WO2012134203A2 - 화합물 및 이를 이용한 유기전기소자, 그 전자장치 - Google Patents

화합물 및 이를 이용한 유기전기소자, 그 전자장치 Download PDF

Info

Publication number
WO2012134203A2
WO2012134203A2 PCT/KR2012/002343 KR2012002343W WO2012134203A2 WO 2012134203 A2 WO2012134203 A2 WO 2012134203A2 KR 2012002343 W KR2012002343 W KR 2012002343W WO 2012134203 A2 WO2012134203 A2 WO 2012134203A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
organic
aryl
substituted
Prior art date
Application number
PCT/KR2012/002343
Other languages
English (en)
French (fr)
Other versions
WO2012134203A3 (ko
Inventor
문성윤
이범성
김동하
박정철
김기원
김은경
박용욱
박정근
주진욱
지희선
최대혁
박정환
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to US14/008,340 priority Critical patent/US9691990B2/en
Priority to JP2014502476A priority patent/JP5801468B2/ja
Publication of WO2012134203A2 publication Critical patent/WO2012134203A2/ko
Publication of WO2012134203A3 publication Critical patent/WO2012134203A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound, an organic electronic device using the same, and an electronic device thereof.
  • the flat panel display plays a very important role in supporting a highly visual information society, centered on the internet which is rapidly growing in recent years.
  • the organic light emitting device capable of low-voltage driving by self-emission type has a superior viewing angle and contrast ratio compared to the liquid crystal display (LCD), which is the mainstream of flat panel display devices, and is light and thin because no backlight is required.
  • LCD liquid crystal display
  • it has an advantage in terms of power consumption.
  • the fast response speed and wide color reproduction range have attracted attention as a next generation display device.
  • an organic light emitting display device is formed on a glass substrate in order of an anode made of a transparent electrode, an organic material layer including a light emitting region, and a metal electrode.
  • the organic layer may include a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), or an electron injection layer (electronjection layer) in addition to the emitting layer (EML).
  • EIL may further include an electron blocking layer (EBL) or a hole blocking layer (HBL) due to light emission characteristics of the emission layer.
  • EBL electron blocking layer
  • HBL hole blocking layer
  • the light emitting excitation emits light as it transitions to ground states, in which a light emitting layer (guest) is doped into the light emitting layer (host) to increase the efficiency and stability of the light emitting state.
  • the present invention provides an effect of increasing the efficiency of the organic electronic device, lowering the driving voltage, increasing the lifetime and stability, and improve the manufacturing efficiency.
  • the present invention provides a compound represented by the following formula.
  • the present invention provides an organic electric device and an electronic device including the compound represented by the above formula.
  • the present invention exhibits the effect of increasing the efficiency of the novel compound substituted with deuterium and an organic electric device including the same, lowering the driving voltage, increasing the life and stability, and improving the manufacturing efficiency.
  • 1 to 6 show examples of the organic light emitting display device to which the compound of the present invention can be applied.
  • the present invention relates to a compound having a low driving voltage characteristics, a hole injection layer and a hole transport layer material and an organic electric device comprising the same.
  • the deposition method is the mainstream in the formation of the organic light emitting device, a material that can withstand the deposition method for a long time, that is, a material having a strong heat resistance characteristics is required.
  • the present organic EL device requires a material having a characteristic of increasing the manufacturing efficiency by simplifying the device structure by using a material having a function of a hole injection layer and a hole transport layer at the same time in order to increase the manufacturing efficiency. to be.
  • a material having a characteristic of increasing the manufacturing efficiency by simplifying the device structure by using a material having a function of a hole injection layer and a hole transport layer at the same time in order to increase the manufacturing efficiency. to be.
  • the stack thickness increases, such a structure must have a high hole movement property and a high deposition rate, that is, high heat resistance, is required to increase manufacturing time, that is, manufacturing efficiency.
  • the inventors of the present invention have continuously researched and developed an organic material which can have improved properties while maintaining excellent properties of organic material layers of organic electroluminescent devices, for example, organic electroluminescent devices.
  • the compound substituted with deuterium shows much thermodynamic behavior compared with the unsubstituted compound.
  • the bond length is made of carbon, deuterium according to the difference in carbon, hydrogen, carbon, and deuterium bond lengths. It was confirmed that the compound may have a higher luminous efficiency due to the weakening of the intermolecular van der Waals forces generated by the small bond length.
  • the zero point energy that is, the energy of the ground state is lowered, and as the bond length of deuterium and carbon is shortened, the molecular hardcore volume is increased. It has been confirmed that it is possible to reduce the electrical polarizability accordingly, and to increase the film volume by weakening the intermolecular interaction (Buckingham, AD; Hentschel, HGEJ Polym. Sci). 1980, 18, 853).
  • the deuterium-substituted material has a lower visible light absorption characteristic than the low carbon and hydrogen bonding material, which can be an advantage to increase the efficiency in light emitting devices such as organic light emitting devices.
  • the heat resistance would be increased in case of deuterium substitution (see Macromolecules 2004, 37, 7918).
  • the present invention provides a compound in which an amine group substituted with deuterium is combined to maintain the excellent properties of the organic material layers of the organic light emitting device as described above to meet the requirements of the organic material.
  • the present invention provides a compound represented by the following Chemical Formula 1.
  • R 1 to R 2 are each independently a hydrogen atom; Halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ aryl thiophene group of C 20, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ aryl group of C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 60 of, C 8 - C 20 C 6 ⁇ C 60 aryl group unsubstituted or substituted with one or more substituents selected from the group consisting of an aryl alkenyl group, a silane group, a boron group, a germanium group, a C 2 ⁇ C 20 heterocyclic group; A halogen group, a C 1 to C 20 alkyl group, a C 2 to C
  • R 1 to R 2 may be bonded to groups adjacent to each other to form an alicyclic or aromatic ring, or may form a hetero ring.
  • heterocyclic refers to an alicyclic or aromatic ring containing at least one heteroatom, and includes not only a neighboring group but also a parent nucleus itself.
  • L is a C 6 ⁇ C 60 arylene group unsubstituted or substituted with one or more substituents selected from the group consisting of nitro, nitrile, halogen, alkyl, alkoxy and amino groups; It may be a C 3 ⁇ C 60 hetero arylene group unsubstituted or substituted with one or more substituents selected from the group consisting of nitro, nitrile, halogen, alkyl, alkoxy and amino groups.
  • c may be an integer of 0 to 2, but is not limited thereto.
  • the present invention provides a compound represented by one of formula (2) or (3).
  • X in formulas 2 and 3 represents CR′R ′′, NR ′, O, S, and R 3 to R 5 and R 6 to R 7 are each independently a hydrogen atom; Halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ aryl thiophene group of C 20, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ aryl group of C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 60 of, C 8 - C 20 C 6 ⁇ C 60 aryl group unsubstituted or substituted with one or more substituents selected from the group consisting of an aryl alkenyl group, a silane group, a boron group, a germanium group, a C 2 ⁇
  • R 3 to R 7 may be bonded to a neighboring group to form a saturated or unsaturated ring, that is, an alicyclic or aromatic ring, and a hetero ring may also be formed.
  • the neighboring group is a concept including not only a substituent but also a mother nucleus itself.
  • R ′ and R ′′ are each independently a hydrogen atom; C 1 ⁇ C 20 Alkyl group, C 2 ⁇ C 20 Alkenyl group, C 1 ⁇ C 20 Alkoxy group, C 6 ⁇ C 20 Aryl group, C 7 ⁇ C 20 arylalkyl group, C 8 ⁇ C 20 An arylalkenyl group C 2 to C 20 alkyl group unsubstituted or substituted with a substituent selected from the group consisting of a heterocyclic group, a nitrile group and an acetylene group; Halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C 1 ⁇ C20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group, C 3 -C 20
  • L is independently a C 6 ⁇ C 60 arylene group unsubstituted or substituted with one or more substituents selected from the group consisting of nitro, nitrile, halogen, alkyl, alkoxy and amino groups; It may be a C 3 ⁇ C 60 hetero arylene group unsubstituted or substituted with one or more substituents selected from the group consisting of nitro, nitrile, halogen, alkyl, alkoxy and amino groups.
  • c may be an integer of 0 to 2, but is not limited thereto.
  • D represents deuterium (deuterium contains tritium, the same hereafter).
  • f and g are integers of 0-3, but are not limited to these.
  • F + g 1 or more
  • examples of the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, azine Credyl group, pyridazine group, quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzthiazole group, benz carbazole group, benzthiophene group, dibenzothiophene group, benz Furanyl groups, dibenzofuranyl groups and the like, but are not limited thereto.
  • the substituents may combine with each other to form a substituted or unsubstituted saturated or unsaturated ring or ring, for example, an aliphatic, aromatic, or heteroaromatic monocyclic or polycyclic ring.
  • the present invention may include two or more structures of the formula (1).
  • the compound having the structural formula may be used in a solution process.
  • the compound may form an organic material layer of an organic electric device, which will be described later, by a soluble process.
  • the organic material layer may be formed by using various polymer materials, rather than a solution process or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be produced in fewer layers by the method.
  • the compounds represented by Formulas 1 to 3 may each be one or more than one of the compounds represented by Formula 4 below.
  • the present invention provides a compound represented by Chemical Formulas 1 to 4.
  • Compounds represented by Chemical Formulas 1 to 4 are anode electrodes which are one of the causes of the hole injection layer material having high uniformity and low crystallization when forming a thin film while minimizing the characteristics of the organic material layer of the organic light emitting device as described below, and shortening the lifespan.
  • anode electrodes which are one of the causes of the hole injection layer material having high uniformity and low crystallization when forming a thin film while minimizing the characteristics of the organic material layer of the organic light emitting device as described below, and shortening the lifespan.
  • the present inventors have confirmed many thermodynamic behaviors in comparison with the compounds represented by the formulas 1 to 4 substituted with deuterium and the unsubstituted compounds, and according to the difference in carbon, hydrogen and carbon, and deuterium bond lengths, the bond lengths It is confirmed that a compound composed of carbon and deuterium having a smaller value has a higher luminous efficiency due to the weakening of the intermolecular van der Waals force generated by the small bond length, and zero point energy when substituted with deuterium. In other words, as the energy of the ground state is lowered and the bond length of deuterium and carbon is shortened, the molecular hardcore volume is reduced, thereby reducing the electropolar polarization and intermolecular interaction. By weakening), it was confirmed that the thin film volume can be increased.
  • the properties of the compounds represented by Chemical Formulas 1 to 4 substituted with deuterium may create an effect of lowering the crystallinity of the thin film, that is, an amorphous state, and in general, in order to increase the lifetime and driving characteristics of the organic light emitting device. It was determined that it would be very effective to implement the required amorphous state.
  • the compounds were synthesized according to the synthesis method described above, and the examples in which the compounds were applied to an organic material layer of an organic electroluminescent device, for example, an organic electroluminescent device, were compared with those of commonly used compounds.
  • the reaction flask is stirred at -78 ° C for 1 hour.
  • To the reaction flask was added dropwise a solution of methyl bromide (28 g, 300 mmol) in THF (60 mL).
  • the temperature of the reaction flask was gradually raised to room temperature and the reaction proceeded for 24 hours.
  • the mixture was extracted with isopropyl ether, water, and brine, and the organic layer was dried over MgSO 4 .
  • the obtained organic layer was concentrated after silica gel short column and recrystallized with methylene chloride and hexane to obtain 25g (98%) of 1A-1.
  • 2-Bromo-9H-fluoren-9-one (41.5 g, 160 mmol) and anhydrous THF (900 mL) were added to a 1 L three-necked round bottom flask, and the mixture was cooled to -78 ° C while stirring. Maintain temperature for 30 minutes and stir. Then, 2.6M n-BuLi (64 mL, 160 mmol) in the nucleic acid solution was added dropwise to the cooled mixture. The reaction flask is stirred at -78 ° C for 1 hour.
  • 3A-1 (35.7 g, 86.38 mmol) and acetic acid (96 mL) were added to a 1 L round bottom flask, and the mixture was stirred and dissolved in a solvent.
  • the reaction temperature is lowered to 0 ° C. and hydrochloric acid (112 mL) is slowly added dropwise. After the addition, when the solid is slowly formed, the solid is confirmed. When the amount of solid is no longer increased, the reaction is terminated.
  • the precipitate is separated by filtration and washed with water and ethanol. The obtained solid was heat-dried to obtain 27.3 g (80%) of 3A-Br.
  • intermediate 1 (24.1 g, 80.5 mmol), tetrachloro-1,4-benzoquione (27.45 g, 111.7 mmol) and xylene were added and refluxed under nitrogen atmosphere. After the reaction was completed, the reaction was terminated with 10% NaOH aqueous solution, extracted with methylene chloride, water, brine and dried over MgSO 4 . The organic solution was concentrated and recrystallized with EtOH to give 22.9 g (96%) of intermediate 2.
  • 3a-3 compound (5 g, 14.442 mmol), Iodobenzene (4.42 g, 21.663 mmol), Pd 2 (dba) 3 (0.4 g, 0.433 mmol), PPh 3 (0.38 g, 1.444 mmol) in a 500 mL round bottom flask , NaO t -Bu (4.164 g, 43.33 mmol) and toluene (150 mL) were added and the reaction was performed at 100 ° C. for 8 hours.
  • the mixture is heated to reflux at 80 ° C to 90 ° C. After the reaction is completed, distilled water is diluted at room temperature. Then, the mixture was extracted with methylene chloride and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting compound was purified by silicagel column and recrystallized to obtain a product.
  • 1,4-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol ), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 17.4 g (yield: 65%) of product.
  • 1,4-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol ), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 16.5 g (yield: 62%) of product.
  • 1,4-dibromonaphthalene (17.2 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 14.6 g (yield: 64%) of product.
  • 1,5-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol ), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 18 g (yield: 67%) of product.
  • 1,5-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol ), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 17 g (yield: 64%) of product.
  • 2,6-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd 2 (dba) 3 (2.3g, 2.5 mmol), PPh 3 (1.31 g, 5 mmol ), NaO t -Bu (14.42 g, 150 mmol) and toluene (525 mL) were obtained using the synthesis method of 2-1 above to obtain 17.6 g (yield: 66%) of product.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • substituents used in the hole injection layer material, the hole transport layer material, the light emitting layer material, and the electron transport layer material used in the manufacture of the organic electric device, including the organic light emitting device to satisfy the conditions required for each organic material layer Materials can be prepared.
  • the compound according to the present invention can be used for various purposes in the organic light emitting electronic device according to the type and nature of the substituent.
  • the compounds of the present invention can act as various layers other than the host of the phosphorescent or fluorescent light emitting layer because they are freely controlled by the core and the substituents.
  • the organic electric device of the present invention may be manufactured by a conventional method and material for manufacturing an organic electric device except for forming one or more organic material layers using the above-described compounds.
  • the compounds of the present invention are used in other organic material layers of the organic light emitting device, for example, a light emitting auxiliary layer, an electron injection layer, an electron transport layer, and a hole injection layer, it is obvious that the same effect can be obtained.
  • the compound of the present invention can be used in a soluble process.
  • the compound may form an organic material layer of the organic electronic device, which will be described later, by a solution process.
  • the organic material layer may be formed by using various polymer materials, rather than a solution process or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be produced in fewer layers by the method.
  • Organic electroluminescent devices in which the compounds of the present invention can be used include, for example, organic electroluminescent devices (OLEDs), organic solar cells, organic photoconductor (OPC) drums, organic transistors (organic TFTs), and the like.
  • organic electroluminescent device As an example of the organic electroluminescent device to which the compounds of the present invention can be applied, an organic light emitting diode (OLED) will be described.
  • OLED organic light emitting diode
  • the present invention is not limited thereto, and the above-described compounds may be applied to various organic electroluminescent devices.
  • Another embodiment of the present invention is an organic electroluminescent device comprising a first electrode, a second electrode and an organic material layer disposed between the electrodes, wherein at least one of the organic material layer comprises an organic electroluminescent device comprising the compounds of the present invention to provide.
  • 1 to 6 show examples of the organic light emitting display device to which the compound of the present invention can be applied.
  • the organic light emitting device except that at least one layer of an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer to include the compound of the present invention.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer to include the compound of the present invention.
  • FIGS. 1 to 6 The structure of the organic light emitting display device according to another embodiment of the present invention is illustrated in FIGS. 1 to 6, but is not limited thereto.
  • reference numeral 101 denotes a substrate, 102 an anode, 103 a hole injection layer (HIL), 104 a hole transport layer (HTL), 105 a light emitting layer (EML), 106 an electron injection layer (EIL), 107 an electron transport layer ( ETL), 108 represents a negative electrode.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML electron injection layer
  • ETL electron transport layer
  • ETL electron transport layer
  • the organic light emitting diode further includes a hole blocking layer (HBL) that blocks hole movement, an electron blocking layer (EBL) that blocks electrons from moving, a light emitting auxiliary layer that helps or assists light emission, and a protective layer. It may be located.
  • the protective layer may be formed to protect the organic material layer or the cathode at the uppermost layer.
  • the compound of the present invention may be included in one or more of an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer.
  • the compound of the present invention is used in place of or in combination with one or more of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer and a protective layer It may be used to form.
  • the organic layer may be used not only in one layer but also in two or more layers.
  • it can be used as a hole injection material, a hole transport material, an electron injection material, an electron transport material, a luminescent material and a passivation (kepping) material according to the compound of the present invention, in particular a host or in a luminescent material and host / dopant alone Can be used as a dopant, can be used as a hole injection, a hole transport layer.
  • the organic light emitting device is a metal having a metal or conductivity on a substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • PVD physical vapor deposition
  • An oxide or an alloy thereof is deposited to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is formed thereon, and then a material that can be used as a cathode is deposited thereon.
  • PVD physical vapor deposition
  • an organic electronic device may be fabricated by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, but is not limited thereto and may have a single layer structure.
  • the organic layer may be formed using a variety of polymer materials, but not by a deposition process or a solvent process, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be made with a small number of layers.
  • the organic light emitting device according to another embodiment of the present invention may be used in a solution process such as spin coating or ink jet process.
  • the substrate is a support of the organic light emitting device, and a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet, or the like can be used.
  • the positive electrode material may be a material having a large work function to facilitate hole injection into the organic material layer.
  • Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the hole injection layer is located on the anode.
  • the conditions required for the material of the hole injection layer are high hole injection efficiency from the anode, it should be able to transport the injected holes efficiently. This requires a small ionization potential, high transparency to visible light, and excellent hole stability.
  • the hole injection material is a material that can be injected well from the anode at a low voltage, the highest occupied molecular orbital (HOMO) of the hole injection material may be between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO occupied molecular orbital
  • Specific examples of hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene, quinacridone-based organics, perylene-based organics, Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is positioned on the hole injection layer.
  • the hole transport layer receives holes from the hole injection layer and transports the holes to the organic light emitting layer located thereon, and serves to prevent high hole mobility, hole stability, and electrons.
  • applications for vehicle body display require heat resistance to the device, and may be a material having a glass transition temperature (Tg) of 70 ° C. or higher.
  • NPD NPB
  • spiro-arylamine compounds perylene-arylamine compounds
  • azacycloheptatriene compounds bis (diphenylvinylphenyl) anthracene and silicon germanium oxide.
  • the organic light emitting layer is positioned on the hole transport layer.
  • the organic light emitting layer is a layer for emitting light by recombination of holes and electrons injected from the anode and the cathode, respectively, and is made of a material having high quantum efficiency.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and may be a material having good quantum efficiency for fluorescence or phosphorescence.
  • Substances or compounds that satisfy these conditions include Alq3 for green, Balq (8-hydroxyquinoline beryllium salt) for blue, DPVBi (4,4'-bis (2,2-diphenylethenyl) -1,1'- biphenyl) series, Spiro material, Spiro-DPVBi (Spiro-4,4'-bis (2,2-diphenylethenyl) -1,1'-biphenyl), LiPBO (2- (2-benzoxazoyl) -phenollithium salt ), Bis (diphenylvinylphenylvinyl) benzene, aluminum-quinoline metal complex, metal complexes of imidazole, thiazole and oxazole, and the like, perylene, and BczVBi (3,3 '[ (1,1'-biphenyl) -4,4'-diyldi-2,1-ethenediyl] bis (9-ethyl) -9H-carbazole; D
  • DCJTB [2- (1,1-dimethylethyl) -6- [2- (2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H
  • doping such as -benzo (ij) quinolizin-9-yl) ethenyl] -4H-pyran-4-ylidene] -propanedinitrile
  • an organic light emitting layer is formed of a polymer of polyphenylene vinylene (PPV) or a polymer such as poly fluorene.
  • PPV polyphenylene vinylene
  • a polymer such as poly fluorene can be used for
  • the electron transport layer is positioned on the organic light emitting layer.
  • the electron transport layer needs a material having high electron injection efficiency from the cathode positioned thereon and capable of efficiently transporting the injected electrons. To this end, it must be made of a material having high electron affinity and electron transfer speed and excellent stability to electrons.
  • Examples of the electron transport material that satisfies such conditions include Al complexes of 8-hydroxyquinoline; Complexes including Alq3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron injection layer is stacked on the electron transport layer.
  • the electron injection layer is a metal complex compound such as Balq, Alq3, Be (bq) 2, Zn (BTZ) 2, Zn (phq) 2, PBD, spiro-PBD, TPBI, Tf-6P, aromatic compound with imidazole ring, It can be produced using a low molecular material containing a boron compound and the like.
  • the electron injection layer may be formed in a thickness range of 100 ⁇ 300 ⁇ .
  • the cathode is positioned on the electron injection layer. This cathode serves to inject electrons.
  • the material used as the cathode may use the material used for the anode, and may be a metal having a low work function for efficient electron injection.
  • a suitable metal such as tin, magnesium, indium, calcium, sodium, lithium, aluminum, silver, or a suitable alloy thereof can be used.
  • electrodes having a two-layer structure such as lithium fluoride and aluminum, lithium oxide and aluminum, strontium oxide and aluminum having a thickness of 100 ⁇ m or less may also be used.
  • the compound of the present invention can be used as a hole injection material, a hole transport material, a light emitting material, an electron transport material, and an electron injection material suitable for fluorescence and phosphorescent devices of all colors such as red, green, blue, and white, It can be used as a host or dopant material of various colors.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • the present invention includes a display device including the organic electric element described above, and a terminal including a control unit for driving the display device.
  • This terminal means a current or future wired or wireless communication terminal.
  • the terminal according to the present invention described above may be a mobile communication terminal such as a mobile phone, and includes all terminals such as a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, various computers, and the like.
  • Comparative Example (3) refers to a compound substituted with hydrogen, which is the same as Compound 2-1 in Chemical Formula 4 but not a small to medium number.
  • Other comparative examples are also the same.
  • a copper phthalocyanine (hereinafter abbreviated as CuPc) film was vacuum-deposited on the ITO layer (anode) formed on the organic substrate to form a thickness of 10 nm.
  • CuPc copper phthalocyanine
  • Table 1 or Table 2 Each of Examples and Comparative Examples of Table 1 or Table 2 was then vacuum deposited to a hole transport layer to a thickness of 20 nm. Vacuum deposition was carried out for comparative experiments.
  • tris (8-quinolinol) aluminum was deposited to a thickness of 40 nm with an electron injection layer.
  • LiF an alkyl halide metal
  • Al was deposited to a thickness of 150 nm to use an Al / LiF as a cathode to prepare an organic light emitting device.
  • the electroluminescent (EL) characteristics were measured by the PR-650 of photoresearch by applying a forward bias DC voltage to the organic light emitting diodes prepared in Example and Comparative Example as described above.
  • the T95 life was measured using a life measurement instrument manufactured by McScience. The T95 measurement results are shown in Table 3 below.
  • the driving voltage shows a drop characteristic
  • the life characteristic also increases more than two times.
  • the compound of the embodiment can significantly increase the lifespan, driving characteristics, and manufacturing efficiency of the organic light emitting display device.
  • the driving voltage shows a falling characteristic, and the life characteristics also increase more than two times, as well as the comparative examples (3) to (17) and the examples.
  • the driving voltage shows a drop characteristic and the life characteristic also increases more than twice.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 화합물 및 및 이를 이용한 유기전기소자, 그 전자장치를 제공한다.

Description

화합물 및 이를 이용한 유기전기소자, 그 전자장치
본 발명은 화합물 및 이를 이용한 유기전기소자, 그 전자장치에 관한 것이다.
평판 표시소자는 최근 들어 급성장세를 보이고 있는 인터넷을 중심으로 고도의 영상 정보화 사회를 지탱하는 매우 중요한 역할을 수행하고 있다. 특히, 자체 발광형으로 저전압 구동이 가능한 유기전계발광소자는, 평판 표시소자의 주류인 액정디스플레이(liquid crystal display, LCD)에 비해 시야각 및 명암비 등이 우수하고, 백라이트가 불필요하여 경량 및 박형이 가능하며, 소비전력 측면에서도 유리한 장점을 가진다. 또한, 응답속도가 빠르며, 색 재현 범위가 넓어 차세대 표시소자로서 주목을 받고 있다. 일반적으로, 유기전계발광소자는 투명전극으로 이루어진 양극(anode), 발광영역을 포함하는 유기물층 및 금속전극(cathode)의 순으로 유리기판 위에 형성된다.
이때, 유기물층은 발광층(emitting layer, EML) 외에 정공 주입층(hole injection layer,HIL), 정공 수송층(hole transport layer, HTL), 전자 수송층(electron transport layer, ETL) 또는 전자 주입층(electroninjection layer, EIL)을 포함할 수 있으며, 발광층의 발광특성상 전자 차단층(electron blocking layer, EBL) 또는 정공차단층(hole blocking layer, HBL)을 추가로 포함할 수 있다. 이러한 구조의 유기전계발광소자에 전기장이 가해지면 양극으로부터 정공이 주입되고 음극으로부터 전자가 주입되며, 주입된 정공과 전자는 각각 정공 수송층과 전자 수송층을 거쳐 발광층에서 재조합(recombination)하여 발광 여기자(exitons)를 형성한다. 형성된 발광여기자는 바닥상태(ground states)로 전이하면서 빛을 방출하는데, 이때, 발광 상태의 효율과 안정성을 증가시키기 위해 발광 색소(게스트)를 발광층(호스트)에 도핑하기도 한다.
이러한 유기전계발광소자를 다양한 디스플레이 매체에 활용하기 위해서는 무엇보다 소자의 수명이 중요하며, 현재 유기전계발광소자의 수명을 증가시키기 위한 여러 연구들이 진행되고 있다.
본 발명은 유기전기소자의 효율 상승, 구동전압 하강, 수명 상승 및 안정성 상승, 제조 효율성 향상 효과를 제공하기 위한 것이다.
본 발명은 아래 화학식으로 표시되는 화합물을 제공한다.
Figure PCTKR2012002343-appb-I000001
또한 본 발명은 위 화학식으로 표시되는 화합물을 포함하는 유기전기소자 및 그 전자장치를 제공한다.
본 발명은 중수소로 치환된 신규한 화합물 및 이를 포함하는 유기전기소자의 효율 상승, 구동전압 하강, 수명 상승 및 안정성 상승, 제조효율 향상 효과를 나타낸다.
도 1 내지 도 6은 본 발명의 화합물을 적용할 수 있는 유기전계발광소자의 예를 도시한 것이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a),(b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 발명은 낮은 구동전압 특성을 갖는 화합물 및 정공 주입층 및 정공수송층 재료 및 이를 포함하는 유기전기소자에 관한 것이다.
유기전기소자, 예를 들어 유기전계발광소자의 우수한 수명 특성을 위해 정공 수송층 또는 완충층(buffer layer)으로 삽입되는 유기물질에 관해 여러 연구가 진행되고 있으며(참고: S. A. Van Slyke 등, Appl. Phys. Lett., 69, 2160, 1996), 이를 위해 양극으로부터 유기층으로의 높은 정공 이동 특성을 부여하면서 증착 후 박막 형성시 균일도가 높고 결정화도가 낮은 정공 주입층 재료가 요구되고 있다(참고: Youngkyoo Kim 등, Appl. Phys. Lett., 82, 2200, 2003)
유기전계발광소자의 수명단축의 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투 확산되는 것을 지연시키며(참고: C. O. Poon 등, Appl. Phys. Lett., 82, 155, 2003), 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다(참고: Shizuo Tokito, Appl. Phys.Lett., 70(15), 1929, 1997). 또한, 유기전계발광소자의 형성에 있어서 증착방법이 주류를 이루고 있으며, 이러한 증착방법에 오랫동안 견딜 수 있는 재료 즉 내열성 특성이 강한 재료가 필요한 실정이다.
특히 현재의 유기전계발광소자는 제조의 효율성을 증대시키기 위하여 정공주입층과 정공수송층을 기능을 동시에 갖는 재료를 이용함으로써, 소자구조를 단순화시켜 제조 효율성을 증가시킬 수 있는 특성을 갖는 재료가 필요한 실정이다. 이러한 구조는 적층 두께가 증가함에 따라, 높은 정공이동 특성을 가져야 하며 또한 제조시간 즉 제조 효율성을 높이기 위하여 높은 증착속도 즉 고내열성이 요구된다.
본 발명의 발명자들은 유기전기소자, 예를 들어 유기전계발광소자의 유기물층들의 뛰어난 특성을 유지하면서도 향상된 특성을 가질 수 있은 유기재료를 지속적으로 연구개발하였다.
본 발명자들의 연구결과에 따르면 중수소로 치환된 화합물은 비치환된 화합물과 비교하여 많은 열역학적 거동을 보이는 것을 확인하였다. 이러한 열적학적 특성 중에, 예를 들어 미국 특허(제 6,699,599호)에서 이리듐화합물이 중수소로 치환될 경우, 탄소, 수소 및 탄소, 중수소 결합길이의 차이에 따라서, 결합길이가 보다 작은 탄소, 중수소로 이루어진 화합물이 결합길이가 작음에 따라 발생하는 분자간 반데르발스 힘의 약화로 인해 더 높은 발광효율을 가질 수 있음이 확인하였다.
또한 본 발명자들의 연구결과에 따르면 중수소로 치환된 경우에는 제로포인트 에너지(Zero Point Energy) 즉 바닥상태의 에너지가 낮아지며, 중수소, 탄소의 결합길이가 짧아짐에 따라, 분자 중심 부피(Molecular hardcore volume)가 줄어들고, 이에 따라 전기적 극성화도(Electroical polarizability)를 줄일 수 있으며, 분자간 상호작용(Intermolecular interaction)을 약하게 함으로써, 박막 부피를 증가시킬 수 있음을 확인하였다(참고: Buckingham, A.D.; Hentschel, H. G. E. J. Polym. Sci. 1980, 18, 853). 이러한 특성은 박막의 결정화도를 낮추는 효과 즉, 비결정질(Amorphous) 상태를 만들 수 있으며, 일반적으로 OLED 수명 및 구동특성을 높이기 위하여, 반드시 필요한 비결정질 상태를 구현하는데 매우 효과적일 것이라고 판단하였다(참고: Chem. Rev. 2007, 107, 953-1010 953)
결과적으로 중수소로 치환된 물질의 특성 중에 낮은 탄소, 수소 결합물질 보다 낮은 가시광선 흡수율 특성을 가지며, 이는 유기전계발광소자와 같은 발광소자에서 효율을 높일 수 있는 장점이 될 수 있다고 판단하였다. 또한 중수소로 치환된경우에 내열성도 많은 증가가 있을 것으로 판단하였다(참고: Macromolecules 2004, 37, 7918).
이러한 발명자들의 연구개발의 결과로 전술한 유기전계발광소자의 유기물층들의 뛰어난 특성을 유지하면서도 유기재료의 요구특성에 부합하도록 본 발명은 중수소로 치환된 아민기가 결합된 화합물을 제공한다.
즉 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2012002343-appb-I000002
화학식1에서, R1~R2은 각각 독립적으로 수소원자; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20 의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기; 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기,C6~C20의 아릴아민기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환 되고 O, N, S를 갖는 치환 또는 비치환된 C3~C60의 헤테로아릴기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C1~C30의 알콕시기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C6~C30아릴옥시기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로 아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴아민기; C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기일 수 있으나 이에 제한되지 않는다.
이때 R1~R2은 서로 인접한 기와 결합하여 지환족 또는 방향족고리를 형성할 수 있으며, 헤테로고리를 형성할 수도 있다. 여기서, 헤테로고리라 함은 헤테로원자를 적어도 하나 포함하는 지환족 또는 방향족고리를 지칭하며, 이웃한 기라 치환기뿐만 아니라 모핵 자체를 포함한다. 한편 a은 1~5의 정수, b=1~4의 정수일 수 있으나 이에 제한되지 않는다.
한편, L은 니트로, 니트릴, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴렌기; 니트로, 니트릴, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C3~C60의 헤테로 아릴렌기일 수 있으나 이에 제한되지 않는다. 이때 c 는 0~2의 정수일 수 있으나 이에 제한되지 않는다.
또한, D는 중수소(중수소는 삼중수소를 포함함, 이하 동일)를 나타내며, d는 0~5의 정수, e는 0~5의 정수일 수 있으나 이에 제한되지 않는다. 다만, d+e=1 이상이다.
또한 f 및 g 는 0~3의 정수이며, f+g=1 이상이다.
또다른 측면에서 본 발명은 화학식 2 또는 3 중 하나로 표시되는 화합물을 제공한다.
[화학식 2]
Figure PCTKR2012002343-appb-I000003
[화학식 3]
Figure PCTKR2012002343-appb-I000004
이때 화학식 2 및 3에서 X는 CR’R”, NR’, O, S를 나타내며, R3~R5 및 R6~R7은 각각 독립적으로 수소원자; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20 의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기; 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기,C6~C20의 아릴아민기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환 되고 O, N, S를 갖는 치환 또는 비치환된 C3~C60의 헤테로아릴기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C1~C30의 알콕시기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C6~C30아릴옥시기; 할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로 아릴기로 이뤄진 군으로부터 선택된 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴아민기; C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기일 수 있으나 이에 제한되지 않는다.
R3~R7은 이웃한 기와 결합하여 포화 또는 불포화고리, 즉 지환족 또는 방향족 고리를 형성할 수 있으며, 헤테로고리 또한 형성할 수 있다. 이때, 이웃한 기라 함은 치환기뿐만 아니라 모핵 자체를 포함하는 개념이다.
R’, R”는 각각 독립적으로 수소원자; C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기 C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기; 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴아민기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환되고 O, N, S를 갖는 치환 또는 비치환된 C2~C60의 헤테로고리기일 수 있으나 이에 제한되지 않는다.
여기서 각각 h, k=1~4의 정수, i, l=1~3의 정수, j=1~4의 정수일 수 있으나 이에 제한되지 않는다.
또한, L은 각각 독립적으로 니트로, 니트릴, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴렌기; 니트로, 니트릴, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C3~C60의 헤테로 아릴렌기일 수 있으나 이에 제한되지 않는다. 한편, c 는 0~2의 정수일 수 있으나 이에 제한되지 않는다.
또한, D는 중수소(중수소는 삼중수소를 포함함, 이하 동일)를 나타낸다. 한편, d는 0~5의 정수, e=0~5의 정수일 수 있으나 이에 제한되지 않는다. 다만 d+e=1 이상이다.
또한 f 및 g 는 0~3의 정수이나 이에 제한되지 않는다. 이때 f+g=1 이상 이다
상기 화학식들에 있어서, 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤즈티아졸기, 벤즈카바졸기, 벤즈티오펜기, 디벤조티오펜기, 벤즈퓨라닐기, 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
전술한 바와 같이 치환기들은 이웃한 치환기끼리 서로 결합하여 치환 또는 비치환된 포화 또는 불포화 고리 또는 환, 예를 들어 지방족, 방향족, 또는 헤테로방향족의 단환식 또는 다환식 고리를 형성할 수 있다.
본 발명의 또 하나의 실시상태에 따르면, 본 발명은 화학식1의 구조를 2이상 포함할 수 있다.
한편 상기 구조식을 가지는 화합물은 용액 공정(soluble process)에 사용될 수 있다. 다시말해 상기 화합물을 용액 공정(soluble process)에 의해 후술할 유기전기소자의 유기물층을 형성할 수 있다. 즉 상기 화합물을 유기물층으로 사용할 때 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조될 수 있다.
한편, 화학식 1 내지 3 각각으로 표시되는 화합물은 하기 화학식 4로 표시되는 화합물들 중 하나 또는 하나 이상일 수 있다.
[화학식 4]
Figure PCTKR2012002343-appb-I000005
Figure PCTKR2012002343-appb-I000006
Figure PCTKR2012002343-appb-I000007
Figure PCTKR2012002343-appb-I000008
Figure PCTKR2012002343-appb-I000009
Figure PCTKR2012002343-appb-I000010
Figure PCTKR2012002343-appb-I000011
Figure PCTKR2012002343-appb-I000012
Figure PCTKR2012002343-appb-I000013
Figure PCTKR2012002343-appb-I000014
Figure PCTKR2012002343-appb-I000015
Figure PCTKR2012002343-appb-I000016
Figure PCTKR2012002343-appb-I000017
Figure PCTKR2012002343-appb-I000018
Figure PCTKR2012002343-appb-I000019
Figure PCTKR2012002343-appb-I000020
Figure PCTKR2012002343-appb-I000021
Figure PCTKR2012002343-appb-I000022
Figure PCTKR2012002343-appb-I000023
Figure PCTKR2012002343-appb-I000024
Figure PCTKR2012002343-appb-I000025
Figure PCTKR2012002343-appb-I000026
Figure PCTKR2012002343-appb-I000027
Figure PCTKR2012002343-appb-I000028
Figure PCTKR2012002343-appb-I000029
Figure PCTKR2012002343-appb-I000030
Figure PCTKR2012002343-appb-I000031
Figure PCTKR2012002343-appb-I000032
Figure PCTKR2012002343-appb-I000033
Figure PCTKR2012002343-appb-I000034
Figure PCTKR2012002343-appb-I000035
Figure PCTKR2012002343-appb-I000036
Figure PCTKR2012002343-appb-I000037
Figure PCTKR2012002343-appb-I000038
Figure PCTKR2012002343-appb-I000039
Figure PCTKR2012002343-appb-I000040
Figure PCTKR2012002343-appb-I000041
Figure PCTKR2012002343-appb-I000042
Figure PCTKR2012002343-appb-I000043
Figure PCTKR2012002343-appb-I000044
Figure PCTKR2012002343-appb-I000045
Figure PCTKR2012002343-appb-I000046
전술한 바와 같이 본 발명자들의 연구결과에 따라 본 발명은 화학식 1 내지 4로 표시되는 화합물을 제공한다.
화학식 1 내지 4로 표시되는 화합물은 후술하는 바와 같이 유기전계발광소자의 유기물층의 특성을 최대한 살리면서 박막 형성시 균일도가 높고 결정화가 낮은 정공 주입층 재료의 요구, 수명단축의 원인 중 하나인 양극전극으로부터 금속산화물이 유기층에 침투 확산되는 것을 지연시키면서 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공 주입층 재료의 요구, 유기전계발광소자의 형성에 있어서 증착방법에 오랫동안 견딜 수 있는 재료 즉 내열성 특성이 강한 재료의 요구를 만족할 수 있다.
전술한 바와 같이 본 발명자들은 중수소로 치환된 화학식 1 내지 4로 표시되는 화합물과 비치환된 화합물과 비교하여 많은 열역학적 거동을 확인하고, 탄소, 수소 및 탄소, 중수소 결합길이의 차이에 따라서, 결합길이가 보다 작은 탄소, 중수소로 이루어진 화합물이 결합길이가 작음에 따라 발생하는 분자간 반데르발스 힘의 약화로 인해 더 높은 발광효율을 가짐을 확인하고 중수소로 치환된 경우에는 제로포인트 에너지(Zero Point Energy) 즉 바닥상태의 에너지가 낮아지며, 중수소, 탄소의 결합길이가 짧아짐에 따라, 분자 중심 부피(Molecular hardcore volume)가 줄어들고, 이에 따라 전기적 극성화도(Electroical polarizability)를 줄일 수 있으며, 분자간 상호작용(Intermolecular interaction)을 약하게 함으로써, 박막 부피를 증가시킬 수 있음을 확인하였다.
이러한 중수소로 치환된 화학식 1 내지 4로 표시되는 화합물의 특성은 박막의 결정화도를 낮추는 효과 즉, 비결정질(Amorphous) 상태를 만들 수 있으며, 일반적으로 유기전계발광소자의 수명 및 구동특성을 높이기 위하여, 반드시 필요한 비결정질 상태를 구현하는데 매우 효과적일 것이라고 판단하였다.
결과적으로 중수소로 치환된 화학식 1 내지 4로 표시되는 화합물의 특성 중에 낮은 탄소, 수소 결합물질 보다 낮은 가시광선 흡수율 특성을 가지며, 이는 유기전계발광소자와 같은 발광소자에서 효율을 높일 수 있는 장점이 될 수 있다고 판단하였다. 또한 중수소로 치환된 화학식 1 내지 4로 표시되는 화합물은 내열성도 많은 증가가 있을 것으로 판단하였다.
실시예
이하, 제조예 및 실험예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이하의 제조예 및 실험예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예
이하, 화학식 1 내지 4에 속하는 화합물들에 대한 제조예 또는 합성예를 설명한다.
다만, 화학식 1 내지 4에 속하는 화합물들의 수가 많기 때문에 화학식 1 내지 4에 속하는 화합물들 중 일부를 예시적으로 설명한다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자, 즉 당업자라면 하기에서 설명한 제조예들을 통해, 예시하지 않은 본 발명에 속하는 화합물을 제조할 수 있다.
이하 위에서 설명한 합성법에 따라 화합물들을 합성하고 그 화합물들을 유기전기소자, 예를 들어 유기전계발광소자의 유기물층에 적용한 예를 일반적으로 사용하는 화합물들과 비교하였다.
일반적인 합성 방법
[반응식 1]
Figure PCTKR2012002343-appb-I000047
반응식 1에서 중간체들은 아래와 같다.
Figure PCTKR2012002343-appb-I000048
출발물질 합성예
출발물질 1A-Br (2-Bromo-9,9-dimethyl-9H-fluorene)의 합성
[반응식 2]
Figure PCTKR2012002343-appb-I000049
1A-1 (9,9-Dimethyl-9H-fluorene) 합성
500 mL 3구 둥근바닥플라스크에 플루오렌 (22 g, 130 mmol) 및 수분을 제거한 THF (100 mL)를 질소 대기상태에서 넣고 혼합물을 교반하면서 -78℃로 냉각한 후 30분 동안 온도를 유지하며, 교반한다. 그런 후에 냉각된 혼합물에 핵산용액에 있는 2.6M n-BuLi (120 mL, 320 mmol)을 적가하였다.
이 반응 플라스크를 -78℃로 유지하면서 1시간을 교반한다. 상기 반응플라스크에 THF (60 mL)에 메틸브로마이드 (28 g, 300 mmol)를 녹인 용액을 적가한다. 상기 반응플라스크의 온도를 서서히 상온으로 승온시키고 24시간 반응을 진행하였다. 반응이 완료되면 이소프로필 에테르와 물, brine을 이용하여 추출하고 MgSO4로 유기층을 건조한다. 얻어진 유기층을 silica gel short column 한 후 농축하여 메틸렌클로라이드와 헥산으로 재결정하여 25g (98 %)의 1A-1을 얻었다
1A-Br (2-Bromo-9,9-dimethyl-9H-fluorene)의 합성
암반응을 위해 반응을 진행시킬 후드에 빛을 차단한 후 500 mL 3구 둥근바닥플라스크에 1A-1 (9.7 g, 50 mmol), 클로로포름 (100 mL), FeCl2 (0.2 g) 을 넣었다. 반응 플라스크를 0℃로 냉각한 후에 Br2 (12 g, 75 mmol)을 적가하고 24시간 반응을 진행하였다.
반응이 완료된 후 생성된 침전물을 여과하여 분리하고 물, 에탄올로 세척한다. 얻어진 고체를 가열 건조하여 15 g (85%) 의 1A-Br을 얻었다.
출발물질 2A-Br (2-Bromo-9,9-diphenyl-9H-fluorene)의 합성
[반응식 3]
Figure PCTKR2012002343-appb-I000050
2L 둥근바닥플라스크에 2-Bromofluorenone (8.65 g 33.38 mmol), 무수 THF (850 mL)을 넣는다. 상기 반응플라스크를 -78℃로 온도를 낮추고 THF에 녹여있는 1M phenylmagnesium bromide (18 g, 100 mmol)을 적가한 후 3시간동안 반응을 진행시킨다.
그런 후에 상온에서 12시간 반응을 진행시켰다. 반응이 완료된 후 생성된 침전물을 여과하여 분리하고 물, 에탄올로 세척한다. 얻어진 고체를 가열 건조하여 8.9 g (67%) 얻었다
출발물질 3A-Br (2-Bromo-9,9'-spirobi[fluorene])의 합성
[반응식 4]
Figure PCTKR2012002343-appb-I000051
3A-1 (9-(biphenyl-2-yl)-2-bromo-9H-fluoren-9-ol) 합성
1 L 3구 둥근바닥플라스크에 2-Bromo-9H-fluoren-9-one (41.5 g, 160 mmol) 및 무수 THF (900 mL)를 질소 대기상태에서 넣고 혼합물을 교반하면서 -78℃로 냉각한 후 30분 동안 온도를 유지하며, 교반한다. 그런 후에 냉각된 혼합물에 핵산용액에 있는 2.6M n-BuLi (64 mL, 160 mmol)을 적가하였다. 이 반응 플라스크를 -78℃로 유지하면서 1시간을 교반한다.
상기 반응플라스크에 THF (60 mL)에 2-bromobiphenyl (37.3 g, 160 mmol)를 녹인 용액을 적가 한다. 상기 반응플라스크의 온도를 서서히 상온으로 승온시키고 24시간 반응을 진행하였다. 반응이 완료되면 이소프로필 에테르 와 물, brine 을 이용하여 추출하고 MgSO4로 유기층을 건조한다. 얻어진 유기층을 silica gel short column 한 후 농축하여 메틸렌클로라이드와 헥산으로 재결정하여 35.7 g (54 %)의 3A-1을 얻었다
3A-Br (2-Bromo-9,9'-spirobi[fluorene])의 합성
1 L 둥근바닥플라스크에 3A-1 (35.7 g, 86.38 mmol), 아세트산 (96 mL)을 넣고 교반하여 용매에녹인다. 반응온도를 0℃로 낮추고 염산 (112 mL)을 천천히 적가한다. 적가 시 천천히 생성되는 고체를 확인한 후에 더 이상 고체의 양이 증가되지 않을 때 반응을 종료, 침전물을 여과분리하고 물, 에탄올로 세척하여 준다. 얻어진 고체는 가열 건조하여 27.3 g (80%) 의 3A-Br을 얻었다.
출발물질 1D-Br-1 (3-bromo-9-phenyl-9H-carbazole)의 합성
[반응식 5]
Figure PCTKR2012002343-appb-I000052
500 mL 반응 플라스크에 9-페닐 카바졸 (20 g, 82.2 mmol), NBS (15.36 g, 86.31 mmol), 메틸렌클로라이드 (200 mL) 을 넣고 상온에서5시간동안 반응을 진행시킨다. 반응이 완료되면 메틸렌클로라이드와 Na2CO3 수용액으로 추출하고 MgSO4로 건조하여 농축한 후 생성된 화합물을 short phase Column (메틸렌클로라이드 : 헥산 = 1:1 ) 한 후에 메틸렌클로라이드와 헥산으로 재결정하여 23 g (87 %)을 얻었다.
출발물질 1D-Br-2의 (2-bromo-9-phenyl-9H-carbazole) 합성
중간체 1 (4-Bromo-2-nitrobiphenyl)의 합성
[반응식 6]
Figure PCTKR2012002343-appb-I000053
500 mL 둥근바닥플라스크에 toluene (250 mL), phenyl boronic acid (10 g, 82 mmol), 2,5-dibromoni trobenzene (23.1 g, 82.3 mmol), Pd(PPh3)4 (2.8 g, 2.5 mmol), 2M Na2CO3 수용액 (124 mL)을 넣는다. 그런 후에 90℃ 상태에서 6시간 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시킨다. 그런후에 메틸렌클로라이드와 물로 추출하고 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column (메틸렌클로라이드 : 헥산=1:1)하여 19.2 g (84.2 %) 의 생성물을 얻었다.
중간체 1 (2-Bromocarbazole)의 합성
[반응식 7]
Figure PCTKR2012002343-appb-I000054
250 mL 둥근바닥플라스크에 4-Bromo-2-nitrobenzene (19.2 g, 69.04 mmol), triehtyl phosphate (84 mL, 483.28 mmol)을 넣고 160℃~165℃ 상태에서 14시간 동안 가열 환류시킨다. 반응이 완료되면 감압증류로 남은 triehtyl phosphite을 제거하고, MeOH : H2O = 1:1 혼합용매로 희석시킨 후 생성된 고체를 여과한다. 얻어진 고체를 MeOH : H2O = 1:1 혼합용매와 petroleum ether로 씻어준다.
상기 고체를 메틸렌클로라이드에 녹인후에 MgSO4로 건조하여 농축하고 silicagel column 한다. (petroleum ether : methylene chloride = 2:1) 10.2 g (60 %)의 생성물을 얻는다.
1D-Br-2 : (2-bromo-9-phenyl-9H-carbazole) 합성
[반응식 8]
Figure PCTKR2012002343-appb-I000055
250 mL 둥근바닥플라스크에 2-Bromocarbazole (6 g, 24.38 mmol), iodobenzene (9.95 g, 48.76 mmol), K2CO3 (10.11 g, 73.14 mmol), Cu powder (1.55 g, 24.38 mmol), 18-crown-6 (3.22 g, 12.19 mmol), o-dichlorobenzene (150 mL)을 넣고 24시간 동안 가열 환류시킨다. 반응이 완료되면 메틸렌클로라이드와 물로 추출하고 얻어진 유기층을 5% 염산, brine으로 씻어준다. 유기층을 MgSO4로 건조하여 농축한 후 화합물을 silicagel column (ethyl acetate : hexane =1:1)하여 5.5 g (70 %) 의 생성물을 얻었다
출발물질 2D-Br-1의 (8-bromo-11-phenyl-11H-benzo[a]carbazole) 합성
[반응식 9]
Figure PCTKR2012002343-appb-I000056
중간체 1 : 8-bromo-6,11-dihydro-5H-benzo[a]carbazole 의 합성
1 L 둥근바닥플라스크에 α-Tetralone (21.6 g, 148 mmol), 4-bromophenylhydrazinechloride (20.4 g, 91 mmol)을 소량의 아세트산을 넣고 에탄올 300mL에 4시간 동안 질소대기 상태에서 환류시켰다. 반응완료 후 상온으로 냉각 시킨 후 형성된 침전물을 여과하고 건조하여 중간체 1을 19.6 g (86%) 얻었다.
중간체 2 : 8-bromo-11H-benzo[a]carbazole의 합성
1 L 둥근바닥플라스크에 중간체 1 (24.1 g, 80.5 mmol), tetrachloro-1,4-benzoquione (27. 45 g, 111.7 mmol), xylene을 넣고 질소대기 상태에서 환류시켰다. 반응이 완료되면 10% NaOH 수용액으로 반응을 종료시킨 후에 메틸렌클로라이드와 물, brine 을 이용하여 추출하고 MgSO4로 유기층을 건조한다. 유기용액을 농축시키고 EtOH로 재결정하여 중간체 2을 22.9 g (96%)를 얻었다.
2D-Br-1 : 8-bromo-11-phenyl-11H-benzo[a]carbazole 의 합성
중간체 2 (20 g, 67.53 mmol), iodobenzene (27.6 g, 135.06 mmol), K2CO3 (28 g, 202.59 mmol), Cu powder (4.3 g, 67.53 mmol), 18-crown-6 (8.92 g, 33.77 mmol), o-dichlorobenzene (415 mL)을 상기 1D-Br-2 합성 방법과 동일하게 진행하였으며 17.1 g (68%)을 얻었다.
출발물질 2D-Br-2의 (9-bromo-11-phenyl-11H-benzo[a]carbazole) 합성
[반응식 10]
Figure PCTKR2012002343-appb-I000057
중간체 2 (20 g, 67.53 mmol), iodobenzene (27.6 g, 135.06 mmol), K2CO3 (28 g, 202.59 mmol), Cu powder (4.3 g, 67.53 mmol), 18-crown-6 (8.92 g, 33.77 mmol), o-dichlorobenzene (415 mL) 을 상기 2D-Br-1 합성 방법과 동일하게 진행하였으며 15.1 g (60%)을 얻었다.
출발물질 3D-Br의 합성
[반응식 11]
Figure PCTKR2012002343-appb-I000058
상기 1D-Br-1, 1D-Br-2 의 실험방법과 동일하게 진행하였다.
출발물질 4D-Br-1 (12-bromo-9-phenyl-9H-dibenzo[a,c]carbazole)의 합성 중간체 1 : 9-(5-bromo-2-nitrophenyl)phenanthrene의 합성
[반응식 12]
Figure PCTKR2012002343-appb-I000059
2L 둥근바닥플라스크에 phenanthracene-9-boronic acid (76.61 g, 345 mmol), THF (700 mL), H2O (350 mL)을 넣고 녹인 후에 2,4-dibromo-1-nitrobenzene (146 g, 518 mmol), NaOH (42 g, 1035 mmol), Pd(PPh3)4 (20 g, 17.3 mmol)을 순서대로 넣고 80℃에서 반응을 24시간 동안 진행한다. 반응이 완료되면 메틸렌클로라이드와 물, brine 을 이용하여 추출하고 MgSO4로 유기층을 건조한다. 얻어진 유기층을 silicagel column (메틸렌클로라이드 : 헥산 = 1 : 3) 하여 80.4 g (62 %)의 생성물을 얻었다.
중간체 2 : 12-bromo-9H-dibenzo[a,c]carbazole의 합성
[반응식 13]
Figure PCTKR2012002343-appb-I000060
2L 둥근바닥플라스크에 중간체 1 (80.4 g, 213 mmol), PPh3 (139 g, 531 mmol),o-dichlorobenzene (700 mL)을 넣고 녹인 후에 190℃ 에서 반응을 24시간 동안 진행한다.
반응이 완료되면 o-dichlorobenzene 을 제거하고, 남아있는 여액을 메틸렌클로라이드와 물로 추출한다, short phase column (메틸렌클로라이드 : 헥산 = 1 : 2)하여 44.3g (60%)의 생성물을 얻었다
4D-Br-1 : 12-bromo-9-phenyl-9H-dibenzo[a,c]carbazole의 합성
[반응식 14]
Figure PCTKR2012002343-appb-I000061
500 mL 둥근바닥플라스크에 3a-3 화합물 (5 g, 14.442 mmol), Iodobenzene (4.42 g, 21.663 mmol), Pd2(dba)3 (0.4 g, 0.433 mmol), PPh3 (0.38 g, 1.444 mmol), NaOt-Bu (4.164 g, 43.33 mmol), toluene (150 mL)을 넣은 후에 100 ℃에서 반응을 8시간 동안 진행한다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4 로 건조하고 short phase column (메틸렌클로라이드) 한다. 얻어진 유기물에 용매를 제거한 후 메틸렌클로라이드와 헥산으로 재결정하여 3.72 g (61 %) 의 생성물을 얻었다.
출발물질 4D-Br-2(11-bromo-9-phenyl-9H-dibenzo[a,c]carbazole )의 합성
중간체 1 : 9-(4-bromo-2-nitrophenyl)phenanthrene 의 합성
[반응식 15]
Figure PCTKR2012002343-appb-I000062
500 mL 둥근바닥플라스크에 toluene (250 mL), phenanthracene-9-boronic acid (18.2 g, 82 mmol), 2,5-dibromonitrobenzene (23.1 g, 82.3 mmol), Pd(PPh3)4 (2.8 g, 2.5 mmol), 2M Na2CO3 수용액 (124 mL)을 넣는다.
그런 후에 90℃ 상태에서 6시간 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시킨다. 그런후에 메틸렌클로라이드와 물로 추출하고 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column (메틸렌클로라이드 : 헥산=1:2)하여 26.36 g (85 %) 의 생성물을 얻었다.
중간체 2 : 11-bromo-9H-dibenzo[a,c]carbazole 의 합성
[반응식 16]
Figure PCTKR2012002343-appb-I000063
250 mL 둥근바닥플라스크에 9-(4-bromo-2-nitrophenyl)phenanthrene (26.36 g, 69.69 mmol), triehtyl phosphate (84.84 mL, 487.86 mmol)을 넣고 160℃~165℃ 상태에서 14시간 동안 가열 환류시킨다. 반응이 완료되면 감압증류로 남은 triehtyl phosphite을 제거하고, MeOH : H2O = 1:1 혼합용매로 희석시킨 후 생성된 고체를 여과한다. 얻어진 고체를 MeOH : H2O = 1:1 혼합용매와 petroleum ether로 씻어준다. 상기 고체를 메틸렌클로라이드에 녹인후에 MgSO4로 건조하여 농축하고 silicagel column 한다. (petroleum ether : methylene chloride = 2:1) 14.96g (62 %)의 생성물을 얻는다.
4D-Br-2 : 11-bromo-9-phenyl-9H-dibenzo[a,c]carbazole 의 합성
[반응식 17]
Figure PCTKR2012002343-appb-I000064
250 mL 둥근바닥플라스크에 11-bromo-9H-dibenzo[a,c]carbazole (7 g, 20.22 mmol), iodobenzene (8.25 g, 40.44 mmol), K2CO3 (8.384 g, 60.66 mmol), Cu powder (1.29 g, 20.22 mmol), 18-crown-6 (2.672 g, 10.11 mmol), o-dichlorobenzene (130 mL)을 넣고 24시간 동안 가열 환류시킨다. 반응이 완료되면 메틸렌클로라이드와 물로 추출하고 얻어진 유기층을 5% 염산, brine으로 씻어준다. 유기층을 MgSO4로 건조하여 농축한 후 화합물을 silicagel column (ethyl acetate : hexane =1:1.5)하여 6.06 g (71 %) 의 생성물을 얻었다.
1B-Br (2-bromodibenzo[b,d]thiophene), 1C-Br (2-bromodibenzo[b,d]furan)는 일반적인 시약으로 구매하여 사용하였다.
중간체 2-1, 2-2의 합성
1a~3a 의 합성 예시
[반응식 18]
Figure PCTKR2012002343-appb-I000065
Figure PCTKR2012002343-appb-I000066
2-1의 합성법
둥근바닥플라스크에 1번의 화합물 (1.2당량), 아민화합물 (1당량), Pd2(dba)3 (0.05 mmol),PPh3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
2-2의 합성법
둥근바닥플라스크에 2-1의 화합물(1당량), Bis(pinacolato)diboron (1당량), Pd(dppf)Cl2 (0.03당량). KOAc (3당량), DMF (6.3 mL / 1 mmol),을 넣은후에 130℃에서 가열, 환류반응을 진행한다.
반응이 완료되면 ether와 물로 추출하고 얻어진 유기층을 MgSO4 로 건조, 농축한 후에 silicagel column 및 재결정하여 생성물을 얻었다.
2-3의 합성법
둥근바닥플라스크에 2-2의 화합물 (1당량), Br-L-Br (1.1당량), Pd(PPh3)4 (0.03~0.05당량),NaOH (3당량), THF (3 mL / 1 mmol), 물 (1.5 mL / 1 mmol)을 넣는다.
그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시킨다. 그런후에 메틸렌클로라이드와 물로 추출하고 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 중간체 종류 및 합성예
[화학식 5]
Figure PCTKR2012002343-appb-I000067
Figure PCTKR2012002343-appb-I000068
Sub 1의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17 g (수율 : 70%)의 생성물을 얻었다.
Sub 2 의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 16.4 g (수율 : 68%)의 생성물을 얻었다.
Sub 3 의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 14.6 g (수율 : 72%)의 생성물을 얻었다.
Sub 4 의 합성
1,4-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17.4 g (수율 : 65%)의 생성물을 얻었다.
Sub 5 의 합성
1,4-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 16.5 g (수율 : 62%)의 생성물을 얻었다.
Sub 6 의 합성
1,4-dibromonaphthalene (17.2 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 14.6 g (수율 : 64%)의 생성물을 얻었다.
Sub 7 의 합성
1,5-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 18 g (수율 : 67%)의 생성물을 얻었다.
Sub 8 의 합성
1,5-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17 g (수율 : 64%)의 생성물을 얻었다.
Sub 9 의 합성
1,5-dibromonaphthalene (17.2 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 14.8 g (수율 : 65%)의 생성물을 얻었다.
Sub 10 의 합성
2,6-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17.7 g (수율 : 66%)의 생성물을 얻었다.
Sub 11 의 합성
2,6-dibromonaphthalene (17.2 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17.6 g (수율 : 66%)의 생성물을 얻었다.
Sub 12 의 합성
2,6-dibromonaphthalene (17.2 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 14.6 g (수율 : 64%)의 생성물을 얻었다.
Sub 13 의 합성
2,5-dibromothiophene (14.5 g, 60 mmol), dibiphenyl-d10-4-amine (16.57 g, 50mmol),Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 15.5 g (수율 : 63%)의 생성물을 얻었다.
Sub 14 의 합성
2,5-dibromothiophene (14.5 g, 60 mmol), dibiphenyl-d5-4-amine (16.32 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 15.6 g (수율 : 64%)의 생성물을 얻었다.
Sub 15 의 합성
2,5-dibromothiophene (14.5 g, 60 mmol), N-phenylbiphenyl-d5-4-amine (12.52g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 13.2 g (수율 : 64%)의 생성물을 얻었다.
Sub 16의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), amine 유도체 (20.63 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 20.7 g (수율 : 73%)의 생성물을 얻었다.
Sub 17의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), amine 유도체 (20.4 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 20 g (수율 : 71%)의 생성물을 얻었다.
Sub 18의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), amine 유도체 (16.6 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 17.5 g (수율 : 72%)의 생성물을 얻었다.
Sub 19의 합성
1-Bromo-4-iodobenzene (16.97 g, 60 mmol), amine 유도체 (20.1 g, 50 mmol), Pd2(dba)3 (2.3g, 2.5 mmol), PPh3 (1.31 g, 5 mmol), NaOt-Bu (14.42 g, 150 mmol), toluene (525 mL)을 상기 2-1의 합성법을 사용하여 20.1 g (수율 : 72%)의 생성물을 얻었다.
최종화합물 합성
[반응식 19]
Figure PCTKR2012002343-appb-I000069
합성법
둥근바닥플라스크에 3a-B(OH)2, 또는 4a-B(OH)2 또는 5a-B(OH)2 의 화합물 (1당량), 2-1화합물 또는 2-3의 화합물 (1.1당량), Pd(PPh3)4 (0.03~0.05당량), NaOH (3당량), THF (3 mL / 1 mmol), 물 (1.5 mL / 1mmol)을 넣는다.
그런 후에 80℃~90℃ 상태에서 가열 환류 시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시킨다. 그런 후에 메틸렌클로라이드와 물로 추출하고 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물을 얻었으며 아래 표1과 같이 FD-MS(질량분석기)로 생성물을 확인하였다.
표 1
Figure PCTKR2012002343-appb-T000001
Figure PCTKR2012002343-appb-I000070
Figure PCTKR2012002343-appb-I000071
Figure PCTKR2012002343-appb-I000072
Figure PCTKR2012002343-appb-I000073
Figure PCTKR2012002343-appb-I000074
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기발광소자를 비롯한 유기전기소자의 제조시 사용되는 정공주입층 물질, 정공수송층 물질, 발광층 물질, 및 전자 수송층 물질에 사용되는 치환기를 상기 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 제조할 수 있다.
본 발명에 따른 화합물은 치환기의 종류 및 성질에 따라 유기전계발광전자소자에서 다양한 용도로 사용될 수 있다.
본 발명의 화합물은 코어와 치환체에 의해 조절이 자유롭기 때문에 인광 또는 형광 발광층의 호스트 이외의 다양한 층으로 작용할 수 있다.
본 발명의 유기전기소자는 전술한 화합물들을 이용하여 한층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기전기소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 발명의 화합물들을 유기전계발광소자의 다른 유기물층들, 예를 들어 발광 보조층, 전자주입층, 전자수송층, 및 정공주입층에 사용되더라도 동일한 효과를 얻을 수 있는 것은 자명하다.
한편 본 발명의 화합물은 용액 공정(soluble process)에 사용될 수 있다. 다시 말해 상기 화합물을 용액 공정(soluble process)에 의해 후술할 유기전기소자의 유기물층을 형성할 수 있다. 즉 상기 화합물을 유기물층으로 사용할 때 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조될 수 있다.
본 발명의 화합물들이 사용될 수 있는 유기전기소자는 예를 들어, 유기전계발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 유기트랜지스트(유기 TFT) 등이 있다.
본 발명의 화합물들이 적용될 수 있는 유기전기소자 중 일예로 유기전계발광소자(OLED)에 대하여 설명하나, 본 발명은 이에 제한되지 않고 다양한 유기전기소자에 위에서 설명한 화합물들이 적용될 수 있다.
본 발명의 다른 실시예는 제1 전극, 제2 전극 및 이들 전극 사이에 배치된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층 중 1층 이상이 본 발명의 화합물들을 포함하는 유기전계발광소자를 제공한다.
도 1 내지 도 6은 본 발명의 화합물을 적용할 수 있는 유기전계발광소자의 예를 도시한 것이다.
본 발명의 다른 실시예에 따른 유기전계발광소자는, 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층 중 1층 이상을 본 발명의 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 통상의 제조 방법 및 재료를 이용하여 당 기술 분야에 알려져 있는 구조로 제조될 수 있다.
본 발명에 다른 실시예에 따른 유기전계발광소자의 구조는 도 1 내지 6에 예시되어 있으나, 이들 구조에만 한정된 것은 아니다. 이때, 도면번호 101은 기판, 102는 양극, 103는 정공주입층(HIL), 104는 정공수송층(HTL), 105는 발광층(EML), 106은 전자주입층(EIL), 107은 전자수송층(ETL), 108은 음극을 나타낸다.
미도시하였지만, 이러한 유기전계발광소자는 정공의 이동을 저지하는 정공저지층(HBL), 전자의 이동을 저지하는 전자저지층(EBL), 발광을 돕거나 보조하는 발광보조층 및 보호층이 더 위치할 수도 있다. 보호층의 경우 최상위층에서 유기물층을 보호하거나 음극을 보호하도록 형성될 수 있다.
이때, 본 발명의 화합물은 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물층 중 하나 이상에 포함될 수 있다.
구체적으로, 본 발명의 화합물은 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 정공저지층, 전자저지층, 발광보조층 및 보호층 중 하나 이상을 대신하여 사용되거나 이들과 함께 층을 형성하여 사용될 수도 있다. 물론 유기물층 중 한층에만 사용되는 것이 아니라 두층 이상에 사용될 수 있다.
특히, 본 발명의 화합물에 따라서 정공주입 재료, 정공수송 재료, 전자주입 재료, 전자수송 재료, 발광 재료 및 패시베이션(케핑) 재료로 사용될 수 있고, 특히 단독으로 발광물질 및 호스트/도판트에서 호스트 또는 도판트로 사용될 수 있으며, 정공 주입, 정공수송층으로 사용될 수 있다.
예컨대, 본 발명의 다른 실시예에 따른 유기전계발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기전기소자를 만들 수도 있다. 상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다.
또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
본 발명의 다른 실시예에 따른 유기전계발광소자는 위에서 설명한 화합물을 스핀 코팅(spin coating)이나 잉크젯(ink jet) 공정과 같은 용액 공정(soluble process)에 사용될 수도 있다.
기판은 유기전계발광소자의 지지체이며, 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.
기판 위에는 양극이 위치된다. 이러한 양극은 그 위에 위치되는 정공주입층으로 정공을 주입한다. 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질일 수 있다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
양극 위에는 정공주입층이 위치된다. 이러한 정공주입층의 물질로 요구되는 조건은 양극으로부터의 정공주입 효율이 높으며, 주입된 정공을 효율적으로 수송할 수 있어야 한다. 이를 위해서는 이온화 포텐셜이 작고 가시광선에 대한 투명성이 높으며, 정공에 대한 안정성이 우수해야 한다.
정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이일 수 있다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층 위에는 정공수송층이 위치된다. 이러한 정공수송층은 정공주입층으로부터 정공을 전달받아 그 위에 위치되는 유기발광층으로 수송하는 역할을 하며, 높은 정공 이동도와 정공에 대한 안정성 및 전자를 막아주는 역할를 한다. 이러한 일반적 요구 이외에 차체 표시용으로 응용할 경우 소자에 대한 내열성이 요구되며, 유리 전이 온도(Tg)가 70 ℃ 이상의 값을 갖는 재료일 수 있다.
이와 같은 조건을 만족하는 물질들로는 NPD(혹은 NPB라 함), 스피로-아릴아민계화합물, 페릴렌-아릴아민계화합물, 아자시클로헵타트리엔화합물, 비스(디페닐비닐페닐)안트라센, 실리콘게르마늄옥사이드화합물, 실리콘계아릴아민화합물 등이 될 수 있다.
정공수송층 위에는 유기발광층이 위치된다. 이러한 유기발광층는 양극과 음극으로부터 각각 주입된 정공과 전자가 재결합하여 발광을 하는 층이며, 양자효율이 높은 물질로 이루어져 있다. 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질일 수 있다.
이와 같은 조건을 만족하는 물질 또는 화합물로는 녹색의 경우 Alq3가, 청색의 경우 Balq(8-hydroxyquinoline beryllium salt), DPVBi(4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl) 계열, 스피로(Spiro) 물질, 스피로-DPVBi(Spiro-4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl), LiPBO(2-(2-benzoxazoyl)-phenollithium salt), 비스(디페닐비닐페닐비닐)벤젠, 알루미늄-퀴놀린 금속착체, 이미다졸, 티아졸 및 옥사졸의 금속착체 등이 있으며, 청색 발광 효율을 높이기 위해 페릴렌, 및 BczVBi(3,3'[(1,1'-biphenyl)-4,4'-diyldi-2,1-ethenediyl]bis(9-ethyl)-9H-carbazole; DSA(distrylamine)류)를 소량 도핑하여 사용할 수 있다. 적색의 경우는 녹색 발광 물질에 DCJTB([2-(1,1-dimethylethyl)-6-[2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo(ij)quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]-propanedinitrile)와 같은 물질을 소량 도핑하여 사용할 수 있다.
잉크젯프린팅, 롤코팅, 스핀코팅 등의 공정을 사용하여 발광층을 형성할 경우에, 폴리페닐렌비닐렌(PPV) 계통의 고분자나 폴리 플로렌(poly 플루오렌(fluorene)) 등의 고분자를 유기발광층에 사용할 수 있다.
유기발광층 위에는 전자수송층이 위치된다. 이러한 전자수송층은 그 위에 위치되는 음극으로부터 전자주입 효율이 높고 주입된 전자를 효율적으로 수송할 수 있는 물질이 필요하다. 이를 위해서는 전자 친화력과 전자 이동속도가 크고 전자에 대한 안정성이 우수한 물질로 이루어져야 한다.
이와 같은 조건을 충족시키는 전자수송 물질로는 구체적인 예로 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
전자수송층 위에는 전자주입층이 적층된다. 전자주입층은 Balq, Alq3,Be(bq)2, Zn(BTZ)2, Zn(phq)2, PBD, spiro-PBD, TPBI, Tf-6P 등과 같은 금속착제화합물, imidazole ring 을 갖는 aromatic화합물이나 boron화합물 등을 포함하는 저분자 물질을 이용하여 제작할 수 있다. 이때, 전자주입층은 100Å ~ 300Å의 두께 범위에서 형성될 수 있다.
전자주입층 위에는 음극이 위치된다. 이러한 음극은 전자를 주입하는 역할을 한다. 음극으로 사용하는 재료는 양극에 사용된 재료를 이용하는 것이 가능하며, 효율적인 전자주입을 위해서는 일 함수가 낮은 금속일 수 있다. 특히 주석, 마그네슘, 인듐, 칼슘, 나트륨, 리튬, 알루미늄, 은 등의 적당한 금속, 또는 그들의 적절한 합금이 사용될 수 있다. 또한 100 ㎛ 이하 두께의 리튬플루오라이드와 알루미늄, 산화리튬과 알루미늄, 스트론튬산화물과 알루미늄 등의 2 층 구조의 전극도 사용될 수 있다.
전술하였듯이, 본 발명의 화합물에 따라서 적색, 녹색, 청색, 흰색 등의 모든 칼라의 형광과 인광소자에 적합한 정공주입 재료, 정공수송 재료, 발광 재료, 전자수송 재료 및 전자주입 재료로 사용할 수 있으며, 다양한 색의 호스트 또는 도판트 물질로 사용될 수 있다.
본 발명에 따른 유기전계발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
한편 본 발명은, 위에서 설명한 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 구동하는 제어부를 포함하는 단말을 포함한다. 이 단말은 현재 또는 장래의 유무선 통신단말을 의미한다. 이상에서 전술한 본 발명에 따른 단말은 휴대폰 등의 이동 통신 단말기일 수 있으며, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 단말을 포함한다.
비교예
본 발명의 화합물들을 정공수송층으로 측정했을 경우, 비교를 위해 본 발명의 화합물 대신에 하기 화학식들으로 표시되는 화합물을 정공수송물질로 사용하여 비교실험하였다.
[화학식 6]
Figure PCTKR2012002343-appb-I000075
[화학식 7]
Figure PCTKR2012002343-appb-I000076
특히 상기 화합물 중에 중수소 치환효과를 확인하기 위하여, 비교예(3) 내지 비교예 (17)을 중수소가 아닌 수소로 치환된 화합물을 상기 제조방식과 동일한 방식으로 제조하였다. 이때 표 2에 표시한 바와 같이 중수소로 치환된 것을 표시하기 위해 화합물 명칭 다음에 H라고 표기하였다. 예를 들어 비교예(3)은 화학식 4에서 화합물 2-1과 동일하되 중소수가 아닌 수소로 치환된 화합물을 의미한다. 다른 비교예들도 동일하다.
표 2
비교예 화합물
비교예(1) 화학식6의 화합물
비교예(2) 화학식7의 화합물
비교예(3) 화합물(2-1H)
비교예(4) 화합물(2-2H)
비교예(5) 화합물(2-17H)
비교예(6) 화합물(2-28H)
비교예(7) 화합물(2-60H)
비교예(8) 화합물(2-97H)
비교예(9) 화합물(2-116H)
비교예(10) 화합물(2-139H)
비교예(11) 화합물(2-162H)
비교예(12) 화합물(2-163H)
비교예(13) 화합물(2-185H)
비교예(14) 화합물(3-1H)
비교예(15) 화합물(3-2H)
비교예(16) 화합물(3-61H)
비교예(17) 화합물(3-138H)
유기전계발광소자의 제작
합성을 통해 얻은 여러 화합물을 각각 발광층의 발광 호스트 물질이나 정공 수송층으로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다.
먼저, 유기 기판에 형성된 ITO층(양극)위에 우선 정공주입층으로서 구리프탈로사이아닌(이하 CuPc로 약기함)막을 진공증착하여 10nm 두께로 형성하였다. 이어서 표 1 또는 표 2의 실시예들 및 비교예들 각각을 정공 수송층으로 20nm 두께로 진공 증착하였다. 진공 증착하여 비교 실험을 진행하였다. 이후, BD-052X(Idemitsu사)를 발광 도펀트로 사용하고 호스트 물질은 9, 10-다이-(나프탈렌-2-안트라센)=AND]을 사용하였으며, 도핑 농도는 4%로 고정하여 비교 실험을 진행하였다. 이어서 전자주입층으로 트리스(8-퀴놀리놀)알루미늄을 40 nm의 두께로 성막하였다. 이 후, 할로겐화 알킬리 금속인 LiF를 0.2 nm의 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 이 Al/LiF를 음극으로 사용함으로서 유기전계 발광소자를 제조하였다.
이와 같이 제조된 실시예 및 비교예 유기전계발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 300cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 T95 측정 결과는 아래 표 3과 같다.
표 3
Figure PCTKR2012002343-appb-T000002
Figure PCTKR2012002343-appb-I000077
Figure PCTKR2012002343-appb-I000078
Figure PCTKR2012002343-appb-I000079
Figure PCTKR2012002343-appb-I000080
Figure PCTKR2012002343-appb-I000081
Figure PCTKR2012002343-appb-I000082
Figure PCTKR2012002343-appb-I000083
Figure PCTKR2012002343-appb-I000084
Figure PCTKR2012002343-appb-I000085
상기 실시 예와 비교 예를 비교하면, 중수소를 치환된 경우 구동전압이 하강 특성을 보이며, 또한 수명 특성도 두배 이상의 현격한 증가한 것을 확인할 수 있다. 이러한 특성을 볼 때 상기 실시예의 화합물은 유기전계발광소자의 수명, 구동특성 및 제조효율성을 현저히 증가시킬 수 있는 것을 할 수 있다.
구체적으로 비교예(1) 및 (2)와 실시예들을 비교할 경우 구동전압이 하강 특성을 보이며, 또한 수명 특성도 두배 이상의 현격한 증가할 뿐 아니라 비교예 (3) 내지 (17)과 실시예들을 비교하더라도 구동전압이 하강 특성을 보이며, 또한 수명 특성도 두배 이상의 현격한 증가할 것을 알 수 있다.
상기 실시예와 비교예의 표를 통하여 본 발명의 화합물의 발광효율 및 구동특성, 수명특성이 현저히 우수함을 확인하였으나 상기 실시예와 비교예의 표의 화합물들에서 치환기들은 다른 치환체로 치환될 수 있다. 따라서, 상기 실시예와 비교예의 표의 화합물들에서 치환기들이 다른 치환체로 치환된 실시예와 비교예는 본 명세서의 일부를 구성할 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 04월 01일 한국에 출원한 특허출원번호 제 10-2011-0030303 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (8)

  1. 하기 화학식 중 하나로 표시되는 화합물.
    <화학식 1>
    Figure PCTKR2012002343-appb-I000086
    <화학식 2>
    Figure PCTKR2012002343-appb-I000087
    <화학식 3>
    Figure PCTKR2012002343-appb-I000088
    상기 화학식에서,
    (1) R1 내지 R7은 각각 독립적으로, 수소원자;
    할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20 의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기 및 C2~C20의 헤테로고리기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기;
    할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기,C6~C20의 아릴아민기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환되고 O, N, S를 적어도 하나 포함하는 C3~C60의 헤테로아릴기;
    할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C1~C30의 알콕시기;
    할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C30의 아릴옥시기;
    할로겐기, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C6~C60의 아릴기, C3~C60의 헤테로 아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴아민기; 및
    C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기;로 이루어진 군에서 선택되며,
    R1 ~ R7은 이웃한 기와 서로 결합하여 포화 또는 불포화 고리를 형성하며,
    (2) L은 니트로기, 니트릴기, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴렌기; 니트로기, 니트릴기, 할로겐, 알킬기, 알콕시기 및 아미노기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C3~C60의 헤테로 아릴렌기;이며,
    (3) D는 중수소 또는 삼중수소이며,
    (4) X는 CR’R”, NR’, O 및 S로 이루어진 그룹에서 선택되며, 여기서 R’, R”는 각각 독립적으로 수소원자; C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기; 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴아민기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환되고 O, N, S를 적어도 하나 포함하는 C2~C60의 헤테로고리기이며,
    (5) a는 1~5의 정수이고, b, h, j, k 는 1~4의 정수이며, c는 0~2의 정수이고, d와 e는 0~5의 정수이고, f와 g는 0~3의 정수이며, i와 l은 1~3의 정수이며, d+e=1 이상이고, f+g=1 이상이며,
    다.
  2. 제 1항에 있어서,
    하기 화합물 중 하나인 것을 특징으로 하는 화합물.
    Figure PCTKR2012002343-appb-I000089
    Figure PCTKR2012002343-appb-I000090
    Figure PCTKR2012002343-appb-I000091
    Figure PCTKR2012002343-appb-I000092
    Figure PCTKR2012002343-appb-I000093
    Figure PCTKR2012002343-appb-I000094
    Figure PCTKR2012002343-appb-I000095
    Figure PCTKR2012002343-appb-I000096
    Figure PCTKR2012002343-appb-I000097
    Figure PCTKR2012002343-appb-I000098
    Figure PCTKR2012002343-appb-I000099
    Figure PCTKR2012002343-appb-I000100
    Figure PCTKR2012002343-appb-I000101
    Figure PCTKR2012002343-appb-I000102
    Figure PCTKR2012002343-appb-I000103
    Figure PCTKR2012002343-appb-I000104
    Figure PCTKR2012002343-appb-I000105
    Figure PCTKR2012002343-appb-I000106
    Figure PCTKR2012002343-appb-I000107
    Figure PCTKR2012002343-appb-I000108
    Figure PCTKR2012002343-appb-I000109
    Figure PCTKR2012002343-appb-I000110
    Figure PCTKR2012002343-appb-I000111
    Figure PCTKR2012002343-appb-I000112
    Figure PCTKR2012002343-appb-I000113
    Figure PCTKR2012002343-appb-I000114
    Figure PCTKR2012002343-appb-I000115
    Figure PCTKR2012002343-appb-I000116
    Figure PCTKR2012002343-appb-I000117
    Figure PCTKR2012002343-appb-I000118
    Figure PCTKR2012002343-appb-I000119
    Figure PCTKR2012002343-appb-I000120
    Figure PCTKR2012002343-appb-I000121
    Figure PCTKR2012002343-appb-I000122
    Figure PCTKR2012002343-appb-I000123
    Figure PCTKR2012002343-appb-I000124
    Figure PCTKR2012002343-appb-I000125
    Figure PCTKR2012002343-appb-I000126
    Figure PCTKR2012002343-appb-I000127
    Figure PCTKR2012002343-appb-I000128
    Figure PCTKR2012002343-appb-I000129
    Figure PCTKR2012002343-appb-I000130
  3. 제 1항의 화합물을 포함하는 1층 이상의 유기물층을 포함하는 유기전기소자.
  4. 제 3항에 있어서,
    상기 화합물을 용액 공정 (soluble process)에 의해 상기 유기물층으로 형성하는 것을 특징으로 하는 유기전기소자.
  5. 제 3항에 있어서,
    순차적으로 적층된 제 1전극, 상기 유기물층 및 제 2전극을 포함하는 유기전계발광소자인 것을 특징으로 하는 유기전기소자.
  6. 제 5항에 있어서,
    상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 적어도 하나인 것을 특징으로 하는 유기전기소자.
  7. 제 3항의 유기전기소자를 포함하는 디스플레이 장치; 및
    상기 디스플레이 장치를 구동하는 제어부;를 포함하는 전자장치.
  8. 제 7항에 있어서,
    상기 유기전기소자는 유기전계발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 및 유기트랜지스터(유기 TFT) 중 적어도 하나인 것을 특징으로 하는 전자장치.
PCT/KR2012/002343 2011-04-01 2012-03-29 화합물 및 이를 이용한 유기전기소자, 그 전자장치 WO2012134203A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/008,340 US9691990B2 (en) 2011-04-01 2012-03-29 Compound, organic electronic element using same, and electronic device using the latter
JP2014502476A JP5801468B2 (ja) 2011-04-01 2012-03-29 化合物及びこれを用いた有機電気素子、その電子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110030303A KR101298483B1 (ko) 2011-04-01 2011-04-01 화합물 및 이를 이용한 유기전기소자, 그 전자장치
KR10-2011-0030303 2011-04-01

Publications (2)

Publication Number Publication Date
WO2012134203A2 true WO2012134203A2 (ko) 2012-10-04
WO2012134203A3 WO2012134203A3 (ko) 2013-01-10

Family

ID=46932151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002343 WO2012134203A2 (ko) 2011-04-01 2012-03-29 화합물 및 이를 이용한 유기전기소자, 그 전자장치

Country Status (5)

Country Link
US (1) US9691990B2 (ko)
JP (1) JP5801468B2 (ko)
KR (1) KR101298483B1 (ko)
TW (1) TWI464234B (ko)
WO (1) WO2012134203A2 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010749A (ja) * 2011-05-27 2013-01-17 Semiconductor Energy Lab Co Ltd カルバゾール化合物、発光素子、発光装置、電子機器、および照明装置
CN103804279A (zh) * 2012-11-05 2014-05-21 三星显示有限公司 杂环化合物以及包含该化合物的有机发光二极管
JP2014123721A (ja) * 2012-11-26 2014-07-03 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、及び照明装置
WO2014200260A1 (en) * 2013-06-13 2014-12-18 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2015026053A1 (en) * 2013-08-21 2015-02-26 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
JP2015078158A (ja) * 2013-10-17 2015-04-23 東ソー株式会社 カルバゾール化合物及びその用途
US9172045B2 (en) 2011-10-26 2015-10-27 Tosoh Corporation 4-aminocarbazole compound and use thereof
JP2016508964A (ja) * 2012-12-06 2016-03-24 ドク サン ネオルクス カンパニーリミテッド 有機電子素子用化合物、これを用いた有機電子素子及びその電子装置
JP2016076566A (ja) * 2014-10-06 2016-05-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR20170041159A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 방향족 화합물 및 이를 포함하는 유기 발광 소자
JP2017530549A (ja) * 2014-12-08 2017-10-12 エルジー・ケム・リミテッド 有機−無機ハイブリッドペロブスカイト化合物、その製造方法およびこれを含む太陽電池
US10396297B2 (en) * 2014-10-24 2019-08-27 Merck Patent Gmbh Materials for electronic devices
US11261176B2 (en) 2017-01-26 2022-03-01 Lg Chem, Ltd. Amine-based compound and organic light emitting device using the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107284A (zh) * 2007-12-28 2013-05-15 出光兴产株式会社 芳胺衍生物及使用该芳胺衍生物的有机电致发光元件
US9716232B2 (en) 2011-09-09 2017-07-25 Lg Chem, Ltd. Material for organic light-emitting device, and organic light-emitting device using same
US9871203B2 (en) 2012-02-10 2018-01-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element and electronic device
CN104487541B (zh) * 2012-07-23 2019-07-26 默克专利有限公司 化合物以及有机电致发光器件
WO2014077558A1 (ko) * 2012-11-13 2014-05-22 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101455156B1 (ko) * 2012-11-13 2014-10-27 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101499102B1 (ko) * 2013-04-11 2015-03-05 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP6516407B2 (ja) 2013-12-20 2019-05-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR102188300B1 (ko) * 2014-02-19 2020-12-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102287012B1 (ko) 2014-05-28 2021-08-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102277659B1 (ko) 2014-07-03 2021-07-15 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102242791B1 (ko) 2014-08-29 2021-04-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2016100364A (ja) * 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101745491B1 (ko) 2015-03-12 2017-06-13 덕산네오룩스 주식회사 유기발광소자 및 유기발광 표시장치
KR102359879B1 (ko) * 2015-06-25 2022-02-10 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20180370938A1 (en) * 2015-12-16 2018-12-27 Merck Patent Gmbh Materials for organic electroluminescent devices
KR102116161B1 (ko) * 2016-02-29 2020-05-27 주식회사 엘지화학 함질소 화합물 및 이를 포함하는 유기 발광 소자
KR20170128664A (ko) * 2016-05-12 2017-11-23 삼성디스플레이 주식회사 유기 발광 소자
CN105884571B (zh) * 2016-05-26 2018-06-12 河南省科学院化学研究所有限公司 2-氯-9,9’-螺二芴及其合成方法
KR102580210B1 (ko) 2016-09-20 2023-09-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102580212B1 (ko) 2016-09-22 2023-09-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
AU2017375751B2 (en) 2016-12-12 2021-05-20 Becton, Dickinson And Company Water-soluble polymeric dyes
KR20180116740A (ko) * 2017-04-17 2018-10-25 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR102519794B1 (ko) * 2017-05-31 2023-04-11 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
CN111094462A (zh) 2017-12-26 2020-05-01 贝克顿·迪金森公司 深紫外线可激发的水溶剂化聚合物染料
KR102230994B1 (ko) * 2018-02-14 2021-03-22 주식회사 엘지화학 아민 유도체 및 이를 포함하는 유기 발광 소자
KR102244799B1 (ko) * 2018-03-28 2021-04-26 주식회사 엘지화학 아민 유도체 및 이를 포함하는 유기 발광 소자
KR20210066622A (ko) 2019-11-28 2021-06-07 덕산네오룩스 주식회사 감광성 수지 조성물 및 표시장치
KR20210126822A (ko) * 2020-04-10 2021-10-21 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102437748B1 (ko) * 2020-05-22 2022-08-29 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021235906A1 (ko) * 2020-05-22 2021-11-25 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102636111B1 (ko) * 2020-06-24 2024-02-13 주식회사 엘지화학 유기 발광 소자
CN112010762B (zh) * 2020-08-18 2022-02-22 南京高光半导体材料有限公司 一种有机电致发光化合物及有机电致发光器件
KR20230118092A (ko) * 2020-12-09 2023-08-10 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자, 및 전자 기기
KR20240004351A (ko) 2021-04-28 2024-01-11 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
WO2022230963A1 (ja) 2021-04-28 2022-11-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN115057786A (zh) * 2022-06-17 2022-09-16 京东方科技集团股份有限公司 Oled材料及其制备方法、oled元件、显示基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115951A (ko) * 2005-05-07 2006-11-13 주식회사 두산 중수소화된 신규 아릴아민 유도체, 그 제조 방법 및 이를이용한 유기 전계 발광 소자
KR20080077288A (ko) * 2005-12-20 2008-08-21 캐논 가부시끼가이샤 4-아미노플루오렌 화합물 및 유기 발광 소자
KR20090051141A (ko) * 2007-11-08 2009-05-21 주식회사 엘지화학 새로운 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
JP2010092940A (ja) * 2008-10-03 2010-04-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2010114583A1 (en) * 2009-04-03 2010-10-07 E. I. Du Pont De Nemours And Company Electroactive materials
KR101108519B1 (ko) * 2011-07-13 2012-01-30 덕산하이메탈(주) 유기전기소자용 조성물 및 이를 이용하는 유기전기소자

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579630B2 (en) 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
WO2007108666A1 (en) * 2006-03-23 2007-09-27 Lg Chem, Ltd. New diamine derivatives, preparation method thereof and organic electronic device using the same
US8889271B2 (en) 2006-11-26 2014-11-18 Duksan High Metal Co., Ltd. Compound containing a 5-membered heterocycle and organic light-emitting diode using same, and terminal for same
US8541113B2 (en) * 2008-08-26 2013-09-24 Sfc Co., Ltd. Pyrene compounds and organic electroluminescent devices using the same
KR101064823B1 (ko) * 2008-12-08 2011-09-14 주식회사 두산 아릴 아민 유도체 및 이를 이용한 유기 전계 발광 소자
JP5390693B2 (ja) 2009-03-30 2014-01-15 ドゥクサン ハイ メタル カンパニー リミテッド 有機電子素子及びその化合物、端末
KR101108512B1 (ko) 2009-08-11 2012-01-30 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101322828B1 (ko) 2009-11-05 2013-10-25 덕산하이메탈(주) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
KR101352438B1 (ko) * 2009-12-29 2014-01-20 에스에프씨 주식회사 호스트 화합물 및 이를 이용한 유기전계발광소자
KR101681214B1 (ko) * 2010-01-08 2016-12-01 에스에프씨 주식회사 호스트 화합물 및 이를 이용한 유기전계발광소자
WO2011093056A1 (ja) 2010-01-26 2011-08-04 保土谷化学工業株式会社 トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子
KR101153910B1 (ko) 2010-02-19 2012-06-07 덕산하이메탈(주) 인돌 유도체를 핵심으로 하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101172053B1 (ko) 2010-03-12 2012-08-07 덕산하이메탈(주) 두개의 3차 아민이 치환된 인돌 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20110129766A (ko) 2010-05-26 2011-12-02 덕산하이메탈(주) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
JP5594031B2 (ja) * 2010-10-01 2014-09-24 東レ株式会社 発光素子材料および発光素子
WO2012177006A2 (ko) * 2011-06-22 2012-12-27 덕산하이메탈(주) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115951A (ko) * 2005-05-07 2006-11-13 주식회사 두산 중수소화된 신규 아릴아민 유도체, 그 제조 방법 및 이를이용한 유기 전계 발광 소자
KR20080077288A (ko) * 2005-12-20 2008-08-21 캐논 가부시끼가이샤 4-아미노플루오렌 화합물 및 유기 발광 소자
KR20090051141A (ko) * 2007-11-08 2009-05-21 주식회사 엘지화학 새로운 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
JP2010092940A (ja) * 2008-10-03 2010-04-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2010114583A1 (en) * 2009-04-03 2010-10-07 E. I. Du Pont De Nemours And Company Electroactive materials
KR101108519B1 (ko) * 2011-07-13 2012-01-30 덕산하이메탈(주) 유기전기소자용 조성물 및 이를 이용하는 유기전기소자

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034270A (ja) * 2011-05-27 2017-02-09 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置
JP2013010749A (ja) * 2011-05-27 2013-01-17 Semiconductor Energy Lab Co Ltd カルバゾール化合物、発光素子、発光装置、電子機器、および照明装置
US9172045B2 (en) 2011-10-26 2015-10-27 Tosoh Corporation 4-aminocarbazole compound and use thereof
CN103804279A (zh) * 2012-11-05 2014-05-21 三星显示有限公司 杂环化合物以及包含该化合物的有机发光二极管
CN107623088A (zh) * 2012-11-26 2018-01-23 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
US10629823B2 (en) 2012-11-26 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2014123721A (ja) * 2012-11-26 2014-07-03 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、及び照明装置
JP2016508964A (ja) * 2012-12-06 2016-03-24 ドク サン ネオルクス カンパニーリミテッド 有機電子素子用化合物、これを用いた有機電子素子及びその電子装置
JP2017081992A (ja) * 2012-12-06 2017-05-18 ドク サン ネオルクス カンパニー リミテッド 有機電子素子用化合物、これを用いた有機電子素子及びその電子装置
WO2014200260A1 (en) * 2013-06-13 2014-12-18 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2015026053A1 (en) * 2013-08-21 2015-02-26 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
US10138201B2 (en) 2013-08-21 2018-11-27 Sk Chemicals Co., Ltd. Compound for organic eletroluminescent device and organic electroluminescent device including the same
JP2015078158A (ja) * 2013-10-17 2015-04-23 東ソー株式会社 カルバゾール化合物及びその用途
US10147886B2 (en) 2014-10-06 2018-12-04 Samsung Display Co., Ltd. Organic electroluminescent material and organic electroluminescent device including the same
JP2016076566A (ja) * 2014-10-06 2016-05-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US10396297B2 (en) * 2014-10-24 2019-08-27 Merck Patent Gmbh Materials for electronic devices
JP2017530549A (ja) * 2014-12-08 2017-10-12 エルジー・ケム・リミテッド 有機−無機ハイブリッドペロブスカイト化合物、その製造方法およびこれを含む太陽電池
KR20170041159A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 방향족 화합물 및 이를 포함하는 유기 발광 소자
KR101990518B1 (ko) 2015-10-06 2019-06-18 주식회사 엘지화학 방향족 화합물 및 이를 포함하는 유기 발광 소자
US11261176B2 (en) 2017-01-26 2022-03-01 Lg Chem, Ltd. Amine-based compound and organic light emitting device using the same

Also Published As

Publication number Publication date
JP2014527021A (ja) 2014-10-09
JP5801468B2 (ja) 2015-10-28
TWI464234B (zh) 2014-12-11
WO2012134203A3 (ko) 2013-01-10
US9691990B2 (en) 2017-06-27
TW201247840A (en) 2012-12-01
US20140027747A1 (en) 2014-01-30
KR20120111670A (ko) 2012-10-10
KR101298483B1 (ko) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2012134203A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2012091471A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2012177006A2 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013002514A2 (ko) 다이아릴아민 유도체를 이용하는 유기전기소자, 유기전기소자용 신규 화합물 및 조성물
WO2014010824A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2018097648A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2010036036A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2011149283A2 (ko) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2020166875A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
EP3371182A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
WO2012128509A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011055932A2 (ko) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2016175624A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2012148127A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2013022145A9 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2012043996A2 (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2014014307A1 (ko) 다환 화합물 및 이를 포함하는 유기 전자 소자
WO2012115394A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2011108901A9 (ko) 스파이로 골격을 포함하는 스파이로 카바졸 화합물 및 이를 이용한 유기전자소자, 그 단말
WO2020166873A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2017160068A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764416

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14008340

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014502476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764416

Country of ref document: EP

Kind code of ref document: A2