WO2023282282A1 - ガス測定装置 - Google Patents

ガス測定装置 Download PDF

Info

Publication number
WO2023282282A1
WO2023282282A1 PCT/JP2022/026807 JP2022026807W WO2023282282A1 WO 2023282282 A1 WO2023282282 A1 WO 2023282282A1 JP 2022026807 W JP2022026807 W JP 2022026807W WO 2023282282 A1 WO2023282282 A1 WO 2023282282A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sample
bubbling
cell
separator
Prior art date
Application number
PCT/JP2022/026807
Other languages
English (en)
French (fr)
Inventor
克彦 荒谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2023533163A priority Critical patent/JPWO2023282282A1/ja
Priority to EP22837696.8A priority patent/EP4368968A1/en
Priority to CN202280060595.2A priority patent/CN117980726A/zh
Publication of WO2023282282A1 publication Critical patent/WO2023282282A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0042SO2 or SO3

Definitions

  • the present disclosure relates to gas measuring devices.
  • Patent Document 1 discloses an infrared gas analyzer that measures the concentration of gas components by switching between a sample gas and a reference gas.
  • a three-way valve is switched to alternately supply the sample gas and the reference gas into the cell at predetermined intervals.
  • the sector is rotated by the motor, and the infrared light from the light source is intermittently irradiated into the cell.
  • the detector alternately detects the infrared light that has passed through the sample gas or the reference gas, and the gas components can be analyzed based on the output ratio between the detection output of the reference gas and the detection output of the sample gas.
  • Patent Document 2 discloses a two-path gas analyzer using two cells.
  • a measurement error occurs when a sample gas contains a gas component whose infrared absorption band overlaps with that of a gas component to be measured (hereinafter referred to as an interference component).
  • an interference component For example, when measuring sulfur dioxide (SO2) in the flue gas, HC and CO2 are present in the flue gas as interfering components.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-49797
  • Patent Document 1 can use, as a reference gas, air that does not contain SO 2 which is a component of the gas to be measured.
  • the atmosphere contains almost no HC and CO2 , which are interfering components in SO2 measurement, the output of the difference in infrared absorption between the sample gas and the reference gas is the interference Ingredients can cause measurement errors.
  • interference countermeasures such as installing a multi-layer optical filter that narrows the transmission wavelength band or a cell filled with a high concentration of interference gas in the optical path are also conceivable. Although this method has a certain degree of interference reduction effect, it is not sufficient in many cases, and some interference error remains. In addition, by inserting such an optical filter in the optical path, the light is attenuated, resulting in poor measurement accuracy.
  • An object of the present disclosure is to provide a gas measuring device capable of improving the detection accuracy of SO 2 while suppressing development costs.
  • the present disclosure relates to a gas measurement device that measures a gas component to be analyzed in a sample gas.
  • the gas measurement device includes a sample gas line for dehumidifying the sample gas, a reference gas line for generating a dehumidified reference gas after removing the gas component to be analyzed from the sample gas, a sample cell, and gas passing through the reference gas line. and a first switching section for selectively supplying the sample cell with the gas that has passed through the sample gas line, a light source for irradiating the sample cell with light, and the light irradiated from the light source to the sample cell transmitted through the sample cell. a detection unit that detects light intensity.
  • the gas component to be analyzed includes SO2 gas.
  • the reference gas line includes a bubbling separator that removes SO2 gas from the sample gas by bubbling the sample gas with water, and a dehumidifier that dehumidifies the gas that has passed through the bubbling separator.
  • the gas measuring device removes the gas to be analyzed from the sample gas with a bubbling separator to obtain a reference gas. Therefore, since the interference component gas of the same concentration exists in the reference gas, the influence of the interference component gas can be canceled.
  • FIG. 1 is a diagram schematically showing the configuration of a gas measuring device according to Embodiment 1; FIG. It is a figure which shows roughly the structure of the gas measuring apparatus of the example of examination.
  • FIG. 4 is a diagram schematically showing the configuration of a gas measuring device of a modified example of Embodiment 1;
  • FIG. 5 is a diagram schematically showing the overall configuration of a gas measuring device according to Embodiment 2;
  • FIG. 4 is a diagram for explaining reading of a signal from a detector;
  • FIG. 10 is a diagram schematically showing the configuration of a gas measuring device of a modified example of Embodiment 2;
  • FIG. 1 is a diagram schematically showing the configuration of a gas measuring device according to Embodiment 1.
  • FIG. FIG. 2 is a diagram schematically showing the configuration of the gas measurement device of the study example.
  • the gas measuring device 100 in FIG. 1 differs from the gas measuring device 500 in FIG. 2 in the configuration of the reference gas line RL.
  • the configuration of FIG. 1 will be described below in comparison with FIG.
  • the gas measuring device 100 shown in FIG. 1 includes a sample gas line ML, a reference gas line RL, a switching section 8, and a sample cell 9.
  • a sample gas M is introduced into the sample gas line ML.
  • the sample gas line ML includes a drain separator 1 that separates drain water generated by natural cooling, a cooler 2 that dehumidifies the sample gas by cooling it, and a drain pot that stores the drain water separated by the drain separator 1 and the cooler 2. 7.
  • the sample gas line ML further includes a filter 4 through which the sample gas M passes, a pump 5 that delivers the sample gas M, and a needle valve 6 that adjusts the flow rate of the sample gas M.
  • sample gas line ML described above has the same configuration in the study example of FIG. 2 and the first embodiment of FIG.
  • Embodiment 1 air is introduced into the reference gas line RL.
  • the sample gas M is also introduced into the reference gas line RL.
  • the reference gas line RL further includes a filter 14 through which the reference gas R passes, a pump 15 that delivers the reference gas R, and a needle valve 16 that adjusts the flow rate of the reference gas R.
  • the reference gas R a gas obtained by bubbling the sample gas M with water to remove the water-soluble SO 2 is used.
  • a bubbling separator 11 or the like is used for water bubbling.
  • the combustion exhaust gas from a factory, an incineration plant, or the like is the sample gas M
  • water bubbling can be performed by the water content of the sample gas M itself.
  • the bubbling separator 11 may be replenished with water, or the bubbling separator 11 may be replenished with drain water from the cooler 2 or 12 .
  • the switching unit 8 includes a three-way valve 8M arranged in the sample gas line ML and a three-way valve 8R arranged in the reference gas line RL.
  • the three-way valves 8M and 8R configure flow paths so that the gas that has passed through either the reference gas line RL or the sample gas line ML is sent to the sample cell 9 and the gas that has passed through the other is exhausted according to the selection signal SEL. do.
  • the gas measurement device 100 further includes a motor 19, a sector 18, a light source 10, an SO2 detector 20, and a control device 30.
  • the sample cell 9 has a gas inlet 9a and a gas outlet 9b. Via the switching unit 8, the sample gas M or the reference gas R is supplied into the sample cell 9 from the gas inlet 9a and discharged from the gas outlet 9b.
  • a light source 10 for emitting infrared light is provided at one end of the sample cell 9, and an SO2 detector 20 for detecting infrared light transmitted through the sample cell 9 is provided at the other end of the sample cell 9.
  • a sector 18 for interrupting infrared light is provided between the light source 10 and the end of the sample cell 9 .
  • This sector 18 has a light-shielding portion and a light-transmitting portion.
  • the sector 18 is configured to rotate around the sector rotation axis 18e. Infrared light is irradiated into the sample cell 9 when the light-transmitting portion is above the sample cell 9, and irradiation of infrared light into the sample cell 9 is blocked when the light-shielding portion is above the sample cell 9. .
  • the control device 30 controls the rotational position of the sector 18 via the motor 19, and also controls the drive of the switching unit 8 by the selection signal SEL.
  • SO 2 absorbs light of a specific wavelength in the infrared region (SO 2 : 7.4 ⁇ m). Therefore, the concentration of SO2 can be measured by measuring the infrared absorption after passing through the measurement gas with the SO2 detector 20 that is sensitive only to this wavelength.
  • the gas to be detected in the sample gas is sealed inside the SO2 detector 20, and the intensity of infrared light at a frequency unique to the gas to be detected is detected by internal pressure changes. Then, the controller 30, which receives the detection output of the SO2 detector 20, performs predetermined signal processing to calculate a concentration value indicating the measured gas concentration in the sample gas.
  • the reference gas R does not contain the interfering components HC and CO2
  • the sample gas M contains the interfering components.
  • the C—H bond absorption wavelength band of 7.2 ⁇ m is close to the SO 2 absorption wavelength band of 7.4 ⁇ m. Therefore, the influence of HC causes an error in the measurement of SO2 concentration.
  • the absorption wavelength band of CO2 4.3 ⁇ m is separated from the absorption wavelength band of SO2 7.4 ⁇ m
  • the concentration of CO2 in the sample gas is generally significantly greater than that of SO2, so only a small Even the overlap of the absorption wavelength bands causes an error in the measurement of the SO 2 concentration because it affects as an interference component.
  • the gas measuring device 100 of Embodiment 1 shown in FIG. included Therefore, the difference in infrared absorption between the sample gas M and the reference gas R cancels out the influence of the interference component. Therefore, the concentration of SO 2 can be measured without being affected by interfering components. According to Embodiment 1, even when the interference component and its concentration are unknown, the influence of the interference component can be removed at a lower cost and with higher accuracy than in the prior art.
  • Embodiment 1 the gas measuring apparatus configured to alternately introduce the sample gas and the reference gas into the sample cell was shown. may apply.
  • FIG. 3 is a diagram schematically showing the configuration of a gas measuring device according to a modification of Embodiment 1.
  • FIG. A gas measuring device 100A shown in FIG. 3 includes a reference cell 59 instead of the switching unit 8 in the configuration of the gas measuring device 100 shown in FIG.
  • Other parts of the configuration of gas measuring device 100A are the same as those of gas measuring device 100 shown in FIG. 1, and thus description thereof will not be repeated.
  • the sample gas that has passed through the sample gas line ML is introduced into the sample cell 9 as it is.
  • the reference cell 59 has a gas inlet 59a and a gas outlet 59b.
  • the reference gas that has passed through the reference gas line RL is introduced into the reference cell 59 from the gas introduction port 59a of the reference cell 59, and then exhausted from the gas discharge port 59b.
  • the SO2 detector 20 detects the difference between the intensity of infrared light that has passed through the sample cell 9 and the intensity of infrared light that has passed through the reference cell 59 .
  • the infrared gas analyzer that performs measurements by switching between the sample gas and the reference gas has described the SO 2 measuring apparatus that uses the sample gas from which SO 2 has been dissolved and removed by water bubbling as the reference gas.
  • the SO 2 measuring apparatus that uses the sample gas from which SO 2 has been dissolved and removed by water bubbling as the reference gas.
  • a multi-component measuring device that can simultaneously measure components other than SO2 in gas measuring devices.
  • the method of generating the reference gas according to Embodiment 1 is not suitable for NO, CO, and CO 2 , which are poorly soluble in water. is not removed by the bubbling separator, so it is unsuitable as a reference gas for NOx, CO, and CO2 measurements.
  • a three-way valve 13 is provided downstream of the bubbling separator 11, and the gas (R1) produced by the sample gas passing through the bubbling separator 11 and the atmosphere (R2) are alternately used as the reference gas. do.
  • FIG. 4 is a diagram schematically showing the overall configuration of a gas measuring device according to Embodiment 2.
  • FIG. A gas measuring apparatus 200 shown in FIG. 4 has a reference gas line RLA in place of the reference gas line RL and a detection section 20A in place of the SO2 detector 20 in the configuration of the gas measuring apparatus 100 shown in FIG.
  • Sample gas line ML, switching unit 8, sample cell 9, motor 19, sector 18, and light source 10 are common to gas measuring apparatus 200 and gas measuring apparatus 100, so description thereof will not be repeated.
  • the reference gas line RLA shown in FIG. 4 differs from the reference gas line RL shown in FIG. 1 in that a three-way valve 13 is added between the bubbling separator 11 and cooler 12 .
  • the three-way valve 13 selects either one of the reference gas R1 that has passed through the bubbling separator 11 and the reference gas R2 that is the atmosphere and sends it to the cooler 12 according to a selection signal SEL2 given from the control device 30 .
  • the bubbling separator 11, the cooler 12, the drain pot 17, the filter 14, the pump 15, and the needle valve 16 are the same as those in FIG. 1, so the description will not be repeated.
  • the detection unit 20A includes an SO2 detector 22, an NO detector 23, a CO detector 24, and a CO2 detector 25, which detect SO2, NO, CO, and CO2 , respectively.
  • SO 2 , NO, CO, and CO 2 absorb light of specific wavelengths in the infrared region (SO 2 : 7.4 ⁇ m, NO: 5.3 ⁇ m, CO: 4.6 ⁇ m, CO 2 : 4.3 ⁇ m). do. Therefore, the concentration of each component can be measured by measuring the infrared absorption after passing through the measurement gas with a detector that is sensitive only to each of these wavelengths.
  • Each detector contains the gas to be detected in the sample gas, and detects the intensity of the infrared light at the frequency specific to the gas to be detected based on internal pressure changes. Then, the controller 30, which receives the detection output from the detector 20A, performs predetermined signal processing to calculate a concentration value indicating the concentration of the measured gas in the sample gas.
  • FIG. 5 is a diagram for explaining how the detector signals are read.
  • a selection signal SEL is input to the switching unit 8 and a selection signal SEL2 is input to the three-way valve 13 .
  • the selection signal SEL2 switches between the reference gas R1 and the reference gas R2 every 20 seconds. Also, the sample gas M and the reference gas R are switched every 10 seconds by the selection signal SEL.
  • the detection signal of the reference gas R1 and the detection signal of the reference gas R2 are alternately read with the detection signal of the sample gas M interposed therebetween.
  • t4 to t6, t8 to t10, . 30 performs SO2 concentration measurements.
  • NO, CO, and CO2 are measured during each period of time t2-t4, t6-t8, . . .
  • each of the NO detector 23, the CO detector 24, and the CO2 detector 25 outputs a detection signal of the reference gas R2 to the control device 30, and in the second half of each period, the NO detector 23, the CO detection
  • Each of the detector 24 and the CO2 detector 25 outputs a detection signal of the sample gas M to the controller 30 .
  • the controller 30 measures NO, CO and CO 2 concentrations based on the difference between the first half signal and the second half signal.
  • Embodiment 1 With the configuration of Embodiment 1 as it is, it was not possible to configure a highly accurate multi-component meter, but in Embodiment 2, while using the interference removal technology at the time of SO 2 concentration measurement, a single measuring device Multi-component measurement becomes possible. Therefore, a low-cost multi-component analyzer including a low-interference SO 2 analyzer that requires a small installation space is possible.
  • the difference between the second signal and the first signal obtained from the NO detector 23 makes it secondarily possible to measure the NO 2 concentration.
  • the gas measuring device is configured to alternately introduce the sample gas and the reference gas into the sample cell. may apply.
  • FIG. 6 is a diagram schematically showing the configuration of a gas measuring device according to a modification of the second embodiment.
  • a gas measuring device 200A shown in FIG. 6 includes a reference cell 59 instead of the switching unit 8 in the configuration of the gas measuring device 200 shown in FIG.
  • Other parts of the configuration of gas measuring device 200A are the same as those of gas measuring device 200 shown in FIG. 3, and thus description thereof will not be repeated.
  • the sample gas that has passed through the sample gas line ML is introduced into the sample cell 9 as it is.
  • the reference cell 59 has a gas inlet 59a and a gas outlet 59b.
  • the reference gas that has passed through the reference gas line RL is introduced into the reference cell 59 from the gas introduction port 59a of the reference cell 59, and then exhausted from the gas discharge port 59b.
  • the SO2 detector 20 detects the difference between the intensity of infrared light that has passed through the sample cell 9 and the intensity of infrared light that has passed through the reference cell 59 .
  • the present disclosure relates to a gas measuring device that measures a gas component to be analyzed in a sample gas.
  • the gas measurement device includes a sample gas line for dehumidifying the sample gas, a reference gas line for generating a dehumidified reference gas after removing the gas component to be analyzed from the sample gas, a sample cell, and gas passing through the reference gas line.
  • a sample gas switching unit that selectively supplies the gas that has passed through the sample gas line to the sample cell; a light source that irradiates the sample cell with light; a detection unit that detects light intensity.
  • the gas component to be analyzed includes SO2 gas.
  • the reference gas line includes a bubbling separator that removes SO2 gas from the sample gas by bubbling the sample gas with water, and a dehumidifier that dehumidifies the gas that has passed through the bubbling separator.
  • the gas measuring device includes a sample gas line for dehumidifying the sample gas, a reference gas line for generating a dehumidified reference gas after removing the gas component to be analyzed from the sample gas, and the gas passing through the sample gas line is introduced.
  • a sample cell a reference cell into which the gas that has passed through the reference gas line is introduced, a light source that irradiates the sample cell and the reference cell with light, and a light intensity of the light emitted from the light source to the sample cell and transmitted through the sample cell and a detection unit for detecting the light intensity of the light emitted from the light source to the reference cell and transmitted through the reference cell.
  • the gas component to be analyzed includes SO2 gas.
  • the reference gas line includes a bubbling separator that removes SO2 gas from the sample gas by bubbling the sample gas with water, and a dehumidifier that dehumidifies the gas that has passed through the bubbling separator.
  • the gas measuring device when the gas to be analyzed is water-soluble and the interfering component gas is non-water-soluble, the gas measuring device removes the gas to be analyzed from the sample gas with the bubbling separator and uses it as the reference gas. do. Therefore, since the interference component gas of the same concentration exists in the reference gas, the influence of the interference component gas can be canceled.
  • the bubbling separator uses drain water generated when the sample gas is cooled as water used for bubbling.
  • natural cooling condenses water in the gas and water is supplied to the bubbling separator, so there is no need to supply water to the bubbling separator from the outside.
  • the gas component to be analyzed further includes at least one of NO gas, CO gas, and CO2 gas.
  • the reference gas line is arranged between the bubbling separator and the dehumidifier, and further includes a reference gas switching section that selectively supplies the gas that has passed through the bubbling separator and the atmosphere to the dehumidifier.
  • the detection unit includes a first detector that detects the concentration of SO2 gas and a second detector that detects the concentration of at least one of NO gas, CO gas, and CO2 gas.
  • the gas components to be analyzed include NO gas and NO 2 gas.
  • the sample gas line includes a cooler that cools and dehumidifies the sample gas, and a converter that converts NO 2 gas in the gas that has passed through the cooler into NO gas.
  • the gas measuring device is based on the output of the detector when the gas passing through the sample gas line is introduced into the sample cell and the output of the detector when the gas passing through the bubbling separator is introduced into the sample cell. , a processor for measuring the concentration of NO 2 gas.
  • the light emitted from the light source to the sample cell is infrared light.
  • the detection unit includes a first detector that detects the concentration of SO2 gas and a second detector that detects the concentration of NO gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

ガス測定装置(100)は、試料ガス(M)を除湿する試料ガスライン(ML)と、試料ガスから分析対象のガス成分を除去した後に除湿した基準ガス(R)を生成する基準ガスライン(RL)と、基準ガスライン(RL)を通過したガスと、試料ガスライン(ML)を通過したガスとを選択的に試料セル(9)に供給する第1切換部(8)と、試料セル(9)に光を照射する光源(10)と、光源(10)から試料セル(9)に照射された光が試料セル(9)を透過した光強度を検出する検出部(20)とを備える。分析対象のガス成分は、SO2ガスを含む。基準ガスライン(RL)は、試料ガス(M)を水によってバブリングさせ、試料ガス(M)からSO2ガスを除去するバブリングセパレータ(11)と、バブリングセパレータ(11)を通過したガスを除湿する除湿装置(12)とを含む。

Description

ガス測定装置
 本開示は、ガス測定装置に関する。
 特開平9-49797号公報(特許文献1)には、試料ガスと基準ガスを切り替えてガス成分の濃度を測定する赤外線ガス分析計が開示されている。この赤外線ガス分析計では、三方弁が切換えられ、試料ガスと基準ガスとが所定周期で交互にセル内に供給される。これに並行して、モータによってセクタが回転され、光源からの赤外光がセル内に断続的に照射される。これにより、検出器は、試料ガスまたは基準ガスを透過した赤外光を交互に検出し、基準ガスの検出出力と試料ガスの検出出力の出力比によってガス成分の分析が可能となる。また、実開昭59-29748号公報(特許文献2)には、2つのセルを用いる2光路式ガス分析計が開示されている。
特開平9-49797号公報 実開昭59-29748号公報
 赤外線ガス分析計では、測定対象ガス成分と赤外線吸収帯が重なるガス成分(以下、干渉成分という)が試料ガスに含まれると測定誤差が生じる。たとえば、燃焼排ガス中の二酸化硫黄(SO)を測定する場合は、干渉成分としてHCおよびCOが燃焼排ガス中に存在する。
 特開平9-49797号公報(特許文献1)に開示されている赤外線ガス分析計では、基準ガスとして、測定対象ガス成分であるSOが含まれない大気を使用できる。しかしながら、当該文献には記載されていないが、大気中にはSO測定の干渉成分であるHCおよびCOがほとんど含まれないため、試料ガスと基準ガスの赤外線吸収の差分の出力は、干渉成分の影響によって測定誤差が生じる可能性がある。
 これに対して、干渉成分の濃度を別途連続で測定し、測定結果を用いてリアルタイムで干渉成分の影響による誤差を補正する方法もある。しかし、この方法は、事前に試料ガス中の干渉成分の種類とその大まかな濃度が分かっていないと使えないことに加え、並行して干渉成分の濃度を検出する構成が必要となり、コストが高くなる。
 さらに、透過波長帯を絞る多層膜の光学フィルタや、干渉ガスを高濃度で充填したセルを光路に設置する干渉対策方法も考えられる。この方法は、ある程度の干渉低減効果はあるものの、十分とは言えない場合も多く、いくらか干渉誤差が残る。また、こういった光学フィルタを光路に入れることで、光が減衰するので測定精度が悪くなる。
 本開示は、開発コストを抑えつつ、SOの検出精度を向上させることができるガス測定装置を提供することを目的とする。
 本開示は、試料ガス中の分析対象のガス成分を測定するガス測定装置に関する。ガス測定装置は、試料ガスを除湿する試料ガスラインと、試料ガスから分析対象のガス成分を除去した後に除湿した基準ガスを生成する基準ガスラインと、試料セルと、基準ガスラインを通過したガスと、試料ガスラインを通過したガスとを選択的に試料セルに供給する第1切換部と、試料セルに光を照射する光源と、光源から試料セルに照射された光が試料セルを透過した光強度を検出する検出部とを備える。分析対象のガス成分は、SOガスを含む。基準ガスラインは、試料ガスを水によってバブリングさせ、試料ガスからSOガスを除去するバブリングセパレータと、バブリングセパレータを通過したガスを除湿する除湿装置とを含む。
 本開示におけるガス測定装置は、分析対象のガスが水溶性であり、干渉成分ガスが非水溶性である場合に、試料ガスから分析対象のガスをバブリングセパレータで除去して基準ガスとする。このため、基準ガス中にも同じ濃度の干渉成分ガスが存在するので、干渉成分ガスの影響をキャンセルすることができる。
実施の形態1のガス測定装置の構成を概略的に示す図である。 検討例のガス測定装置の構成を概略的に示す図である。 実施の形態1の変形例のガス測定装置の構成を概略的に示す図である。 実施の形態2のガス測定装置の全体の構成を概略的に示す図である。 検出器の信号の読み取りについて説明するための図である。 実施の形態2の変形例のガス測定装置の構成を概略的に示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 図1は、実施の形態1のガス測定装置の構成を概略的に示す図である。図2は、検討例のガス測定装置の構成を概略的に示す図である。図1のガス測定装置100は、図2のガス測定装置500と基準ガスラインRLの構成が異なる。以下、図2と対比しながら図1の構成について説明する。
 図1に示すガス測定装置100は、試料ガスラインMLと、基準ガスラインRLと、切換部8と、試料セル9とを備える。
 試料ガスラインMLには、試料ガスMが導入される。試料ガスラインMLは、自然冷却によって生じるドレン水を分離するドレンセパレータ1と、試料ガスを冷却することによって除湿するクーラ2と、ドレンセパレータ1およびクーラ2で分離されるドレン水を収容するドレンポット7とを備える。
 試料ガスラインMLは、さらに、試料ガスMが通過するフィルタ4と、試料ガスMを送出するポンプ5と、試料ガスMの流量を調整するニードル弁6とを含む。
 以上の試料ガスラインMLについては、図2の検討例と図1の実施の形態1では同じ構成となっている。
 図2の検討例では、基準ガスラインRLには大気が導入される。一方、実施の形態1では、基準ガスラインRLにも、試料ガスMが導入される。図1に示す基準ガスラインRLは、自然冷却によって生じるドレン水によって、試料ガスMをバブリングするバブリングセパレータ11と、バブリングセパレータ11通過後の試料ガス(基準ガスR)を冷却することによって除湿するクーラ12と、バブリングセパレータ11およびクーラ12で分離されるドレン水を収容するドレンポット17とを備える。バブリングセパレータ11によって、試料ガスM中の水溶性のガス成分は除去される。
 基準ガスラインRLは、さらに、基準ガスRが通過するフィルタ14と、基準ガスRを送出するポンプ15と、基準ガスRの流量を調整するニードル弁16とを含む。
 上記の通り、本実施の形態では、基準ガスRとして、試料ガスMを水バブリングして水溶性のSOを除去したガスを使用する。水バブリングには、バブリングセパレータ11などを使用する。工場、焼却場などの燃焼排ガスが試料ガスMである場合は、試料ガスM自身の水分で水バブリングできるので、バブリングセパレータ11には、別途の水の供給は必要ない。ただし、バブリングセパレータ11に水を補給するようにしてもよく、クーラ2または12からのドレン水をバブリングセパレータ11に補給しても良い。
 以下に説明する切換部8および試料セル9については、図1と図2では共通である。
 切換部8は、試料ガスラインMLに配置された三方弁8Mと、基準ガスラインRLに配置された三方弁8Rとを含む。三方弁8M,8Rは、選択信号SELによって、基準ガスラインRLと試料ガスラインMLのいずれか一方を通過したガスを試料セル9に送り、他方を通過したガスを排気するように流路を構成する。
 ガス測定装置100は、モータ19と、セクタ18と、光源10と、SO2検出器20と、制御装置30とをさらに備える。
 試料セル9は、ガス導入口9aとガス排出口9bを有する。切換部8を介して試料ガスMまたは基準ガスRがガス導入口9aから試料セル9内に供給され、ガス排出口9bから排出される。試料セル9の一端には赤外光を発する光源10が、また、試料セル9の他端には、試料セル9を透過した赤外光を検出するためのSO2検出器20が配設されている。
 光源10と試料セル9端部との間には赤外光を断続するためのセクタ18が設けられている。このセクタ18は、遮光部と透光部とを有する。セクタ回転軸18eを中心としてセクタ18が回転するよう構成される。透光部が試料セル9上にある場合に赤外光が試料セル9内に照射され、遮光部が試料セル9上にある場合に試料セル9内への赤外光の照射が遮断される。制御装置30は、モータ19を介してセクタ18の回転位置制御を行ない、また、選択信号SELによって切換部8の駆動制御を行なう。
 SOは、赤外域での特有の波長の光(SO:7.4μm)を吸収する。したがって、この波長にのみ感応するSO2検出器20によって、測定ガス中を通過した後の赤外吸収を測定すれば、SOの濃度が測定できる。
 SO2検出器20の内部には、試料ガス中の検出対象ガスが封入されており、内部の圧力変化によって検出対象ガス固有の周波数の赤外光強度を検出する。そして、SO2検出器20の検出出力を受ける制御装置30は、所定の信号処理を行ない、試料ガス中の測定ガス濃度を示す濃度値を算出する。
 図2に示した比較例のガス測定装置500のような構成とすると、基準ガスR中には干渉成分であるHCおよびCOが含まれておらず、試料ガスM中には干渉成分が含まれている。HCは、C-H結合の吸収波長帯7.2μmがSOの吸収波長帯7.4μmと近接している。したがって、HCの影響でSO濃度の測定に誤差が生じる。一方、COの吸収波長帯4.3μmはSOの吸収波長帯7.4μmとは離れているが、試料ガス中のCOの濃度は一般にSOの濃度よりも著しく大きいので、わずかな吸収波長帯の重なりであっても、干渉成分として影響するのでSO濃度の測定に誤差が生じる。
 これに対し、図1に示した実施の形態1のガス測定装置100によれば、水への溶解度が小さいHCおよびCOなどの干渉成分は、水バブリングでほとんど除去されず、基準ガスRに含まれる。したがって、試料ガスMと基準ガスRの赤外線吸収の差分では、干渉成分の影響がキャンセルされる。このため、干渉成分の影響を受けずにSOの濃度が測定できる。実施の形態1によれば、干渉成分やその濃度が未知の場合でも干渉成分の影響を、従来技術に比べて安価にかつ精度よく除去できる。
 [実施の形態1の変形例]
 実施の形態1では、試料セルに試料ガスと基準ガスとを交互に導入する構成のガス測定装置を示したが、同様な基準ガスラインを試料セルと基準セルの2セルを用いるガス測定装置に適用しても良い。
 図3は、実施の形態1の変形例のガス測定装置の構成を概略的に示す図である。図3に示すガス測定装置100Aは、図1に示したガス測定装置100の構成において、切換部8に代えて基準セル59を備える。他の部分のガス測定装置100Aの構成は、図1に示したガス測定装置100の構成と同様であるので説明は繰り返さない。
 試料ガスラインMLを通過した試料ガスは、そのまま試料セル9に導入される。基準セル59は、ガス導入口59aとガス排出口59bを有する。基準ガスラインRLを通過した基準ガスは、基準セル59のガス導入口59aから基準セル59に導入され、その後、ガス排出口59bから排気される。SO2検出器20は、試料セル9を透過した赤外光強度と基準セル59を通過した赤外光強度の差を検出する。
 このように、試料セルと基準セルの2セルを用いるガス測定装置であっても、同様に干渉成分の影響を除去できる。
 [実施の形態2]
 実施の形態1では、試料ガスと基準ガスを切り替えて測定する赤外線ガス分析計において、基準ガスに、水バブリングでSOを溶解除去した試料ガスを用いるSO測定装置について説明した。しかし、ガス測定装置には、SO以外の成分も同時に測定できる多成分測定装置のニーズも存在する。
 SO以外に、NOx(=NO+NO)、CO、COを1つの測定装置で同時に測定しようとする場合、実施の形態1による基準ガス生成方法では、水溶性が乏しいNO、CO、COは、バブリングセパレータで除去されないため、NOx、CO、CO測定用の基準ガスとしては不適切であるという問題がある。
 特に、NO,COは、基準ガスとして使用可能なレベル(即ち、大気中濃度に対して99,9%以上の除去率)まで、連続かつ安定的に除去するのは難しい。このため、実施の形態1の構成そのままでは、多成分ガス測定装置を構成することは難しい。COを、酸化触媒でCOへ酸化させて除去することも考えられるが、触媒の被毒などで、必要な酸化効率を長期安定に保つことに課題がある。
 したがって、干渉影響を低減した実施の形態1のガス測定装置を使って、多成分の測定をするには、別途、NOx、CO、COの連続測定装置を設置する必要があるが、コストが高くなること、および、測定装置の設置スペースが大きく設置効率が悪いという問題がある。
 そこで、実施の形態2では、バブリングセパレータ11の下流に三方弁13を設け、試料ガスがバブリングセパレータ11を通過してできたガス(R1)と大気(R2)を切換えて交互に基準ガスとして使用する。
 図4は、実施の形態2のガス測定装置の全体の構成を概略的に示す図である。
 図4に示すガス測定装置200は、図1に示すガス測定装置100の構成において、基準ガスラインRLに代えて基準ガスラインRLAを備え、SO2検出器20に代えて検出部20Aを備える。試料ガスラインML、切換部8、試料セル9、モータ19、セクタ18、および光源10については、ガス測定装置200は、ガス測定装置100と共通であるので、説明は繰り返さない。
 図4に示す基準ガスラインRLAは、バブリングセパレータ11と、クーラ12との間に三方弁13が追加される点が図1に示す基準ガスラインRLと異なる。三方弁13は、制御装置30から与えられる選択信号SEL2に応じて、バブリングセパレータ11を通過した基準ガスR1と、大気である基準ガスR2とのいずれか一方を選択してクーラ12に送る。バブリングセパレータ11、クーラ12、ドレンポット17、フィルタ14、ポンプ15、ニードル弁16については、図1と同じであるので、説明は繰り返さない。
 検出部20Aは、それぞれSO,NO,CO,COを検出対象とする、SO2検出器22と、NO検出器23と、CO検出器24と、CO2検出器25とを含む。
 SO、NO、CO、COは、それぞれ赤外域での特有の波長の光(SO:7.4μm、NO:5.3μm、CO:4.6μm、CO:4.3μm)を吸収する。したがって、これらのそれぞれの波長にのみ感応する検出器によって、測定ガス中を通過した後の赤外吸収を測定すれば、それぞれの成分の濃度が測定できる。
 各検出器は、その内部に試料ガス中の検出対象ガスが封入されており、内部の圧力変化によって検出対象ガス固有の周波数の赤外光強度を検出する。そして、検出部20Aでの検出出力を受ける制御装置30は、所定の信号処理を行ない、試料ガス中の測定ガス濃度示す濃度値を算出する。
 図5は、検出器の信号の読み取りについて説明するための図である。切換部8には選択信号SELが入力され、三方弁13には選択信号SEL2が入力される。
 一例では、図5のように、選択信号SEL2によって、基準ガスR1と基準ガスR2を20秒毎に切換える。また試料ガスMと基準ガスRとを選択信号SELによって10秒毎に切換える。
 このようにして、試料ガスMの検出信号を挟んで基準ガスR1の検出信号と基準ガスR2の検出信号とを交互に読み取る。時刻t0~t2,t4~t6,t8~t10,…の各期間において、SO2検出器22によって検出された前半の基準ガスR1の検出信号と後半の試料ガスMの検出信号との差分で制御装置30がSO濃度の測定を行なう。
 また、時刻t2~t4,t6~t8,…の各期間においては、NO,CO,COの測定を行なう。各期間の前半では、NO検出器23、CO検出器24、CO2検出器25の各々が基準ガスR2の検出信号を制御装置30に出力し、各期間の後半では、NO検出器23、CO検出器24、CO2検出器25の各々が試料ガスMの検出信号を制御装置30に出力する。制御装置30は、前半の信号と後半の信号との差分でNO,CO,CO濃度の測定を行なう。
 なお、上記の説明では、SO濃度の測定と、NO,CO,COの測定とを交互に行なう例を説明したが、基準ガスR1の検出信号、基準ガスR2の検出信号の各々を次回の測定タイミングまで記憶しておき、記憶した最新の基準ガスR1,R2を同時に用いて試料ガスMの全成分の測定を毎サイクル実行することも可能である。
 実施の形態1の構成そのままでは、精度の高い多成分計を構成することができなかったが、実施の形態2では、SO濃度測定時の干渉除去技術を使用しつつ、測定装置1台で多成分測定が可能となる。このため、低コストで、設置スペースが小さい、低干渉SO計を含む多成分計が可能となる。
 [実施の形態2の変形例1]
 図4において、水溶性のNOは、試料ガスラインMLではコンバータ3でNOに変換される。一方、基準ガスR1中の水溶性のNOは、基準ガスラインRLAではバブリングセパレータ11で溶解除去される。
 このため、図5の時刻t0~t1におけるNO検出器23から得られる基準ガスR1の検出信号(第1信号とする)は、時刻t1~t2におけるNO検出器23から得られる試料ガスMの検出信号(第2信号とする)よりも水溶性のNOに相当する分のNO濃度が低いことが示される。
 したがって、制御装置30において、NO検出器23から得られる上記第2信号と第1信号の差分によって、NO濃度の測定が副次的に可能となる。これを利用して、NO濃度の測定が可能となる多成分ガス測定装置を実現することもできる。
 [実施の形態2の変形例2]
 実施の形態2では、試料セルに試料ガスと基準ガスとを交互に導入する構成のガス測定装置を示したが、同様な基準ガスラインを試料セルと基準セルの2セルを用いるガス測定装置に適用しても良い。
 図6は、実施の形態2の変形例のガス測定装置の構成を概略的に示す図である。図6に示すガス測定装置200Aは、図3に示したガス測定装置200の構成において、切換部8に代えて基準セル59を備える。他の部分のガス測定装置200Aの構成は、図3に示したガス測定装置200の構成と同様であるので説明は繰り返さない。
 試料ガスラインMLを通過した試料ガスは、そのまま試料セル9に導入される。基準セル59は、ガス導入口59aとガス排出口59bを有する。基準ガスラインRLを通過した基準ガスは、基準セル59のガス導入口59aから基準セル59に導入され、その後、ガス排出口59bから排気される。SO2検出器20は、試料セル9を透過した赤外光強度と基準セル59を通過した赤外光強度の差を検出する。
 このように、試料セルと基準セルの2セルを用いるガス測定装置であっても、同様にSO濃度測定時の干渉除去技術を使用しつつ、測定装置1台で多成分測定が可能となる。
 [態様]
 上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本開示は、試料ガス中の分析対象のガス成分を測定するガス測定装置に関する。ガス測定装置は、試料ガスを除湿する試料ガスラインと、試料ガスから分析対象のガス成分を除去した後に除湿した基準ガスを生成する基準ガスラインと、試料セルと、基準ガスラインを通過したガスと、試料ガスラインを通過したガスとを選択的に試料セルに供給する試料ガス切換部と、試料セルに光を照射する光源と、光源から試料セルに照射された光が試料セルを透過した光強度を検出する検出部とを備える。分析対象のガス成分は、SOガスを含む。基準ガスラインは、試料ガスを水によってバブリングさせ、試料ガスからSOガスを除去するバブリングセパレータと、バブリングセパレータを通過したガスを除湿する除湿装置とを含む。
 (第2項)本開示の他の実施形態は、試料ガス中の分析対象のガス成分を測定するガス測定装置に関する。ガス測定装置は、試料ガスを除湿する試料ガスラインと、試料ガスから分析対象のガス成分を除去した後に除湿した基準ガスを生成する基準ガスラインと、試料ガスラインを通過したガスが導入される試料セルと、基準ガスラインを通過したガスが導入される基準セルと、試料セルおよび基準セルに光を照射する光源と、光源から試料セルに照射された光が試料セルを透過した光強度と光源から基準セルに照射された光が基準セルを透過した光強度とを検出する検出部とを備える。分析対象のガス成分は、SOガスを含む。基準ガスラインは、試料ガスを水によってバブリングさせ、試料ガスからSOガスを除去するバブリングセパレータと、バブリングセパレータを通過したガスを除湿する除湿装置とを含む。
 上記の構成によると、ガス測定装置は、分析対象のガスが水溶性であり、干渉成分ガスが非水溶性である場合に、試料ガスから分析対象のガスをバブリングセパレータで除去して基準ガスとする。このため、基準ガス中にも同じ濃度の干渉成分ガスが存在するので、干渉成分ガスの影響をキャンセルすることができる。
 (第3項)第1項または第2項において、バブリングセパレータは、バブリングに用いる水として試料ガスが冷却された時に生じるドレン水を使用する。燃焼ガスを分析する場合には、自然冷却によってガス中から水分が凝縮しバブリングセパレータに水が供給されるので外部から水をバブリングセパレータに供給する必要がない。
 (第4項)第1項または第2項において、分析対象のガス成分は、NOガス、COガス、COガスのうち少なくとも1つをさらに含む。基準ガスラインは、バブリングセパレータと除湿装置との間に配置され、バブリングセパレータを通過したガスと、大気とを選択的に除湿装置に供給する基準ガス切換部をさらに含む。
 (第5項)第4項において、光源が試料セルに照射する光は、赤外光である。検出部は、SOガスの濃度を検出する第1検出器と、NOガス、COガス、COガスのうち少なくとも1つの濃度を検出する第2検出器とを含む。
 以上のような構成とすることによって、水溶性の分析対象ガスを精度良く測定することができ、さらに非水溶性の分析対象ガスを測定できる多成分ガス測定装置を実現することができる。
 (第6項)第1項または第2項において、分析対象のガス成分は、NOガス、およびNOガスを含む。試料ガスラインは、試料ガスを冷却して除湿するクーラと、クーラを通過したガスのうちNOガスをNOガスに変換するコンバータとを含む。ガス測定装置は、試料ガスラインを通過したガスが試料セルに導入されたときの検出部の出力と、バブリングセパレータを通過したガスが試料セルに導入されたときの検出部の出力とに基づいて、NOガスの濃度を測定する処理装置をさらに備える。
 (第7項)第6項において、光源が試料セルに照射する光は、赤外光である。検出部は、SOガスの濃度を検出する第1検出器と、NOガスの濃度を検出する第2検出器とを含む。
 以上のような構成とすることによって、通常ではNOガスと別に検出しにくいNOガスの濃度を副次的に測定できる多成分ガス測定装置を実現することができる。
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1 ドレンセパレータ、2,12 クーラ、3 コンバータ、4,14 フィルタ、5,15 ポンプ、6,16 ニードル弁、7,17 ドレンポット、8 試料ガス切換部、8M,8R,13 三方弁、9 試料セル、9a,59a ガス導入口、9b,59b ガス排出口、10 光源、11 バブリングセパレータ、18 セクタ、18e セクタ回転軸、19 モータ、20,22,23,24,25 検出器、20A 検出部、30 制御装置、59 基準セル、100,100A,200,200A,500 ガス測定装置、ML 試料ガスライン、RL,RLA 基準ガスライン。

Claims (12)

  1.  試料ガス中の分析対象のガス成分を測定するガス測定装置であって、
     前記試料ガスを除湿する試料ガスラインと、
     前記試料ガスから前記分析対象のガス成分を除去した後に除湿した基準ガスを生成する基準ガスラインと、
     試料セルと、
     前記基準ガスラインを通過したガスと、前記試料ガスラインを通過したガスとを選択的に前記試料セルに供給する試料ガス切換部と、
     前記試料セルに光を照射する光源と、
     前記光源から前記試料セルに照射された光が前記試料セルを透過した光強度を検出する検出部とを備え、
     前記分析対象のガス成分は、SOガスを含み、
     前記基準ガスラインは、
     前記試料ガスを水によってバブリングさせ、前記試料ガスからSOガスを除去するバブリングセパレータと、
     前記バブリングセパレータを通過したガスを除湿する除湿装置とを含む、ガス測定装置。
  2.  試料ガス中の分析対象のガス成分を測定するガス測定装置であって、
     前記試料ガスを除湿する試料ガスラインと、
     前記試料ガスから前記分析対象のガス成分を除去した後に除湿した基準ガスを生成する基準ガスラインと、
     前記試料ガスラインを通過したガスが導入される試料セルと、
     前記基準ガスラインを通過したガスが導入される基準セルと、
     前記試料セルおよび前記基準セルに光を照射する光源と、
     前記光源から前記試料セルに照射された光が前記試料セルを透過した光強度と前記光源から前記基準セルに照射された光が前記基準セルを透過した光強度とを検出する検出部とを備え、
     前記分析対象のガス成分は、SOガスを含み、
     前記基準ガスラインは、
     前記試料ガスを水によってバブリングさせ、前記試料ガスからSOガスを除去するバブリングセパレータと、
     前記バブリングセパレータを通過したガスを除湿する除湿装置とを含む、ガス測定装置。
  3.  前記バブリングセパレータは、前記バブリングに用いる水として前記試料ガスが冷却された時に生じるドレン水を使用する、請求項1に記載のガス測定装置。
  4.  前記分析対象のガス成分は、NOガス、COガス、COガスのうち少なくとも1つをさらに含み、
     前記基準ガスラインは、
     前記バブリングセパレータと前記除湿装置との間に配置され、前記バブリングセパレータを通過したガスと、大気とを選択的に前記除湿装置に供給する基準ガス切換部をさらに含む、請求項1に記載のガス測定装置。
  5.  前記光源が前記試料セルに照射する光は、赤外光であり、
     前記検出部は、
     SOガスの濃度を検出する第1検出器と、
     NOガス、COガス、COガスのうち少なくとも1つの濃度を検出する第2検出器とを含む、請求項4に記載のガス測定装置。
  6.  前記分析対象のガス成分は、NOガス、およびNOガスを含み、
     前記試料ガスラインは、
     前記試料ガスを冷却して除湿するクーラと、
     前記クーラを通過したガスのうちNOガスをNOガスに変換するコンバータとを含み、
     前記ガス測定装置は、
     前記試料ガスラインを通過したガスが前記試料セルに導入されたときの前記検出部の出力と、前記バブリングセパレータを通過したガスが前記試料セルに導入されたときの前記検出部の出力とに基づいて、NOガスの濃度を測定する中央処理装置をさらに備える、請求項1に記載のガス測定装置。
  7.  前記光源が前記試料セルに照射する光は、赤外光であり、
     前記検出部は、
     SOガスの濃度を検出する第1検出器と、
     NOガスの濃度を検出する第2検出器とを含む、請求項6に記載のガス測定装置。
  8.  前記バブリングセパレータは、前記バブリングに用いる水として前記試料ガスが冷却された時に生じるドレン水を使用する、請求項2に記載のガス測定装置。
  9.  前記分析対象のガス成分は、NOガス、COガス、COガスのうち少なくとも1つをさらに含み、
     前記基準ガスラインは、
     前記バブリングセパレータと前記除湿装置との間に配置され、前記バブリングセパレータを通過したガスと、大気とを選択的に前記除湿装置に供給する基準ガス切換部をさらに含む、請求項2に記載のガス測定装置。
  10.  前記光源が前記試料セルに照射する光は、赤外光であり、
     前記検出部は、
     SOガスの濃度を検出する第1検出器と、
     NOガス、COガス、COガスのうち少なくとも1つの濃度を検出する第2検出器とを含む、請求項9に記載のガス測定装置。
  11.  前記分析対象のガス成分は、NOガス、およびNOガスを含み、
     前記試料ガスラインは、
     前記試料ガスを冷却して除湿するクーラと、
     前記クーラを通過したガスのうちNOガスをNOガスに変換するコンバータとを含み、
     前記ガス測定装置は、
     前記試料ガスラインを通過したガスが前記試料セルに導入されたときの前記検出部の出力と、前記バブリングセパレータを通過したガスが前記試料セルに導入されたときの前記検出部の出力とに基づいて、NOガスの濃度を測定する中央処理装置をさらに備える、請求項2に記載のガス測定装置。
  12.  前記光源が前記試料セルに照射する光は、赤外光であり、
     前記検出部は、
     SOガスの濃度を検出する第1検出器と、
     NOガスの濃度を検出する第2検出器とを含む、請求項11に記載のガス測定装置。
PCT/JP2022/026807 2021-07-09 2022-07-06 ガス測定装置 WO2023282282A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533163A JPWO2023282282A1 (ja) 2021-07-09 2022-07-06
EP22837696.8A EP4368968A1 (en) 2021-07-09 2022-07-06 Gas measurement device
CN202280060595.2A CN117980726A (zh) 2021-07-09 2022-07-06 气体测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114191 2021-07-09
JP2021-114191 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282282A1 true WO2023282282A1 (ja) 2023-01-12

Family

ID=84801684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026807 WO2023282282A1 (ja) 2021-07-09 2022-07-06 ガス測定装置

Country Status (4)

Country Link
EP (1) EP4368968A1 (ja)
JP (1) JPWO2023282282A1 (ja)
CN (1) CN117980726A (ja)
WO (1) WO2023282282A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059090A (ja) * 1973-09-25 1975-05-22
JPS52123978A (en) * 1976-04-12 1977-10-18 Toho Cokes Eng Method and apparatus for purifying exhaust gas
JPS5625250U (ja) * 1979-08-06 1981-03-07
JPS5929748U (ja) 1982-08-18 1984-02-24 株式会社堀場製作所 自動車排ガス中のso2分析計
JPH0534285A (ja) * 1991-07-27 1993-02-09 Horiba Ltd ガス分析装置における除湿器のチエツク方法
JPH0949797A (ja) 1995-05-29 1997-02-18 Shimadzu Corp 赤外線ガス分析計
US5750992A (en) * 1996-09-18 1998-05-12 Tennessee Valley Authority Method to compensate for interferences to mercury measurement in gases
JPH10165758A (ja) * 1996-12-11 1998-06-23 Chiyoda Corp 排煙脱硫法及びその装置
JPH10300640A (ja) * 1997-04-28 1998-11-13 Shimadzu Corp 環境大気用二酸化硫黄測定装置の校正方法
JP2004061207A (ja) * 2002-07-26 2004-02-26 Shimadzu Corp 赤外線ガス分析計
JP2005010007A (ja) * 2003-06-19 2005-01-13 Shimadzu Corp 赤外線ガス分析装置
JP2012189549A (ja) * 2011-03-14 2012-10-04 Horiba Ltd 分析装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059090A (ja) * 1973-09-25 1975-05-22
JPS52123978A (en) * 1976-04-12 1977-10-18 Toho Cokes Eng Method and apparatus for purifying exhaust gas
JPS5625250U (ja) * 1979-08-06 1981-03-07
JPS5929748U (ja) 1982-08-18 1984-02-24 株式会社堀場製作所 自動車排ガス中のso2分析計
JPH0534285A (ja) * 1991-07-27 1993-02-09 Horiba Ltd ガス分析装置における除湿器のチエツク方法
JPH0949797A (ja) 1995-05-29 1997-02-18 Shimadzu Corp 赤外線ガス分析計
US5750992A (en) * 1996-09-18 1998-05-12 Tennessee Valley Authority Method to compensate for interferences to mercury measurement in gases
JPH10165758A (ja) * 1996-12-11 1998-06-23 Chiyoda Corp 排煙脱硫法及びその装置
JPH10300640A (ja) * 1997-04-28 1998-11-13 Shimadzu Corp 環境大気用二酸化硫黄測定装置の校正方法
JP2004061207A (ja) * 2002-07-26 2004-02-26 Shimadzu Corp 赤外線ガス分析計
JP2005010007A (ja) * 2003-06-19 2005-01-13 Shimadzu Corp 赤外線ガス分析装置
JP2012189549A (ja) * 2011-03-14 2012-10-04 Horiba Ltd 分析装置

Also Published As

Publication number Publication date
CN117980726A (zh) 2024-05-03
EP4368968A1 (en) 2024-05-15
JPWO2023282282A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
JP4413160B2 (ja) 排気ガス成分分析装置
JP6024856B2 (ja) ガス分析計
US20220341783A1 (en) In-situ infra-red & ultra-violet photometer
JP4025702B2 (ja) 紫外線蛍光法による硫黄成分の分析方法及び分析装置
WO2023282282A1 (ja) ガス測定装置
KR102114557B1 (ko) 두개의 기능적 채널을 이용한 ndir 분석기
JP4550645B2 (ja) 車両搭載型排気ガス分析装置
JPH1082740A (ja) 赤外線式ガス分析計
JP2003050203A (ja) 非分散型赤外吸収式ガス分析装置及び分析方法
JPH07311154A (ja) ガス分析計
JP4042638B2 (ja) 赤外線ガス分析装置
JP4205821B2 (ja) 赤外吸収法によるガス分析における共存ガス影響の補正方法及びガス分析計
JP5306052B2 (ja) ガス分析計
JP2004138467A (ja) 紫外線吸収式測定装置および測定試料の処理方法
JP7571482B2 (ja) 赤外線ガス分析装置及びその校正方法
WO2023218983A1 (ja) 赤外線ガス分析計及び赤外線ガス分析方法
JP6168172B2 (ja) 赤外線ガス分析装置
JP3129842U (ja) 揮発性有機化合物測定装置
JP4906477B2 (ja) ガス分析装置及びガス分析方法
CN220650457U (zh) No2检测仪
JP2006329823A (ja) 分析装置
JP2007170982A (ja) ガス分析計
JPH0921753A (ja) 化学発光式ガス分析計
JPWO2023282282A5 (ja)
JPH07120389A (ja) ガス分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533163

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022837696

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022837696

Country of ref document: EP

Effective date: 20240209

WWE Wipo information: entry into national phase

Ref document number: 202280060595.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18575608

Country of ref document: US