WO2023276120A1 - 工作機械、制御方法、および制御プログラム - Google Patents

工作機械、制御方法、および制御プログラム Download PDF

Info

Publication number
WO2023276120A1
WO2023276120A1 PCT/JP2021/024992 JP2021024992W WO2023276120A1 WO 2023276120 A1 WO2023276120 A1 WO 2023276120A1 JP 2021024992 W JP2021024992 W JP 2021024992W WO 2023276120 A1 WO2023276120 A1 WO 2023276120A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
amount
control mode
pump
tank
Prior art date
Application number
PCT/JP2021/024992
Other languages
English (en)
French (fr)
Inventor
元気 船越
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to EP21948424.3A priority Critical patent/EP4364887A1/en
Priority to PCT/JP2021/024992 priority patent/WO2023276120A1/ja
Priority to JP2023531302A priority patent/JPWO2023276120A1/ja
Priority to CN202180099539.5A priority patent/CN117500634A/zh
Publication of WO2023276120A1 publication Critical patent/WO2023276120A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present disclosure relates to machine tools, control methods, and control programs.
  • Patent Document 1 discloses a machine tool provided with a coolant circulation mechanism.
  • the coolant is stored in a storage tank, and the machine tool discharges the coolant from the storage tank to the machining area. As a result, chips of the workpiece generated during machining are discharged from the machining area.
  • the coolant discharged to the machining area is collected in a recovery tank provided inside the machine tool.
  • the recovery tank is provided with a pump, and the coolant collected in the recovery tank is returned to the storage tank through the suction port of the pump.
  • Patent Document 1 controls coolant circulation so that the amount of coolant in the recovery tank is constant.
  • foreign substances such as oil and chips are not diffused in the recovery tank, and foreign substances may accumulate in the recovery tank. Therefore, there is a demand for a technique for more reliably discharging the foreign matter in the recovery tank.
  • a machine tool includes a cover body for defining a machining area, a discharge part for discharging coolant to the machining area, and a first nozzle for receiving the coolant discharged to the machining area.
  • a tank for defining a machining area, a discharge part for discharging coolant to the machining area, and a first nozzle for receiving the coolant discharged to the machining area.
  • a tank for detecting the amount of first coolant in the first tank, a second tank for storing coolant to be supplied to the discharge section, and a second coolant in the second tank
  • a second detection section for detecting the amount
  • a pump for sending coolant from the first tank to the second tank, and a control section for controlling the machine tool.
  • the pump In the pump control mode, the pump is driven when the first coolant amount exceeds a first predetermined amount, and when the first coolant amount falls below a second predetermined amount which is less than the first predetermined amount.
  • the control unit controls the pump in the first control mode when the second coolant amount is equal to or greater than a third predetermined amount, and controls the pump when the second coolant amount is less than the third predetermined amount. to switch the control mode of the pump from the first control mode to the second control mode.
  • control unit stops the machine tool when the second coolant amount falls below a fourth predetermined amount that is less than the third predetermined amount.
  • the amount obtained by subtracting the fourth predetermined amount from the third predetermined amount is greater than the amount obtained by subtracting the second predetermined amount from the first predetermined amount.
  • the machine tool further includes a light source.
  • the control unit causes the light source to emit light in a first light emission pattern
  • the control mode of the pump is the second control mode
  • the light source is caused to emit light in a second light emission pattern different from the first light emission pattern.
  • the pump includes a coolant inlet.
  • the suction port is immersed in coolant when the amount of coolant in the first tank is the first predetermined amount, and is not immersed in coolant when the amount of coolant in the first tank is the second predetermined amount. .
  • the certain amount is less than the first predetermined amount and greater than the second predetermined amount.
  • the suction port is soaked with coolant when the amount of coolant in the first tank is the constant amount.
  • whether or not to switch the control mode of the pump from the first control mode to the second control mode is determined by the second detection when the first coolant amount reaches the second predetermined amount. It is determined based on the second coolant amount detected by the unit.
  • the machine tool includes a cover body for partitioning and forming a machining area, a discharge part for discharging coolant to the machining area, a first tank for receiving the coolant discharged to the machining area, and the first A first detector for detecting the amount of first coolant in one tank, a second tank for storing coolant to be supplied to the discharge part, and a second tank for detecting the amount of second coolant in the second tank. and a pump for sending coolant from the first tank to the second tank.
  • the pump is driven when the first coolant amount exceeds a first predetermined amount, and when the first coolant amount falls below a second predetermined amount which is less than the first predetermined amount.
  • the control method includes the step of controlling the pump in the first control mode when the second coolant amount is greater than or equal to a third predetermined amount; and switching the control mode of the pump from the first control mode to the second control mode based on.
  • the machine tool includes a cover body for partitioning and forming a machining area, a discharge part for discharging coolant to the machining area, a first tank for receiving the coolant discharged to the machining area, and the first A first detector for detecting the amount of first coolant in one tank, a second tank for storing coolant to be supplied to the discharge part, and a second tank for detecting the amount of second coolant in the second tank. and a pump for sending coolant from the first tank to the second tank.
  • the pump is driven when the first coolant amount exceeds a first predetermined amount, and when the first coolant amount falls below a second predetermined amount which is less than the first predetermined amount.
  • the control program instructs the machine tool to control the pump in the first control mode when the second coolant amount is greater than or equal to a third predetermined amount; A step of switching the control mode of the pump from the first control mode to the second control mode based on the fact that the quantity has fallen below the fixed amount is executed.
  • FIG. 4 is a diagram for explaining the timing of switching the control mode of the recovery pump; It is a figure for demonstrating an example of the abnormality coping process in a machine tool. It is a figure which shows an example of the light emission pattern of a light source.
  • FIG. 4 is a diagram for explaining the timing of switching the control mode of the recovery pump; It is a figure for demonstrating an example of the abnormality coping process in a machine tool. It is a figure which shows an example of the light emission pattern of a light source.
  • FIG. 10 is a diagram showing another example of the light emission pattern of the light source; It is a figure which shows the tank 11 for collection
  • 3 is a diagram illustrating an example of a hardware configuration of a CPU (Central Processing Unit) unit; FIG. It is a figure which shows an example of the hardware constitutions of CNC (Computer Numerical Control) unit.
  • 4 is a flowchart showing the flow of tool information search processing.
  • FIG. 1 is a diagram showing the appearance of a machine tool 100. As shown in FIG.
  • Machine tool as used in this specification is a concept that includes various devices equipped with the function of machining a workpiece.
  • a horizontal machining center will be described as an example of the machine tool 100, but the machine tool 100 is not limited to this.
  • machine tool 100 may be a vertical machining center.
  • machine tool 100 may be a lathe, an additional processing machine, or other cutting or grinding machine.
  • the machine tool 100 may be a compound machine combining these.
  • machine tool 100 includes cover body 130 and operation panel 140 .
  • the cover body 130 is also called a splash guard, forms an appearance of the machine tool 100, and defines a machining area for the workpiece W. As shown in FIG. 1,
  • the operation panel 140 is a general-purpose computer and has a display 142 for displaying various information regarding machining.
  • the display 142 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or other display device. Further, the display 142 has a touch panel, and receives various operations for the machine tool 100 by touch operations.
  • FIG. 2 is a diagram showing a configuration example of a drive mechanism in the machine tool 100. As shown in FIG.
  • the machine tool 100 includes a control unit 50, a discharge pump 109, motor drivers 111A, 111R, 111X to 111Z, motors 112R, 112X to 112Z, a moving body 113, and a discharge unit. 125 , spindle head 131 , table 136 and chip conveyor 150 .
  • Chip conveyor 150 includes motor 112A and collection pump 152 .
  • the discharge unit 125 is provided in the machine tool 100 and discharges coolant to discharge chips generated by machining the workpiece W onto the chip conveyor 150 .
  • the spindle head 131 includes a spindle 132 and a housing 133 .
  • the main shaft 132 is provided inside the housing 133 .
  • a tool for machining a workpiece W which is a workpiece, is attached to the spindle 132 .
  • a tool 134 used for milling the workpiece W is attached to the spindle 132 .
  • the axial direction of the main shaft 132 is also referred to as the "Z direction”.
  • the gravitational direction is also called “Y direction”.
  • a direction orthogonal to both the Y-axis direction and the Z-axis direction is called an "X direction”.
  • the chip conveyor 150 is a mechanism for discharging chips generated by machining the workpiece W outside the machining area. Details of the chip conveyor 150 will be described later.
  • control unit 50 means a device that controls the machine tool 100.
  • the device configuration of the control unit 50 is arbitrary.
  • the control section 50 may be composed of a single control unit, or may be composed of a plurality of control units.
  • the control unit 50 is configured with a CPU unit 20 as a PLC (Programmable Logic Controller) and a CNC (Computer Numerical Control) unit 30 .
  • CPU unit 20 and CNC unit 30 communicate with each other via communication path B (for example, fieldbus or LAN cable).
  • the CPU unit 20 controls various units within the machine tool 100 according to a predesigned PLC program.
  • the PLC program is written in, for example, a ladder program.
  • the CPU unit 20 controls the discharge pump 109 according to the PLC program, and controls the discharge of coolant by the discharge part 125 . Thereby, ON/OFF of coolant discharge, coolant discharge amount, and the like are controlled.
  • the CPU unit 20 controls the motor driver 111A according to the PLC program.
  • the motor driver 111A receives an input of the target rotation speed of the motor 112A from the CPU unit 20 and controls the motor 112A. Thereby, the ON/OFF of driving of the chip conveyor 150, the transport speed of chips by the chip conveyor 150, and the like are controlled.
  • the motor 112A may be an AC motor, a stepping motor, a servomotor, or any other type of motor.
  • the CPU unit 20 controls the recovery pump 152 and adjusts the amount of coolant in the chip conveyor 150 according to the PLC program.
  • the details of the control method of the recovery pump 152 will be described later.
  • the CNC unit 30 Upon receiving a machining start command from the CPU unit 20, the CNC unit 30 starts executing a pre-designed machining program.
  • the machining program is written in, for example, an NC (Numerical Control) program.
  • the CNC unit 30 controls the motor drivers 111R, 111X to 111Z according to the machining program to machine the workpiece W fixed to the table 136.
  • FIG. 1 A machining start command
  • FIG. 1 machining start command from the CPU unit 20
  • the CNC unit 30 controls the motor drivers 111R, 111X to 111Z according to the machining program to machine the workpiece W fixed to the table 136.
  • the motor driver 111R sequentially receives input of the target rotation speed from the CNC unit 30 and controls the motor 112R.
  • the motor 112R rotates the main shaft 132 about the Z-axis direction.
  • the motor 112R may be an AC motor, a stepping motor, a servo motor, or any other type of motor.
  • the motor driver 111R calculates the actual rotational speed of the motor 112R from a feedback signal from an encoder (not shown) for detecting the rotational angle of the motor 112R. Then, the motor driver 111R increases the rotation speed of the motor 112R when the calculated actual rotation speed is lower than the target rotation speed, and increases the rotation speed of the motor 112R when the calculated actual rotation speed is higher than the target rotation speed. lower the In this way, the motor driver 111R brings the rotation speed of the motor 112R closer to the target rotation speed while sequentially receiving the feedback of the rotation speed of the motor 112R.
  • the motor driver 111X sequentially receives input of target positions from the CNC unit 30 and controls the motor 112X.
  • the motor 112X feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the X direction. Since the method of controlling motor 112X by motor driver 111X is the same as that of motor driver 111R, description thereof will not be repeated.
  • the motor 112X may be an AC motor, a stepping motor, a servo motor, or any other type of motor.
  • the motor driver 111Y sequentially receives input of target positions from the CNC unit 30 and controls the motor 112Y.
  • the motor 112Y feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Y direction. Since the method of controlling motor 112Y by motor driver 111Y is the same as that of motor driver 111R, description thereof will not be repeated.
  • the motor 112Y may be an AC motor, a stepping motor, a servo motor, or any other type of motor.
  • the motor driver 111Z sequentially receives input of target positions from the CNC unit 30 and controls the motor 112Z.
  • the motor 112Z feeds and drives the moving body 113 to which the spindle head 131 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Z direction. Since the method of controlling motor 112Z by motor driver 111Z is the same as that of motor driver 111R, description thereof will not be repeated.
  • the motor 112Z may be an AC motor, a stepping motor, a servo motor, or any other type of motor.
  • FIG. 3 is a diagram showing the appearance of the chip conveyor 150.
  • FIG. 4 is a diagram showing a cross section of the chip conveyor 150. As shown in FIG.
  • the chip conveyor 150 is attached to a cover body 130 that partitions and forms a processing area.
  • a chip conveyor 150 receives workpiece chips and coolant discharged from the machining area.
  • the chip conveyor 150 has a recovery tank 11.
  • the recovery tank 11 is configured to be able to store coolant.
  • the chip conveyor 150 conveys the chips to a chip bucket (not shown) and filters the coolant to discharge the clean coolant to the recovery tank 11 .
  • the chip conveyor 150 further has a cover body 21.
  • the cover body 21 forms the appearance of the chip conveyor 150 .
  • the cover body 21 has a housing shape that forms a space inside.
  • the cover body 21 has a horizontal portion 22, a chip receiving portion 23, a rising portion 26, and a chip discharging portion 27 as its constituent parts.
  • the cover body 21 as a whole has a bent shape between the horizontal portion 22 and the rising portion 26 .
  • the horizontal portion 22 is placed inside the recovery tank 11 .
  • the horizontal portion 22 has a plate-like appearance extending in the horizontal direction.
  • the horizontal portion 22 has a rectangular shape in plan view.
  • the rising portion 26 rises from one longitudinal end of the horizontal portion 22 and extends obliquely upward.
  • the chip receiving portion 23 is provided on the horizontal portion 22 .
  • the chip receiving portion 23 is composed of a housing provided on the top surface of the horizontal portion 22 .
  • a connection port 24 is provided in the chip receiving portion 23 .
  • the connection port 24 consists of a through-hole penetrating through the chip receiving portion 23 .
  • the chip receiving unit 23 is connected through a connection port 24 to a chip conveying device 13 that is equipment in the processing area.
  • the chip conveying device 13 includes, for example, a gutter extending in one direction and a spiral conveyor installed on the gutter.
  • the chip discharging portion 27 is provided at the end of the rising portion 26 extending obliquely upward from the horizontal portion 22 .
  • the chip discharging portion 27 is formed by an opening of the cover body 21 that opens vertically downward.
  • a chip bucket (not shown) for collecting chips is installed below the chip discharging section 27 . Chips of the work discharged from the machining area are received in the cover body 21 through the chip receiving portion 23 . Chips are conveyed inside the cover body 21 by a chip conveying mechanism, which will be described subsequently, discharged from the chip discharging section 27, and collected in a chip bucket.
  • the chip conveyor 150 further has a chip conveying section 35 .
  • the chip conveyer 35 is accommodated in the cover body 21 .
  • the chip conveying unit 35 is a device for conveying chips within the cover body 21 .
  • the chip conveying section 35 has a pair of endless chains 34, a driving sprocket 37, and a driven sprocket 38.
  • the drive sprocket 37 is provided at the end of the rising portion 26 extending obliquely upward from the horizontal portion 22 .
  • the drive sprocket 37 is arranged above the chip discharger 27 .
  • the drive sprocket 37 is rotatably supported about an axis extending in a direction perpendicular to the paper surface of FIG.
  • the drive sprocket 37 is connected to the output shaft of the motor 112A (see FIG. 4).
  • the drive sprocket 37 rotates when power is transmitted from the motor 112A.
  • the driven sprocket 38 is provided at a bent portion between the horizontal portion 22 and the rising portion 26.
  • the driven sprocket 38 is rotatably supported around an axis (axis AX1) extending in the width direction of the chip conveyor 150 .
  • a pair of endless chains 34 are arranged in parallel with a distance in the width direction of the chip conveyor 150 .
  • the endless chain 34 is looped around the horizontal portion 22 and the rising portion 26 inside the cover body 21 .
  • the endless chain 34 is arranged inside the cover body 21 so as to reciprocate between a position facing the chip receiving portion 23 and a position facing the chip discharging portion 27 .
  • the endless chain 34 is looped around the drive sprocket 37 and the driven sprocket 38 on the route routed inside the cover body 21, and is guided by a plurality of guide members.
  • the endless chain 34 rotates in the direction indicated by arrow A (hatched arrow) in FIG.
  • the chip conveyor 150 further has a filtering mechanism 39.
  • the filtering mechanism 39 is configured to filter the coolant received from the processing area to discharge clean coolant from the inside of the cover body 21 to the recovery tank 11 .
  • the filtering mechanism 39 has a drum-shaped filter 46 .
  • Filter 46 is accommodated in cover body 21 .
  • a filter 46 is provided at the bend between the horizontal portion 22 and the rising portion 26 .
  • the filter 46 is configured to capture foreign matter such as chips contained in the coolant.
  • the filter 46 has, for example, a cylindrical shape and forms an internal space 47 inside thereof.
  • the drum-shaped filter 46 is arranged so that its central axis extends in the width direction of the chip conveyor 150 .
  • Filter 46 is arranged such that its central axis coincides with axis AX1, which is the center of rotation of driven sprocket 38 .
  • the filter 46 is connected to the driven sprocket 38 at both ends in the axial direction of the axis AX1.
  • the shape of the filter 46 is not limited to the drum shape.
  • the shape of the filter 46 may be rectangular or circular.
  • a coolant discharge portion 28 is formed in the cover body 21 .
  • the coolant discharge part 28 consists of a through-hole penetrating through the cover body 21 .
  • the coolant discharge part 28 is provided so as to allow the internal space 47 of the filter 46 and the external space outside the cover body 21 to communicate with each other.
  • the coolant received in the cover body 21 through the chip receiving portion 23 is filtered by entering the internal space 47 of the filter 46 .
  • the filtered coolant is discharged to the recovery tank 11 through the coolant discharge portion 28 .
  • FIG. 5 is a diagram showing an example of a coolant circulation mechanism.
  • the coolant discharged from the discharge part 125 circulates inside the machine tool 100 .
  • the machine tool 100 includes a coolant circulation mechanism comprising a recovery tank 11, a storage tank 12, a discharge pump 109, a valve 110, a discharge section 125, a chip conveyor 150, and a liquid level sensor 151. , a recovery pump 152, a liquid level sensor 155, and flow paths R1, R2A to R2C, R3.
  • the ejection part 125 is composed of one or more ejection mechanisms.
  • the discharge section 125 is composed of discharge mechanisms 125A to 125C.
  • the coolant is stored in the storage tank 12.
  • the storage tank 12 is connected to one end of the flow path R1.
  • the other end of flow path R1 is connected to valve 110 .
  • Flow path R1 is branched by valve 110 into flow paths R2A to R2C.
  • the flow path R2A is connected to the ejection mechanism 125A.
  • the discharge mechanism 125A has, for example, a coolant nozzle (not shown) connected to the flow path R2A, and discharges the coolant pressure-fed through the flow path R2A toward the spindle head 131 from the coolant nozzle. As a result, chips of the workpiece adhering to the spindle head 131 are discharged to the chip conveyor 150 .
  • the flow path R2B is connected to the ejection mechanism 125B.
  • the discharge mechanism 125B discharges the coolant pressure-fed through the flow path R2B toward the entire processing area AR. As a result, chips of the work within the processing area are discharged to the chip conveyor 150 .
  • the flow path R2C is connected to the ejection mechanism 125C.
  • the discharge mechanism 125A discharges the coolant pressure-fed through the flow path R2A toward the wall surface of the bed BD. As a result, chips accumulated on the bed BD are discharged to the chip conveyor 150 .
  • the coolant stored in the storage tank 12 is pressure-fed from the flow path R1 to the flow paths R2A to R2C via the valves 110, respectively. Thereby, the discharge pump 109 sends coolant from the storage tank 12 to the coolant nozzle of the discharge portion 125 .
  • the valve 110 is a control valve that controls the flow rate of coolant pressure-fed from the storage tank 12 toward the discharge mechanisms 125A-125C.
  • the valve 110 is controlled by the controller 50 described above.
  • the valve 110 may be configured integrally with the discharge pump 109, or may be configured separately.
  • the chip conveyor 150 has a recovery tank 11 and a filtering mechanism 39.
  • the filtering mechanism 39 is configured to be able to capture foreign matter such as chips contained in the coolant.
  • the coolant that has passed through the filtering mechanism 39 is discharged from inside the cover body 21 of the chip conveyor 150 to the recovery tank 11 . Thereby, the recovery tank 11 receives the coolant discharged to the processing area AR.
  • the liquid level sensor 151 (first detection section) is a sensor for detecting the amount of coolant in the recovery tank 11 .
  • the liquid level sensor 151 is arranged downstream of the filtering mechanism 39 in the direction of coolant flow passing through the filtering mechanism 39 .
  • the liquid volume sensor 151 can be any type of sensor as the liquid volume sensor 151 as long as it can detect a physical quantity that correlates with the volume of the coolant in the recovery tank 11 .
  • the liquid level sensor 151 may be a float switch, a distance sensor, a weight sensor, or any other sensor.
  • the liquid level sensor 151 detects the distance between the liquid level of the coolant in the recovery tank 11 and a predetermined reference level.
  • the reference plane may be the bottom surface of the recovery tank 11 or a horizontal plane at the installation position of the liquid level sensor 151 .
  • liquid level sensor 151 detects the weight of coolant in recovery tank 11 .
  • the recovery pump 152 pumps up the coolant accumulated in the recovery tank 11 through the filtering mechanism 39 and sends the coolant to the storage tank 12 through the flow path R3.
  • a filter (not shown) for removing foreign matter is provided in the storage tank 12 . After passing through the filter, the coolant in the storage tank 12 is pressure-fed again through the flow path R1 by the discharge pump 109 .
  • the liquid level sensor 155 (second detection section) is a sensor for detecting the amount of coolant in the storage tank 12 . Any type of sensor can be used as the liquid level sensor 155 as long as it can detect a physical quantity correlated with the volume of coolant in the storage tank 12 .
  • the liquid level sensor 155 may be a float switch, a distance sensor, a weight sensor, or any other sensor.
  • the liquid level sensor 155 detects the distance between the coolant level in the storage tank 12 and a predetermined reference level.
  • the reference plane may be the bottom surface of the storage tank 12 or a horizontal plane at the installation position of the liquid level sensor 155 .
  • fluid level sensor 155 detects the weight of coolant in storage tank 12 .
  • the control unit 50 of the machine tool 100 controls the recovery pump 152 in at least two control modes.
  • the first control mode of the recovery pump 152 will be referred to as the "ON/OFF control mode”
  • the second control mode of the recovery pump 152 will be referred to as the “analog control mode”.
  • FIG. 6 is a diagram for explaining the ON/OFF control mode.
  • the controller 50 increases or decreases the amount of coolant in the recovery tank 11 .
  • the control unit 50 turns off the recovery pump 152 . This stops the discharge of coolant from the recovery tank 11 to the storage tank 12 .
  • the coolant in the storage tank 12 is discharged to the machining area AR inside the machine tool 100 .
  • the discharged coolant flows into the recovery tank 11 .
  • the control unit 50 periodically acquires the amount of coolant in the recovery tank 11 from the liquid amount sensor 151 and determines whether or not the amount of coolant exceeds the predetermined amount th1.
  • the value of the predetermined amount th1 may be preset or arbitrarily set by the user.
  • the controller 50 determines that the amount of coolant in the recovery tank 11 has exceeded the predetermined amount th1, it drives the recovery pump 152 .
  • the control unit 50 controls the recovery pump 152 so that the amount of coolant discharged from the recovery tank 11 to the storage tank 12 is greater than the amount of coolant discharged from the storage tank 12 to the machining area AR. do.
  • the control unit 50 drives the recovery pump 152 at a settable maximum rotation speed (eg, 50 Hz to 60 Hz). As a result, the amount of coolant in the recovery tank 11 decreases, and the amount of coolant in the storage tank 12 increases.
  • the control unit 50 determines whether or not the amount of coolant in the recovery tank 11 has fallen below the predetermined amount th2 based on the output value of the liquid amount sensor 151 described above.
  • the predetermined amount th2 is less than the predetermined amount th1.
  • the value of the predetermined amount th2 may be preset or arbitrarily set by the user.
  • the controller 50 repeatedly increases or decreases the amount of coolant in the recovery tank 11 between the predetermined amounts th1 and th2.
  • the height of the liquid level in the recovery tank 11 fluctuates, and foreign matter (for example, oil and floating chips) on the liquid level in the recovery tank 11 is removed from the suction port of the recovery pump 152 . is discharged into the recovery tank 11.
  • the coolant in the recovery tank 11 is diffused by increasing or decreasing the amount of coolant in the recovery tank 11 . Therefore, the foreign matters on the liquid surface in the recovery tank 11 are more easily discharged to the recovery tank 11 .
  • the coolant evaporates due to the heat generated during machining of the workpiece.
  • coolant evaporates approximately 200 L per day.
  • the control unit 50 recognizes that the coolant in the storage tank 12 has run out even though the coolant remains in the recovery tank 11. There is a possibility of doing so. In this case, the coolant remaining in the recovery tank 11 is not sufficiently used in the machine.
  • FIG. 7 is a diagram for explaining the analog control mode.
  • the control unit 50 controls the recovery pump 152 so that the amount of coolant in the recovery tank 11 becomes a constant amount TH.
  • the constant amount TH is less than the predetermined amount th1 described above and greater than the predetermined amount th2 described above.
  • the value of the fixed amount TH may be preset or arbitrarily set by the user.
  • the control unit 50 periodically acquires the amount of coolant in the recovery tank 11 from the liquid amount sensor 151 described above.
  • the control unit 50 increases the rotation speed of the recovery pump 152 above the current rotation speed. As a result, the amount of coolant in the recovery tank 11 is reduced.
  • the controller 50 reduces the rotation speed of the recovery pump 152 below the current rotation speed. As a result, the amount of coolant in the recovery tank 11 increases. As a result, the amount of coolant in the recovery pump 152 is kept constant TH.
  • the machine tool 100 does not recognize that no coolant remains in the storage tank 12 even though the coolant remains in the recovery tank 11, and the coolant in the recovery tank 11 is discharged into the machine. can be fully utilized.
  • the liquid level in the recovery tank 11 is always constant. Therefore, foreign matters on the liquid surface such as oil and chips are not discharged from the suction port of the recovery pump 152 to the recovery tank 11 .
  • FIG. 8 is a diagram for explaining the timing of switching the control mode of the recovery pump 152. As shown in FIG.
  • the control unit 50 of the machine tool 100 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode based on the amount of coolant in the storage tank 12 .
  • control unit 50 periodically acquires the amount of coolant in the storage tank 12 from the liquid amount sensor 155 described above, and determines whether or not the amount of coolant has fallen below the predetermined amount th3.
  • the value of the predetermined amount th3 may be set in advance or may be arbitrarily set by the user.
  • the control unit 50 controls the recovery pump 152 in ON/OFF control mode. After that, the control unit 50 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode based on the fact that the amount of coolant in the storage tank 12 has fallen below the predetermined amount th3. This makes it possible to enjoy both the advantages of the ON/OFF control mode and the advantages of the analog control mode.
  • control unit 50 controls the recovery pump 152 in the ON/OFF control mode when the amount of coolant in the storage tank 12 is large.
  • the height of the liquid level in the recovery tank 11 fluctuates between the predetermined amounts th1 and th2, and foreign matter (for example, oil and floating chips) on the liquid level in the recovery tank 11 , is discharged from the suction port of the recovery pump 152 into the recovery tank 11 .
  • the coolant in the recovery tank 11 is diffused by increasing or decreasing the amount of coolant in the recovery tank 11 . Therefore, the foreign matters on the liquid surface in the recovery tank 11 are easily discharged to the recovery tank 11 .
  • control unit 50 controls the recovery pump 152 in analog control mode when the amount of coolant in the storage tank 12 is small. Since the amount of coolant in the recovery tank 11 does not increase or decrease in the analog control mode, the decrease in the amount of coolant in the storage tank 12 is caused only by evaporation of the coolant. Therefore, the machine tool 100 does not recognize that no coolant remains in the storage tank 12 even though the coolant remains in the recovery tank 11, and the coolant in the recovery tank 11 is discharged into the machine. can be fully utilized.
  • the timing for determining whether or not to switch the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode is arbitrary. As an example, whether or not to switch the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode depends on the amount of coolant in the storage tank 12 when the coolant amount in the recovery tank 11 reaches a predetermined amount th2. It is judged based on the amount of coolant.
  • the control unit 50 While the recovery pump 152 is ON in the ON/OFF control mode, the control unit 50 periodically acquires the amount of coolant in the recovery tank 11 from the liquid level sensor 151 described above. After that, the controller 50 acquires the amount of coolant in the storage tank 12 from the liquid amount sensor 155 at the timing when the acquired amount of coolant reaches the predetermined amount th2. When the acquired coolant amount is less than the predetermined amount th3, the control unit 50 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode.
  • control unit 50 can determine whether or not to switch the control mode of the recovery pump 152 at the timing when the amount of coolant in the recovery tank 11 becomes the smallest. That is, the control unit 50 can use a numerical value closer to the total amount of coolant in the machine tool 100 to determine whether to switch the control mode of the recovery pump 152 .
  • FIG. 9 is a diagram for explaining an example of an abnormality coping process in machine tool 100. As shown in FIG. 9
  • control unit 50 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode at the timing when the amount of coolant in the recovery tank 11 falls below the predetermined amount th3. After that, the control unit 50 periodically acquires the amount of coolant in the storage tank 12 from the liquid amount sensor 155 described above. Then, the controller 50 determines whether or not the amount of coolant in the storage tank 12 has reached a predetermined amount th4.
  • the controller 50 determines that the amount of coolant in the storage tank 12 is equal to or greater than the predetermined amount th4, it determines that sufficient coolant remains in the machine tool 100 .
  • the control unit 50 determines that there is not enough coolant left in the machine tool 100 . In this case, the control unit 50 executes a predetermined abnormality handling process.
  • the abnormality handling process includes a process of stopping the machine tool 100.
  • the machine tool 100 can reliably prevent the coolant from not being supplied during machining.
  • the abnormality handling process includes a process of notifying that there is not enough coolant left in the machine tool 100.
  • the notification process may be realized by displaying a message on the display 142 described above, or may be realized by causing a light source 158 provided in the storage tank 12, which will be described later, to emit light. This allows the user to recognize that there is not enough coolant left in machine tool 100 .
  • the predetermined amount th4 serves as a reference value for determining whether to execute the abnormality handling process.
  • the predetermined amount th4 is less than the predetermined amount th3.
  • the value of the predetermined amount th4 may be preset or arbitrarily set by the user.
  • the amount obtained by subtracting the predetermined amount th4 from the predetermined amount th3 is larger than the amount obtained by subtracting the predetermined amount th2 from the predetermined amount th1.
  • FIG. 10 is a diagram showing an example of the light emission pattern of the light source 158. As shown in FIG.
  • the light source 158 is provided on the machine tool 100 so as to be visible to the user.
  • the light source 158 is provided on an external cover of the storage tank 12 .
  • the light source 158 is composed of, for example, a plurality of light emitting elements. In the example of FIG. 10, the light source 158 is composed of four light emitting elements. Light emission of each light emitting element is controlled by the control unit 50 described above. Typically, light emission of each light emitting element is controlled by the CPU unit 20 described above.
  • the control unit 50 changes the light emission pattern of the light source 158 according to the control mode of the recovery pump 152 . More specifically, when the control mode of the recovery pump 152 is the ON/OFF control mode described above, the controller 50 causes the light source 158 to emit light in the first light emission pattern. On the other hand, when the control mode of the recovery pump 152 is the analog control mode described above, the controller 50 causes the light source 158 to emit light in a second light emission pattern different from the first light emission pattern. This allows the user to easily recognize the current control mode.
  • first and second light emission patterns may be distinguished by a combination of light emission and non-light emission of each light emitting element, or may be distinguished by a difference in emission color.
  • the light emission pattern of the light source 158 is not limited to the example in FIG.
  • FIG. 11 is a diagram showing another example of the light emission pattern of the light source 158. As shown in FIG.
  • control unit 50 changes the light emission pattern of the light source 158 not only according to the control mode of the recovery pump 152 but also according to the amount of coolant in the storage tank 12.
  • control unit 50 controls the light source 158
  • the light emitting element is caused to emit white light.
  • control unit 50 One light emitting element is extinguished, and the lower three light emitting elements of the light source 158 are caused to emit white light.
  • control unit 50 causes the upper two light sources 158 to emit light.
  • the elements are turned off, and the lower two light emitting elements of the light source 158 are caused to emit white light.
  • control unit 50 controls the upper three light sources 158 to emit light. The elements are extinguished, and the one lower light emitting element of the light source 158 is caused to emit red light.
  • control unit 50 turns off all the light emitting elements of the light source 158. Make it glow red. At this time, the controller 50 may blink the light source 158 .
  • FIG. 12 is a diagram showing the recovery tank 11 and the recovery pump 152. As shown in FIG.
  • the recovery pump 152 has a coolant suction port 153 .
  • the coolant in the recovery tank 11 is sucked through the suction port 153 and discharged to the storage tank 12 described above.
  • the controller 50 controls the recovery pump 152 to repeatedly increase and decrease the amount of coolant in the recovery tank 11 between the predetermined amounts th1 and th2.
  • the values of the predetermined amounts th1 and th2 are determined according to the position of the recovery pump 152 .
  • the suction port 153 is soaked in coolant when the amount of coolant in the recovery tank 11 is the predetermined amount th1.
  • the suction port 153 does not soak in the coolant when the amount of coolant in the recovery tank 11 is the predetermined amount th2.
  • the position of the suction port 153 is lower than the liquid level at the predetermined amount th1 and higher than the liquid level at the predetermined amount th2.
  • the liquid surface in the recovery tank 11 passes through the suction port 153 while the coolant is increasing or decreasing. At this time, foreign substances on the liquid surface in the recovery tank 11 are discharged from the suction port 153 to the storage tank 12 .
  • the position of the suction port 153 of the recovery pump 152 may be matched with the predetermined amounts th1 and th2, or the values of the predetermined amounts th1 and th2 may be set based on the position of the suction port 153 of the recovery pump 152. good.
  • the position of the suction port 153 is determined based on the predetermined amounts th1 and th2.
  • the position of the suction port 153 does not necessarily have to be determined based on the predetermined amounts th1 and th2.
  • the position of the suction port 153 may be higher than the liquid level at the predetermined amount th1.
  • the position of the suction port 153 may be lower than the liquid level at the predetermined amount th2. Even in these cases, the coolant in the recovery tank 11 is diffused during the ON/OFF control mode. As a result, foreign matter in the recovery tank 11 is sucked through the suction port 153 and discharged into the storage tank 12 described above.
  • the position of the suction port 153 of the recovery pump 152 is adjusted not only to the predetermined amounts th1 and th2, but also to the above constant amount TH. More specifically, the suction port 153 is soaked in coolant when the amount of coolant in the recovery tank 11 is a constant amount TH. In other words, the position of the suction port 153 is lower than the liquid level at a constant amount TH. As a result, the control unit 50 can suck coolant from the suction port 153 in the analog control mode, and can keep the amount of coolant in the recovery tank 11 at a constant amount TH.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the CPU unit 20. As shown in FIG. 13 .
  • the CPU unit 20 includes a control circuit 201 , a ROM (Read Only Memory) 202 , a RAM (Random Access Memory) 203 , communication interfaces 204 and 205 , and an auxiliary storage device 220 . These components are connected to internal bus 209 .
  • the control circuit 201 is composed of, for example, at least one integrated circuit.
  • An integrated circuit is composed of, for example, at least one CPU, at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or a combination thereof can be
  • the control circuit 201 controls the operation of the CPU unit 20 by executing various programs such as the control program 222 .
  • Control program 222 defines instructions for controlling various devices within machine tool 100 .
  • the control circuit 201 reads the control program 222 from the auxiliary storage device 220 or the ROM 202 to the RAM 203 based on the reception of the instruction to execute the control program 222 .
  • the RAM 203 functions as a working memory and temporarily stores various data necessary for executing the control program 222 .
  • the communication interface 204 is an interface for realizing communication using a LAN (Local Area Network) cable, WLAN (Wireless LAN), Bluetooth (registered trademark), or the like.
  • the CPU unit 20 realizes communication with external devices such as the discharge pump 109 described above, the motor driver 111A described above, and the recovery pump 152 described above via the communication interface 305 .
  • the communication interface 205 is an interface for realizing communication with various units connected to the fieldbus. Examples of units connected to the fieldbus include the CNC unit 30 and an I/O unit (not shown).
  • the auxiliary storage device 220 is, for example, a storage medium such as a hard disk or flash memory.
  • Auxiliary storage device 220 stores various information such as control program 222 and setting file 224 .
  • Various parameters referred to when the control program 222 is executed are defined in the setting file 224 .
  • the setting file 224 includes the values of the predetermined amounts th1 to th4, the value of the constant amount TH, and other setting values.
  • the storage location of the control program 222 and the setting file 224 is not limited to the auxiliary storage device 220, but is stored in the storage area of the control circuit 201 (for example, cache memory), ROM 202, RAM 203, external equipment (for example, server), and the like. may
  • control program 222 may be provided not as a standalone program but as part of an arbitrary program. In this case, various processes according to the present embodiment are implemented in cooperation with arbitrary programs. Even a program that does not include such a part of modules does not deviate from the gist of control program 222 according to the present embodiment. Furthermore, some or all of the functions provided by control program 222 may be implemented by dedicated hardware. Furthermore, the CPU unit 20 may be configured in a form such as a so-called cloud service in which at least one server executes part of the processing of the control program 222 .
  • FIG. 14 is a diagram showing an example of the hardware configuration of the CNC unit 30. As shown in FIG. 14,
  • the CNC unit 30 includes a control circuit 301, a ROM 302, a RAM 303, a communication interface 305, a communication interface 305, and an auxiliary storage device 320. These components are connected to internal bus 309 .
  • the control circuit 301 is composed of, for example, at least one integrated circuit.
  • An integrated circuit may comprise, for example, at least one CPU, at least one ASIC, at least one FPGA, or a combination thereof.
  • the control circuit 301 controls the operation of the CNC unit 30 by executing various programs such as the machining program 322 .
  • the machining program 322 is a program for realizing workpiece machining.
  • the control circuit 301 reads the machining program 322 from the ROM 302 to the RAM 303 based on the acceptance of the instruction to execute the machining program 322 .
  • the RAM 303 functions as a working memory and temporarily stores various data necessary for executing the machining program 322 .
  • a communication interface 305 is an interface for realizing communication using LAN, WLAN, Bluetooth (registered trademark), or the like.
  • the CNC unit 30 implements communication with the CPU unit 20 via the communication interface 305.
  • FIG. Also, CNC unit 30 realizes communication with various drive units (for example, motor drivers 111R, 111X to 111Z, etc.) for work machining via communication interface 305 or other communication interfaces.
  • the auxiliary storage device 320 is, for example, a storage medium such as a hard disk or flash memory.
  • the auxiliary storage device 320 stores a machining program 322 and the like.
  • the storage location of the machining program 322 is not limited to the auxiliary storage device 320, and may be stored in the storage area of the control circuit 301 (for example, cache memory), ROM 302, RAM 303, external equipment (for example, server), and the like.
  • FIG. 15 is a flowchart showing the flow of tool information search processing.
  • the processing shown in FIG. 15 is performed by the control unit 50 executing the control program 222 described above. Note that part or all of the processing shown in FIG. 15 may be performed by circuit elements or other hardware.
  • the control unit 50 turns off the recovery pump 152 described above. That is, the controller 50 sets the rotation speed of the recovery pump 152 to zero. This stops the discharge of coolant from the recovery tank 11 to the storage tank 12 . As a result, the amount of coolant in the recovery tank 11 increases, and the amount of coolant in the storage tank 12 decreases.
  • step S120 the control unit 50 determines whether or not the amount of coolant in the recovery tank 11 has exceeded the above-described predetermined amount th1 based on the output value of the liquid amount sensor 151 described above.
  • the control is switched to step S122. Otherwise (NO in step S120), control unit 50 executes the process of step S120 again.
  • the control unit 50 turns on the recovery pump 152 described above.
  • the control unit 50 drives the recovery pump 152 at a settable maximum rotation speed (eg, 50 Hz to 60 Hz).
  • a settable maximum rotation speed eg, 50 Hz to 60 Hz.
  • step S130 the control unit 50 determines whether or not the amount of coolant in the recovery tank 11 has fallen below the above-described predetermined amount th2 based on the output value of the liquid amount sensor 151 described above.
  • control unit 50 determines that the amount of coolant in recovery tank 11 has fallen below predetermined amount th2 (YES in step S130)
  • control is switched to step S140. Otherwise (NO in step S130), control unit 50 executes the process of step S130 again.
  • step S140 the control unit 50 determines whether or not the amount of coolant in the storage tank 12 has fallen below the above-described predetermined amount th3 based on the output value of the liquid amount sensor 155 described above.
  • control unit 50 determines that the amount of coolant in storage tank 12 has fallen below predetermined amount th3 (YES in step S140)
  • control is switched to step S142. Otherwise (NO in step S140), control unit 50 returns the control to step S110.
  • step S142 the control unit 50 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode.
  • the controller 50 appropriately adjusts the rotation speed of the recovery pump 152 between 20 Hz and 40 Hz. As a result, the coolant in the recovery tank 11 is maintained at the above constant amount TH.
  • control unit 50 may switch the control mode at the timing when the amount of coolant in the storage tank 12 falls below the above-described predetermined amount th3, or switch the control mode after a predetermined time (for example, 360 seconds) from the timing. You can switch.
  • step S150 the control unit 50 determines whether or not the amount of coolant in the storage tank 12 has fallen below the above-described predetermined amount th4 based on the output value of the liquid amount sensor 155 described above.
  • control unit 50 determines that the amount of coolant in storage tank 12 has fallen below predetermined amount th4 (YES in step S150)
  • control is switched to step S152. Otherwise (NO in step S150), control unit 50 executes the process of step S150 again.
  • step S152 the control unit 50 executes a predetermined abnormality handling process. Since the abnormality handling process is as described above, the description thereof will not be repeated.
  • the controller 50 of the machine tool 100 controls the recovery pump 152 in the ON/OFF control mode when the amount of coolant in the storage tank 12 is equal to or greater than the predetermined amount th3. After that, the control unit 50 switches the control mode of the recovery pump 152 from the ON/OFF control mode to the analog control mode based on the fact that the amount of coolant in the storage tank 12 has fallen below the predetermined amount th3. This makes it possible to enjoy both the advantages of the ON/OFF control mode and the advantages of the analog control mode.
  • the height of the liquid level in the recovery tank 11 fluctuates between predetermined amounts th1 and th2, and foreign matter (for example, Oil and floating shavings) are discharged from the suction port of the recovery pump 152 to the storage tank 12 .
  • the coolant in the recovery tank 11 is diffused by increasing or decreasing the amount of coolant in the recovery tank 11 . Therefore, the foreign substances on the liquid surface in the recovery tank 11 are easily discharged to the storage tank 12 .
  • the machine tool 100 does not recognize that no coolant remains in the storage tank 12 even though the coolant remains in the recovery tank 11, and the coolant in the recovery tank 11 is discharged into the machine. can be fully utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

工作機械(100)は、クーラントの吐出部(125)と、当該クーラントを受ける第1タンク(11)と、クーラントを貯蔵する第2タンク(12)と、第1タンク(11)から第2タンク(12)にクーラントを送るポンプ(152)と、制御部(50)とを備える。ポンプ(152)の制御モードは、第1タンク(11)内の第1クーラント量が第1所定量を上回った場合にポンプ(152)を駆動し、第1クーラント量が第2所定量を下回った場合にポンプ(152)の駆動を停止する第1制御モードと、第1クーラント量が一定量になるようにポンプ(152)を駆動する第2制御モードとを含む。制御部(50)は、第2タンク(12)内の第2クーラント量が第3所定量以上である場合に第1制御モードでポンプ(152)を制御し、第2クーラント量が第3所定量を下回った場合にポンプ(152)の制御モードを第1制御モードから第2制御モードに切り替える。

Description

工作機械、制御方法、および制御プログラム
 本開示は、工作機械、制御方法、および制御プログラムに関する。
 工作機械は、加工エリアにクーラントを吐出しながらワークを加工する。当該クーラントは、切り屑などの除去後、再利用される。これに関し、特許第6872087号公報(特許文献1)は、クーラントの循環機構を備えた工作機械を開示している。
 より具体的には、クーラントは貯蔵用タンクに貯蔵されており、工作機械は、貯蔵用タンクから加工エリアにクーラントを吐出する。これにより、加工時に発生したワークの切り屑が加工エリアから排出される。加工エリアに吐出されたクーラントは、工作機械内に設けられている回収用タンクに集められる。回収用タンクにはポンプが設けられており、回収用タンクに集められたクーラントは、当該ポンプの吸入口から貯蔵用タンクに戻される。
特許第6872087号公報
 特許文献1に開示されている工作機械は、回収用タンク内のクーラント量が一定になるようにクーラントの循環を制御している。この場合、油や切り屑などの異物が回収用タンク内で拡散されず、異物が回収用タンク内で蓄積する可能性がある。したがって、回収用タンク内の異物をより確実に排出するための技術が望まれている。
 本開示の一例では、工作機械は、加工エリアを区画形成するためのカバー体と、上記加工エリアにクーラントを吐出するための吐出部と、上記加工エリアに吐出されたクーラントを受けるための第1タンクと、上記第1タンク内の第1クーラント量を検出するための第1検出部と、上記吐出部に供給するためのクーラントを貯蔵する第2タンクと、上記第2タンク内の第2クーラント量を検出するための第2検出部と、上記第1タンクから上記第2タンクにクーラントを送るためのポンプと、上記工作機械を制御するための制御部とを備える。上記ポンプの制御モードは、上記第1クーラント量が第1所定量を上回った場合に上記ポンプを駆動し、上記第1クーラント量が上記第1所定量よりも少ない第2所定量を下回った場合に上記ポンプの駆動を停止する第1制御モードと、上記第1クーラント量が一定量になるように上記ポンプを駆動する第2制御モードとを含む。上記制御部は、上記第2クーラント量が第3所定量以上である場合に、上記第1制御モードで上記ポンプを制御し、上記第2クーラント量が上記第3所定量を下回ったことに基づいて、上記ポンプの制御モードを上記第1制御モードから上記第2制御モードに切り替える。
 本開示の一例では、上記制御部は、上記第2クーラント量が上記第3所定量より少ない第4所定量を下回った場合に、上記工作機械を停止する。
 本開示の一例では、上記第3所定量から上記第4所定量を差分した量は、上記第1所定量から上記第2所定量を差分した量よりも多い。
 本開示の一例では、上記工作機械は、さらに、光源を備える。上記制御部は、上記ポンプの制御モードが上記第1制御モードである場合には、第1発光パターンで上記光源を発光させ、上記ポンプの制御モードが上記第2制御モードである場合には、上記第1発光パターンとは異なる第2発光パターンで上記光源を発光させる。
 本開示の一例では、上記ポンプは、クーラントの吸入口を含む。上記吸入口は、上記第1タンクにおけるクーラント量が上記第1所定量である場合にはクーラントに浸かり、上記第1タンクにおけるクーラント量が上記第2所定量である場合にはクーラントに浸からない。
 本開示の一例では、上記一定量は、上記第1所定量よりも少なく、かつ上記第2所定量よりも多い。上記吸入口は、上記第1タンクにおけるクーラント量が上記一定量である場合にはクーラントに浸かる。
 本開示の一例では、上記ポンプの制御モードを上記第1制御モードから上記第2制御モードに切り替えるか否かは、上記第1クーラント量が上記第2所定量になったときに上記第2検出部によって検出された上記第2クーラント量に基づいて判断される。
 本開示の他の例では、工作機械の制御方法が提供される。上記工作機械は、加工エリアを区画形成するためのカバー体と、上記加工エリアにクーラントを吐出するための吐出部と、上記加工エリアに吐出されたクーラントを受けるための第1タンクと、上記第1タンク内の第1クーラント量を検出するための第1検出部と、上記吐出部に供給するためのクーラントを貯蔵する第2タンクと、上記第2タンク内の第2クーラント量を検出するための第2検出部と、上記第1タンクから上記第2タンクにクーラントを送るためのポンプとを備える。上記ポンプの制御モードは、上記第1クーラント量が第1所定量を上回った場合に上記ポンプを駆動し、上記第1クーラント量が上記第1所定量よりも少ない第2所定量を下回った場合に上記ポンプの駆動を停止する第1制御モードと、上記第1クーラント量が一定量になるように上記ポンプを駆動する第2制御モードとを含む。上記制御方法は、上記第2クーラント量が第3所定量以上である場合に、上記第1制御モードで上記ポンプを制御するステップと、上記第2クーラント量が上記第3所定量を下回ったことに基づいて、上記ポンプの制御モードを上記第1制御モードから上記第2制御モードに切り替えるステップとを備える。
 本開示の他の例では、工作機械の制御プログラムが提供される。上記工作機械は、加工エリアを区画形成するためのカバー体と、上記加工エリアにクーラントを吐出するための吐出部と、上記加工エリアに吐出されたクーラントを受けるための第1タンクと、上記第1タンク内の第1クーラント量を検出するための第1検出部と、上記吐出部に供給するためのクーラントを貯蔵する第2タンクと、上記第2タンク内の第2クーラント量を検出するための第2検出部と、上記第1タンクから上記第2タンクにクーラントを送るためのポンプとを備える。上記ポンプの制御モードは、上記第1クーラント量が第1所定量を上回った場合に上記ポンプを駆動し、上記第1クーラント量が上記第1所定量よりも少ない第2所定量を下回った場合に上記ポンプの駆動を停止する第1制御モードと、上記第1クーラント量が一定量になるように上記ポンプを駆動する第2制御モードとを含む。上記制御プログラムは、上記工作機械に、上記第2クーラント量が第3所定量以上である場合に、上記第1制御モードで上記ポンプを制御するステップと、上記第2クーラント量が上記第3所定量を下回ったことに基づいて、上記ポンプの制御モードを上記第1制御モードから上記第2制御モードに切り替えるステップと実行させる。
 本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
工作機械の外観を示す図である。 工作機械における駆動機構の構成例を示す図である。 チップコンベアの外観を示す図である。 チップコンベアの断面を示す図である。 クーラントの循環機構の一例を示す図である。 ON/OFF制御モードを説明するための図である。 アナログ制御モードを説明するための図である。 回収用ポンプの制御モードを切り換えるタイミングを説明するための図である。 工作機械における異常対処処理の一例を説明するための図である。 光源の発光パターンの一例を示す図である。 光源の発光パターンの他の例を示す図である。 回収用タンク11と回収用ポンプとを示す図である。 CPU(Central Processing Unit)ユニットのハードウェア構成の一例を示す図である。 CNC(Computer Numerical Control)ユニットのハードウェア構成の一例を示す図である。 工具情報の検索処理の流れを示すフローチャートである。
 以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
 <A.工作機械100の外観>
 図1を参照して、実施の形態に従う工作機械100について説明する。図1は、工作機械100の外観を示す図である。
 本明細書でいう「工作機械」とは、ワークを加工する機能を備えた種々の装置を包含する概念である。本明細書では、工作機械100の一例として、横形のマシニングセンタを例に挙げて説明を行うが、工作機械100は、これに限定されない。たとえば、工作機械100は、縦形のマシニングセンタであってもよい。あるいは、工作機械100は、旋盤であってもよいし、付加加工機であってもよいし、その他の切削機械や研削機械であってもよい。さらに、工作機械100は、これらを複合した複合機であってもよい。
 図1に示されるように、工作機械100は、カバー体130と、操作盤140とを含む。カバー体130は、スプラッシュガードとも呼ばれ、工作機械100の外観を成すとともに、ワークWの加工エリアを区画形成している。
 操作盤140は、汎用のコンピュータであり、加工に関する各種情報を表示するためのディスプレイ142を有する。ディスプレイ142は、たとえば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、またはその他の表示機器である。また、ディスプレイ142は、タッチパネルを備え、工作機械100に対する各種操作をタッチ操作で受け付ける。
 <B.工作機械100の駆動機構>
 次に、図2を参照して、工作機械100における各種の駆動機構について説明する。図2は、工作機械100における駆動機構の構成例を示す図である。
 図2に示されるように、工作機械100は、制御部50と、吐出用ポンプ109と、モータドライバ111A,111R,111X~111Zと、モータ112R,112X~112Zと、移動体113と、吐出部125と、主軸頭131と、テーブル136と、チップコンベア150とを含む。チップコンベア150は、モータ112Aと、回収用ポンプ152とを含む。
 吐出部125は、工作機械100内に設けられ、ワークWの加工により生じた切り屑をチップコンベア150に排出するためにクーラントを吐出する。
 主軸頭131は、主軸132と、ハウジング133とを含む。主軸132は、ハウジング133の内部に設けられる。主軸132には、被加工物であるワークWを加工するための工具が装着される。図2の例では、ワークWのミーリング加工に用いられる工具134が主軸132に装着されている。
 説明の便宜のために、以下では、主軸132の軸方向を「Z方向」とも称する。重力方向を「Y方向」とも称する。Y軸方向およびZ軸方向の両方に直交する方向を「X方向」と称する。
 チップコンベア150は、ワークWの加工によって生じた切り屑を加工エリア外へ排出するための機構である。チップコンベア150の詳細については後述する。
 本明細書でいう「制御部50」とは、工作機械100を制御する装置を意味する。制御部50の装置構成は、任意である。制御部50は、単体の制御ユニットで構成されてもよいし、複数の制御ユニットで構成されてもよい。図2の例では、制御部50は、PLC(Programmable Logic Controller)としてのCPUユニット20と、CNC(Computer Numerical Control)ユニット30とで構成されている。CPUユニット20およびCNCユニット30は、通信経路B(たとえば、フィールドバスまたはLANケーブルなど)を介して互いに通信を行う。
 CPUユニット20は、予め設計されているPLCプログラムに従って、工作機械100内の各種ユニットを制御する。当該PLCプログラムは、たとえば、ラダープログラムで記述されている。
 一例として、CPUユニット20は、PLCプログラムに従って、吐出用ポンプ109を制御し、吐出部125によるクーラントの吐出を制御する。これにより、クーラントの吐出のオン/オフ、およびクーラントの吐出量などが制御される。
 他の例として、CPUユニット20は、PLCプログラムに従って、モータドライバ111Aを制御する。モータドライバ111Aは、モータ112Aの目標回転速度の入力をCPUユニット20から受け、モータ112Aを制御する。これにより、チップコンベア150の駆動のオン/オフ、およびチップコンベア150による切り屑の搬送速度などが制御される。なお、モータ112Aは、交流モータであってもよいし、ステッピングモータであってもよいし、サーボモータであってもよいし、その他の種類のモータであってもよい。
 他の例として、CPUユニット20は、PLCプログラムに従って、回収用ポンプ152を制御し、チップコンベア150内のクーラント量を調整する。回収用ポンプ152の制御方法の詳細については後述する。
 CNCユニット30は、CPUユニット20からの加工開始指令を受けたことに基づいて、予め設計されている加工プログラムの実行を開始する。当該加工プログラムは、たとえば、NC(Numerical Control)プログラムで記述されている。CNCユニット30は、当該加工プログラムに従ってモータドライバ111R,111X~111Zを制御し、テーブル136に固定されているワークWを加工する。
 モータドライバ111Rは、CNCユニット30から目標回転速度の入力を逐次的に受け、モータ112Rを制御する。モータ112Rは、Z軸方向を中心として主軸132を回転駆動する。モータ112Rは、交流モータであってもよいし、ステッピングモータであってもよいし、サーボモータであってもよいし、その他の種類のモータであってもよい。
 モータ112Rがサーボモータである場合、モータドライバ111Rは、モータ112Rの回転角度を検知するためのエンコーダ(図示しない)のフィードバック信号からモータ112Rの実回転速度を算出する。そして、モータドライバ111Rは、算出した実回転速度が目標回転速度よりも小さい場合にはモータ112Rの回転速度を上げ、算出した実回転速度が目標回転速度よりも大きい場合にはモータ112Rの回転速度を下げる。このように、モータドライバ111Rは、モータ112Rの回転速度のフィードバックを逐次的に受けながらモータ112Rの回転速度を目標回転速度に近付ける。
 モータドライバ111Xは、CNCユニット30から目標位置の入力を逐次的に受け、モータ112Xを制御する。モータ112Xは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、X方向の任意の位置に主軸132を移動する。モータドライバ111Xによるモータ112Xの制御方法は、モータドライバ111Rと同様であるので、その説明については繰り返さない。なお、モータ112Xは、交流モータであってもよいし、ステッピングモータであってもよいし、サーボモータであってもよいし、その他の種類のモータであってもよい。
 モータドライバ111Yは、CNCユニット30から目標位置の入力を逐次的に受け、モータ112Yを制御する。モータ112Yは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Y方向の任意の位置に主軸132を移動する。モータドライバ111Yによるモータ112Yの制御方法は、モータドライバ111Rと同様であるので、その説明については繰り返さない。なお、モータ112Yは、交流モータであってもよいし、ステッピングモータであってもよいし、サーボモータであってもよいし、その他の種類のモータであってもよい。
 モータドライバ111Zは、CNCユニット30から目標位置の入力を逐次的に受け、モータ112Zを制御する。モータ112Zは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Z方向の任意の位置に主軸132を移動する。モータドライバ111Zによるモータ112Zの制御方法は、モータドライバ111Rと同様であるので、その説明については繰り返さない。なお、モータ112Zは、交流モータであってもよいし、ステッピングモータであってもよいし、サーボモータであってもよいし、その他の種類のモータであってもよい。
 <C.チップコンベア150の構成>
 次に、図3および図4を参照して、上述の図2に示されるチップコンベア150について説明する。図3は、チップコンベア150の外観を示す図である。図4は、チップコンベア150の断面を示す図である。
 チップコンベア150は、加工エリアを区画形成するカバー体130に併設されている。チップコンベア150は、加工エリアから排出されるワークの切り屑およびクーラントを受ける。
 チップコンベア150は、回収用タンク11を有する。回収用タンク11は、クーラントを貯留可能なように構成されている。チップコンベア150は、チップバケット(図示しない)に搬送するとともに、クーラントを濾過することにより清浄なクーラントを回収用タンク11に排出する。
 チップコンベア150は、カバー体21をさらに有する。カバー体21は、チップコンベア150の外観を成す。カバー体21は、内部に空間を形成する筐体形状を有する。
 カバー体21は、その構成部位として、水平部22と、切り屑受け入れ部23と、立ち上がり部26と、切り屑排出部27とを有する。
 カバー体21は、全体として、水平部22および立ち上がり部26の間で屈曲した形状を有する。水平部22は、回収用タンク11内に載置されている。水平部22は、水平方向に延在する板形状の外観を有する。水平部22は、矩形形状の平面視を有する。立ち上がり部26は、水平部22のその長手方向における一方端から立ち上がり、斜め上方向に延伸する。
 切り屑受け入れ部23は、水平部22に設けられている。切り屑受け入れ部23は、水平部22の頂面上に設けられた筐体から構成されている。切り屑受け入れ部23には、接続口24が設けられている。接続口24は、切り屑受け入れ部23を貫通する貫通孔からなる。切り屑受け入れ部23には、接続口24を通じて、加工エリアの設備である切り屑搬送装置13が接続されている。切り屑搬送装置13は、たとえば、一方向に延びる樋体と、その樋体に設置されるスパイラルコンベアとを含んで構成されている。
 切り屑排出部27は、水平部22から斜め上方向に延伸する先の立ち上がり部26の端部に設けられている。切り屑排出部27は、鉛直下方向に向けて開口するカバー体21の開口部からなる。切り屑排出部27の下方には、切り屑を回収するためのチップバケット(図示しない)が設置される。加工エリアから排出されたワークの切り屑は、切り屑受け入れ部23よりカバー体21内に受け入れられる。切り屑は、続いて説明する切り屑搬送機構によりカバー体21の内部で搬送され、切り屑排出部27より排出されてチップバケットに回収される。
 チップコンベア150は、切り屑搬送部35をさらに有する。切り屑搬送部35は、カバー体21に収容されている。切り屑搬送部35は、カバー体21内で切り屑を搬送するための装置である。
 より具体的に説明すると、切り屑搬送部35は、一対の無端チェーン34と、駆動スプロケット37と、従動スプロケット38とを有する。
 駆動スプロケット37は、水平部22から斜め上方向に延伸する先の立ち上がり部26の端部に設けられている。駆動スプロケット37は、切り屑排出部27の上方に配置されている。駆動スプロケット37は、図4の紙面に直交する方向(以下、この方向を「チップコンベア150の幅方向」ともいう)に延びる軸を中心に回転可能に支持されている。駆動スプロケット37には、上述のモータ112A(図4参照)の出力軸が連結されている。駆動スプロケット37は、モータ112Aから動力が伝達されることにより回転する。
 従動スプロケット38は、水平部22および立ち上がり部26の間の屈曲部に設けられている。従動スプロケット38は、チップコンベア150の幅方向に延びる軸(軸AX1)を中心に回転可能に支持されている。
 一対の無端チェーン34は、チップコンベア150の幅方向に距離を隔てて平行に配置されている。無端チェーン34は、カバー体21の内部において、水平部22および立ち上がり部26の間に渡って環状に配索されている。無端チェーン34は、カバー体21の内部において、切り屑受け入れ部23に対向する位置と、切り屑排出部27に対向する位置との間で往復するように配索されている。
 無端チェーン34は、カバー体21内で配索される経路上において、駆動スプロケット37および従動スプロケット38に掛け回されるとともに、複数のガイド部材によって案内されている。モータ112Aからの動力を受けて駆動スプロケット37が回転すると、無端チェーン34は、図4中の矢印A(ハッチングが付された矢印)に示す方向に回動する。
 チップコンベア150は、濾過機構39をさらに有する。濾過機構39は、加工エリアから受け入れたクーラントを濾過することによって、清浄なクーラントをカバー体21内から回収用タンク11に排出するように構成されている。
 より具体的に説明すると、濾過機構39は、ドラム状のフィルタ46を有する。フィルタ46は、カバー体21に収容されている。フィルタ46は、水平部22および立ち上がり部26の間の屈曲部に設けられている。フィルタ46は、クーラントに含まれる切り屑などの異物を捕獲可能に構成されている。フィルタ46は、たとえば、円筒形状を有し、その内側に内部空間47を形成している。
 ドラム状のフィルタ46は、その中心軸がチップコンベア150の幅方向に延びるように配置されている。フィルタ46は、その中心軸が、従動スプロケット38の回転中心である軸AX1と一致するように配置されている。フィルタ46は、軸AX1の軸方向における両端において、従動スプロケット38に接続されている。
 なお、上述では、ドラム状のフィルタ46について説明を行ったが、フィルタ46の形状は、ドラム状に限定されない。一例として、フィルタ46の形状は、矩形であってもよいし、円形であってもよい。
 カバー体21には、クーラント排出部28が形成されている。クーラント排出部28は、カバー体21を貫通する貫通孔からなる。クーラント排出部28は、フィルタ46の内部空間47と、カバー体21の外側の外部空間とを連通させるように設けられている。切り屑受け入れ部23を通じてカバー体21内に受け入れられたクーラントは、フィルタ46の内部空間47に進入することにより濾過される。濾過されたクーラントは、クーラント排出部28を通じて回収用タンク11に排出される。
 <D.クーラントの循環機構>
 次に、図5を参照して、クーラントを循環機構について説明する。図5は、クーラントの循環機構の一例を示す図である。
 吐出部125から吐出されたクーラントは、工作機械100内を循環する。工作機械100は、クーラントの循環機構の構成として、回収用タンク11と、貯蔵用タンク12と、吐出用ポンプ109と、バルブ110と、吐出部125と、チップコンベア150と、液量センサ151と、回収用ポンプ152と、液量センサ155と、流路R1,R2A~R2C,R3とを含む。
 吐出部125は、1つ以上の吐出機構で構成される。図5の例では、吐出部125は、吐出機構125A~125Cで構成されている。
 貯蔵用タンク12には、クーラントが貯蔵されている。貯蔵用タンク12は、流路R1の一端に繋がっている。流路R1の他端は、バルブ110に繋がっている。流路R1は、バルブ110によって流路R2A~R2Cに分岐される。
 流路R2Aは、吐出機構125Aと繋がっている。吐出機構125Aは、たとえば、流路R2Aに繋がっているクーラントノズル(図示しない)を有し、流路R2Aを通じて圧送されたクーラントを当該クーラントノズルから主軸頭131に向けて吐出する。これにより、主軸頭131に付着したワークの切り屑がチップコンベア150に排出される。
 流路R2Bは、吐出機構125Bと繋がっている。吐出機構125Bは、流路R2Bを通じて圧送されたクーラントを加工エリアAR全体に向けて吐出する。これにより、加工エリア内にあるワークの切り屑がチップコンベア150に排出される。
 流路R2Cは、吐出機構125Cと繋がっている。吐出機構125Aは、流路R2Aを通じて圧送されたクーラントをベッドBDの壁面に向けて吐出する。これにより、ベッドBD上に溜まっている切り屑がチップコンベア150に排出される。
 吐出用ポンプ109は、その駆動に伴って、貯蔵用タンク12に貯留されたクーラントを、流路R1からバルブ110を介して流路R2A~R2Cのそれぞれに圧送する。これにより、吐出用ポンプ109は、貯蔵用タンク12から吐出部125のクーラントノズルにクーラントを送る。
 バルブ110は、貯蔵用タンク12から吐出機構125A~125Cに向けて圧送されるクーラントの流量を制御する制御弁である。バルブ110は、上述の制御部50によって制御される。なお、バルブ110は、吐出用ポンプ109と一体的に構成されてもよいし、別に構成されてもよい。
 チップコンベア150は、回収用タンク11と、濾過機構39とを有する。濾過機構39は、クーラントに含まれる切り屑などの異物を捕獲可能に構成されている。濾過機構39を通過したクーラントは、チップコンベア150のカバー体21内から回収用タンク11に排出される。これにより、回収用タンク11は、加工エリアARに吐出されたクーラントを受ける。
 液量センサ151(第1検出部)は、回収用タンク11内のクーラント量を検出するためのセンサである。液量センサ151は、濾過機構39を通過するクーラントの流れの方向において濾過機構39よりも下流側に配置される。
 液量センサ151としては、回収用タンク11内のクーラントの体積に相関する物理量を検出可能なセンサであれば任意の種類のセンサが採用され得る。一例として、液量センサ151は、フロートスイッチであってもよいし、距離センサであってもよいし、重量センサであってもよいし、その他のセンサであってもよい。
 ある局面において、液量センサ151は、回収用タンク11内のクーラントの液面と、予め定められた基準面との間の距離を検出する。当該基準面は、回収用タンク11の底面であってもよいし、液量センサ151の設置位置における水平面であってもよい。他の局面において、液量センサ151は、回収用タンク11内のクーラントの重さを検出する。
 回収用ポンプ152は、濾過機構39を通過して回収用タンク11に溜まっているクーラントを汲み上げ、流路R3を通じて当該クーラントを貯蔵用タンク12に送る。貯蔵用タンク12内には、異物を除去するためのフィルタ(図示しない)が設けられている。貯蔵用タンク12内のクーラントは、当該フィルタを通過後、吐出用ポンプ109によって流路R1を再び圧送される。
 液量センサ155(第2検出部)は、貯蔵用タンク12内のクーラント量を検出するためのセンサである。液量センサ155としては、貯蔵用タンク12内のクーラントの体積に相関する物理量を検出可能なセンサであれば任意の種類のセンサが採用され得る。一例として、液量センサ155は、フロートスイッチであってもよいし、距離センサであってもよいし、重量センサであってもよいし、その他のセンサであってもよい。
 ある局面において、液量センサ155は、貯蔵用タンク12内のクーラントの液面と、予め定められた基準面との間の距離を検出する。当該基準面は、貯蔵用タンク12の底面であってもよいし、液量センサ155の設置位置における水平面であってもよい。他の局面において、液量センサ155は、貯蔵用タンク12内のクーラントの重さを検出する。
 <E.回収用ポンプ152の制御モード>
 次に、図6および図7を参照して、図5に示される回収用ポンプ152の制御モードについて説明する。
 工作機械100の制御部50は、少なくとも2つの制御モードで回収用ポンプ152を制御する。以下では、回収用ポンプ152の第1制御モードを「ON/OFF制御モード」と称し、回収用ポンプ152の第2制御モードを「アナログ制御モード」と称する。
 (E1.ON/OFF制御モード)
 まず、図6を参照して、ON/OFF制御モードについて説明する。図6は、ON/OFF制御モードを説明するための図である。ON/OFF制御モードでは、制御部50は、回収用タンク11内のクーラント量を増減させる。
 より具体的には、まず、制御部50は、回収用ポンプ152をOFFにする。これにより、回収用タンク11から貯蔵用タンク12へのクーラントの排出が停止する。一方で、ワークの加工時には、貯蔵用タンク12のクーラントが工作機械100内の加工エリアARに吐出される。当該吐出されたクーラントは、回収用タンク11に流れ込む。結果として、回収用タンク11内のクーラント量は増加していき、貯蔵用タンク12内のクーラント量は減少していく。このとき、制御部50は、回収用タンク11内のクーラント量を上述の液量センサ151から定期的に取得し、当該クーラント量が所定量th1を上回ったか否かを判断する。所定量th1の値は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。
 制御部50は、回収用タンク11内のクーラント量が所定量th1を上回ったと判断した場合、回収用ポンプ152を駆動する。このとき、制御部50は、回収用タンク11から貯蔵用タンク12へのクーラントの排出量が貯蔵用タンク12から加工エリアARへのクーラントの吐出量よりも多くなるように回収用ポンプ152を制御する。一例として、制御部50は、設定可能な内の最大回転数(たとえば、50Hz~60Hz)で回収用ポンプ152を駆動する。これにより、回収用タンク11内のクーラント量は減少していき、貯蔵用タンク12内のクーラント量は増加していく。
 次に、制御部50は、上述の液量センサ151の出力値に基づいて、回収用タンク11内のクーラント量が所定量th2を下回ったか否かを判断する。所定量th2は、所定量th1よりも少ない。所定量th2の値は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。制御部50は、回収用タンク11内のクーラント量が所定量th2を下回ったと判断した場合、回収用ポンプ152の駆動を停止する。
 以上のように、制御部50は、ON/OFF制御モードでは、回収用タンク11内のクーラント量を所定量th1,th2の間で繰り返し増減させる。これにより、回収用タンク11内の液面の高さが変動し、回収用タンク11内の液面上の異物(たとえば、油や浮遊している切り屑)は、回収用ポンプ152の吸入口から回収用タンク11に排出される。また、回収用タンク11内のクーラント量が増減することで、回収用タンク11内のクーラントが拡散される。そのため、回収用タンク11内の液面上の異物は、より回収用タンク11に排出されやすくなる。
 一方で、クーラントは、ワークの加工時に発生する熱などにより蒸発する。一例として、クーラントは、1日に約200L蒸発する。その結果、工作機械100内のクーラントの総量は、時間の経過とともに減少していく。したがって、制御部50は、回収用タンク11内のクーラント量を繰り返し増減している際に、回収用タンク11内にクーラントが残っているにも関わらず貯蔵用タンク12内のクーラントが尽きたと認識してしまう可能性がある。この場合、回収用タンク11に残っているクーラントが機内で十分に使われていない。
 (E2.アナログ制御モード)
 次に、図7を参照して、アナログ制御モードについて説明する。図7は、アナログ制御モードを説明するための図である。アナログ制御モードでは、制御部50は、回収用タンク11内のクーラント量が一定量THになるように回収用ポンプ152を制御する。
 一定量THは、上述の所定量th1よりも少なく、上述の所定量th2よりも多い。一定量THの値は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。
 より具体的な処理として、制御部50は、回収用タンク11内のクーラント量を上述の液量センサ151から定期的に取得する。制御部50は、回収用タンク11内のクーラント量が一定量THよりも多い場合には、回収用ポンプ152の回転数を現在の回転数よりも上げる。これにより、回収用タンク11内のクーラント量が減少する。一方で、制御部50は、回収用タンク11内のクーラント量が一定量THよりも少ない場合には、回収用ポンプ152の回転数を現在の回転数よりも下げる。これにより、回収用タンク11内のクーラント量が増加する。これにより、回収用ポンプ152のクーラント量が一定量THに保たれる。
 このように、アナログ制御モードでは、回収用タンク11内のクーラント量が増減しないため、貯蔵用タンク12内のクーラント量の減少は、クーラントの蒸発にのみ起因する。そのため、工作機械100は、回収用タンク11内にクーラントが残っているにも関わらず、貯蔵用タンク12内にクーラントが残っていないと認識することがなくなり、回収用タンク11内のクーラントを機内で十分に利用することができる。
 しかしながら、アナログ制御モードでは、回収用タンク11内の液面の高さが常に一定になる。そのため、油や切り屑などの液面上の異物は、回収用ポンプ152の吸入口から回収用タンク11に排出されない。
 <F.回収用ポンプ152の制御方法>
 次に、図8を参照して、回収用ポンプ152の制御方法について説明する。図8は、回収用ポンプ152の制御モードを切り換えるタイミングを説明するための図である。
 工作機械100の制御部50は、貯蔵用タンク12内のクーラント量に基づいて、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り換える。
 より具体的には、制御部50は、貯蔵用タンク12内のクーラント量を上述の液量センサ155から定期的に取得し、当該クーラント量が所定量th3を下回ったか否かを判断する。所定量th3の値は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。
 制御部50は、貯蔵用タンク12内のクーラント量が所定量th3以上である場合には、ON/OFF制御モードで回収用ポンプ152を制御する。その後、制御部50は、貯蔵用タンク12内のクーラント量が所定量th3を下回ったことに基づいて、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替える。これにより、ON/OFF制御モードの利点と、アナログ制御モードの利点との両方を享受することができる。
 より具体的には、制御部50は、貯蔵用タンク12内のクーラント量が多い段階ではON/OFF制御モードで回収用ポンプ152を制御する。これにより、回収用タンク11内の液面の高さが所定量th1,th2の間で変動し、回収用タンク11内の液面上の異物(たとえば、油や浮遊している切り屑)は、回収用ポンプ152の吸入口から回収用タンク11に排出される。また、回収用タンク11内のクーラント量が増減することで、回収用タンク11内のクーラントが拡散される。そのため、回収用タンク11内の液面上の異物は、回収用タンク11に排出されやすくなる。
 一方で、制御部50は、貯蔵用タンク12内のクーラント量が少ない段階ではアナログ制御モードで回収用ポンプ152を制御する。アナログ制御モードでは、回収用タンク11内のクーラント量が増減しないため、貯蔵用タンク12内のクーラント量の減少は、クーラントの蒸発にのみ起因する。そのため、工作機械100は、回収用タンク11内にクーラントが残っているにも関わらず、貯蔵用タンク12内にクーラントが残っていないと認識することがなくなり、回収用タンク11内のクーラントを機内で十分に利用することができる。
 なお、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替えるか否かを判断するタイミングは任意である。一例として、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替えるか否かは、回収用タンク11内のクーラント量が所定量th2になったときにおける貯蔵用タンク12内のクーラント量に基づいて判断される。
 より具体的には、制御部50は、ON/OFF制御モードで回収用ポンプ152をONにしている間、上述の液量センサ151から回収用タンク11内のクーラント量を定期的に取得する。その後、制御部50は、当該取得したクーラント量が所定量th2に達したタイミングで、上述の液量センサ155から貯蔵用タンク12内のクーラント量を取得する。制御部50は、当該取得したクーラント量が所定量th3を下回っている場合には、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替える。
 これにより、制御部50は、回収用タンク11内のクーラント量が最も少なくなったタイミングで回収用ポンプ152の制御モードを切り替えるか否かを判断できる。すなわち、制御部50は、工作機械100内のクーラントの総量により近い数値を用いて、回収用ポンプ152の制御モードを切り替えるか否かを判断することができる。
 <G.異常対処処理>
 次に、図9を参照して、工作機械100における異常対処処理について説明する。図9は、工作機械100における異常対処処理の一例を説明するための図である。
 上述のように、制御部50は、回収用タンク11内のクーラント量が所定量th3を下回ったタイミングで回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替える。その後、制御部50は、上述の液量センサ155から貯蔵用タンク12内のクーラント量を定期的に取得する。そして、制御部50は、貯蔵用タンク12内のクーラント量が所定量th4に達したか否かを判断する。
 制御部50は、貯蔵用タンク12内のクーラント量が所定量th4以上であると判断した場合、工作機械100内にクーラントが十分に残っていると判断する。一方で、制御部50は、貯蔵用タンク12内のクーラント量が所定量th4を下回っている場合、工作機械100内にクーラントが十分に残っていないと判断する。この場合、制御部50は、予め定められた異常対処処理を実行する。
 一例として、当該異常対処処理は、工作機械100を停止する処理を含む。これにより、工作機械100は、クーラントが加工時に供給されないことを確実に防止することができる。
 他の例として、当該異常対処処理は、工作機械100内にクーラントが十分に残っていないことを報知する処理を含む。当該報知処理は、上述のディスプレイ142にメッセージを表示することで実現されてもよいし、貯蔵用タンク12に設けられている後述の光源158を発光させることで実現されてもよい。これにより、ユーザは、工作機械100内にクーラントが十分に残っていないことを認識できる。
 以上のように、所定量th4は、異常対処処理を実行するか否かの基準値となる。所定量th4は、所定量th3よりも少ない。所定量th4の値は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。
 また、所定量th3から所定量th4を差分した量は、所定量th1から所定量th2を差分した量よりも多い。これにより、制御部50がON/OFF制御モード時において回収用タンク11内のクーラント量を所定量th1,th2の間で繰り返し増減している間に、貯蔵用タンク12内のクーラント量がth4を下回ることを防ぐことができる。すなわち、回収用ポンプ152の制御モードがON/OFF制御モードからアナログ制御モードに切り換えられる前に、異常対処処理は、実行されなくなる。
 <H.発光パターン>
 次に、図10および図11を参照して、回収用ポンプ152の制御モードに応じた発光パターンについて説明する。図10は、光源158の発光パターンの一例を示す図である。
 光源158は、ユーザが視認可能なように工作機械100に設けられる。一例として、光源158は、貯蔵用タンク12の外観を成すカバー上に設けられる。
 光源158は、たとえば、複数の発光素子で構成される。図10の例では、光源158は、4つの発光素子で構成されている。各発光素子の発光は、上述の制御部50によって制御される。典型的には、各発光素子の発光は、上述のCPUユニット20によって制御される。
 制御部50は、回収用ポンプ152の制御モードに応じた光源158の発光パターンを変える。より具体的には、制御部50は、回収用ポンプ152の制御モードが上述のON/OFF制御モードである場合には、第1発光パターンで光源158を発光させる。一方で、制御部50は、回収用ポンプ152の制御モードが上述のアナログ制御モードである場合には、第1発光パターンとは異なる第2発光パターンで光源158を発光させる。これにより、ユーザは、現在の制御モードを容易に認識することができる。
 なお、上記第1,第2発光パターンは、各発光素子の発光および消灯の組み合わせによって区別されてもよいし、発光色の違いによって区別されてもよい。
 また、光源158の発光パターンは、図10の例に限定されない。図11は、光源158の発光パターンの他の例を示す図である。
 図11の例では、制御部50は、回収用ポンプ152の制御モードだけでなく、貯蔵用タンク12内のクーラント量に応じても光源158の発光パターンを変えている。
 一例として、制御部50は、回収用ポンプ152の制御モードがON/OFF制御モードであり、かつ貯蔵用タンク12内のクーラント量が80%以上100%以下である場合には、光源158の全発光素子を白色に発光させる。
 また、制御部50は、回収用ポンプ152の制御モードがON/OFF制御モードであり、かつ貯蔵用タンク12内のクーラント量が60%以上80%未満である場合には、光源158の上1つの発光素子を消灯し、光源158の下3つの発光素子を白色に発光させる。
 また、制御部50は、回収用ポンプ152の制御モードがアナログ制御モードであり、かつ貯蔵用タンク12内のクーラント量が40%以上60%未満である場合には、光源158の上2つの発光素子を消灯し、光源158の下2つの発光素子を白色に発光させる。
 また、制御部50は、回収用ポンプ152の制御モードがアナログ制御モードであり、かつ貯蔵用タンク12内のクーラント量が20%以上40%未満である場合には、光源158の上3つの発光素子を消灯し、光源158の下1つの発光素子を赤色に発光させる。
 また、制御部50は、回収用ポンプ152の制御モードがアナログ制御モードであり、かつ貯蔵用タンク12内のクーラント量が0%以上20%未満である場合には、光源158の全発光素子を赤色に発光させる。このとき、制御部50は、光源158を点滅させてもよい。
 <I.回収用ポンプ152の設置位置>
 次に、図12を参照して、上述の所定量th1,th2と、回収用ポンプ152の設置位置との関係について説明する。図12は、回収用タンク11と回収用ポンプ152とを示す図である。
 図12に示されるように、回収用ポンプ152は、クーラントの吸入口153を有する。回収用タンク11内のクーラントは、吸入口153から吸い込まれ、上述の貯蔵用タンク12に排出される。
 上述のように、ON/OFF制御モードでは、制御部50は、回収用タンク11内のクーラント量を所定量th1,th2の間で繰り返し増減させるよう回収用ポンプ152を制御する。当該所定量th1,th2の値は、回収用ポンプ152の位置に応じて決められる。
 より具体的には、吸入口153は、回収用タンク11内におけるクーラント量が所定量th1である場合にはクーラントに浸かる。一方で、吸入口153は、回収用タンク11内におけるクーラント量が所定量th2である場合にはクーラントに浸からない。異なる言い方をすれば、吸入口153の位置は、所定量th1における液面よりも低く、所定量th2における液面よりも高い。これにより、回収用タンク11内の液面は、クーラントの増減中に吸入口153を通過する。このとき、回収用タンク11内の液面上の異物は、吸入口153から貯蔵用タンク12に排出される。
 なお、回収用ポンプ152の吸入口153の位置が所定量th1,th2に合わされてもよいし、所定量th1,th2の値が回収用ポンプ152の吸入口153の位置を基準に設定されてもよい。
 また、上述では、吸入口153の位置が所定量th1,th2を基準に決められる例について説明を行ったが、吸入口153の位置は、必ずしも、所定量th1,th2を基準に決められる必要はない。一例として、吸入口153の位置は、所定量th1における液面よりも高くてもよい。他の例として、吸入口153の位置は、所定量th2における液面よりも低くてもよい。これらの場合でも、回収用タンク11内のクーラントは、ON/OFF制御モード中に拡散される。これにより、回収用タンク11内の異物が吸入口153から吸い込まれ、上述の貯蔵用タンク12に排出される。
 好ましくは、回収用ポンプ152の吸入口153の位置は、所定量th1,th2だけでなく、上述の一定量THにも合わされる。より具体的には、吸入口153は、回収用タンク11におけるクーラント量が一定量THである場合にはクーラントに浸かる。異なる言い方をすれば、吸入口153の位置は、一定量THにおける液面よりも低い。これにより、制御部50は、アナログ制御モード時において吸入口153からクーラントを吸い込むことができ、回収用タンク11内のクーラント量を一定量THに保つことができる。
 <J.CPUユニット20のハードウェア構成>
 次に、図13を参照して、図2に示されるCPUユニット20のハードウェア構成について説明する。図13は、CPUユニット20のハードウェア構成の一例を示す図である。
 CPUユニット20は、制御回路201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、通信インターフェイス204,205と、補助記憶装置220とを含む。これらのコンポーネントは、内部バス209に接続される。
 制御回路201は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成され得る。
 制御回路201は、制御プログラム222などの各種プログラムを実行することでCPUユニット20の動作を制御する。制御プログラム222は、工作機械100内の各種装置を制御するための命令を規定している。制御回路201は、制御プログラム222の実行命令を受け付けたことに基づいて、補助記憶装置220またはROM202からRAM203に制御プログラム222を読み出す。RAM203は、ワーキングメモリとして機能し、制御プログラム222の実行に必要な各種データを一時的に格納する。
 通信インターフェイス204は、LAN(Local Area Network)ケーブル、WLAN(Wireless LAN)、またはBluetooth(登録商標)などを用いた通信を実現するためのインターフェイスである。一例として、CPUユニット20は、通信インターフェイス305を介して、上述の吐出用ポンプ109、上述のモータドライバ111A、および上述の回収用ポンプ152などの外部機器との通信を実現する。
 通信インターフェイス205は、フィールドバスに接続される各種ユニットとの通信を実現するためのインターフェイスである。当該フィールドバスに接続されるユニットの一例として、CNCユニット30やI/Oユニット(図示しない)などが挙げられる。
 補助記憶装置220は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置220は、制御プログラム222および設定ファイル224などの各種情報を格納する。設定ファイル224には、制御プログラム222の実行時に参照される各種パラメータが規定される。一例として、設定ファイル224は、上述の所定量th1~th4の値、上述の一定量THの値、およびその他の設定値などを含む。
 制御プログラム222および設定ファイル224の格納場所は、補助記憶装置220に限定されず、制御回路201の記憶領域(たとえば、キャッシュメモリ)、ROM202、RAM203、外部機器(たとえば、サーバー)などに格納されていてもよい。
 なお、制御プログラム222は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、本実施の形態に従う各種の処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う制御プログラム222の趣旨を逸脱するものではない。さらに、制御プログラム222によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが制御プログラム222の処理の一部を実行する所謂クラウドサービスのような形態でCPUユニット20が構成されてもよい。
 <K.CNCユニット30のハードウェア構成>
 次に、図14を参照して、図2に示されるCNCユニット30のハードウェア構成について説明する。図14は、CNCユニット30のハードウェア構成の一例を示す図である。
 CNCユニット30は、制御回路301と、ROM302と、RAM303と、通信インターフェイス305と、通信インターフェイス305と、補助記憶装置320とを含む。これらのコンポーネントは、内部バス309に接続される。
 制御回路301は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成され得る。
 制御回路301は、加工プログラム322などの各種プログラムを実行することでCNCユニット30の動作を制御する。加工プログラム322は、ワーク加工を実現するためのプログラムである。制御回路301は、加工プログラム322の実行命令を受け付けたことに基づいて、ROM302からRAM303に加工プログラム322を読み出す。RAM303は、ワーキングメモリとして機能し、加工プログラム322の実行に必要な各種データを一時的に格納する。
 通信インターフェイス305は、LAN、WLAN、またはBluetooth(登録商標)などを用いた通信を実現するためのインターフェイスである。一例として、CNCユニット30は、通信インターフェイス305を介してCPUユニット20との通信を実現する。また、CNCユニット30は、通信インターフェイス305または他の通信インターフェイスを介して、ワーク加工のための各種駆動ユニット(たとえば、モータドライバ111R,111X~111Zなど)との通信を実現する。
 補助記憶装置320は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置320は、加工プログラム322などを格納する。加工プログラム322の格納場所は、補助記憶装置320に限定されず、制御回路301の記憶領域(たとえば、キャッシュメモリ)、ROM302、RAM303、外部機器(たとえば、サーバー)などに格納されていてもよい。
 <L.フローチャート>
 次に、図15を参照して、工具情報の検索フローについて説明する。図15は、工具情報の検索処理の流れを示すフローチャートである。
 図15に示される処理は、制御部50が上述の制御プログラム222を実行することにより行われる。なお、図15に示される処理の一部または全部は、回路素子またはその他のハードウェアによって実行されてもよい。
 ステップS110において、制御部50は、上述の回収用ポンプ152をOFFにする。すなわち、制御部50は、回収用ポンプ152の回転数をゼロにする。これにより、回収用タンク11から貯蔵用タンク12へのクーラントの排出が停止する。結果として、回収用タンク11内のクーラント量は増加していき、貯蔵用タンク12内のクーラント量は減少していく。
 ステップS120において、制御部50は、上述の液量センサ151の出力値に基づいて、回収用タンク11内のクーラント量が上述の所定量th1を超えたか否かを判断する。制御部50は、回収用タンク11内のクーラント量が所定量th1を超えたと判断した場合(ステップS120においてYES)、制御をステップS122に切り替える。そうでない場合には(ステップS120においてNO)、制御部50は、ステップS120の処理を再び実行する。
 ステップS122において、制御部50は、上述の回収用ポンプ152をONにする。このとき、制御部50は、設定可能な内の最大回転数(たとえば、50Hz~60Hz)で回収用ポンプ152を駆動する。これにより、回収用タンク11内のクーラントは、貯蔵用タンク12に排出される。結果として、回収用タンク11内のクーラント量は減少していき、貯蔵用タンク12内のクーラント量は増加していく。
 ステップS130において、制御部50は、上述の液量センサ151の出力値に基づいて、回収用タンク11内のクーラント量が上述の所定量th2を下回ったか否かを判断する。制御部50は、回収用タンク11内のクーラント量が所定量th2を下回ったと判断した場合(ステップS130においてYES)、制御をステップS140に切り替える。そうでない場合には(ステップS130においてNO)、制御部50は、ステップS130の処理を再び実行する。
 ステップS140において、制御部50は、上述の液量センサ155の出力値に基づいて、貯蔵用タンク12内のクーラント量が上述の所定量th3を下回ったか否かを判断する。制御部50は、貯蔵用タンク12内のクーラント量が所定量th3を下回ったと判断した場合(ステップS140においてYES)、制御をステップS142に切り替える。そうでない場合には(ステップS140においてNO)、制御部50は、ステップS110に制御を戻す。
 ステップS142において、制御部50は、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り換える。一例として、制御部50は、20Hz~40Hzの間で回収用ポンプ152の回転数を適宜調整する。これにより、回収用タンク11内のクーラントは、上述の一定量THに保たれる。
 なお、制御部50は、貯蔵用タンク12内のクーラント量が上述の所定量th3を下回ったタイミングで制御モードを切り換えてもよいし、当該タイミングから所定時間(たとえば、360秒)に制御モードを切り換えてもよい。
 ステップS150において、制御部50は、上述の液量センサ155の出力値に基づいて、貯蔵用タンク12内のクーラント量が上述の所定量th4を下回ったか否かを判断する。制御部50は、貯蔵用タンク12内のクーラント量が所定量th4を下回ったと判断した場合(ステップS150においてYES)、制御をステップS152に切り替える。そうでない場合には(ステップS150においてNO)、制御部50は、ステップS150の処理を再び実行する。
 ステップS152において、制御部50は、予め定められた異常対処処理を実行する。異常対処処理については上述の通りであるので、その説明については繰り返さない。
 <M.まとめ>
 以上のようにして、工作機械100の制御部50は、貯蔵用タンク12内のクーラント量が所定量th3以上である場合に、ON/OFF制御モードで回収用ポンプ152を制御する。その後、制御部50は、貯蔵用タンク12内のクーラント量が所定量th3を下回ったことに基づいて、回収用ポンプ152の制御モードをON/OFF制御モードからアナログ制御モードに切り替える。これにより、ON/OFF制御モードの利点と、アナログ制御モードの利点との両方を享受することができる。
 より具体的には、ON/OFF制御モードでは、回収用タンク11内の液面の高さが所定量th1,th2の間で変動し、回収用タンク11内の液面上の異物(たとえば、油や浮遊している切り屑)は、回収用ポンプ152の吸入口から貯蔵用タンク12に排出される。また、回収用タンク11内のクーラント量が増減することで、回収用タンク11内のクーラントが拡散される。そのため、回収用タンク11内の液面上の異物は、貯蔵用タンク12に排出されやすくなる。
 一方で、アナログ制御モードでは、回収用タンク11内のクーラント量が増減しないため、貯蔵用タンク12内のクーラント量の減少は、クーラントの蒸発にのみ起因する。そのため、工作機械100は、回収用タンク11内にクーラントが残っているにも関わらず、貯蔵用タンク12内にクーラントが残っていないと認識することがなくなり、回収用タンク11内のクーラントを機内で十分に利用することができる。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 11 回収用タンク、12 貯蔵用タンク、13 切り屑搬送装置、20 CPUユニット、21 カバー体、22 水平部、23 切り屑受け入れ部、24 接続口、26 立ち上がり部、27 切り屑排出部、28 クーラント排出部、30 CNCユニット、34 無端チェーン、35 切り屑搬送部、37 駆動スプロケット、38 従動スプロケット、39 濾過機構、46 フィルタ、47 内部空間、50 制御部、100 工作機械、109 吐出用ポンプ、110 バルブ、111A モータドライバ、111R モータドライバ、111X モータドライバ、111Y モータドライバ、111Z モータドライバ、112A モータ、112R モータ、112X モータ、112Y モータ、112Z モータ、113 移動体、125 吐出部、125A 吐出機構、125B 吐出機構、125C 吐出機構、130 カバー体、131 主軸頭、132 主軸、133 ハウジング、134 工具、136 テーブル、140 操作盤、142 ディスプレイ、150 チップコンベア、151 液量センサ、152 回収用ポンプ、153 吸入口、155 液量センサ、158 光源、201 制御回路、202 ROM、203 RAM、204 通信インターフェイス、205 通信インターフェイス、209 内部バス、220 補助記憶装置、222 制御プログラム、224 設定ファイル、301 制御回路、302 ROM、303 RAM、305 通信インターフェイス、309 内部バス、320 補助記憶装置、322 加工プログラム。
 

Claims (9)

  1.  工作機械であって、
     加工エリアを区画形成するためのカバー体と、
     前記加工エリアにクーラントを吐出するための吐出部と、
     前記加工エリアに吐出されたクーラントを受けるための第1タンクと、
     前記第1タンク内の第1クーラント量を検出するための第1検出部と、
     前記吐出部に供給するためのクーラントを貯蔵する第2タンクと、
     前記第2タンク内の第2クーラント量を検出するための第2検出部と、
     前記第1タンクから前記第2タンクにクーラントを送るためのポンプと、
     前記工作機械を制御するための制御部とを備え、
     前記ポンプの制御モードは、
      前記第1クーラント量が第1所定量を上回った場合に前記ポンプを駆動し、前記第1クーラント量が前記第1所定量よりも少ない第2所定量を下回った場合に前記ポンプの駆動を停止する第1制御モードと、
      前記第1クーラント量が一定量になるように前記ポンプを駆動する第2制御モードとを含み、
     前記制御部は、
      前記第2クーラント量が第3所定量以上である場合に、前記第1制御モードで前記ポンプを制御し、
      前記第2クーラント量が前記第3所定量を下回ったことに基づいて、前記ポンプの制御モードを前記第1制御モードから前記第2制御モードに切り替える、工作機械。
  2.  前記制御部は、前記第2クーラント量が前記第3所定量より少ない第4所定量を下回った場合に、前記工作機械を停止する、請求項1に記載の工作機械。
  3.  前記第3所定量から前記第4所定量を差分した量は、前記第1所定量から前記第2所定量を差分した量よりも多い、請求項2に記載の工作機械。
  4.  前記工作機械は、さらに、光源を備え、
     前記制御部は、
      前記ポンプの制御モードが前記第1制御モードである場合には、第1発光パターンで前記光源を発光させ、
      前記ポンプの制御モードが前記第2制御モードである場合には、前記第1発光パターンとは異なる第2発光パターンで前記光源を発光させる、請求項1~3のいずれか1項に記載の工作機械。
  5.  前記ポンプは、クーラントの吸入口を含み、
     前記吸入口は、
      前記第1タンクにおけるクーラント量が前記第1所定量である場合にはクーラントに浸かり、
      前記第1タンクにおけるクーラント量が前記第2所定量である場合にはクーラントに浸からない、請求項1~4のいずれか1項に記載の工作機械。
  6.  前記一定量は、前記第1所定量よりも少なく、かつ前記第2所定量よりも多く、
     前記吸入口は、前記第1タンクにおけるクーラント量が前記一定量である場合にはクーラントに浸かる、請求項5に記載の工作機械。
  7.  前記ポンプの制御モードを前記第1制御モードから前記第2制御モードに切り替えるか否かは、前記第1クーラント量が前記第2所定量になったときに前記第2検出部によって検出された前記第2クーラント量に基づいて判断される、請求項1~6のいずれか1項に記載の工作機械。
  8.  工作機械の制御方法であって、
     前記工作機械は、
      加工エリアを区画形成するためのカバー体と、
      前記加工エリアにクーラントを吐出するための吐出部と、
      前記加工エリアに吐出されたクーラントを受けるための第1タンクと、
      前記第1タンク内の第1クーラント量を検出するための第1検出部と、
      前記吐出部に供給するためのクーラントを貯蔵する第2タンクと、
      前記第2タンク内の第2クーラント量を検出するための第2検出部と、
      前記第1タンクから前記第2タンクにクーラントを送るためのポンプとを備え、
     前記ポンプの制御モードは、
      前記第1クーラント量が第1所定量を上回った場合に前記ポンプを駆動し、前記第1クーラント量が前記第1所定量よりも少ない第2所定量を下回った場合に前記ポンプの駆動を停止する第1制御モードと、
      前記第1クーラント量が一定量になるように前記ポンプを駆動する第2制御モードとを含み、
     前記制御方法は、
      前記第2クーラント量が第3所定量以上である場合に、前記第1制御モードで前記ポンプを制御するステップと、
      前記第2クーラント量が前記第3所定量を下回ったことに基づいて、前記ポンプの制御モードを前記第1制御モードから前記第2制御モードに切り替えるステップとを備える、制御方法。
  9.  工作機械の制御プログラムであって、
     前記工作機械は、
      加工エリアを区画形成するためのカバー体と、
      前記加工エリアにクーラントを吐出するための吐出部と、
      前記加工エリアに吐出されたクーラントを受けるための第1タンクと、
      前記第1タンク内の第1クーラント量を検出するための第1検出部と、
      前記吐出部に供給するためのクーラントを貯蔵する第2タンクと、
      前記第2タンク内の第2クーラント量を検出するための第2検出部と、
      前記第1タンクから前記第2タンクにクーラントを送るためのポンプとを備え、
     前記ポンプの制御モードは、
      前記第1クーラント量が第1所定量を上回った場合に前記ポンプを駆動し、前記第1クーラント量が前記第1所定量よりも少ない第2所定量を下回った場合に前記ポンプの駆動を停止する第1制御モードと、
      前記第1クーラント量が一定量になるように前記ポンプを駆動する第2制御モードとを含み、
     前記制御プログラムは、前記工作機械に、
      前記第2クーラント量が第3所定量以上である場合に、前記第1制御モードで前記ポンプを制御するステップと、
      前記第2クーラント量が前記第3所定量を下回ったことに基づいて、前記ポンプの制御モードを前記第1制御モードから前記第2制御モードに切り替えるステップと実行させる、制御プログラム。
     
PCT/JP2021/024992 2021-07-01 2021-07-01 工作機械、制御方法、および制御プログラム WO2023276120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21948424.3A EP4364887A1 (en) 2021-07-01 2021-07-01 Machine tool, control method, and control program
PCT/JP2021/024992 WO2023276120A1 (ja) 2021-07-01 2021-07-01 工作機械、制御方法、および制御プログラム
JP2023531302A JPWO2023276120A1 (ja) 2021-07-01 2021-07-01
CN202180099539.5A CN117500634A (zh) 2021-07-01 2021-07-01 机床、控制方法以及控制程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024992 WO2023276120A1 (ja) 2021-07-01 2021-07-01 工作機械、制御方法、および制御プログラム

Publications (1)

Publication Number Publication Date
WO2023276120A1 true WO2023276120A1 (ja) 2023-01-05

Family

ID=84692573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024992 WO2023276120A1 (ja) 2021-07-01 2021-07-01 工作機械、制御方法、および制御プログラム

Country Status (4)

Country Link
EP (1) EP4364887A1 (ja)
JP (1) JPWO2023276120A1 (ja)
CN (1) CN117500634A (ja)
WO (1) WO2023276120A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754487B1 (ja) * 2019-12-18 2020-09-09 株式会社ノリタケカンパニーリミテド 研削盤用研削液濾過装置
CN212351324U (zh) * 2020-05-20 2021-01-15 滕州市祥泰数控机床有限公司 一种数控机床用油污冷却回收装置
JP6872087B1 (ja) 2021-01-07 2021-05-19 Dmg森精機株式会社 工作機械、工作機械の制御方法、および工作機械の制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754487B1 (ja) * 2019-12-18 2020-09-09 株式会社ノリタケカンパニーリミテド 研削盤用研削液濾過装置
CN212351324U (zh) * 2020-05-20 2021-01-15 滕州市祥泰数控机床有限公司 一种数控机床用油污冷却回收装置
JP6872087B1 (ja) 2021-01-07 2021-05-19 Dmg森精機株式会社 工作機械、工作機械の制御方法、および工作機械の制御プログラム

Also Published As

Publication number Publication date
JPWO2023276120A1 (ja) 2023-01-05
CN117500634A (zh) 2024-02-02
EP4364887A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
JP6872087B1 (ja) 工作機械、工作機械の制御方法、および工作機械の制御プログラム
EP4353409A1 (en) Machine tool, control method, and control program
JP6653677B2 (ja) チップコンベアおよび工作機械
WO2016139743A1 (ja) チップコンベア
KR102101808B1 (ko) Cnc 공작기계용 절삭유 순환 및 칩처리 시스템
WO2023276120A1 (ja) 工作機械、制御方法、および制御プログラム
JP6854390B1 (ja) 工作機械、工作機械の制御方法、および工作機械の制御プログラム
JP3779289B2 (ja) 放電加工用の加工液処理装置
JP2004338016A (ja) クーラントポンプ装置およびドリル装置
JP2016132058A (ja) オイルミスト回収構造
KR101725829B1 (ko) 칩 및 오일 제거기능을 가지는 절삭유 공급장치
CN115945346A (zh) 自动浸吹一体机
US10086458B2 (en) Electrical discharge machine of which axis feeding properties are changeable
JP6408316B2 (ja) 加工装置
KR101939489B1 (ko) 가공유 정화장치
WO2023021698A1 (ja) クーラント処理装置
KR20210106161A (ko) 절삭유 부유물질 여과장치
JP3236040U (ja) クーラントリターン装置
WO2023021699A1 (ja) クーラント処理装置
JP5135013B2 (ja) クーラント処理装置
EP4342628A1 (en) Machine tool
KR101478818B1 (ko) 집진 장치
JP2000233342A (ja) 切粉回収装置
KR102559343B1 (ko) 절삭 가공용 슬러지 필터링 장치
JP2022178088A (ja) 工作機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099539.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023531302

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021948424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021948424

Country of ref document: EP

Effective date: 20240201