloxy group, n-butoxy group, isobutoxy group, tert-butoxy group, sec-butoxy group, n-pentyloxy group , Neopentyloxy group, isopentyloxy group, n-hexyloxy group, 3,3-dimethylbutyloxy group, 2-ethylbutyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group , benzyloxy group, p-methylbenzyloxy group, etc., but is not limited thereto.
  • the alkyl group or alkoxy group may be a deuterated alkyl group or alkoxy group, a halogenated alkyl group, or an alkoxy group substituted with deuterium or a halogen group.
  • the aryl group may be monocyclic or polycyclic, and the number of carbon atoms is not particularly limited, but is preferably 6 to 30, and also includes a polycyclic aryl group structure in which cycloalkyl or the like is fused, and a monocyclic aryl group
  • examples of include a phenyl group, a biphenyl group, a terphenyl group, a stilbene group, and the like
  • examples of the polycyclic aryl group include a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a tetracenyl group, and a chrysenyl group.
  • fluorenyl group, acenaphthacenyl group, triphenylene group, fluoranthrene group, etc. but the scope of the present invention is not limited only to these examples.
  • the fluorenyl group is a structure in which two ring organic compounds are linked through one atom, for example , , etc.
  • the fluorenyl group includes the structure of an open fluorenyl group, where the open fluorenyl group is a structure in which one ring compound is disconnected from a structure in which two ring organic compounds are connected through one atom. , for example , etc.
  • the carbon atom of the ring may be substituted with any one or more heteroatoms selected from N, S and O, for example , , , etc.
  • the heteroaryl group is a heterocyclic group containing O, N or S as a heteroatom, and the number of carbon atoms is not particularly limited, but preferably has 3 to 30 carbon atoms, and is a polycyclic group in which cycloalkyl or heterocycloalkyl is fused. It includes a heteroaryl group structure, and specific examples thereof in the present invention include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, and a bipyridyl group.
  • pyrimidyl group triazine group, triazole group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzooxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, Dibenzofuranyl group, phenanthroline group, thiazolyl group, isoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group, phenoxazinyl
  • the amine group may be -NH 2 , an alkylamine group, an arylamine group, a heteroarylamine group, an arylheteroarylamine group, and the like, and the aryl (heteroaryl)amine group is substituted with an aryl group and/or a heteroaryl group.
  • the alkylamine group means an amine substituted with an alkyl
  • examples of the aryl (heteroaryl) amine group include a substituted or unsubstituted mono aryl (heteroaryl) amine group, a substituted or unsubstituted diaryl ( There is a heteroaryl) amine group or a substituted or unsubstituted triaryl (heteroaryl) amine group, and the aryl group and the heteroaryl group in the aryl (heteroaryl) amine group are the same as the definitions of the aryl group and the heteroaryl group, and the above
  • the alkyl group of the alkylamine group is also the same as the definition of the above alkyl group.
  • the arylamine group includes a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, a 3-methyl-phenylamine group, a 4-methyl-naphthylamine group, and a 2-methyl-biphenyl group.
  • the silyl group is an unsubstituted silyl group or an alkylsilyl group or an arylsilyl group substituted with an alkyl group or an aryl group, and specific examples of such a silyl group include trimethylsilyl, triethylsilyl, triphenylsilyl, and trimethylsilyl. and the like, but are not limited thereto.
  • the cycloalkyl group refers to and includes monocyclic, polycyclic and spiroalkyl radicals, preferably containing ring carbon atoms of 3 to 20 carbon atoms, cyclopropyl, cyclopentyl, cyclohexyl, bicyclo heptyl, spirodecyl, spiêtcyl, adamantyl, and the like, and the cycloalkyl group may be optionally substituted.
  • heterocycloalkyl groups refer to and include aromatic and non-aromatic cyclic radicals containing one or more heteroatoms, one or more heteroatoms being O, S, N, P, B, Si, and Se , Preferably selected from O, N or S, specifically, when N is included, it may be aziridine, pyrrolidine, piperidine, azepane, azocan, and the like.
  • the compound according to the present invention represented by [Chemical Formula I] may be used as an organic layer of an organic light emitting device due to its structural specificity.
  • MFHL multifunctional single hole layer
  • HTL Multifunctional HTL
  • Multifunctional HTL (Multi functional HTL) compound represented by [Chemical Formula I] include the following compounds, but are not limited thereto.
  • the compound according to the present invention represented by [Formula I] can be used as an organic layer of an organic light emitting device due to its structural specificity, and more specifically, the compound according to the present invention has p-doping function and hole transport properties. It is a multifunctional HTL (Multi functional HTL) material compound having unique characteristics of each introduced substituent by introducing each moiety (moiety) having into one structure, and as a result, it is possible to implement a multifunctional single hole layer, resulting in An organic light-emitting device having excellent light-emitting characteristics with further improved light-emitting efficiency and lifetime characteristics can be implemented.
  • Multi functional HTL Multi functional HTL
  • the compound of the present invention can be applied to the device according to a conventional manufacturing method of the organic light emitting device, and the organic light emitting device according to one embodiment of the present invention includes a first electrode and a second electrode and an organic layer disposed therebetween. It may be made of a structure including, and may be manufactured using conventional device manufacturing methods and materials, except that the organic compound according to the present invention is used in the organic layer of the device.
  • the organic layer of the organic light emitting device according to the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic layers are stacked.
  • it may have a structure including a hole layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • it is not limited thereto and may include fewer organic layers.
  • the organic light emitting device may have a structure including a plurality of organic layers including a first electrode and a second electrode and an electron layer disposed therebetween, a light emitting layer and a hole layer, and the hole injection function and By fusing the hole transport function, the hole transport layer and the hole injection layer are not formed separately, but the hole layer is formed by configuring a multi-functional single hole-layer (MFHL), and a separate p-type layer is formed. It can be manufactured using conventional device manufacturing methods and materials, except for those formed without configuration.
  • MFHL multi-functional single hole-layer
  • a hole injection layer and a hole transport layer are formed on ITO, respectively, and a p-doped material is employed for the hole injection layer and the hole transport layer, respectively, as needed, or a separate p-doped material is provided between the hole injection layer and the hole transport layer.
  • type layer is formed, but in an organic light emitting device according to an embodiment of the present invention, as can be seen in the following examples, a multi-functional single hole layer employing the compound according to the present invention on ITO. layer, MFHL) to implement the device.
  • the organic layer of the organic light emitting device according to the present invention may have a multilayer structure in which two or more organic layers are stacked, except that the hole injection layer and the hole transport layer are configured as multifunctional single hole layers, but are not limited thereto, and fewer, more It may contain a large number of organic layers.
  • the organic light emitting device is characterized in that the electrical conductivity of the multifunctional single hole layer is 1 ⁇ 10 -3 S/m to 1 ⁇ 10 -1 S/m.
  • the HOMO energy level of the single hole layer composed of the multifunctional HTL material compound is in the range of -4.5 eV to -7.0 eV when expressed in an absolute scale indicating that the vacuum energy level is zero, and the present invention
  • the HOMO energy level of the multifunctional single hole layer may be in the range of -5.0 eV to -6.0 eV when expressed on an absolute scale representing zero vacuum energy level.
  • the LUMO energy level of a single hole layer composed of a multifunctional HTL material compound is in the range of -4.0 eV to -6.0 eV when expressed in an absolute scale indicating that the vacuum energy level is zero, and the present invention According to one embodiment of the invention, the LUMO energy level of the multifunctional single hole layer may be in the range of -4.4 eV to -5.5 eV when expressed on an absolute scale indicating that the vacuum energy level is zero.
  • the band gap of the multifunctional single hole layer is characterized in that the absolute value is 2 or less, and according to one embodiment of the present invention, the absolute value may be 0.3 to 1.0.
  • the work function of the anode is greater than the highest LUMO energy level of the multifunctional single hole layer and is characterized in that the absolute value is 1 or less, and according to one embodiment, it may be 0.5 or less.
  • the thickness of the multifunctional single hole layer of the organic light emitting device according to the present invention may be 20 to 1,000 ⁇ , and through this, the electrical conductivity properties required for the single hole layer and the voltage drop effect are obtained, and at the same time, the multifunctional HTL thickness can be up to 1,000 ⁇ . Therefore, the mechanical properties of multifunctional HTL can be improved.
  • the organic light emitting device deposits a metal or conductive metal oxide or an alloy thereof on a substrate using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • After forming an anode forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate.
  • the organic layer may have a multilayer structure including a single hole layer, an electron transport layer, an electron injection layer, an electron blocking layer, and a light emitting layer, but is not limited thereto and may have a single layer structure.
  • the organic layer can be formed by using various polymer materials and using a solvent process rather than a deposition method, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. Can be made in layers.
  • anode material a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer.
  • the anode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Metal oxides, combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT) , but conductive polymers such as polypyrrole and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function so as to easily inject electrons into the organic layer.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof, and multilayers such as LiF/Al or LiO 2 /Al. structural materials, etc., but are not limited thereto.
  • the hole injection function and the hole transport function are fused, and the hole transport layer and the hole injection layer are not formed, respectively, but formed by configuring a multifunctional single hole layer, and a separate p It can be manufactured using conventional device manufacturing methods and materials, except for those formed without configuring the -type layer.
  • the light-emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole layer and the electron layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ), carbazole-based compounds, dimerized styryl compounds, BAlq, 10-hydroxybenzoquinoline-metal compounds, benzoxazoles, benzthiazoles, and Examples include benzimidazole-based compounds, poly(p-phenylenevinylene) (PPV)-based polymers, spiro compounds, polyfluorene, and rubrene, but are not limited thereto.
  • PV poly(p-phenylenevinylene)
  • the electron transport material a material capable of receiving electrons well from the cathode and transferring them to the light emitting layer, and a material having high electron mobility is suitable.
  • Specific examples include an Al complex of 8-hydroxyquinoline, a complex including Alq 3 , an organic radical compound, and a hydroxyflavone-metal complex, but are not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the compound according to the present invention can also act on organic electronic devices including organic solar cells, organic photoreceptors, organic transistors, and the like, on a principle similar to that applied to organic light emitting devices.
  • 1,4-Dibromonaphthalene (10.0 g, 0.035 mol), 4-(2-Naphthalenyl)-N-[4-(2-naphthalenyl)phenyl]-benzeneamine (22.1 g, 0.053 mol), Cs 2 CO 3 (34.2 g , 0.106 mol), Pd(OAC) 2 (0.3 g, 1.4 mmol), and Xant-phos (1.6 g, 2.8 mmol) were added with 150 mL of Toluene, and reacted by stirring at 70 °C for 4 hours. After completion of the reaction, the mixture was extracted, concentrated, and columnized to obtain 13.7 g of ⁇ Intermediate 197-1> (yield: 62.5%).
  • the ITO transparent electrode is patterned on a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 mm so that the light emitting area is 2 mm ⁇ 2 mm in size by using an ITO glass substrate to which the ITO transparent electrode is attached. After that, it was washed. After mounting the substrate in a vacuum chamber, the base pressure was set to 1 ⁇ 10 ⁇ 6 torr or more, and then organic materials and metals were deposited on the ITO in the following structure.
  • the multifunctional HTL (Multi Functional HTL) compound according to the present invention was employed in a multifunctional hole layer to fabricate an organic light emitting device having the following device structure, and the emission characteristics were measured.
  • ITO / multifunctional HTL 100 nm
  • electron blocking layer EB1 10 nm
  • light emitting layer BH1:BD1 20 nm
  • electron transport layer E1:Liq 30 nm
  • LiF (1 nm) / Al 100 nm
  • a hole layer was formed on an ITO transparent electrode using the multifunctional HTL compound according to the present invention.
  • the hole-blocking layer was formed to a thickness of 10 nm using [EBL1], and the light emitting layer was co-deposited to a thickness of 20 nm using [BH1] as a host compound and [BD1] as a dopant compound,
  • an organic light emitting device was fabricated by forming an electron transport layer (the [ET1] compound Liq 50% doped) of 30 nm, LiF of 1 nm, and Al of 100 nm.
  • the organic light emitting device for Device Comparative Example 1 was used instead of the compound according to the present invention in the hole layer in the device structure of Example 1, that is, instead of the multifunctional HTL compound as in the present invention, ⁇ -NPB doped with 5% F4TCNQ was used except that and made the same.
  • the organic light emitting device for Device Comparative Example 2 was fabricated in the same manner as the device structure of Example 2, except that ⁇ -NPB was used instead of the compound according to the present invention in the hole layer.
  • the compound according to the present invention is a multi-functional HTL (Multi-functional HTL) material compound in which p-doping function and hole transport characteristics are fused into one, and is characterized in that it can constitute a single hole layer. Compared to conventional devices, it can improve hole transport without additional p-doping, and can implement improved luminous efficiency and low-voltage drive at a level equivalent to or higher than conventional devices, thereby being industrially useful for various display devices. Since a process having a separate p-type layer compared to the device or a p-doping process is not required, the efficiency of the device manufacturing process can be improved.
  • Multi-functional HTL Multi-functional HTL

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 p-doping과 정공수송 기능을 함께 거둘 수 있는 융합된 구조의 다기능 HTL (Multi functional HTL) 재료 화합물 및 이용하여 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)을 구성하고, 이를 채용하여 저전압 구동이 가능하고, 발광 효율 및 수명 특성이 현저히 향상된 유기발광소자에 관한 것으로서, 종래 소자에 비하여 별도의 p-도핑을 하지 않고도 정공수송도를 향상시키고 그에 따라 향상된 발광효율과 종래 소자 대비 동등한 수준 이상의 저전압 구동을 구현할 수 있어 다양한 디스플레이 소자에 유용하게 활용할 수 있으며, 종래 소자 대비 별도의 p-type 층을 구비하는 공정이나, p-doping 공정이 요구되지 않아 소자 제조 공정 효율성도 향상시킬 수 있다.

Description

다기능 정공층 화합물 및 이를 이용한 유기발광소자
본 발명은 유기발광소자의 정공층에 채용되는 화합물에 관한 것으로서, 더욱 상세하게는 p-doping과 정공수송 기능을 함께 거둘 수 있는 융합된 구조의 다기능 HTL (Multi-functional HTL) 재료 화합물로서 이를 이용하여 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)을 구성하고, 이를 채용하여 저전압 구동이 가능하고, 발광 효율 및 수명 특성이 현저히 향상된 유기발광소자에 관한 것이다.
최근 자체 발광형으로 저전압 구동이 가능한 유기발광소자는 평판 표시 소자의 주류인 액정디스플레이에 비해, 시야각, 대조비 등이 우수하고 백라이트가 불필요하며 경량 및 박형이 가능하고 소비전력 측면에서도 유리하며 색 재현 범위가 넓어 차세대 표시소자로서 주목받고 있다.
유기발광소자는 전자 주입 전극 (음극)과 정공 주입 전극 (양극) 사이에 형성된 발광층에 전하를 주입하면 전자와 정공이 쌍을 이룬 후 소멸하면서 빛을 내는 소자로서, 플라스틱과 같이 휠 수 있는 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 플라즈마 디스플레이 패널이나 무기발광 디스플레이에 비해 10 V 이하의 낮은 전압에서 구동이 가능하고, 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있다. 또한, 유기발광소자는 녹색, 청색, 적색의 3가지 색을 나타낼 수가 있어 차세대 풍부한 색 디스플레이 소자로 많은 관심의 대상이 되고 있다.
유기발광소자는 빛을 내기 위한 과정, 즉 전하 주입, 전하 수송, 광 여기자 형성 및 빛의 발생들을 각각 다른 유기층을 이용하여 역할 분담을 시키고 있다. 이에 따라서 양극과 음극 사이에 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하며 또는 그 이상의 층으로 세분화된 구조의 유기발광소자가 사용되고 있으며, 유기발광소자가 전술한 특징을 발휘하기 위해서는 소자 내 유기층을 이루는 물질인 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 전자저지 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지는 안정하고 효율적인 유기발광소자용 유기층 재료의 개발이 충분히 이루어지지 않은 상태이다.
따라서, 더욱 안정적인 유기발광소자를 구현하고, 소자의 고효율, 장수명, 대형화 등을 위해서는 효율 및 수명 특성 측면에서 추가적인 개선이 요구되고 있는 상황이고, 이와 관련하여 최근에는 상기 유기발광소자의 구조 중 정공수송층 소재에 대하여는 기존 유기 소재의 도전율 (mobility)을 향상시키기 위하여 p-type의 물질을 도핑하거나, 층을 세분화하여 전극과 해당 정공수송층 사이에 p-type 물질을 포함하는 층을 더 구비하는 연구가 이루어지고 있다.
특히, 유기물을 도핑하면 음성 전도도가 형성되어 두꺼운 수송층이라 할지라도 수송층에서의 전압 강하를 낮출 수 있고, 도핑 준위를 높임으로 인해 형성된 얇은 공간 전하층은 터널링에 의한 전하 주입을 효과적으로 할 수 있도록 해준다. 정공 수송층에 도핑을 함으로써 정공 수송층의 높은 전도도와 전하 운반자의 전하 밀도를 제어할 수 있고, 결국 유기층의 전도도가 향상되어 소자의 특성이 향상되어 낮은 구동 전압과 고효율의 소자를 구현할 수 있다.
그러나, 추가적인 유기소재 및 유기층의 적용에 따른 공정 효율성이 떨어지고, 유기층의 두께 문제 등으로 저전압 구동의 구현이 어려워지는 등의 문제점이 여전히 존재한다.
따라서, 본 발명은 상기 문제점을 해결하고자 하는 것으로서, 정공수송 소재에 대해서 p-doping을 별도로 하지 않고, p-doping과 정공수송과 함께 거둘 수 있는 융합된 구조의 다기능 HTL (Multi-functional HTL) 재료 화합물을 제공하고, 이를 이용하여 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)을 구성하는 유기발광소자를 제공하여 향상된 발광효율과 장수명 등의 특성을 안정적으로 구현하면서 종래 소자와 동등 또는 그 이상의 수준으로 저전압 구동을 구현할 수 있는 유기발광소자를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 Ⅰ]로 표시되는 화합물 및 이를 1종 이상의 화합물을 유기층 내에 포함하는 유기발광소자를 제공한다.
본 발명에 따른 [화학식 Ⅰ]의 화합물은 p-doping 기능과 정공수송 특성을 갖는 각각의 모이어티 (moiety)를 하나의 구조에 도입한, 즉 정공수송 모이어티 (Hole Transportation Unit)와 p-도핑 모이어티 (p-Dopant Unit)를 융합하여 포함하는 다기능 HTL (Multi-functional HTL) 재료 화합물인 것을 특징으로 한다.
[화학식 Ⅰ]
Figure PCTKR2022009726-appb-img-000001
상기 [화학식 Ⅰ]로 표시되는 화합물의 특징적인 구조와 이에 의하여 구현되는 구체적인 화합물 및 R1 내지 R4, L, Ar1 및 Ar2에 대해서는 후술한다.
또한, 본 발명은 애노드, 캐소드 및 상기 애노드와 캐소드 사이에 접촉하여 게재되는 복수의 유기층을 포함하고, 상기 복수의 유기층에 본 발명에 따른 화합물을 포함하는 것을 특징으로 하는 유기발광소자를 제공한다.
특히, 상기 복수의 유기층은 전자층, 발광층 및 정공층 등 다양한 특성을 갖는 복수의 층으로 구성되며, 본 발명의 일 실시예에 의하면 상기 정공층은 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)으로서, 정공수송 모이어티 (Hole Transportation Unit)와 p-도핑 모이어티 (p-Dopant Unit)를 포함하는 본 발명에 따른 다기능 HTL (Multi-functional HTL) 재료 화합물을 채용한 것을 특징으로 한다.
본 발명에 따른 화합물은 p-도핑 (doping) 기능과 정공수송 특성을 하나로 융합한 다기능 HTL (Multi-functional HTL) 재료 화합물로서 단일의 정공층을 구성할 수 있는 것을 특징으로 하여, 이를 도입한 소자는 종래 소자에 비하여 별도의 p-도핑을 하지 않고도 정공수송도를 향상시키고 그에 따라 향상된 발광효율과 종래 소자 대비 동등한 수준 이상의 저전압 구동을 구현할 수 있어 다양한 디스플레이 소자에 유용하게 활용할 수 있으며, 종래 소자 대비 별도의 p-type 층을 구비하는 공정이나, p-doping 공정이 요구되지 않아 소자 제조 공정 효율성도 향상시킬 수 있다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 발명의 일 측면은 하기 [화학식 Ⅰ]로 표시되는 화합물에 관한 것으로서, 연결기 (L)를 기준으로 정공수송 모이어티 (Hole Transportation Unit)와 p-도핑 모이어티 (p-Dopant Unit)를 하나의 구조로 포함하는 것을 특징으로 한다.
[화학식 Ⅰ]
Figure PCTKR2022009726-appb-img-000002
상기 [화학식 Ⅰ]에서,
R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택된다.
또한, 상기 R1과 R2, 상기 R3과 R4는 각각 서로 연결되어 지환족, 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족의 단일환 또는 다환 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있다.
L은 단일결합이거나, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기 및 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기 중에서 선택되고, n은 각각 0 내지 3의 정수이며, 상기 n이 2 이상인 경우, 복수 개의 L은 서로 동일하거나 상이하다.
Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되고, o 및 p는 각각 1 내지 3의 정수이며, 상기 o 및 p가 각각 2 이상인 경우 복수의 Ar1 내지 Ar2는 각각 서로 동일하거나 상이하다.
또한, 상기 Ar1 및 Ar2는 서로 연결되어 지환족, 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족의 단일환 또는 다환 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있다.
한편, 상기 R1 내지 R4, L, Ar1 및 Ar2의 정의에서 '치환 또는 비치환된'이라 함은 상기 R1 내지 R4, L, Ar1 및 Ar2가 각각 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 아민기, 알킬기, 할로겐화된 알킬기, 중수소화된 알킬기, 시클로알킬기, 헤테로시클로알킬기, 알콕시기, 할로겐화된 알콕시기, 중수소화된 알콕시기, 아릴기, 헤테로아릴기, 알킬실릴기 및 아릴실릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
구체적인 예를 들면, 치환된 아릴기라 함은, 페닐기, 비페닐기, 나프탈렌기, 플루오레닐기, 파이레닐기, 페난트레닐기, 페릴렌기, 테트라세닐기, 안트라센닐기 등이 상기와 같은 치환기 등으로 치환된 것을 의미한다.
또한, 치환된 헤테로아릴기라 함은, 피리딜기, 티오페닐기, 트리아진기, 퀴놀린기, 페난트롤린기, 이미다졸기, 티아졸기, 옥사졸기, 카바졸기 및 이들의 축합헤테로고리기, 예컨대 벤즈퀴놀린기, 벤즈이미다졸기, 벤즈옥사졸기, 벤즈티아졸기, 벤즈카바졸기, 디벤조티오페닐기, 디벤조퓨란기 등이 상기와 같은 치환기 등으로 치환된 것을 의미한다.
본 발명에 따른 [화학식 Ⅰ]로 표시되는 화합물은 유기발광소자 내의 다양한 유기층에 채용될 수 있으나, 바람직한 구현예에 의하면, 단독으로 유기발광소자 내의 다기능 단일 정공층에 채용되는 소재로 활용될 수 있다.
p형이란 p형 반도체 특성을 의미하는 것으로서, p형은 HOMO (highest occupied molecular orbital) 에너지 준위를 통하여 정공을 주입받거나 수송하는 특성이며, 이는 정공의 이동도가 전자의 이동도보다 큰 물질의 특성으로 정의된다. P형 도핑은 이러한 p형 특성을 갖도록 도핑되었다는 것을 의미한다.
특히, 종래에는 ITO 기판 위에 형성되는 정공수송층의 높은 전도도와 전하 운반자의 전하 밀도를 제어하기 위하여 p-형 도판트를 이용하여 도핑하거나, 또는 ITO 기판과 정공수송층 사이에 p-형 도판트로 이루어진 층을 더 삽입하였으나, 본 발명에서는 별도의 p-형 도판트 공정이나 삽입이 없이 상기 [화학식 Ⅰ]로 표시되는 화합물로 이루어진 단일 정공층을 적용할 수 있다.
즉, 상기 [화학식 Ⅰ]로 표시되는 화합물은 다기능 HTL (Multi functional HTL) 재료 화합물로서, 정공수송 구조체와 p-도핑 구조체를 모두 포함하여 정공수송 기능과 정공주입 기능을 하는 모이어티를 모두 갖는 것을 의미하고, 이를 이용하여 정공주입 기능과 정공수송 기능을 융합하여, 정공수송층과 정공주입층을 각각 형성하지 않고, 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)으로 구성된 유기발광소자를 구현할 수 있으며, 유기발광소자가 갖는 저전압 구동 및 고효율 특성을 만족할 수 있도록 할 수 있다.
본 발명에 있어서, 상기 치환기들의 예시들에 대해서 구체적으로 설명하면 아래와 같으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥틸메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 발명에 있어서, 알콕시기는 직쇄 또는 분지쇄일 수 있다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, i-프로필옥시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 알킬기, 알콕시기는 중수소, 할로겐기 등으로 치환되어 중수소화된 알킬기 또는 알콕시기, 할로겐화된 알킬기 또는 알콕시기일 수 있다.
본 발명에 있어서, 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 30인 것이 바람직하며, 또한 시클로알킬 등이 융합된 다환식 아릴기 구조를 포함하고, 단환식 아릴기의 예로는 페닐기, 비페닐기, 터페닐기, 스틸벤기 등이 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오안트렌기 (fluoranthrene) 등이 있으나, 본 발명의 범위가 이들 예로만 한정되는 것은 아니다.
본 발명에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2022009726-appb-img-000003
,
Figure PCTKR2022009726-appb-img-000004
,
Figure PCTKR2022009726-appb-img-000005
등이 있다.
본 발명에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물의 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2022009726-appb-img-000006
,
Figure PCTKR2022009726-appb-img-000007
등이 있다.
또한, 상기 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있으며, 예로는
Figure PCTKR2022009726-appb-img-000008
,
Figure PCTKR2022009726-appb-img-000009
,
Figure PCTKR2022009726-appb-img-000010
,
Figure PCTKR2022009726-appb-img-000011
등이 있다.
본 발명에 있어서, 헤테로아릴기는 이종원자로 O, N 또는 S를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 3 내지 30인 것이 바람직하며, 시클로알킬 또는 헤테로시클로알킬 등이 융합된 다환식 헤테로아릴기 구조를 포함하며, 본 발명에서 이의 구체적인 예를 들면, 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 디벤조퓨라닐기, 페난트롤린기, 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기, 페녹사진기, 페노티아진기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 있어서, 아민기는 -NH2, 알킬아민기, 아릴아민기, 헤테로아릴아민기, 아릴헤테로아릴아민기 등일 수 있고, 아릴(헤테로아릴)아민기는 아릴기 및/또는 헤테로아릴기로 치환된 아민을 의미하고, 알킬아민기는 알킬로 치환된 아민을 의미하는 것이며, 아릴(헤테로아릴)아민기의 예로는 치환 또는 비치환된 모노 아릴(헤테로아릴)아민기, 치환 또는 비치환된 디아릴(헤테로아릴)아민기, 또는 치환 또는 비치환된 트리 아릴(헤테로아릴)아민기가 있고, 상기 아릴(헤테로아릴)아민기 중의 아릴기와 헤테로아릴기는 상기 아릴기 및 헤테로아릴기의 정의와 동일하며, 상기 알킬아민기의 알킬기 역시 상기 알킬기의 정의와 동일하다.
예시적으로 상기 아릴아민기로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기 및 트리페닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 실릴기는 비치환된 실릴기 또는 알킬기, 아릴기 등으로 치환된 알킬실릴기 또는 아릴실릴기로서, 이러한 실릴기의 구체적인 예로는 트리메틸실릴, 트리에틸실릴, 트리페닐실릴, 트리메톡시실릴, 디메톡시페닐실릴, 디페닐메틸실릴, 디페닐비닐실릴, 메틸사이클로뷰틸실릴, 디메틸퓨릴실릴 등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 치환기인 할로겐기의 구체적인 예로는 플루오르 (F), 클로린 (Cl), 브롬 (Br) 등을 들 수 있다.
본 발명에 있어서, 시클로알킬기는 단환, 다환 및 스피로 알킬 라디칼을 지칭하고, 이를 포함하며, 바람직하게는 탄소수 3 내지 20의 고리 탄소 원자를 함유하는 것으로서, 시클로프로필, 시클로펜틸, 시클로헥실, 비시클로헵틸, 스피로데실, 스피로운데실, 아다만틸 등을 포함하며, 시클로알킬기는 임의로 치환될 수 있다.
본 발명에 있어서, 헤테로시클로알킬기는 하나 이상의 헤테로 원자를 함유하는 방향족 및 비방향족 시클릭 라디칼을 지칭하고, 이를 포함하며, 하나 이상의 헤테로원자는 O, S, N, P, B, Si, 및 Se, 바람직하게는 O, N 또는 S로부터 선택되며, 구체적으로 N을 포함하는 경우 아지리딘, 피롤리딘, 피페리딘, 아제판, 아조칸 등일 수 있다.
상기 [화학식 Ⅰ]로 표시되는 본 발명에 따른 화합물은 그 구조적 특이성으로 인하여 유기발광소자의 유기층으로 사용될 수 있다.
특히, 종래에는 ITO 기판 위에 형성되는 정공수송층의 높은 전도도와 전하 운반자의 전하 밀도를 제어하기 위하여 p-형 도판트를 이용하여 도핑하거나, 또는 ITO 기판과 정공수송층 사이에 p-형 도판트로 이루어진 층을 더 삽입하였으나, 별도의 p-형 도판트 공정이나 삽입이 없이 상기 [화학식 Ⅰ]로 표시되는 다기능 HTL (Multi functional HTL) 재료 화합물로 이루어진 다기능 단일 정공층 (MFHL)을 구현할 수 있다.
본 발명에 따른 [화학식 Ⅰ]로 표시되는 다기능 HTL (Multi functional HTL) 화합물의 바람직한 구체예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.
Figure PCTKR2022009726-appb-img-000012
Figure PCTKR2022009726-appb-img-000013
Figure PCTKR2022009726-appb-img-000014
Figure PCTKR2022009726-appb-img-000015
Figure PCTKR2022009726-appb-img-000016
Figure PCTKR2022009726-appb-img-000017
Figure PCTKR2022009726-appb-img-000018
Figure PCTKR2022009726-appb-img-000019
Figure PCTKR2022009726-appb-img-000020
Figure PCTKR2022009726-appb-img-000021
Figure PCTKR2022009726-appb-img-000022
Figure PCTKR2022009726-appb-img-000023
Figure PCTKR2022009726-appb-img-000024
Figure PCTKR2022009726-appb-img-000025
Figure PCTKR2022009726-appb-img-000026
Figure PCTKR2022009726-appb-img-000027
Figure PCTKR2022009726-appb-img-000028
Figure PCTKR2022009726-appb-img-000029
Figure PCTKR2022009726-appb-img-000030
Figure PCTKR2022009726-appb-img-000031
Figure PCTKR2022009726-appb-img-000032
Figure PCTKR2022009726-appb-img-000033
Figure PCTKR2022009726-appb-img-000034
Figure PCTKR2022009726-appb-img-000035
상기 [화학식 Ⅰ]로 표시되는 본 발명에 따른 화합물은 그 구조적 특이성으로 인하여 유기발광소자의 유기층으로 사용될 수 있고, 보다 구체적으로는 본 발명에 따른 화합물은 p-도핑 (doping) 기능과 정공수송 특성을 갖는 각각의 모이어티 (moiety)를 하나의 구조에 도입하여 각각 도입된 치환기의 고유 특성을 갖는 다기능 HTL (Multi functional HTL) 재료 화합물로서, 그 결과 다기능 단일 정공층을 구현할 수 있어 저전압 구동 특성, 발광효율 및 수명 특성이 더욱 향상된 우수한 발광특성을 갖는 유기발광소자를 구현할 수 있다.
본 발명의 화합물은 유기발광소자의 통상의 제조방법에 따라 소자에 적용할 수 있으며, 본 발명의 하나의 실시예에 따른 유기발광소자는 제1 전극과 제2 전극 및 이 사이에 배치된 유기층을 포함하는 구조로 이루어질 수 있으며, 본 발명에 따른 유기 화합물을 소자의 유기층에 사용한다는 것을 제외하고는 통상의 소자의 제조 방법 및 재료를 사용하여 제조될 수 있다.
본 발명에 따른 유기발광소자의 유기층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공층, 발광층, 전자 수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수도 있다.
또한, 본 발명에 따른 유기발광소자는 제1 전극과 제2 전극 및 이 사이에 배치된 전자층, 발광층 및 정공층 등을 포함하는 복수의 유기층을 포함하는 구조로 이루어질 수 있으며, 정공주입 기능과 정공수송 기능을 융합하여, 정공수송층과 정공주입층을 각각 형성하지 않고, 정공층을 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)으로 구성하여 형성하고, 별도의 p-type 층을 구성하지 않고 형성한 것을 제외하고는 통상의 소자 제조방법 및 재료를 사용하여 제조될 수 있다.
즉, 종래에서는 ITO 위에 정공주입층과 정공수송층을 각각 형성하고, 상기 정공주입층과 정공수송층에 각각 필요에 따라 p-도핑 소재를 채용하거나, 또는 정공주입층과 정공수송층 사이에 별도의 p-type 층을 형성하지만, 본 발명의 일 실시예에 다른 유기발광소자에서는 후술하는 실시예에서 확인할 수 있는 바와 같이, ITO 위에 본 발명에 따른 화합물을 채용한 다기능 단일 정공층 (multi-functional single hole-layer, MFHL)을 형성하여 소자를 구현하는 것을 특징으로 한다.
이를 통하여 P-doping을 별도로 하지 않고 HTL과 P-doping 기능이 융합된 새로운 개념의 소재 도입을 통해서 기존 구조와 동등 이상의 구동 전압의 저하 효과를 확보할 수 있고, 추가적인 P-doping 재료의 사용과 P-doping 공정을 제외시킬 수 있어 재료 및 공정비용 절감의 효과도 거둘 수 있다.
본 발명에 따른 유기발광소자의 유기층은 정공주입층과 정공수송층을 다기능 단일 정공층으로 구성한 것을 제외하고는 2층 이상의 유기층이 적층된 다층 구조로 이루어질 수 있으며, 이에 한정되지 않고 더 적은 수, 더 많은 수의 유기층을 포함할 수도 있다.
본 발명에 따른 바람직한 유기발광소자의 유기층 구조 등에 대해서는 후술하는 실시예에서 보다 상세하게 설명한다.
본 발명에 따른 유기발광소자는 상기 다기능 단일 정공층의 전기전도도가 1 × 10-3 S/m ~ 1 × 10-1S/m 인 것을 특징으로 한다.
본 발명에 따른 유기발광소자에서 다기능 HTL 재료 화합물로 구성된 단일 정공층의 HOMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 4.5 eV ~ - 7.0 eV 범위인 것을 특징으로 하고, 본 발명의 일 실시예에 의하면 다기능 단일 정공층의 HOMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 5.0 eV ~ - 6.0 eV 범위일 수 있다.
본 발명에 따른 유기발광소자에서 다기능 HTL 재료 화합물로 구성된 단일 정공층의 LUMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 4.0 eV ~ - 6.0 eV 범위인 것을 특징으로 하고, 본 발명의 일 실시예에 의하면 다기능 단일 정공층의 LUMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 4.4 eV ~ - 5.5 eV 범위일 수 있다.
본 발명에 따른 유기발광소자에서 다기능 단일 정공층의 밴드갭 (Band gap)은 절대치 2 이하인 것을 특징으로 하고, 본 발명의 일 실시예에 의하면 절대치 0.3 ~ 1.0일 수 있다.
본 발명에 따른 유기발광소자에서 애노드의 일함수는 다기능 단일 정공층의 최고 LUMO 에너지 수준 이상이고, 절대치 1 이하인 것을 특징으로 하고, 일 실시예에 의하면 0.5 이하일 수 있다.
본 발명에 따른 유기발광소자의 다기능 단일 정공층의 두께는 20 ~ 1,000 Å일 수 있고, 이를 통하여 단일 정공층에 요구되는 전기전도도 물성과 전압강하 효과까지 거둠과 동시에 다기능 HTL 두께를 1,000 Å까지도 할 수 있어 다기능 HTL의 기계적 물성도 향상시킬 수 있다.
본 발명에 따른 유기발광소자는 스퍼터링 (sputtering)이나 전자빔 증발 (e-beam evaporation)과 같은 PVD (physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층, 전자 수송층을 포함하는 유기층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다. 상기 유기층은 단일 정공층, 전자수송층, 전자주입층 전자저지층 및 발광층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기층은 다양한 고분자 소재를 사용하여 증착법이 아닌 솔벤트 프로세스 (solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐 주석 산화물 (ITO), 인듐 아연 산화물 (IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜] (PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
또한, 본 발명의 일 실시예에 따른 유기발광소자에서는 정공주입 기능과 정공수송 기능을 융합하여, 정공수송층과 정공주입층을 각각 형성하지 않고, 다기능 단일 정공층으로 구성하여 형성하고, 별도의 p-type 층을 구성하지 않고 형성한 것을 제외하고는 통상의 소자 제조방법 및 재료를 사용하여 제조될 수 있다.
발광 물질로는 정공층과 전자층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3), 카르바졸 계열 화합물, 이량체화 스티릴 (dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌) (PPV) 계열의 고분자, 스피로 (spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 발명에 따른 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 예시하기 위한 것이며, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
합성예 1 : 화합물 3의 합성
(1) 제조예 1 : 중간체 3-1의 합성
Figure PCTKR2022009726-appb-img-000036
2,7-Dinitronaphthalene (10.0 g, 0.046 mol), 4-Amino-1,2,4-triazole (in DMSO, 30.8 g, 0.368 mol)에 t-BuOK (in DMSO, 20.6 g, 0.184 mol)를 천천히 넣어준 후, 15분 동안 Ice bath에 넣고 냉각시켰다. 그 후, NH4Cl 75 mL를 넣고 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <화합물 3-1>을 7.4 g (수율 65.1%)를 수득하였다.
(2) 제조예 2 : 중간체 3-2의 합성
Figure PCTKR2022009726-appb-img-000037
중간체 3-1 (10.0 g, 0.040 mol), N-Bromosuccinimide (17.2 g, 0.096 mol)를 DMF 200 mL에 넣고 5시간 동안 상온에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 3-2>를 10.2 g (수율 62.4%) 수득하였다.
(3) 제조예 3 : 중간체 3-3의 합성
Figure PCTKR2022009726-appb-img-000038
중간체 3-2 (10.0 g, 0.025 mol), Pd/C (15.7 g, 0.150 mol)를 Hydrazine hydrate (19.9 g, 0.630 mol)에 천천히 적가한 후 1시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 3-3>을 6.4 g (수율 75.1 %) 수득하였다.
(4) 제조예 4 : 중간체 3-4의 합성
Figure PCTKR2022009726-appb-img-000039
중간체 3-3 (10.0 g, 0.029 mol), 1,1-Carbonyldiimidazole (9.4 g, 0.058 mol), DMF 70 mL를 넣고 24시간 동안 상온에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 3-4>를 8.2 g (수율 71.3%) 수득하였다.
(5) 제조예 5 : 중간체 3-5의 합성
Figure PCTKR2022009726-appb-img-000040
중간체 3-4 (10.0 g, 0.025 mol)를 MC 100 mL에 용해시킨 후 MnO2 (31.5 g, 0.360 mol)을 첨가하여 2시간 동안 상온에서 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 3-5>를 7.7 g (수율 77.8%) 수득하였다.
(6) 제조예 6 : 중간체 3-6의 합성
Figure PCTKR2022009726-appb-img-000041
중간체 3-5 (10.0 g, 0.025 mol)에 n-BuLi (in THF, 1.6 g, 0.025 mol)를 넣고 -78 ℃에서 1시간 동안 교반하고, 0 ℃로 식힌 뒤 Methanol을 넣고 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 3-6>을 5.1 g (수율 63.8%) 수득하였다.
(7) 제조예 7 : 중간체 3-7의 합성
Figure PCTKR2022009726-appb-img-000042
중간체 3-6 (10.0 g, 0.032 mol), N-(4-Biphenylyl)-2-biphenylamine (15.3 g, 0.048 mol), NaOtBu (9.2 g, 0.096 mol), Pd(dba)2 (0.7 g, 1.3 mmol), t-Bu3P (0.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 3-7>을 12.6 g (수율 71.5%) 수득하였다.
(8) 제조예 8 : 화합물 3의 합성
Figure PCTKR2022009726-appb-img-000043
중간체 3-7 (10.0 g, 0.018 mol), Malononitrile (7.1 g, 0.108 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (20.5 g, 0.108 mol)를 천천히 넣어준다. 그 후 Pyridine (14.2 g, 0.180 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 3>을 8.9 g (수율 75.9%) 수득하였다.
LC/MS: m/z=651[(M)+]
합성예 2 : 화합물 14의 합성
(1) 제조예 1 : 중간체 14-1의 합성
Figure PCTKR2022009726-appb-img-000044
중간체 3-6 (10.0 g, 0.032 mol), 4-(Naphthalen-2-yl(phenyl)amino)phenylboronic acid (12.9 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 14-1>을 12.2 g (수율 72.6%) 수득하였다.
(2) 제조예 2 : 화합물 14의 합성
Figure PCTKR2022009726-appb-img-000045
중간체 14-1 (10.0 g, 0.019 mol), Malononitrile (7.5 g, 0.114 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (21.5 g, 0.114 mol)를 천천히 넣어준다. 그 후 Pyridine (14.9 g, 0.190 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 14>를 8.3 g (수율 70.3%) 수득하였다.
LC/MS: m/z=625[(M)+]
합성예 3 : 화합물 23의 합성
(1) 제조예 1 : 중간체 23-1의 합성
Figure PCTKR2022009726-appb-img-000046
1,3-Dibromobenzene (10.0 g, 0.042 mol), N-Biphenyl-4-yl-3-dibenzofuranamine (21.3 g, 0.063 mol), Cs2CO3 (41.4 g, 0.126 mol), Pd(OAC)2 (0.4 g, 1.7 mmol), Xant-phos (2.0 g, 3.4 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 23-1>을 10.8 g (수율 52.0%) 수득하였다.
(2) 제조예 2 : 중간체 23-2의 합성
Figure PCTKR2022009726-appb-img-000047
중간체 23-1 (10.0 g, 0.020 mol), Bis(pinacolato)diboron (6.2 g, 0.024 mol), KOAc (6.0 g, 0.060 mol), Pd(dppf)Cl2 (0.8 g, 0.001 mol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 23-2>를 8.6 g (수율 78.5%) 수득하였다.
(3) 제조예 3 : 중간체 23-3의 합성
Figure PCTKR2022009726-appb-img-000048
중간체 3-6 (10.0 g, 0.032 mol), 중간체 23-2 (20.5 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 23-3>을 14.7 g (수율 71.7%) 수득하였다.
(4) 제조예 4 : 화합물 23의 합성
Figure PCTKR2022009726-appb-img-000049
중간체 23-3 (10.0 g, 0.016 mol), Malononitrile (6.1 g, 0.096 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (17.6 g, 0.096 mol)를 천천히 넣어준다. 그 후 Pyridine (12.3 g, 0.160 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 23>을 8.7 g (수율 75.7%) 수득하였다.
LC/MS: m/z=741[(M)+]
합성예 4 : 화합물 36의 합성
(1) 제조예 1 : 중간체 36-1의 합성
Figure PCTKR2022009726-appb-img-000050
1-Bromo-3,5-diphenylbenzene (10.0 g, 0.032 mol), 3-Dibenzofuranamine (8.9 g, 0.048 mol), NaOtBu (9.3 g, 0.096 mol), Pd(dba)2 (0.7 g, 1.3 mmol), t-Bu3P (0.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 36-1>을 8.4 g (수율 63.1%) 수득하였다.
(2) 제조예 2 : 중간체 36-2의 합성
Figure PCTKR2022009726-appb-img-000051
4,4'-Dibromobiphenyl (10.0 g, 0.032 mol), 중간체 36-1 (19.8 g, 0.048 mol), Cs2CO3 (31.3 g, 0.096 mol), Pd(OAC)2 (0.3 g, 1.3 mmol), Xant-phos (1.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 36-2>를 11.9 g (수율 57.8%) 수득하였다.
(3) 제조예 3 : 중간체 36-3의 합성
Figure PCTKR2022009726-appb-img-000052
중간체 36-2 (10.0 g, 0.016 mol), Bis(pinacolato)diboron (4.7 g, 0.019 mol), KOAc (4.6 g, 0.048 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 36-3>을 7.9 g (수율 73.6%) 수득하였다.
(4) 제조예 4 : 중간체 36-4의 합성
Figure PCTKR2022009726-appb-img-000053
중간체 3-6 (10.0 g, 0.032 mol), 중간체 36-3 (26.3 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 36-4>를 18.4 g (수율 72.7%) 수득하였다.
(5) 제조예 5 : 화합물 36의 합성
Figure PCTKR2022009726-appb-img-000054
중간체 36-4 (10.0 g, 0.013 mol), Malononitrile (5.0 g, 0.078 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (14.3 g, 0.078 mol)를 천천히 넣어준다. 그 후 Pyridine (9.9 g, 0.130 mol)을 천천히 적가한 후 1시간 후 Ice bath 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 36>을 9.1 g (수율 81.2%) 수득하였다.
LC/MS: m/z=893[(M)+]
합성예 5 : 화합물 59의 합성
(1) 제조예 1 : 중간체 59-1의 합성
Figure PCTKR2022009726-appb-img-000055
2,6-Dibromonaphthalene (10.0 g, 0.035 mol), Bis(9,9-dimethyl-9H-fluoren-2-yl)amine (21.1 g, 0.053 mol), Cs2CO3 (34.2 g, 0.106 mol), Pd(OAC)2 (0.3 g, 1.4 mmol), Xant-phos (1.6 g, 2.8 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 59-1>을 13.4 g (수율 63.2%) 수득하였다.
(2) 제조예 2 : 중간체 59-2의 합성
Figure PCTKR2022009726-appb-img-000056
중간체 59-1 (10.0 g, 0.017 mol), Bis(pinacolato)diboron (5.0 g, 0.020 mol), KOAc (4.9 g, 0.051 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 59-2>를 8.4 g (수율 78.0%) 수득하였다.
(3) 제조예 3 : 중간체 59-3의 합성
Figure PCTKR2022009726-appb-img-000057
중간체 3-6 (10.0 g, 0.032 mol), 중간체 59-2 (24.9 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 59-3>을 17.3 g (수율 71.6%) 수득하였다.
(4) 제조예 4 : 화합물 59의 합성
Figure PCTKR2022009726-appb-img-000058
중간체 59-3 (10.0 g, 0.013 mol), Malononitrile (5.2 g, 0.078 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (14.9 g, 0.078 mol)를 천천히 넣어준다. 그 후 Pyridine (10.4 g, 0.130 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 59>를 8.7 g (수율 77.4%) 수득하였다.
LC/MS: m/z=856[(M)+]
합성예 6 : 화합물 71의 합성
(1) 제조예 1 : 중간체 71-1의 합성
Figure PCTKR2022009726-appb-img-000059
1-Bromo-4-(4-bromophenyl)naphthalene (10.0 g, 0.028 mol), N-[1,1'-Biphenyl]-2-yl-3-dibenzofuranamine (13.9 g, 0.042 mol), Cs2CO3 (27.0 g, 0.084 mol), Pd(OAC)2 (0.3 g, 1.1 mmol), Xant-phos (1.3 g, 2.2 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 71-1>을 10.5 g (수율 61.7%) 수득하였다.
(2) 제조예 2 : 중간체 71-2의 합성
Figure PCTKR2022009726-appb-img-000060
중간체 71-1 (10.0 g, 0.016 mol), Bis(pinacolato)diboron (4.9 g, 0.019 mol), KOAc (4.8 g, 0.048 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 71-2>를 7.6 g (수율 70.6%) 수득하였다.
(3) 제조예 3 : 중간체 71-3의 합성
Figure PCTKR2022009726-appb-img-000061
중간체 3-6 (10.0 g, 0.032 mol), 중간체 71-2 (25.3 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 71-3>을 18.3 g (수율 74.7%) 수득하였다.
(4) 제조예 4 : 화합물 71의 합성
Figure PCTKR2022009726-appb-img-000062
중간체 71-3 (10.0 g, 0.013 mol), Malononitrile (5.1 g, 0.078 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (14.8 g, 0.078 mol)를 천천히 넣어준다. 그 후 Pyridine (10.3 g, 0.130 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 71>을 7.9 g (수율 70.3%) 수득하였다.
LC/MS: m/z=867[(M)+]
합성예 7 : 화합물 132의 합성
(1) 제조예 1 : 중간체 132-1의 합성
Figure PCTKR2022009726-appb-img-000063
중간체 3-6 (10.0 g, 0.032 mol), (4-(Bis(9,9-dimethyl-9H-fluoren-2-yl)amino)phenyl)boronic acid (19.9 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 132-1>을 16.6 g (수율 73.5%) 수득하였다.
(2) 제조예 2 : 화합물 132의 합성
Figure PCTKR2022009726-appb-img-000064
중간체 132-1 (10.0 g, 0.014 mol), Diphenylmethane (14.2 g, 0.084 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (16.0 g, 0.084 mol)를 천천히 넣어준다. 그 후 Pyridine (11.1 g, 0.140 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 132>를 9.5 g (수율 66.8%) 수득하였다.
LC/MS: m/z=1011[(M)+]
합성예 8 : 화합물 171의 합성
(1) 제조예 1 : 중간체 171-1의 합성
Figure PCTKR2022009726-appb-img-000065
1,8-Dinitronaphthalene (in DMF, 10.0 g, 0.046 mol), 2-Benzothiazolesulfenamide (16.7 g, 0.092 mol)을 t-BuOK (in DMF, 19.3 g, 0.230 mol)에 넣고 20분 동안 상온에서 교반한 후, H2O를 넣고 교반하여 반응시켰다. 반응 종료 후, 농축한 후 컬럼하여 <중간체 171-1>을 8.1 g (수율 71.2%) 수득하였다.
(2) 제조예 2 : 중간체 171-2의 합성
Figure PCTKR2022009726-appb-img-000066
중간체 171-1 (10.0 g, 0.040 mol), N-Bromosuccinimide (17.2 g, 0.096 mol)를 DMF 200 mL에 넣고 5시간 동안 상온에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 171-2>를 10.0 g (수율 61.1%) 수득하였다.
(3) 제조예 3 : 중간체 171-3의 합성
Figure PCTKR2022009726-appb-img-000067
중간체 171-2 (10.0 g, 0.025 mol), Pd/C (15.7 g, 0.150 mol)를 Hydrazine hydrate (19.9 g, 0.630 mol)에 천천히 적가한 후 1시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 171-3>을 6.2 g (수율 72.8%) 수득하였다.
(4) 제조예 4 : 중간체 171-4의 합성
Figure PCTKR2022009726-appb-img-000068
중간체 171-3 (10.0 g, 0.029 mol), 1,1-Carbonyldiimidazole (9.4 g, 0.058 mol), DMF 70 mL를 넣고 24시간 동안 상온에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 171-4>를 8.8 g (수율 76.5%) 수득하였다.
(5) 제조예 5 : 중간체 171-5의 합성
Figure PCTKR2022009726-appb-img-000069
중간체 171-4 (10.0 g, 0.025 mol)를 MC 100 mL에 용해시킨 후 MnO2 (31.5 g, 0.360 mol)을 첨가하여 2시간 동안 상온에서 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 171-5>를 7.1 g (수율 71.7%) 수득하였다.
(6) 제조예 6 : 중간체 171-6의 합성
Figure PCTKR2022009726-appb-img-000070
중간체 171-5 (10.0 g, 0.025 mol)에 n-BuLi (in THF, 1.6 g, 0.025 mol)를 넣고 -78 ℃에서 1시간 동안 교반하고, 0 ℃로 식힌 뒤 Methanol을 넣고 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 171-6>을 5.5 g (수율 68.8%) 수득하였다.
(7) 제조예 7 : 중간체 171-7의 합성
Figure PCTKR2022009726-appb-img-000071
중간체 171-6 (10.0 g, 0.032 mol), (4-([1,1'-Biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)phenyl)boronic acid (18.3 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 171-7>을 16.6 g (수율 77.9%) 수득하였다.
(8) 제조예 8 : 화합물 171의 합성
Figure PCTKR2022009726-appb-img-000072
중간체 171-7 (10.0 g, 0.015 mol), Malononitrile (5.9 g, 0.090 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (16.9 g, 0.090 mol)를 천천히 넣어준다. 그 후 Pyridine (11.8 g, 0.150 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 171>을 8.3 g (수율 72.6%) 수득하였다.
LC/MS: m/z=767[(M)+]
합성예 9 : 화합물 197의 합성
(1) 제조예 1 : 중간체 197-1의 합성
Figure PCTKR2022009726-appb-img-000073
1,4-Dibromonaphthalene (10.0 g, 0.035 mol), 4-(2-Naphthalenyl)-N-[4-(2-naphthalenyl)phenyl]-benzeneamine (22.1 g, 0.053 mol), Cs2CO3 (34.2 g, 0.106 mol), Pd(OAC)2 (0.3 g, 1.4 mmol), Xant-phos (1.6 g, 2.8 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 197-1>을 13.7 g (수율 62.5%) 수득하였다.
(2) 제조예 2 : 중간체 197-2의 합성
Figure PCTKR2022009726-appb-img-000074
중간체 197-1 (10.0 g, 0.016 mol), Bis(pinacolato)diboron (4.9 g, 0.019 mol), KOAc (4.7 g, 0.048 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 197-2>를 7.8 g (수율 72.6%) 수득하였다.
(3) 제조예 3 : 중간체 197-3의 합성
Figure PCTKR2022009726-appb-img-000075
중간체 171-6 (10.0 g, 0.032 mol), 중간체 197-2 (25.7 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 197-3>을 17.4 g (수율 70.1%) 수득하였다.
(4) 제조예 4 : 화합물 197의 합성
Figure PCTKR2022009726-appb-img-000076
중간체 197-3 (10.0 g, 0.013 mol), Malononitrile (5.1 g, 0.078 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (14.6 g, 0.078 mol)를 천천히 넣어준다. 그 후 Pyridine (10.1 g, 0.130 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 197>을 8.5 g (수율 75.7%) 수득하였다.
LC/MS: m/z=877[(M)+]
합성예 10 : 화합물 212의 합성
(1) 제조예 1 : 중간체 212-1의 합성
Figure PCTKR2022009726-appb-img-000077
2,6-Dibromonaphthalene (10.0 g, 0.035 mol), Bis(9,9-dimethyl-9H-fluoren-2-yl)amine (21.1 g, 0.053 mol), Cs2CO3 (34.2 g, 0.106 mol), Pd(OAC)2 (0.3 g, 1.4 mmol), Xant-phos (1.6 g, 2.8 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 212-1>을 14.2 g (수율 66.9%) 수득하였다.
(2) 제조예 2 : 중간체 212-2의 합성
Figure PCTKR2022009726-appb-img-000078
중간체 212-1 (10.0 g, 0.017 mol), Bis(pinacolato)diboron (5.0 g, 0.020 mol), KOAc (4.9 g, 0.051 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 212-2>를 8.4 g (수율 78.0%) 수득하였다.
(3) 제조예 3 : 중간체 212-3의 합성
Figure PCTKR2022009726-appb-img-000079
중간체 171-6 (10.0 g, 0.032 mol), 중간체 212-2 (24.9 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 212-3>을 17.0 g (수율 70.3%) 수득하였다.
(4) 제조예 4 : 화합물 212의 합성
Figure PCTKR2022009726-appb-img-000080
중간체 212-3 (10.0 g, 0.013 mol), Malononitrile (5.2 g, 0.078 mol), CH2Cl2 300 mL를 넣고 Ice-bath상태에서 냉각시킨 후 TiCl4 (14.9 g, 0.0.078 mol)를 천천히 넣어준다. 그 후 Pyridine (10.4 g, 0.130 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 212>를 8.2 g (수율 72.8%) 수득하였다.
LC/MS: m/z=857[(M)+]
합성예 11 : 화합물 215의 합성
(1) 제조예 1 : 중간체 215-1의 합성
Figure PCTKR2022009726-appb-img-000081
2-Bromo-9,9-dimethylfluorene (10.0 g, 0.037 mol), 3-Dibenzofuranamine (10.1 g, 0.055 mol), NaOtBu (10.6 g, 0.110 mol), Pd(dba)2 (0.8 g, 1.4 mmol), t-Bu3P (0.6 g, 2.8 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 215-1>을 8.4 g (수율 61.1%) 수득하였다.
(2) 제조예 2 : 중간체 215-2의 합성
Figure PCTKR2022009726-appb-img-000082
2,6-Dibromonaphthalene (10.0 g, 0.035 mol), 중간체 215-1 (19.7 g, 0.053 mol), Cs2CO3 (34.2 g, 0.106 mol), Pd(OAC)2 (0.3 g, 1.4 mmol), Xant-phos (1.6 g, 2.8 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 215-2>를 13.7 g (수율 67.5%) 수득하였다.
(3) 제조예 3 : 중간체 215-3의 합성
Figure PCTKR2022009726-appb-img-000083
중간체 215-1 (10.0 g, 0.017 mol), Bis(pinacolato)diboron (5.3 g, 0.020 mol), KOAc (5.1 g, 0.051 mol), Pd(dppf)Cl2 (0.6 g, 0.8 mmol)에 Dioxane 200 mL를 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 215-3>을 8.1 g (수율 74.9%) 수득하였다.
(4) 제조예 4 : 중간체 215-4의 합성
Figure PCTKR2022009726-appb-img-000084
중간체 171-6 (10.0 g, 0.032 mol), 중간체 215-3 (23.9 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 215-4>를 18.4 g (수율 78.8%) 수득하였다.
(5) 제조예 5 : 화합물 215의 합성
Figure PCTKR2022009726-appb-img-000085
중간체 215-4 (10.0 g, 0.014 mol), Malononitrile (5.4 g, 0.084 mol), CH2Cl2 300 mL를 넣고 Ice-bath상태에서 냉각시킨 후 TiCl4 (15.5 g, 0.084 mol)를 천천히 넣어준다. 그 후 Pyridine (10.8 g, 0.140 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 215>를 8.0 g (수율 70.8%) 수득하였다.
LC/MS: m/z=831[(M)+]
합성예 12 : 화합물 246의 합성
(1) 제조예 1 : 중간체 246-1의 합성
Figure PCTKR2022009726-appb-img-000086
2-Bromo-11,11-dimethyl-11H-benzo[b]fluorene (10.0 g, 0.031 mol), 4-Aminobiphenyl (7.9 g, 0.047 mol), NaOtBu (8.9 g, 0.094 mol), Pd(dba)2 (0.7 g, 1.3 mmol), t-Bu3P (0.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 246-1>을 8.7 g (수율 68.3%) 수득하였다.
(2) 제조예 2 : 중간체 246-2의 합성
Figure PCTKR2022009726-appb-img-000087
중간체 171-6 (10.0 g, 0.032 mol), 중간체 246-1 (19.6 g, 0.048 mol), NaOtBu (9.2 g, 0.096 mol), Pd(dba)2 (0.7 g, 1.3 mmol), t-Bu3P (0.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 246-2>을 15.9 g (수율 77.6%) 수득하였다.
(3) 제조예 3 : 화합물 246의 합성
Figure PCTKR2022009726-appb-img-000088
중간체 246-2 (10.0 g, 0.016 mol), Benzyl cyanide (10.9 g, 0.096 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (17.6 g, 0.096 mol)를 천천히 넣어준다. 그 후 Pyridine (12.3 g, 0.160 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 246>을 10.2 g (수율 78.0%) 수득하였다.
LC/MS: m/z=843[(M)+]
합성예 13 : 화합물 264의 합성
(1) 제조예 1 : 중간체 264-1의 합성
Figure PCTKR2022009726-appb-img-000089
4,4'-Dibromobiphenyl (10.0 g, 0.032 mol), N-Biphenyl-4-yl-3-dibenzofuranamine (16.1 g, 0.048 mol), Cs2CO3 (9.2 g, 0.096 mol), Pd(OAC)2 (0.7 g, 1.3 mmol), Xant-phos (0.5 g, 2.6 mmol)에 Toluene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 264-1>을 11.4 g (수율 62.8%) 수득하였다.
(2) 제조예 2 : 중간체 264-2의 합성
Figure PCTKR2022009726-appb-img-000090
중간체 264-1 (10.0 g, 0.018 mol), Bis(pinacolato)diboron (5.4 g, 0.022 mol), KOAc (5.2 g, 0.054 mol), Pd(dppf)Cl2 (0.7 g, 0.9 mmol)에 Dioxane 200 mL 넣고 12시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 264-2>를 7.9 g (수율 72.9%) 수득하였다.
(3) 제조예 3 : 중간체 264-3의 합성
Figure PCTKR2022009726-appb-img-000091
중간체 171-6 (10.0 g, 0.032 mol), 중간체 264-2 (23.4 g, 0.038 mol), K2CO3 (13.2 g, 0.096 mol), Pd(PPh3)4 (0.7 g, 0.6 mmol)에 Toluene 200 mL, EtOH 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 264-3>을 18.1 g (수율 79.0%) 수득하였다.
(4) 제조예 4 : 화합물 264의 합성
Figure PCTKR2022009726-appb-img-000092
중간체 264-3 (10.0 g, 0.014 mol), (2,2,2-Trifluoroethyl)benzene (13.3 g, 0.084 mol), CH2Cl2 300 mL를 넣고 Ice-bath 상태에서 냉각시킨 후 TiCl4 (15.8 g, 0.084 mol)를 천천히 넣어준다. 그 후 Pyridine (11.0 g, 0.140 mol)을 천천히 적가한 후 1시간 후 Ice bath를 제거하고 24시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 264>를 10.4 g (수율 74.6%) 수득하였다.
LC/MS: m/z=1005[(M)+]
소자 실시예 (다기능 HTL )
본 발명에 따른 실시예에서, ITO 투명 전극은 25 mm × 25 mm × 0.7 mm의 유리 기판 위에, ITO 투명 전극이 부착된 ITO 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 기판을 진공 챔버에 장착한 후 베이스 압력이 1 × 10-6 torr 이상 되도록 한 후 유기물을 상기 ITO 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 1 내지 40
본 발명에 따른 다기능 HTL (Multi Functional HTL) 화합물을 다기능 정공층에 채용하여, 하기와 같은 소자 구조를 갖는 유기발광소자를 제작하였으며, 발광 특성을 측정하였다.
ITO / 다기능 HTL (100 nm) / 전자저지층 (EB1 10 nm) / 발광층 (BH1:BD1 20 nm) / 전자수송층 (ET1:Liq 30 nm) / LiF (1 nm) / Al (100 nm)
ITO 투명 전극에 본 발명에 따른 다기능 HTL 화합물을 사용하여 정공층을 성막하였다. 정공저지층은 [EBL1]을 사용하여 10 nm의 두께로 성막하였으며, 발광층은 호스트 화합물로 [BH1]을 사용하고, 도판트 화합물로 [BD1]을 사용하여 두께가 20 nm가 되도록 공증착하였으며, 추가로 전자 수송층 (하기 [ET1] 화합물 Liq 50% 도핑) 30 nm 및 LiF 1 nm 및 Al 100 nm를 성막하여 유기발광소자를 제작하였다.
소자 비교예 1
소자 비교예 1을 위한 유기발광소자는 상기 실시예의 소자구조에서 정공층에 본 발명에 따른 화합물 대신, 즉 본 발명과 같이 다기능 HTL 화합물이 아닌 α-NPB에 F4TCNQ를 5% 도핑한 것으로 사용한 것을 제외하고는 동일하게 제작하였다.
소자 비교예 2
소자 비교예 2를 위한 유기발광소자는 상기 실시예의 소자구조에서 정공층에 본 발명에 따른 화합물 대신 α-NPB를 사용한 것을 제외하고 동일하게 제작하였다.
실험예 1 : 소자 실시예 1 내지 40의 발광 특성
상기 실시예 및 비교예에 따라 제조된 유기발광소자에 대해서 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 전압, 전류 및 발광 효율을 측정하였고, 1000 nit 기준의 결과값은 하기 [표 1]과 같다.
실시예 다기능 HTL V cd/A CIEx CIEy
1 화학식 2 4.75 8.65 0.1324 0.1233
2 화학식 3 4.83 8.54 0.1319 0.1228
3 화학식 4 4.56 8.17 0.1327 0.1234
4 화학식 6 4.67 8.22 0.1326 0.1163
5 화학식 7 4.42 8.14 0.1328 0.1252
6 화학식 14 4.83 8.67 0.1316 0.1197
7 화학식 16 4.47 8.49 0.1353 0.1232
8 화학식 17 4.85 8.35 0.1321 0.1266
9 화학식 19 4.66 8.57 0.1328 0.1192
10 화학식 20 4.53 8.62 0.1313 0.1235
11 화학식 21 4.81 8.45 0.1345 0.1244
12 화학식 22 4.46 8.58 0.1353 0.1261
13 화학식 23 4.63 8.69 0.1321 0.1262
14 화학식 25 4.54 8.20 0.1312 0.1235
15 화학식 29 4.77 8.43 0.1344 0.1197
16 화학식 30 4.88 8.32 0.1353 0.1261
17 화학식 33 4.60 8.45 0.1340 0.1244
18 화학식 36 4.53 8.27 0.1347 0.1235
19 화학식 39 4.62 8.69 0.1350 0.1251
20 화학식 54 4.84 8.10 0.1353 0.1235
21 화학식 56 4.76 8.63 0.1324 0.1233
22 화학식 59 4.61 8.45 0.1343 0.1235
23 화학식 61 4.62 8.28 0.1350 0.1234
24 화학식 62 4.89 8.32 0.1333 0.1222
25 화학식 71 4.75 8.54 0.1347 0.1225
26 화학식 83 4.53 8.68 0.1316 0.1196
27 화학식 84 4.44 8.73 0.1359 0.1265
28 화학식 89 4.66 8.81 0.1324 0.1253
29 화학식 90 4.86 8.65 0.1316 0.1192
30 화학식 99 4.52 8.48 0.1359 0.1221
31 화학식 132 4.83 8.50 0.1350 0.1197
32 화학식 171 4.68 8.14 0.1320 0.1225
33 화학식 197 4.76 8.35 0.1344 0.1234
34 화학식 212 4.45 8.28 .01340 0.1233
35 화학식 215 4.43 8.69 0.1312 0.1266
36 화학식 246 4.54 8.10 0.1326 0.1235
37 화학식 264 4.70 8.52 0.1344 0.1193
38 화학식 267 4.65 8.63 0.1353 0.1244
39 화학식 274 4.82 8.25 0.1321 0.1231
40 화학식 281 4.64 8.47 0.1359 0.1197
비교예 1 α-NPB:F4TCNQ 4.92 7.91 0.1350 0.1231
비교예 2 α-NPB 5.13 7.72 0.1332 0.1243
상기 [표 1]에 나타낸 결과를 살펴보면 본 발명에 따른 다기능 HTL 화합물을 이용하여 단일 정공층으로 소자를 구성하고, 상기 단일 정공층에 본 발명에 따른 화합물을 채용한 소자의 경우 종래 정공수송 재료로 사용된 α-NPB 및 α-NPB:F4TCNQ를 채용한 소자 (비교예 1 및 2)에 비하여 구동 전압, 발광 효율 등의 발광 특성이 현저히 우수함을 확인할 수 있다.
Figure PCTKR2022009726-appb-img-000093
[α-NPB] [BH1] [BD1] [EB1]
Figure PCTKR2022009726-appb-img-000094
[ET1] [F4TCNQ]
본 발명에 따른 화합물은 p-도핑 (doping) 기능과 정공수송 특성을 하나로 융합한 다기능 HTL (Multi-functional HTL) 재료 화합물로서 단일의 정공층을 구성할 수 있는 것을 특징으로 하여, 이를 도입한 소자는 종래 소자에 비하여 별도의 p-도핑을 하지 않고도 정공수송도를 향상시키고 그에 따라 향상된 발광효율과 종래 소자 대비 동등한 수준 이상의 저전압 구동을 구현할 수 있어 다양한 디스플레이 소자에 산업적으로 유용하게 활용할 수 있으며, 종래 소자 대비 별도의 p-type 층을 구비하는 공정이나, p-doping 공정이 요구되지 않아 소자 제조 공정 효율성도 향상시킬 수 있다.

Claims (15)

  1. 하기 [화학식 Ⅰ]로 표시되는 화합물:
    [화학식 Ⅰ]
    Figure PCTKR2022009726-appb-img-000095
    상기 [화학식 Ⅰ]에서,
    R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되는 어느 하나이며,
    상기 R1과 R2는 서로 연결되어 지환족, 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족의 단일환 또는 다환 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있고,
    상기 R3과 R4는 서로 연결되어 지환족, 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족의 단일환 또는 다환 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있으며,
    L은 단일결합이거나, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기 및 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기 중에서 선택되는 어느 하나이고,
    n은 각각 0 내지 3의 정수이며, 상기 n이 2 이상인 경우, 복수 개의 L은 서로 동일하거나 상이하고,
    Ar1 및 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되는 어느 하나이고,
    o 및 p는 각각 1 내지 3의 정수이며, 상기 o 및 p가 각각 2 이상인 경우 복수의 Ar1 내지 Ar2는 각각 서로 동일하거나 상이하고,
    상기 Ar1 및 Ar2는 서로 연결되어 지환족, 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족의 단일환 또는 다환 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있다.
  2. 제1항에 있어서,
    상기 R1 내지 R4, L, Ar1 및 Ar2의 정의에서 '치환 또는 비치환된'이라 함은 상기 R1 내지 R4, L, Ar1 및 Ar2가 각각 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 아민기, 알킬기, 할로겐화된 알킬기, 중수소화된 알킬기, 시클로알킬기, 헤테로시클로알킬기, 알콕시기, 할로겐화된 알콕시기, 중수소화된 알콕시기, 아릴기, 헤테로아릴기, 알킬실릴기 및 아릴실릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것인 것을 특징으로 하는 화합물.
  3. 제1항에 있어서,
    상기 [화학식 Ⅰ]로 표시되는 화합물은 하기 화학식 [1] 내지 [302]로 표시되는 화합물 중에서 선택되는 어느 하나인 것을 특징으로 하는 화합물:
    Figure PCTKR2022009726-appb-img-000096
    Figure PCTKR2022009726-appb-img-000097
    Figure PCTKR2022009726-appb-img-000098
    Figure PCTKR2022009726-appb-img-000099
    Figure PCTKR2022009726-appb-img-000100
    Figure PCTKR2022009726-appb-img-000101
    Figure PCTKR2022009726-appb-img-000102
    Figure PCTKR2022009726-appb-img-000103
    Figure PCTKR2022009726-appb-img-000104
    Figure PCTKR2022009726-appb-img-000105
    Figure PCTKR2022009726-appb-img-000106
    Figure PCTKR2022009726-appb-img-000107
    Figure PCTKR2022009726-appb-img-000108
    Figure PCTKR2022009726-appb-img-000109
    Figure PCTKR2022009726-appb-img-000110
    Figure PCTKR2022009726-appb-img-000111
    Figure PCTKR2022009726-appb-img-000112
    Figure PCTKR2022009726-appb-img-000113
    Figure PCTKR2022009726-appb-img-000114
    Figure PCTKR2022009726-appb-img-000115
    Figure PCTKR2022009726-appb-img-000116
    Figure PCTKR2022009726-appb-img-000117
    Figure PCTKR2022009726-appb-img-000118
    Figure PCTKR2022009726-appb-img-000119
  4. 애노드 전극, 캐소드 전극, 및 상기 애노드 전극과 제2 전극 사이에 배치된 1층 이상의 유기층을 포함하는 유기발광소자로서,
    상기 유기층은 다기능 단일 정공층, 전자수송층, 전자주입층, 전자수송 및 전자주입을 동시에 하는 층 및 발광층 중 1층 이상을 포함하고,
    상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  5. 제4항에 있어서,
    상기 단일 정공층이 상기 [화학식 Ⅰ]로 표시되는 화합물을 포함하고,
    상기 [화학식 Ⅰ]로 표시되는 화합물은 정공수송 모이어티 (Hole Transportation Unit)와 p-도핑 모이어티 (p-Dopant Unit)를 포함하여 정공주입 및 정공수송 기능을 융합한 화합물인 것을 특징으로 하는 유기발광소자.
  6. 제4항에 있어서,
    상기 단일 정공층은 p-도펀트 도핑 공정없이 형성되며, 상기 [화학식 Ⅰ]로 표시되는 화합물로 이루어진 것을 특징으로 하는 유기발광소자.
  7. 제4항에 있어서,
    상기 단일 정공층의 전기전도도는 1 × 10-3 S/m ~ 1 × 10-1 S/m인 것을 특징으로 하는 유기발광소자.
  8. 제4항에 있어서,
    상기 애노드 접촉 영역의 유기층에서 정공주입층을 구비하지 않는 것을 특징으로 하는 유기발광소자.
  9. 제4항에 있어서,
    상기 단일 정공층의 HOMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 4.5 eV ~ - 7.0 eV 범위인 것을 특징으로 하는 유기발광소자.
  10. 제4항에 있어서,
    상기 단일 정공층의 LUMO 에너지 수준은 진공 에너지 수준이 0을 나타내는 절대 척도로 표시할 때 - 4.0 eV ~ - 6.0 eV 범위인 것을 특징으로 하는 유기발광소자.
  11. 제4항에 있어서,
    상기 단일 정공층의 밴드갭 (Band gap)은 절대치 2 이하인 것을 특징으로 하는 유기발광소자.
  12. 제4항에 있어서,
    상기 단일 정공층의 밴드갭 (Band gap)은 절대치 1.0 ~ 1.8인 것을 특징으로 하는 유기발광소자.
  13. 제4항에 있어서,
    상기 애노드의 일함수는 단일 정공층의 최고 LUMO 에너지 수준 이상이고, 절대치 1 이하인 것을 특징으로 하는 유기발광소자.
  14. 제10항에 있어서,
    상기 애노드의 일함수는 단일 정공층의 최고 LUMO 에너지 수준 이상이고, 절대치 0.5 이하인 것을 특징으로 하는 유기발광소자.
  15. 제1항에 있어서,
    상기 단일 정공층은 두께가 20 ~ 1,000 Å인 것을 특징으로 하는 유기발광소자.
PCT/KR2022/009726 2021-07-08 2022-07-06 다기능 정공층 화합물 및 이를 이용한 유기발광소자 WO2023282608A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210089559A KR20230010087A (ko) 2021-07-08 2021-07-08 다기능 정공층 화합물 및 이를 이용한 유기발광소자
KR10-2021-0089559 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282608A1 true WO2023282608A1 (ko) 2023-01-12

Family

ID=84800743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009726 WO2023282608A1 (ko) 2021-07-08 2022-07-06 다기능 정공층 화합물 및 이를 이용한 유기발광소자

Country Status (2)

Country Link
KR (1) KR20230010087A (ko)
WO (1) WO2023282608A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254943A (ja) * 2012-05-07 2013-12-19 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体材料用組成物および単量体
KR20190143237A (ko) * 2018-06-20 2019-12-30 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20200003524A (ko) * 2018-07-02 2020-01-10 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210020358A (ko) * 2019-08-14 2021-02-24 엘지디스플레이 주식회사 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광표시장치
CN112552304A (zh) * 2019-09-26 2021-03-26 广州华睿光电材料有限公司 芳环并芘醌类化合物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254943A (ja) * 2012-05-07 2013-12-19 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体材料用組成物および単量体
KR20190143237A (ko) * 2018-06-20 2019-12-30 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20200003524A (ko) * 2018-07-02 2020-01-10 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210020358A (ko) * 2019-08-14 2021-02-24 엘지디스플레이 주식회사 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광표시장치
CN112552304A (zh) * 2019-09-26 2021-03-26 广州华睿光电材料有限公司 芳环并芘醌类化合物及其应用

Also Published As

Publication number Publication date
KR20230010087A (ko) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2014010824A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2019168367A1 (ko) 유기 발광 소자
WO2019083327A2 (ko) 헤테로고리 화합물을 이용한 유기 발광 소자
WO2012134203A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2011081423A2 (ko) 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2010036036A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
WO2015046988A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2016182388A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2021107728A1 (ko) 유기 발광 소자
WO2014014307A1 (ko) 다환 화합물 및 이를 포함하는 유기 전자 소자
WO2011055932A2 (ko) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
WO2019235902A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2020116995A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2012043996A2 (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2020045831A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2013176402A1 (ko) 인돌 화합물 및 그 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021015417A1 (ko) 유기발광 화합물 및 유기발광소자
WO2023008895A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자
WO2022270835A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2021194141A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE