WO2023272871A1 - 钽钨合金粉末及其制备方法 - Google Patents

钽钨合金粉末及其制备方法 Download PDF

Info

Publication number
WO2023272871A1
WO2023272871A1 PCT/CN2021/110476 CN2021110476W WO2023272871A1 WO 2023272871 A1 WO2023272871 A1 WO 2023272871A1 CN 2021110476 W CN2021110476 W CN 2021110476W WO 2023272871 A1 WO2023272871 A1 WO 2023272871A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
heat treatment
powder
product
tungsten alloy
Prior art date
Application number
PCT/CN2021/110476
Other languages
English (en)
French (fr)
Inventor
李小平
张亚军
李兴钰
拓万勇
马晶
刘磊
车赛丽
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Priority to IL309426A priority Critical patent/IL309426A/en
Priority to EP21947813.8A priority patent/EP4364871A1/en
Priority to KR1020247002145A priority patent/KR20240027010A/ko
Publication of WO2023272871A1 publication Critical patent/WO2023272871A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of materials, and in particular relates to tantalum-tungsten alloy powder and a preparation method thereof.
  • Tantalum-tungsten alloy is a rare metal alloy material with high density, high melting point and high strength. It has high high temperature strength, good ductility, weldability and excellent corrosion resistance. It is suitable for high temperature, high pressure and corrosion resistance. In recent years, it has developed rapidly in industry, especially in the chemical industry, aerospace and atomic energy industries. It is a very important engineering and functional material. Tungsten forms a replacement continuous solid solution with tantalum in tantalum, which plays a role of solid solution strengthening and significantly improves the mechanical properties of tantalum metal at room temperature and high temperature.
  • tantalum-tungsten alloy materials are conventionally processed by hot extrusion, forging, blanking, radial forging, rolling, etc., and then processed into required structural parts by machining.
  • 3D printing can be used to realize the special-shaped personalized products.
  • domestic research on pure tantalum spherical powder is relatively mature, while research on tantalum-tungsten alloy spherical powder is still immature.
  • the tantalum-tungsten alloy spherical powder that meets the requirements of 3D printing is prepared by adopting this scheme.
  • tantalum-tungsten alloys are prone to oxygen absorption cracking and insufficient sphericity of the powder to form printing defects.
  • the invention provides a tantalum-tungsten alloy powder for additive manufacturing and a preparation method thereof.
  • the tantalum-tungsten alloy powder provided by the present invention has uniform alloy composition, concentrated particle size distribution (for example, particle size range of 15-53 ⁇ m), high sphericity, and low oxygen content (for example, oxygen content ⁇ 300ppm).
  • the tantalum-tungsten alloy spherical powder of the invention can meet the technical requirements of 3D printing (additive manufacturing).
  • the tantalum-tungsten alloy powder of the present invention is used in 3D printing technology, which can realize the printing of personalized and complex structural parts, and further promote the application of tantalum-tungsten alloy in the fields of chemical industry, aerospace, weapons and atomic energy industries.
  • the present disclosure provides a method for preparing tantalum-tungsten alloy powder, comprising the following steps:
  • the product of the previous step is subjected to hydrogenation heat treatment under a hydrogen atmosphere;
  • the product of the previous step is subjected to dehydrogenation heat treatment under vacuum;
  • magnesium powder for example, by 0.1-1wt% to the product of the previous step, and carry out oxygen-reducing heat treatment;
  • Plasma spheroidization is performed on the product of the previous step to make the powder sphericity reach more than 99%.
  • the spherical tantalum-tungsten alloy powder obtained has uniform composition, concentrated particle size distribution, high sphericity, and low oxygen content.
  • the forging temperature is 800-900°C.
  • the hydrogen pressure of the hydrogen atmosphere is 0.16-0.19 MPa.
  • the temperature of the hydrogenation heat treatment is 600-900°C.
  • the temperature of the dehydrogenation heat treatment is 600-900°C.
  • the temperature of the oxygen-reducing heat treatment is 500-1000°C.
  • hydrothermal treatment includes the following operations:
  • T 1 500-800°C (eg 600-700°C);
  • T 2 600-900°C (eg 700-800°C), T 2 -T 1 ⁇ 50.
  • dehydrogenation heat treatment includes the following operations:
  • the oxygen-reducing heat treatment includes the following operations:
  • a pickling step is further included between the forging step and the hydrotreating step.
  • a pickling step is also included between the oxygen reduction treatment and the plasma spheroidization treatment.
  • the acid used for pickling is a mixed acid of hydrofluoric acid, nitric acid and hydrochloric acid.
  • the tantalum-tungsten alloy includes tantalum element and tungsten element, wherein the content of tantalum element is 85-95wt%, and the content of tungsten element is 5-15wt%.
  • the particle size range of the tantalum-tungsten alloy powder is 15-60 ⁇ m, and the oxygen content is ⁇ 300 ppm.
  • the edge gas for plasma spheroidization is He gas and Ar gas
  • the carrier gas for powder feeding is Ar
  • the center gas is Ar gas
  • the plasma power is 35-40KW
  • the powder feeding rate is 25-30g/min.
  • the above-mentioned steps are performed sequentially according to the sequence described in the text.
  • the execution order of the above-mentioned steps is arbitrary, and is not limited to the order described in the text.
  • the present disclosure provides a tantalum-tungsten alloy powder prepared by any one of the methods described above.
  • the present disclosure provides an additive manufacturing method, comprising using the above-mentioned tantalum-tungsten alloy powder for additive manufacturing (such as 3D printing).
  • the present disclosure provides an additive manufacturing product prepared by the above additive manufacturing method.
  • the tantalum-tungsten alloy spherical powder manufactured by the present invention adopts 3D printing technology, which can realize individualization and small-batch processing of special-shaped parts, improve material utilization rate, and reduce manufacturing cost.
  • plasma spheroidization technology is to spray metal powder into the induction plasma flow. At extremely high temperature, these powders will melt immediately and then automatically become spherical under the action of surface tension. These spherical droplets of liquid metal cool and harden into spherical particles as soon as they leave the plasma stream.
  • Fig. 1 is the enlarged 100 times photo of the spherical tantalum-tungsten alloy powder of embodiment 1;
  • Fig. 2 is the enlarged 500 times photo of the spherical tantalum-tungsten alloy powder of embodiment 1;
  • the reagents, methods and equipment used in the present invention are conventional food-grade reagents, methods and equipment in the art.
  • test conditions used in the examples of the present invention are conventional test conditions in the art.
  • reagents used in the examples of the present invention are commercially available.
  • Ingot casting Use ALD1200KW high-vacuum electron beam furnace to melt Ta10W tantalum-tungsten alloy (Ta90wt%-W10wt%) ingot, and repeat the smelting twice to make the unevenness of tungsten within 10%.
  • Powder sieving sieve the product from the previous step with a gas protection sieving machine, and sieve out tantalum-tungsten alloy powder with a particle size range of 15-53 ⁇ m;
  • Dehydrogenation treatment put the product of the previous step into the reaction bomb for dehydrogenation treatment, specifically, vacuumize to 10 -6 kPa, and the dehydrogenation heat treatment includes:
  • Oxygen reduction according to 0.2-0.8wt% of the weight of the product in the previous step, magnesium powder is added thereto, and heat treatment is carried out in an argon environment atmosphere.
  • the parameters include:
  • Plasma spheroidization Plasma spheroidization technology is used to spheroidize the product of the previous step.
  • the plasma spheroidization parameters are as follows: side gas He60slpm, side gas Ar50slpm, powder carrier gas Ar4slpm, center gas Ar18slpm, plasma power 40KW, delivery Powder rate 30g/min.
  • Ingot casting use ALD600KW high vacuum electron beam furnace to melt Ta10W tantalum-tungsten alloy (Ta90wt%-W10wt%) ingot, and repeat the smelting twice to make the unevenness of tungsten within 10%.
  • Crushing the product of the previous step is crushed with a jaw crusher, and crushed to a powder with an average particle size of 0-100 ⁇ m;
  • Powder sieving sieve the product from the previous step with a gas protection sieving machine, and sieve out tantalum-tungsten alloy powder with a particle size range of 15-53 ⁇ m;
  • Dehydrogenation treatment put the product of the previous step into the reaction bomb for dehydrogenation treatment, specifically, vacuumize to 10 -6 kPa, and the dehydrogenation heat treatment includes:
  • Oxygen reduction according to 0.5wt% of the product weight of the previous step, magnesium powder is doped therein, and heat treatment is carried out in an argon environment atmosphere.
  • the parameters include:
  • Plasma spheroidization Plasma spheroidization technology is used to spheroidize the product of the previous step.
  • the plasma spheroidization parameters are as follows: side gas He60slpm, side gas Ar50slpm, powder carrier gas Ar4slpm, center gas Ar18slpm, plasma power 40KW, delivery Powder rate 30g/min.
  • Plasma spheroidization equipment is used to spheroidize the above-mentioned tantalum powder.
  • the plasma torch is a DC plasma torch
  • the working gas is argon
  • the plasma spheroidizing power is 5KW
  • the working gas flow is 20L/min
  • the side gas flow is 100L/min
  • the system pressure is 80Kpa
  • the tantalum powder after spheroidization The oxygen content was 400 ppm.
  • the spheroidized tantalum powder is screened by vibrating screening equipment, wherein the mesh number of the screen is 100 mesh, and the tantalum powder with a particle size of 150 ⁇ m or less is obtained.
  • the tantalum powder whose particle size is less than or equal to 150 ⁇ m is classified by an airflow classifier protected by argon gas to obtain spherical powder with a particle size distribution in the range of 53-150 ⁇ m.
  • the working pressure is 6.5kg
  • the working frequency of the first-level and second-level is 40Hz and 40Hz respectively.
  • the primary tantalum powder after airflow shaping is pickled with a mixed acid of HNO 3 and HF (the volume ratio of HNO 3 , HF and water is 4:1:20) to remove metal impurities, dried and sieved to obtain pickled 13.46kg of tantalum powder; then heat-treat the pickled tantalum powder under 10 -1 Pa vacuum condition, keep it at 1100°C for 60 minutes, and finally cool down, passivate, and take out the furnace; 1.3% magnesium powder is mixed, then heated to 750°C under the protection of inert gas, kept for 2 hours, and then evacuated for 3 hours, finally cooled, passivated, and released from the furnace, washed with nitric acid to remove excess magnesium and magnesium oxide, and then used Wash with deionized water until neutral, dry and sie
  • Fig. 1 and Fig. 2 are the photographs of the spherical tantalum-tungsten alloy powder of embodiment 1 enlarged 100 times and 500 times respectively. As shown in Figures 1-2, the spherical tantalum-tungsten alloy powder of Example 1 has a narrow particle size distribution and good sphericity.
  • Tantalum Tungsten Alloy Powder 99.6 142 Comparative example 1 Tantalum powder 99.7 325 Comparative example 2 Tantalum powder / 180
  • the tantalum-tungsten alloy powder prepared by the specific process of the present disclosure in Examples 1-2 has higher sphericity and lower oxygen content.
  • the tantalum-tungsten alloy powder prepared by the specific process of the present disclosure in Examples 1-2 has a narrow particle size distribution.
  • the tantalum-tungsten alloy powder prepared by the present disclosure has one or more of the following advantages:
  • the tantalum-tungsten alloy spherical powder manufactured by the present invention adopts 3D printing technology, which can realize individualized and small-batch processing of special-shaped parts, improve material utilization rate, and reduce manufacturing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备钽钨合金粉末的方法,包括以下步骤:提供钽钨合金铸锭;将所述钽钨合金铸锭熔炼反复熔炼多次;锻造上一步产物;将上一步产物至于氢气气氛下进行氢化热处理;机械破碎上一步产物,获得粗粉末;从粗粉末中筛分出粒径范围在aμm-bμm的粉末,a=10~20,b=50~60;将上一步产物在真空下进行脱氢热处理;向上一步产物中加入镁粉,进行降氧热处理;对上一步产物进行等离子球化处理,使粉末球形度达到99%以上。

Description

钽钨合金粉末及其制备方法 技术领域
本发明属于材料领域,具体涉及钽钨合金粉末及其制备方法。
背景技术
钽钨合金是一种高密度、高熔点、高强度的稀有金属合金材料,具有很高的高温强度、良好的延展性、可焊性和优良的耐腐蚀性能,适用于高温、高压、耐腐蚀等工作环境,近年来在工业上的发展很快,特别是在化工、航天和原子能工业等方面应用十分广泛,是一种十分重要的工程和功能材料。钨在钽中与钽形成置换式连续固溶体,起到固溶强化的作用,显著提高钽金属的室温和高温力学性能。
目前对于钽钨合金材料常规采用热加工挤压、锻造开坯,经过径锻、轧制等方式加工成坯料,后经过机加工等方式加工成所需要架构零部件。近几年随着3D打印的技术的发展,对于异形个性化要求产品,可以采用3D打印的方式来实现。国内目前对于纯钽球形粉的研究相对成熟,对于钽钨合金球形粉的研究尚不成熟。通过采用此方案制备出满足3D打印要求的钽钨合金球形粉。
发明内容
发明人发现,增材制造过程中,钽钨合金容易吸氧开裂和粉末球形度不够形成打印缺陷。
本发明提供一种增材制造用钽钨合金粉末及其制备方法。本发明提供的钽钨合金粉末,其合金成份均匀、粒度分布集中(例如粒径范围15-53μm)、球形度高、氧含量低(例如氧含量≤300ppm)。本发明的钽钨合金球形粉末可满足3D打印(增材制造)工艺要求。将本发明钽钨合金粉末用于3D打印技术,能够实现个性化、结构复杂零件的打印,进而推进钽钨合金在化工、航天、兵器和原子能工业等领域应用。
本公开提供一种制备钽钨合金粉末的方法,包括以下步骤:
提供钽钨合金铸锭;
将所述钽钨合金铸锭熔炼反复熔炼多次;
锻造上一步产物;
将上一步产物至于氢气气氛下进行氢化热处理;
机械破碎上一步产物,获得粗粉末;
从粗粉末中筛分出粒径范围在aμm-bμm的粉末,a=10~20,b=50~60;
将上一步产物在真空下进行脱氢热处理;
向上一步产物中加入镁粉(例如按0.1-1wt%添加),进行降氧热处理;
对上一步产物进行等离子球化处理,使粉末球形度达到99%以上。
采用上述特定工艺顺序,即制坯、氢化、破碎、脱氢、降氧、酸洗、等离子球形化处理,获得的球形钽钨合金粉末具有成份均匀、粒度分布集中、球形度高、氧含量低的优点。
在一些实施方案中,锻造温度为800~900℃。
在一些实施方案中,氢气气氛的氢气压力为0.16~0.19MPa。
在一些实施方案中,氢化热处理的温度为600~900℃。
在一些实施方案中,脱氢热处理的温度为600~900℃。
在一些实施方案中,降氧热处理的温度为500~1000℃。
在一些实施方案中,氢化热处理包括以下操作:
在T 1热处理3~5小时(例如4小时),T 1=500~800℃(例如600-700℃);
在T 2热处理0.5-2.5小时(例如1-2小时),T 2=600~900℃(例如700~800℃),T 2-T 1≥50。
在一些实施方案中,脱氢热处理包括以下操作:
在600-700℃(例如650℃)热处理60-90min(例如70~80min);
在880-920℃(例如900℃)热处理120-180min(例如140~160min)。
在一些实施方案中,降氧热处理包括以下操作:
在500-650℃(例如550~600℃)热处理60-90min(例如70~80min);
在800-900℃(例如850℃)热处理700-800min(例如750min)。
在一些实施方案中,在锻造步骤和氢化处理步骤之间,还包括酸洗的步骤。
在一些实施方案中,在降氧处理和等离子球化处理之间,还包括酸洗的步骤。
在一些实施方案中,酸洗使用的酸为氢氟酸、硝酸和盐酸的混合酸。
在一些实施方案中,所述钽钨合金包括钽元素和钨元素,其中钽元素的含量为85~95wt%,钨元素的含量为5~15wt%。
在一些实施方案中,所述钽钨合金粉末的粒径范围为15-60μm,氧含量<300ppm。
在一些实施方案中,等离子球化处理的边气为He气和Ar气、送粉载气为Ar、 中心气Ar气、等离子体功率35-40KW、送粉速率25-30g/min。
在一些实施方案中,按照文字记载的顺序依次实施上述各个步骤。
在一些实施方案中,上述各步骤的实施循序是任意的,不限于文字记载的顺序。
在一些方面,本公开提供一种钽钨合金粉末,由上述任一项所述的方法制备获得。
在一些方面,本公开提供一种增材制造方法,包括使用上述钽钨合金粉末进行增材制造(例如3D打印)。
在一些方面,本公开提供一种增材制造产品,由上述增材制造的方法制备获得。
本发明的有益效果:
目前采用常规工艺无法实现部分个性化、异形件产品加工。对于3D打印用钽钨合金球形钽粉目前尚无制备技术。
本发明一个或多个实施方案具有以下一个或多个有益效果:
(1)钽钨合金粉末的合金成份均匀;
(2)钽钨合金粉末的粒度分布集中;
(3)钽钨合金粉末的球形度高;
(4)钽钨合金粉末的氧含量低。
(5)本发明制造的钽钨合金球形粉,采用3D打印技术,可以实现个性化、小批量异形件的加工,提高材料利用率,降低制造成本。
术语说明
术语“等离子球化技术”是将金属粉体喷入感应等离子体流,在极高的温度下,这些粉体会立刻熔化,然后在表面张力的作用下自动变成球形。而这些球形的液态金属滴一旦离开等离子流就会立即冷却、硬化成球形的颗粒。
附图说明
图1是实施例1的球形钽钨合金粉末的放大100倍照片;
图2是实施例1的球形钽钨合金粉末的放大500倍照片;
具体实施方式
现在将详细提及本发明的具体实施方案。尽管结合这些具体的实施方案描述本发 明,但应认识到不打算限制本发明到这些具体实施方案。相反,这些实施方案意欲覆盖可包括在由权利要求限定的发明精神和范围内的替代、改变或等价实施方案。在下面的描述中,阐述了大量具体细节以便提供对本发明的全面理解。本发明可在没有部分或全部这些具体细节的情况下被实施。在其它情况下,为了不使本发明不必要地模糊,没有详细描述熟知的工艺操作。
当与本说明书和附加权利要求中的“包括”、“方法包括”、或类似语言联合使用时,单数形式“某”、“某个”、“该”包括复数引用,除非上下文另外清楚指明。除非另外定义,本文中使用的所有技术和科学术语具有本发明所属技术领域的普通技术人员通常理解的相同含义。
除非特别说明,本发明采用的试剂、方法和设备为本领域常规食品级试剂、方法和设备。
除非特别说明,本发明实施例所用试验条件为本领域常规试验条件。除非特别说明,本发明实施例所用试剂均为市购。
实施例1
1)铸锭:使用ALD1200KW高真空电子束炉熔炼Ta10W钽钨合金(Ta90wt%-W10wt%)铸锭,反复2次熔炼,使钨的不均度在10%以内。
2)锻造:对1)得到的铸锭进行加热进行锻造,锻造温控850℃,锻造至50×120×Lmm,充分破碎铸态晶粒,获得破碎的内部组织;
3)机加工:对2)得到的锻坯车削两端面,单表车削1.5mm,铣削4边,彻底去除锻造折叠等缺陷;
4)酸洗:按HF(>40%):HNO 3(65%-68%):HCl(36%-38%)=1:2:3(体积比)配比酸液,清洗上一步产物,去除表面杂质;
5)氢化:将上一步产物装入反应弹中,抽真空至10 -6kPa,升温:600℃/4小时,保温800℃/2小时,通氢气至压力0.19MPa。降温吸氢,实际温度降到100℃停止通氢。
6)破碎:将上一步产物采用颚式破碎机进行破碎,破碎至粒径不超过100μm;
7)筛粉:将上一步产物采用气体保护筛分机筛分,筛分出粒径范围为15-53μm的钽钨合金粉;
8)脱氢处理:对上一步产物装入反应弹进行脱氢处理,具体地,抽真空至10 -6kPa,脱氢热处理包括:
650℃/85min;
900℃/175min;
9)降氧:按向上一步产物重量的0.2-0.8wt%,向其中掺镁粉,在氩气环境气氛热处理,参数包括:
在650℃热处理85min;
在900℃热处理750min;
10)酸洗:酸洗上一步产物以去除杂质,酸洗所用的酸的配方为HF(浓度>40%):HNO 3(浓度65%-68%):HCl(浓度36%-38%)=1:2:3(体积比);
11)等离子球化:采用等离子球化技术对上一步产物进行球化处理,等离子球化参数如下:边气He60slpm、边气Ar50slpm、送粉载气Ar4slpm、中心气Ar18slpm、等离子体功率40KW、送粉速率30g/min。
实施例2
1)铸锭:使用ALD600KW高真空电子束炉熔炼Ta10W钽钨合金(Ta90wt%-W10wt%)铸锭,反复2次熔炼,使钨的不均度在10%以内。
2)锻造:对1)得到的铸锭进行加热进行锻造,锻造温控900℃,锻造至50×120×Lmm,充分破碎铸态晶粒,获得破碎的内部组织;
3)机加工:对2)得到的锻坯车削两端面,单表车削1.5mm,铣削4边,彻底去除锻造折叠等缺陷;
4)酸洗:按HF(>40%):HNO 3(65%-68%):HCl(36%-38%)=1:2:3(体积比)配比酸液,清洗上一步产物,去除表面杂质;
5)氢化:将上一步产物装入反应弹中,抽真空至10 -6kPa,升温:750℃/4小时,保温800℃/2小时,通氢气至压力0.19MPa。降温吸氢,实际温度降到100℃停止通氢。
6)破碎:将上一步产物采用颚式破碎机进行破碎,破碎至平均粒径为0-100μm的粉末;
7)筛粉:将上一步产物采用气体保护筛分机筛分,筛分出粒径范围为15-53μm的钽钨合金粉;
8)脱氢处理:对上一步产物装入反应弹进行脱氢处理,具体地,抽真空至10 -6kPa,脱氢热处理包括:
700℃/85min;
900℃/175min;
9)降氧:按向上一步产物重量的0.5wt%,向其中掺镁粉,在氩气环境气氛热处理,参数包括:
在650℃热处理85min;
在900℃热处理750min;
10)酸洗:酸洗上一步产物以去除杂质,酸洗所用的酸的配方为HF(浓度>40%):HNO 3(浓度65%-68%):HCl(浓度36%-38%)=1:2:3(体积比);
11)等离子球化:采用等离子球化技术对上一步产物进行球化处理,等离子球化参数如下:边气He60slpm、边气Ar50slpm、送粉载气Ar4slpm、中心气Ar18slpm、等离子体功率40KW、送粉速率30g/min。
对比例1
取10kg采用氢化脱氢法制备得到的钽粉粉末,然后在振动筛分设备上过100目筛网,去除粗颗粒。
采用等离子球化设备对上述钽粉粉末进行球化。其中,等离子炬为直流等离子炬,工作气体为氩气,等离子球化功率为5KW,工作气流量为20L/min,边气流量为100L/min,系统压力为80Kpa;并且球化后钽粉的氧含量为400ppm。
采用振动筛分设备对球化后钽粉进行筛分处理,其中筛网目数为100目,得到粒度小于等于150μm的钽粉。
采用氩气保护的气流分级机对上述粒度小于等于150μm的钽粉进行分级处理,得到粒度分布在53~150μm区间的球形粉末。
对比例2
选用钽含量达到99.995%以上的钽锭,将钽锭进行氢化破碎;将氢化后的钽屑进行球磨破碎,球磨破碎后的物料过400目筛,取400目筛下的钽粉,得到-400目的钽颗粒20kg;而后将该钽颗粒装入反应弹内,在抽空条件下加热,在750℃保温约120min,然后进行降温、出炉、过100筛得到脱氢的钽粉19.87kg;将脱氢后的钽粉装入气流磨中进行气流整形,该过程中工作压力6.5kg、一级、二级工作频率分别是40Hz、40Hz,整形15h后得到一级钽粉14.62kg,二级钽粉3.20kg;气流整形后的一级钽粉使用HNO 3 和HF的混合酸(HNO 3、HF和水的体积比是4:1:20)酸洗去除金属杂质,烘干过筛,得到酸洗后的钽粉13.46kg;然后将酸洗后的钽粉在10 -1Pa真空条件下热处理,1100℃保温60分钟,最后降温、钝化、出炉;热处理后的钽粉与以钽粉重量计的1.3%的镁粉混合,然后在惰性气体保护的情况下加热到750℃,保温2h,然后抽空排镁3h,最后降温、钝化、出炉,采用硝酸洗涤去掉多余的镁及氧化镁,然后用去离子水洗到中性,将钽粉烘干过筛,得到钽粉末12.74kg。
分析检测:
下面对上述实施例1~2和对比例1~2获得的产品粉末进行分析。
1、成分和形貌
图1和图2分别是实施例1的球形钽钨合金粉末的放大100倍和500倍的照片。如图1~2所示,实施例1的球形钽钨合金粉末粒径分布窄,球形度好。
对实施例1~2和对比例1~2获得的产品粉末进行球形度和氧含量的测量。球形度的检测方法:按“YS/T 1297-2019钛及钛合金粉末球形率测定方法”判定。氧含量的检测方法:按“GB/T15076.14-2008钽铌化学分析方法氧量的测定”测量。结果如下表所示:
表1
组别 材料 球形度 氧含量
实施例1 钽钨合金粉 99.2 170
实施例2 钽钨合金粉 99.6 142
对比例1 钽粉 99.7 325
对比例2 钽粉 / 180
由上可知,与对比例1~2相比,实施例1~2采用本公开特定工艺制备的钽钨合金粉具有较高的球形度和较低的氧含量。
2、粒度分析
按照“GB/T 1480-2012金属粉末干筛分法测定粒度”与“GB/T 19077-2016粒度分析激光衍射法”综合判定方法,对实施例1~2获得的产品粉末进行了粒度分析,结果如下:
表2
组别 D10 D50 D90 平均粒径
实施例1 19.98 31.73 49.93 15~53
实施例2 20.85 31.68 50.83 15~53
由上可知,实施例1~2采用本公开特定工艺制备的钽钨合金粉具有较窄的粒径分布。
由上述实施例的实验数据可知,本公开制备的钽钨合金粉末具有以下一项或多项优点:
(1)钽钨合金粉末的合金成份均匀;
(2)钽钨合金粉末的粒度分布集中;
(3)钽钨合金粉末的球形度高;
(4)钽钨合金粉末的氧含量低。
本发明制造的钽钨合金球形粉,采用3D打印技术,可以实现个性化、小批量异形件的加工,提高材料利用率,降低制造成本。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (11)

  1. 一种制备钽钨合金粉末的方法,包括以下步骤:
    提供钽钨合金铸锭;
    将所述钽钨合金铸锭熔炼反复熔炼多次;
    锻造上一步产物;
    将上一步产物至于氢气气氛下进行氢化热处理;
    机械破碎上一步产物,获得粗粉末;
    从粗粉末中筛分出粒径范围在aμm-bμm的粉末,a=10~20,b=50~60;
    将上一步产物在真空下进行脱氢热处理;
    向上一步产物中加入镁粉,进行降氧热处理;
    对上一步产物进行等离子球化处理,使粉末球形度达到99%以上。
  2. 根据权利要求1所述的方法,其具有以下一项或多项特征:
    -锻造温度为800~900℃;
    -氢气气氛的氢气压力为0.16~0.19MPa;
    -氢化热处理的温度为600~900℃;
    -脱氢热处理的温度为600~900℃;
    -降氧热处理的温度为500~1000℃。
  3. 根据权利要求1所述的方法,其中,氢化热处理包括以下操作:
    在T 1热处理3~5小时,T 1=500~800℃;
    在T 2热处理0.5-2.5小时,T 2=600~900℃;
    T 2-T 1≥50。
  4. 根据权利要求1所述的方法,其中,脱氢热处理包括以下操作:
    在600-700℃热处理60-90min;
    在880-920℃热处理120-180min。
  5. 根据权利要求1所述的方法,其中,降氧热处理包括以下操作:
    在500-650℃热处理60-90min;
    在800-900℃热处理700-800min。
  6. 根据权利要求1所述的方法,其中,在锻造步骤和氢化处理步骤之间,还包括酸洗的步骤。
  7. 根据权利要求1所述的方法,其中,在降氧处理和等离子球化处理之间,还包括酸洗的步骤。
  8. 根据权利要求6或7所述的方法,酸洗使用的酸为氢氟酸、硝酸和盐酸的混合酸。
  9. 根据权利要求1所述的方法,所述钽钨合金包括钽元素和钨元素,其中钽元素的含量为85~95wt%,钨元素的含量为5~15wt%。
  10. 根据权利要求1所述的方法,其中,所述钽钨合金粉末的粒径范围为10-60μm,氧含量<300ppm。
  11. 一种钽钨合金粉末,由权利要求1~9任一项所述的方法制备获得。
PCT/CN2021/110476 2021-06-30 2021-08-04 钽钨合金粉末及其制备方法 WO2023272871A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IL309426A IL309426A (en) 2021-06-30 2021-08-04 Tantalum-tungsten alloy powder and the preparation method thereof
EP21947813.8A EP4364871A1 (en) 2021-06-30 2021-08-04 Tantalum-tungsten alloy powder and preparation method therefor
KR1020247002145A KR20240027010A (ko) 2021-06-30 2021-08-04 탄탈럼-텅스텐 합금 분말 및 그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110737910.8 2021-06-30
CN202110737910.8A CN113427008B (zh) 2021-06-30 2021-06-30 钽钨合金粉末及其制备方法

Publications (1)

Publication Number Publication Date
WO2023272871A1 true WO2023272871A1 (zh) 2023-01-05

Family

ID=77758161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110476 WO2023272871A1 (zh) 2021-06-30 2021-08-04 钽钨合金粉末及其制备方法

Country Status (5)

Country Link
EP (1) EP4364871A1 (zh)
KR (1) KR20240027010A (zh)
CN (1) CN113427008B (zh)
IL (1) IL309426A (zh)
WO (1) WO2023272871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116652198A (zh) * 2023-05-31 2023-08-29 西安建筑科技大学 一种等离子旋转电极气雾化制备钽粉的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367669B (zh) * 2021-12-15 2024-04-30 重庆材料研究院有限公司 一种3D打印用TaW10合金球形粉末的制备方法
CN114888291B (zh) * 2022-05-20 2023-05-26 西北有色金属研究院 一种提高粉末冶金高钨钽合金塑性的方法
CN115106540B (zh) * 2022-07-26 2024-05-28 宁夏东方智造科技有限公司 钽钨合金制品及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507614A (en) 1975-08-20 1978-04-19 Honeywell Inc Steering control system
US5261942A (en) * 1987-11-30 1993-11-16 Cabot Corporation Tantalum powder and method of making same
CN103600086A (zh) * 2013-12-03 2014-02-26 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉及其制备方法
CN108296490A (zh) * 2017-01-13 2018-07-20 龙岩紫荆创新研究院 一种球形钨钽合金粉的制造方法
CN108788129A (zh) * 2018-06-29 2018-11-13 宁夏东方钽业股份有限公司 一种难熔金属粉、其制备方法与一种金属制品
CN112846195A (zh) * 2021-01-08 2021-05-28 广东省科学院材料与加工研究所 一种增材制造用钛钽合金粉末及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303684B6 (cs) * 1998-05-06 2013-03-06 H. C. Starck Inc. Slitinový prásek, zpusob jeho výroby, anoda kondenzátoru z tohoto slitinového prásku a kondenzátor, a prásek slitiny niobu a tantalu
JP2004091843A (ja) * 2002-08-30 2004-03-25 Hitachi Metals Ltd 高純度高融点金属粉末の製造方法
CN101182602B (zh) * 2006-11-14 2010-04-14 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉末及其制备方法
WO2016192049A1 (zh) * 2015-06-03 2016-12-08 宁夏东方钽业股份有限公司 一种微细钽粉及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507614A (en) 1975-08-20 1978-04-19 Honeywell Inc Steering control system
US5261942A (en) * 1987-11-30 1993-11-16 Cabot Corporation Tantalum powder and method of making same
CN103600086A (zh) * 2013-12-03 2014-02-26 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉及其制备方法
CN108296490A (zh) * 2017-01-13 2018-07-20 龙岩紫荆创新研究院 一种球形钨钽合金粉的制造方法
CN108788129A (zh) * 2018-06-29 2018-11-13 宁夏东方钽业股份有限公司 一种难熔金属粉、其制备方法与一种金属制品
CN112846195A (zh) * 2021-01-08 2021-05-28 广东省科学院材料与加工研究所 一种增材制造用钛钽合金粉末及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG JING, LIN XIAOHUI, LI BIN, ZHANG XIAOMING, XUE JIANRONG, LI LAIPING: "Study on Preparation of Tantalum -Tungsten Alloy Powder from Hydrogenated Ingot", METAL MATERIALS AND METALLURGY ENGINEERING, no. 1, 28 February 2017 (2017-02-28), XP093018526, ISSN: 2095-5014, DOI: 10.16793/j.cnki.2095-5014.2017.01.001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116652198A (zh) * 2023-05-31 2023-08-29 西安建筑科技大学 一种等离子旋转电极气雾化制备钽粉的方法

Also Published As

Publication number Publication date
EP4364871A1 (en) 2024-05-08
IL309426A (en) 2024-02-01
CN113427008A (zh) 2021-09-24
KR20240027010A (ko) 2024-02-29
CN113427008B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023272871A1 (zh) 钽钨合金粉末及其制备方法
CN108796320B (zh) 一种用于3d打印的铝合金粉及其制备方法
US8333924B2 (en) High-strength and high-toughness magnesium alloy and method for manufacturing same
US20190271068A1 (en) Powder Metallurgy Sputtering Targets And Methods Of Producing Same
TWI611025B (zh) 一種高純鉭粉及其製備方法
CN108788129B (zh) 一种难熔金属粉、其制备方法与一种金属制品
CN104759830B (zh) 生产性能增强的金属材料的方法
CN103409660A (zh) 一种超细晶粒的新型β/γ-TiAl合金
CN109182809B (zh) 一种低成本高强韧变形镁合金及其制备方法
CN107427925A (zh) 一种微细钽粉及其制备方法
CN109207766A (zh) 一种组织可控高铝含量Cu-Al2O3纳米弥散铜合金制备工艺
CN110872659B (zh) 一种高性能铜合金
CN112030077A (zh) 一种含锰高强低密度钢及其制备方法和应用
IL157013A (en) Spray targets with a base made of ultra-fine copper grains
WO2019209368A9 (en) Titanium alloy products and methods of making the same
CN108971227A (zh) 一种轻质高强铝合金复合板及其制备方法
CN111172422B (zh) 氧化铝弥散强化铜基复合材料的制备方法
JP2013112878A (ja) チタン系組成物
CN114381644B (zh) 一种钒钛基储氢合金粉末及其制备方法
CN114086086B (zh) 纳米相碳氮复合颗粒增强型因瓦合金线材及其制备方法
US20140010699A1 (en) Magnesium (MG) Alloy and Method of Producing Same
CN108927527B (zh) 一种纳米W-xCu合金的制备方法、纳米W-xCu合金
JP6649430B2 (ja) 高純度タンタル粉末及びその調製方法
CN112475302B (zh) 一种超细纳米晶vn合金粉末的制备方法
CN115305374B (zh) 一种具有优良高温强度的低钽含量钨合金制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 309426

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2023580732

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247002145

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002145

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021947813

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947813

Country of ref document: EP

Effective date: 20240130