WO2023274050A1 - 一种用于在基板上形成金属网格的方法 - Google Patents

一种用于在基板上形成金属网格的方法 Download PDF

Info

Publication number
WO2023274050A1
WO2023274050A1 PCT/CN2022/101001 CN2022101001W WO2023274050A1 WO 2023274050 A1 WO2023274050 A1 WO 2023274050A1 CN 2022101001 W CN2022101001 W CN 2022101001W WO 2023274050 A1 WO2023274050 A1 WO 2023274050A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
metal grid
present
reducing agent
Prior art date
Application number
PCT/CN2022/101001
Other languages
English (en)
French (fr)
Inventor
王钧
李阳
江建国
Original Assignee
浙江鑫柔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江鑫柔科技有限公司 filed Critical 浙江鑫柔科技有限公司
Publication of WO2023274050A1 publication Critical patent/WO2023274050A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the invention belongs to the field of touch sensors, and more particularly relates to a method for forming a metal grid on a substrate.
  • Metal grid-based touch sensors have the advantages of excellent flexibility and low manufacturing cost.
  • copper-based metal grid microstructures on substrates are typically fabricated by coatings comprising a UV-curable layer (base layer), a colloidal palladium nanoparticle layer, and a barrier layer, wherein the palladium deposited on top of the UV-curable base layer Nanoparticles can act as catalysts for electroless copper plating.
  • the colloidal palladium nanoparticle solution used as the second layer of the colloidal palladium nanoparticle layer primer needs to be prepared by solution-phase chemical synthesis, which includes mixing, heating, cooling and filtering. multiple steps and may take several days to complete.
  • colloidal palladium nanoparticles based catalyst solutions have a short shelf life due to precipitation, which also leads to inconsistencies in terms of coating quality and catalytic performance in downstream processes.
  • the existing manufacturing process is not only complicated, but also needs to implement strict process control to keep the quality of palladium nanoparticles consistent (such as the size and size distribution of palladium nanoparticles), so that the prepared coating solution can be processed downstream.
  • Processes such as roll coating, UV exposure, wet development and electroless copper plating are performed consistently.
  • the object of the present invention is to overcome the defects of the prior art that the process is complicated and strict process control is required, and to provide a method for forming a metal grid on a substrate, which does not require a solution phase when forming a metal grid.
  • a separate process of chemically synthesizing palladium nanoparticles is a simpler and more economical method.
  • the present invention provides a method for forming a metal grid on a substrate, the method comprising the steps of: (1) sequentially coating a UV curable material, Pd 2 on one surface of the substrate + material, and a protective layer material; (2) subjecting the coated substrate to an exposure and development process to sequentially form a UV curable layer and a Pd 2+ layer on the surface of the substrate according to a desired pattern; (3) reducing the Pd 2+ layer to a Pd 0 layer by a reducing agent; and (4) plating copper on the pattern to form the metal grid.
  • the coating is wet coating.
  • the UV curable material is a positive photoresist or a negative photoresist.
  • the positive photoresist includes a resin material that is soluble in a developer after exposure
  • the negative photoresist includes a resin material that is insoluble in a developer after exposure
  • the Pd 2+ material is a solution containing Pd 2+ .
  • the Pd 2+ material is a solution comprising palladium acetate, palladium sulfate, palladium chloride, any other divalent palladium salt or a combination thereof.
  • the protective layer material is a water-soluble material.
  • the UV curable material and the protective layer material which are not cured are removed during the developing process.
  • the reducing agent is selected from borohydride, hydrazine hydrate, hydrogen, sodium hypophosphite, phosphite, sodium citrate, potassium tartrate, amine compounds, amide compounds, ascorbic acid, One or more of aldehyde compounds, formic acid and alcohol compounds; preferably, the reducing agent exists in a solution form of 5 to 20 mL/L.
  • the present invention also provides a metal grid touch sensor, wherein the metal grid in the metal grid touch sensor is formed by the above method.
  • the advantage of the technical solution of the present invention is at least that it does not require a separate process of synthesizing colloidal palladium nanoparticles, but uses Pd 2+ as the coating material, and then uses a reducing agent to reduce it to Pd 0 in the process of wet deposition. , and then used as a catalyst for electroless copper plating.
  • the method of the present invention not only reduces the complicated process steps of separately synthesizing palladium nanoparticles, but also helps to improve the consistency of the whole process, because the coating solution containing Pd 2+ is more controllable and easier to It is analyzed using sophisticated analysis techniques and is more stable.
  • FIG. 1 is a flowchart illustrating an exemplary method of forming a metal grid in the prior art
  • FIG. 2 is a flowchart illustrating an exemplary method of forming a metal mesh according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram illustrating the result of forming a copper mesh according to a method of an embodiment of the present invention.
  • the present invention provides a method for forming a metal grid on a substrate, the method comprising the steps of: (1) sequentially coating a UV curable material, Pd 2 on one surface of the substrate + material, and a protective layer material; (2) subjecting the coated substrate to an exposure and development process to sequentially form a UV curable layer and a Pd 2+ layer on the surface of the substrate according to a desired pattern; (3) reducing the Pd 2+ layer to a Pd 0 layer by a reducing agent; and (4) plating copper on the pattern to form the metal grid.
  • step (1) different from the prior art, the present invention adopts Pd 2+ material (for example, the Pd 2+ containing material of solution form) as the coating material of the second layer, has saved like this by solution phase chemical synthesis
  • Pd 2+ material for example, the Pd 2+ containing material of solution form
  • the multiple steps of heating, cooling and filtering required to prepare the colloidal palladium nanoparticle solution greatly save the time and economic cost of the manufacturing process.
  • Pd 2+ material of the present invention Pd 2+ can be obtained by dissolving any salt form thereof in a solvent (that is, a solution containing Pd 2+ ), preferably, the salt form of Pd 2+ can be Palladium acetate, palladium sulfate, palladium chloride, any other divalent palladium salts or combinations thereof, etc.
  • the UV curable material can be a positive photoresist or a negative photoresist.
  • the positive photoresist may preferably include a resin material that is soluble in a developer after exposure
  • the negative photoresist may preferably include a resin material that is insoluble in a developer after exposure.
  • Described developing solution is usually the aqueous solution that contains alkaline compound and surfactant, and alkaline compound can be inorganic or organic alkaline compound, and these inorganic and organic alkaline compounds can be used alone or in combination of two or more; And as surface active As an agent, at least one selected from the group consisting of nonionic surfactants, anionic surfactants and cationic surfactants can be used, and these surfactants can be used alone or in combination of two or more.
  • the UV curable material also includes a photoinitiator, for example, in one embodiment of the present invention, the photoinitiator can be selected from acetophenone compounds, benzophenone compounds, triazines At least one of the group consisting of compound, thioxanthone compound and oxime ester compound.
  • acetophenone compounds may include 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 2-(4-methylbenzyl)-2- (Dimethylamino)-1-(4-morpholinophenyl)butan-1-one, etc.
  • benzophenone compounds may include benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethyl benzophenone etc.
  • triazine compounds may include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl) Methyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(3,4-dimethoxy phenyl)vinyl]-1,3,5-triazine and 2,4-bis(trichloromethyl)-6-2-(4-diethylamino-2-methylphenyl)ethenyl ]-1,3,5-triazine etc.
  • thioxanthone compounds may include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone xanthone etc.
  • oxime ester compounds may include o-ethoxycarbonyl- ⁇ -oxyimino-1-phenylpropan-1-one, 1,2-octanedione, 1-(4-phenylthio)benzene base and 2-(o-benzoyl oxime), etc.
  • the protective layer material of the third layer mainly plays a protective role in the exposure stage, and then it will be washed away by the developer in the development stage.
  • the protective layer material can be made using conventional protective layer materials in the art.
  • the protective layer material may be a water-soluble material, so that it can be dissolved in an aqueous developer solution during the development stage.
  • the coating methods of the above three coating materials can preferably be carried out by wet coating, that is, the UV curable material in liquid or solution form, the material containing Pd 2+ , and the protective layer material sequentially coated on one surface of the substrate.
  • step (2) the substrate coated with UV curable material, Pd 2+ material, and protective layer material in sequence is exposed to ultraviolet rays and a mask with a desired pattern is set therebetween, thereby forming a desired pattern on the substrate. pattern. Subsequently, during development, the UV curable material and the protective layer material that are not cured may be removed during development, as described above.
  • step (3) since the Pd 0 layer has the ability to catalyze copper plating, the Pd 2+ layer needs to be converted into a Pd 0 layer, for example, the Pd 2+ layer can be reduced to a Pd 0 layer by a reducing agent .
  • the reducing agent can be a reducing agent in solution form, more preferably, the reducing agent can be selected from reducing borohydrides (such as sodium borohydride), hydrazine hydrate, Hydrogen, sodium hypophosphite, phosphite, sodium citrate, potassium tartrate, amine compounds, amide compounds (such as N,N-dimethylformamide DMF), ascorbic acid, aldehyde compounds (such as formaldehyde), formic acid and one or more of alcohol compounds (such as ethylene glycol); more preferably, the reducing agent can exist in the form of a solution of 5 to 20 mL/L.
  • reducing borohydrides such as sodium borohydride
  • hydrazine hydrate Hydrogen
  • sodium hypophosphite sodium citrate
  • potassium tartrate amine compounds
  • amide compounds such as N,N-dimethylformamide DMF
  • ascorbic acid aldehyde compounds (such as formaldehyde)
  • step (4) since the Pd 2+ in the Pd 2+ composite material has been reduced to Pd 0 in step (2), it can be effectively used as a catalyst for copper plating, so this step only needs to be on the pattern Copper plating, for example, electroless copper plating may be used to form the required metal grid.
  • FIG. 1 shows an exemplary method for forming a metal grid in the prior art
  • Fig. 2 shows Exemplary methods of forming metal meshes according to embodiments of the invention are shown.
  • the present invention also provides a metal grid touch sensor, wherein the metal grid in the metal grid touch sensor is formed by the above method.
  • the method of the present invention to form a metal grid on a substrate does not require a separate process of synthesizing colloidal palladium nanoparticles, but uses Pd 2+ as a coating material, and then wet deposition In the process, a reducing agent is used to reduce it to Pd 0 , which is then used as a catalyst for electroless copper plating.
  • the method of the present invention not only reduces the complex process steps of separately synthesizing palladium nanoparticles, but also helps to improve the consistency of the whole process, because the coating solution containing Pd 2+ is more controllable and easier to It is analyzed using sophisticated analysis techniques and is more stable.
  • a photoresist film containing Irgacure 907 was coated on one surface of the substrate using a Meyer rod, and then dried in an oven at a temperature of 70 °C for 120 seconds to obtain a coating with a thickness of 800 nm; on top of the photoresist film Apply a layer of palladium acetate solution, and then apply a layer of water-soluble material, and use UV with a peak wavelength of 314nm for exposure; after exposure, rinse the substrate with a developer to remove the uncured coating, and then use 10mL/L Neoganth WA was used as a reducing agent to reduce Pd 2+ to Pd 0 , which was finally immersed in an electroless copper plating bath to grow copper grids.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemically Coating (AREA)

Abstract

本发明提供了一种用于在基板上形成金属网格的方法,所述方法包括以下步骤:(1)在所述基板的一个表面上依次涂覆UV可固化材料、包含Pd 2+复合材料、以及保护层材料;(2)将涂覆后的基板进行曝光和显影过程,以按照期望的图案在所述基板的表面上依次形成UV可固化层和Pd 2+层;(3)通过还原剂将所述Pd 2+层还原为Pd 0层;以及(4)在所述图案上镀铜,从而形成所述金属网格。本发明的在基板上形成金属网格的方法不需要单独的合成胶体钯纳米颗粒的过程,而是使用Pd 2+作为涂覆材料,然后在湿法沉积的过程中使用还原剂将其还原为Pd 0,继而用作化学镀铜的催化剂,而且与现有工艺相比还有助于提高整个工艺的一致性。

Description

一种用于在基板上形成金属网格的方法
相关申请的交叉引用
本申请要求于2021年7月2日提交的申请号为202110750248.X的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本发明属于触摸传感器领域,更具体地,涉及一种用于在基板上形成金属网格的方法。
背景技术
基于金属网格的触摸传感器具有出色的柔性和较低的制造成本的优势。当前,通常通过包含UV可固化层(基础层)、胶体钯纳米颗粒层和阻挡层的涂层来制造基板上的铜基金属网格微结构,其中,在UV可固化基础层顶部沉积的钯纳米颗粒可以充当化学镀铜的催化剂。
然而,在现有的制造工艺中,作为第二层的胶体钯纳米颗粒层底涂层所使用的胶体钯纳米颗粒溶液需要通过溶液相化学合成来制备,这包括混合、加热、冷却和过滤等的多个步骤,可能需要几天的时间来完成。另外,由于沉淀,基于胶体钯纳米颗粒的催化剂溶液具有短的保存期限,这也使得在涂层质量和下游工艺的催化性能方面不一致。
基于该原因,现有的制造工艺不仅过程复杂,还需要实施严格的过程控制,以保持钯纳米颗粒的质量一致(例如钯纳米颗粒的尺寸和大小分布),从而使得所配制的涂料溶液在下游工艺,例如辊涂、紫外线暴露、湿显影和化学镀铜等中能够始终如一地进行。
因此,寻找在UV可固化层、即基础层之上引入催化剂层的替代方法具有技术和经济利益。
发明内容
本发明的目的在于克服现有技术的过程复杂且还需要实施严格过程控制等的缺陷,提供一种用于在基板上形成金属网格的方法,使用该方法形成金属网格时不需要溶液相化学合成钯纳米颗粒的单独过程,是一种更为简单经济的方法。
在一方面,本发明提供了一种用于在基板上形成金属网格的方法,所述方法包括以下步骤:(1)在所述基板的一个表面上依次涂覆UV可固化材料、Pd 2+材料、以及保护层材料;(2)将涂覆后的基板进行曝光和显影过程,以按照期望的图案在所述基板的表面上依次形成UV可固化层和Pd 2+层;(3)通过还原剂将所述Pd 2+层还原为Pd 0层;以及(4)在所述图案上镀铜,从而形成所述金属网格。
在本发明的一个实施方式中,所述涂覆为湿法涂覆。
在本发明的一个实施方式中,所述UV可固化材料为正性光刻胶或负性光刻胶。
在本发明的一个实施方式中,所述正性光刻胶包含曝光后可溶于显影液的树脂材料,所述负光刻胶包含曝光后不溶于显影液的树脂材料。
在本发明的一个实施方式中,所述Pd 2+材料为包含Pd 2+的溶液。
在本发明的一个实施方式中,所述Pd 2+材料为包含醋酸钯、硫酸钯、氯化钯、其他任何二价钯盐或其组合的溶液。
在本发明的一个实施方式中,所述保护层材料为水溶性材料。
在本发明的一个实施方式中,未被固化的所述UV可固化材料和所述保护层材料在显影过程中被去除。
在本发明的一个实施方式中,所述还原剂选自硼氢化物、水合肼、氢气、次亚磷酸钠、亚磷酸盐、柠檬酸钠、酒石酸钾、胺类化合物、酰胺类化合物、抗坏血酸、醛类化合物、甲酸和醇类化合物中的一种或多种;优选地,所述还原剂以5至20mL/L的溶液形式存在。
在另一方面,本发明还提供了一种金属网格触摸传感器,所述金属网格触摸传感器中的金属网格通过上述方法来形成。
本发明的技术方案的优点至少在于:不需要单独的合成胶体钯纳米颗粒的过程,而是使用Pd 2+作为涂覆材料,然后在湿法沉积的过程中使用还原剂将其还原为Pd 0,继而用作化学镀铜的催化剂。与现有工艺相比,本发明的方法不仅减少了单独合成钯纳米颗粒的复杂工艺步骤,而且还有助于提高整个工艺的一致性,因为含Pd 2+的涂料溶液更可控,更易于使用复杂的分析技术进行分析,并且更加稳定。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是示出现有技术中的形成金属网格的示例性方法的流程图;
图2是示出根据本发明实施方式的形成金属网格的示例性方法的流程图;以及
图3是示出根据本发明实施例的方法形成铜网格的结果的示意图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。还应当理解,诸如在通常 使用的字典中定义的那些术语应该被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且不会以理想化或过度形式化的含义来解释,除非在此明确地定义。
在一方面,本发明提供了一种用于在基板上形成金属网格的方法,所述方法包括以下步骤:(1)在所述基板的一个表面上依次涂覆UV可固化材料、Pd 2+材料、以及保护层材料;(2)将涂覆后的基板进行曝光和显影过程,以按照期望的图案在所述基板的表面上依次形成UV可固化层和Pd 2+层;(3)通过还原剂将所述Pd 2+层还原为Pd 0层;以及(4)在所述图案上镀铜,从而形成所述金属网格。
对于步骤(1),与现有技术不同,本发明采用Pd 2+材料(例如,溶液形式的含Pd 2+材料)作为第二层的涂覆材料,这样省去了通过溶液相化学合成来制备胶体钯纳米颗粒溶液时所需的加热、冷却和过滤等的多个步骤,大幅节省了制造工艺的时间和经济成本。对于本发明的上述Pd 2+材料,Pd 2+可以通过将其任意的盐形式溶于溶剂中来得到(即包含Pd 2+的溶液),优选地,Pd 2+的所述盐形式可以为醋酸钯、硫酸钯、氯化钯、其他任何二价钯盐或其组合等。
对于作为第一层(或称为基础层)的UV可固化材料,所述UV可固化材料可以为正性光刻胶或负性光刻胶。在一个实施方式中,所述正性光刻胶可以优选地包含曝光后可溶于显影液的树脂材料,并且所述负光刻胶可以优选地包含曝光后不溶于显影液的树脂材料。所述显影液通常是含有碱性化合物和表面活性剂的水溶液,碱性化合物可以是无机或有机碱性化合物,这些无机和有机碱性化合物可以单独使用或两种以上组合使用;而作为表面活性剂,可以使用选自由非离子表面活性剂、阴离子表面活性剂和阳离子表面活性剂所组成的组中的至少一种,这些表面活性剂可以单独使用,也可以两种以上组合使用。
另外,所述UV可固化材料中还包含光引发剂,例如,在本发明的一个实施方式中,所述光引发剂可以选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。苯乙酮类化合物的具体实例可以包括2-羟基-2-甲基-1-苯基丙-1-酮、二乙氧基苯乙酮和2-(4-甲基苄基)-2-(二甲基氨基)-1-(4-吗啉代苯基)丁-1-酮等。二苯甲酮类化合物的具体实例可以包括二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4'-甲基二 苯基硫醚和2,4,6-三甲基二苯甲酮等。三嗪类化合物的具体实例可以包括2,4-双(三氯甲基)-6-(4-甲氧基苯基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-(4-甲氧基萘基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-[2-(3,4-二甲氧基苯基)乙烯基]-1,3,5-三嗪和2,4-双(三氯甲基)-6-2-(4-二乙基氨基-2-甲基苯基)乙烯基]-1,3,5-三嗪等。噻吨酮类化合物的具体实例可以包括2-异丙基噻吨酮、2,4-二乙基噻吨酮、2,4-二氯噻吨酮和1-氯-4-丙氧基噻吨酮等。肟酯类化合物的具体实例可以包括邻乙氧基羰基-α-氧基亚氨基-1-苯基丙-1-酮、1,2-辛二酮、1-(4-苯硫基)苯基和2-(邻苯甲酰肟)等。
作为第三层的保护层材料,其主要是在曝光阶段起到保护作用,随后在显影阶段也会被上述显影液洗去。根据本发明,所述保护层材料可以使用本领域中常规的保护层材料来进行。在一个优选的实施方式中,所述保护层材料可以为水溶性材料,以使其能够在显影阶段溶于含水的显影液中。
根据本发明,对上述三种涂覆材料的涂覆方式可以优选地采用湿法涂覆的方式进行,即可以将液体或溶液形式的UV可固化材料、包含Pd 2+材料、以及保护层材料依次涂覆在所述基板的一个表面上。
对于步骤(2),即将依次涂覆有UV可固化材料、Pd 2+材料、以及保护层材料的所述基板暴露于紫外线并在其间设置具有期望图案的掩模,从而在基板上形成期望的图案。随后,在显影过程中,如上所述,未被固化的所述UV可固化材料和所述保护层材料可以在显影过程中被去除。
对于步骤(3),由于Pd 0层才具有催化镀铜的能力,因而,需要将Pd 2+层转化为Pd 0层,例如,可以通过还原剂将所述Pd 2+层还原为Pd 0层。在本发明的一个优选实施方式中,所述还原剂可以为溶液形式的还原剂,更优选地,所述还原剂可以选自具有还原性的硼氢化物(如硼氢化钠)、水合肼、氢气、次亚磷酸钠、亚磷酸盐、柠檬酸钠、酒石酸钾、胺类化合物、酰胺类化合物(如N,N-二甲基甲酰胺DMF)、抗坏血酸、醛类化合物(如甲醛)、甲酸和醇类化合物(如乙二醇)中的一种或多种;更优选地,所述还原剂可以以5至20mL/L的溶液形式存在。
对于步骤(4),由于Pd 2+复合材料中的Pd 2+已在步骤(2)中被还原为Pd 0,其可以有效地作为镀铜的催化剂,因此该步骤只需在所述图案上进行镀铜、例 如采用化学镀铜的方式即可,从而形成所需的金属网格。
本说明书的附图中示出了现有技术和根据本发明的形成金属网格方法的流程图,其中图1示出了现有技术中的形成金属网格的示例性方法;以及图2示出了根据本发明实施方式的形成金属网格的示例性方法。
在另一方面,本发明还提供了一种金属网格触摸传感器,所述金属网格触摸传感器中的金属网格通过上述方法来形成。
综上所述,本发明的在基板(例如柔性基板)上形成金属网格的方法不需要单独的合成胶体钯纳米颗粒的过程,而是使用Pd 2+作为涂覆材料,然后在湿法沉积的过程中使用还原剂将其还原为Pd 0,继而用作化学镀铜的催化剂。与现有工艺相比,本发明的方法不仅减少了单独合成钯纳米颗粒的复杂工艺步骤,而且还有助于提高整个工艺的一致性,因为含Pd 2+的涂料溶液更可控,更易于使用复杂的分析技术进行分析,并且更加稳定。
实施例
使用Meyer棒在基板的一个表面上涂覆含有Irgacure 907的光刻胶膜,然后在烘箱中于70℃的温度下干燥120秒,以得到厚度为800nm的涂层;在光刻胶膜的顶部涂一层醋酸钯溶液,然后再涂一层水溶性材料,使用具有峰波长为314nm的UV进行曝光;曝光后,用显影液冲洗基板以去除未固化的涂层,然后用10mL/L的Neoganth WA作为还原剂将Pd 2+还原为Pd 0,最后将其浸入化学镀铜浴中以生长铜网格。
实施例的结果如图3所示,其中示出了按照本发明上述方法制备的铜金属网格样品,图中所示样品尺寸为5cm x 5cm,而作为参考样品在不使用还原剂时,则无法在薄膜基板上制备金属铜结构。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种用于在基板上形成金属网格的方法,其特征在于,所述方法包括以下步骤:
    (1)在所述基板的一个表面上依次涂覆UV可固化材料、Pd 2+材料、以及保护层材料;
    (2)将涂覆后的基板进行曝光和显影过程,以按照期望的图案在所述基板的表面上依次形成UV可固化层和Pd 2+层;
    (3)通过还原剂将所述Pd 2+层还原为Pd 0层;以及
    (4)在所述图案上镀铜,从而形成所述金属网格。
  2. 根据权利要求1所述的方法,其中,所述涂覆为湿法涂覆。
  3. 根据权利要求1所述的方法,其中,所述UV可固化材料为正性光刻胶或负性光刻胶。
  4. 根据权利要求3所述的方法,其中,所述正性光刻胶包含曝光后可溶于显影液的树脂材料,所述负光刻胶包含曝光后不溶于显影液的树脂材料。
  5. 根据权利要求1所述的方法,其中,所述Pd 2+材料为包含Pd 2+的溶液。
  6. 根据权利要求5所述的方法,其中,所述Pd 2+材料为包含醋酸钯、硫酸钯、氯化钯、其他任何二价钯盐或其组合的溶液。
  7. 根据权利要求1所述的方法,其中,所述保护层材料为水溶性材料。
  8. 根据权利要求1所述的方法,其中,未被固化的所述UV可固化材料和所述保护层材料在显影过程中被去除。
  9. 根据权利要求1所述的方法,其中,所述还原剂选自硼氢化物、水合肼、氢气、次亚磷酸钠、亚磷酸盐、柠檬酸钠、酒石酸钾、胺类化合物、酰胺类化合物、抗坏血酸、醛类化合物、甲酸和醇类化合物中的一种或多种;优选地,所述还原剂以5至20mL/L的溶液形式存在。
  10. 一种金属网格触摸传感器,其特征在于,所述金属网格触摸传感器的金属网格通过根据前述权利要求中任一项所述的方法来形成。
PCT/CN2022/101001 2021-07-02 2022-06-24 一种用于在基板上形成金属网格的方法 WO2023274050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110750248.X 2021-07-02
CN202110750248.XA CN113485581A (zh) 2021-07-02 2021-07-02 一种用于在基板上形成金属网格的方法

Publications (1)

Publication Number Publication Date
WO2023274050A1 true WO2023274050A1 (zh) 2023-01-05

Family

ID=77939562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101001 WO2023274050A1 (zh) 2021-07-02 2022-06-24 一种用于在基板上形成金属网格的方法

Country Status (2)

Country Link
CN (1) CN113485581A (zh)
WO (1) WO2023274050A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485581A (zh) * 2021-07-02 2021-10-08 浙江鑫柔科技有限公司 一种用于在基板上形成金属网格的方法
CN113845805A (zh) * 2021-10-18 2021-12-28 浙江鑫柔科技有限公司 一种光刻胶保护材料以及使用其形成金属网格的方法
CN114489373B (zh) * 2021-12-24 2024-08-09 浙江鑫柔科技有限公司 一种用于在基材上形成金属网格的方法和装置
CN115992354A (zh) * 2022-11-16 2023-04-21 浙江鑫柔科技有限公司 一种柔性基板上形成金属膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127154A (ja) * 1990-09-19 1992-04-28 Nisshinbo Ind Inc 導電パターンの形成方法
CN104269221A (zh) * 2014-08-29 2015-01-07 上海蓝沛新材料科技股份有限公司 一种利用含钯化合物的墨水制备透明导电膜的方法
CN104376899A (zh) * 2014-10-14 2015-02-25 业成光电(深圳)有限公司 电子装置、触控屏、透明导电膜及透明导电膜的制备方法
CN111933329A (zh) * 2020-08-13 2020-11-13 江苏软讯科技有限公司 一种双面金属网格柔性导电膜及其制作方法
CN113485581A (zh) * 2021-07-02 2021-10-08 浙江鑫柔科技有限公司 一种用于在基板上形成金属网格的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1268807A (en) * 1969-08-01 1972-03-29 M L Alkan Ltd Improvements in and relating to electroless plating
US5053318A (en) * 1989-05-18 1991-10-01 Shipley Company Inc. Plasma processing with metal mask integration
KR100980427B1 (ko) * 2008-04-10 2010-09-07 주식회사 나노스페이스 무전해 금속도금의 전처리방법, 전처리제 및 이를 이용한무전해 금속도금방법
KR20140054735A (ko) * 2012-10-29 2014-05-09 삼성전기주식회사 터치패널 및 이의 제조방법
KR101535981B1 (ko) * 2015-02-03 2015-07-14 에스맥 (주) 터치 스크린 패널 제작 방법
JP6388558B2 (ja) * 2015-05-29 2018-09-12 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、および、タッチパネル
KR20180112818A (ko) * 2016-03-11 2018-10-12 후지필름 가부시키가이샤 피도금층 전구체층 부착 필름, 패턴 형상 피도금층 부착 필름, 도전성 필름, 터치 패널
WO2019188206A1 (ja) * 2018-03-26 2019-10-03 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、タッチパネル
KR102097539B1 (ko) * 2018-08-29 2020-05-26 와이엠티 주식회사 메탈 메쉬가 형성된 디스플레이 소자 및 그 제조방법
CN109487249B (zh) * 2019-01-03 2020-12-18 电子科技大学 一种化学镀铜活化剂及其制备方法和基于该活化剂的全加成制作线路的方法
CN109939678A (zh) * 2019-02-14 2019-06-28 北京氦舶科技有限责任公司 一种单原子钯催化剂及其制备方法和应用
CN112735634B (zh) * 2021-01-11 2023-03-14 江苏软讯科技有限公司 一种具有金属网格的导电膜及其生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127154A (ja) * 1990-09-19 1992-04-28 Nisshinbo Ind Inc 導電パターンの形成方法
CN104269221A (zh) * 2014-08-29 2015-01-07 上海蓝沛新材料科技股份有限公司 一种利用含钯化合物的墨水制备透明导电膜的方法
CN104376899A (zh) * 2014-10-14 2015-02-25 业成光电(深圳)有限公司 电子装置、触控屏、透明导电膜及透明导电膜的制备方法
CN111933329A (zh) * 2020-08-13 2020-11-13 江苏软讯科技有限公司 一种双面金属网格柔性导电膜及其制作方法
CN113485581A (zh) * 2021-07-02 2021-10-08 浙江鑫柔科技有限公司 一种用于在基板上形成金属网格的方法

Also Published As

Publication number Publication date
CN113485581A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2023274050A1 (zh) 一种用于在基板上形成金属网格的方法
CA1262518A (en) Selective metallization process, additive method for manufacturing printed circuit boards, and composition for use therein
KR100823718B1 (ko) 전자파 차폐층 제조시 무전해도금에 대한 촉매 전구체수지조성물, 이를 이용한 금속패턴 형성방법 및 이에 따라제조된 금속패턴
JP3503546B2 (ja) 金属パターンの形成方法
JPH07110921B2 (ja) 重合体フイルムの選択的な触媒活性化
CN113893876B (zh) 一种化学镀铜催化剂以及使用其形成金属网格的方法
KR102035999B1 (ko) 비-전도성 기판의 표면을 도금하는 방법
TW201026908A (en) Catalyst solution for plating, method for plating and method for manufacturing laminate having metal film
JPH01503101A (ja) 水性アルカリで現像及び剥離し得るフォトレジストを用いる、印刷配線板のアディテイブ製造方法
US20060019076A1 (en) Method for forming highly conductive metal pattern on flexible substrate and EMI filter using metal pattern formed by the method
WO2023065801A1 (zh) 一种光刻胶保护材料以及使用其形成金属网格的方法
US4451505A (en) Method of producing printed circuit boards
JP4734637B2 (ja) 表面反応性固体,表面反応性固体の製造方法,表面反応性固体を用いた配線基板及び配線基板の製造方法
CN111548489A (zh) 一种光敏性材料及在制备柔性线路板中的应用及制备方法
JP2000073176A (ja) シリルハイドライド機能性樹脂上への非電解金属析出法
US20060183061A1 (en) Method for forming positive metal pattern and EMI filter using the same
JPS6113245A (ja) スピンキヤスタブルレジスト組成物およびその使用方法
WO2013065628A1 (ja) 金属層を有する積層体の製造方法
SE508280C2 (sv) Förfarande för att öka vidhäftningsförmågan hos ledande material till ytskikt av polymermaterial
EP0163089B1 (en) Process for activating a substrate for electroless deposition of a conductive metal
WO2012133032A1 (ja) パターン状金属膜を有する積層体の製造方法、被めっき層形成用組成物
JP2012214895A (ja) パターン状金属膜を有する積層体の製造方法、被めっき層形成用組成物
JPH02305969A (ja) 無電解めつきの前処理方法
JP3390053B2 (ja) 無電解法でブラックマトリックスを製造する方法
JP2001168574A (ja) 透視性電磁波シールド材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831864

Country of ref document: EP

Kind code of ref document: A1