WO2023272473A1 - 散热装置和电子设备 - Google Patents

散热装置和电子设备 Download PDF

Info

Publication number
WO2023272473A1
WO2023272473A1 PCT/CN2021/102992 CN2021102992W WO2023272473A1 WO 2023272473 A1 WO2023272473 A1 WO 2023272473A1 CN 2021102992 W CN2021102992 W CN 2021102992W WO 2023272473 A1 WO2023272473 A1 WO 2023272473A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
dissipated
housing
cooling medium
Prior art date
Application number
PCT/CN2021/102992
Other languages
English (en)
French (fr)
Inventor
方群
韦浩
颜利民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/102992 priority Critical patent/WO2023272473A1/zh
Priority to CN202180001850.1A priority patent/CN113615326B/zh
Publication of WO2023272473A1 publication Critical patent/WO2023272473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the embodiments of the present application relate to the technical field of device heat dissipation, and more specifically, relate to a heat dissipation device and electronic equipment.
  • Embodiments of the present application provide a heat dissipation device and electronic equipment, which can effectively reduce the thermal resistance between the heat dissipation device and a hardware module to be dissipated, improve the heat conduction performance between the hardware module and the heat dissipation device, and have stable heat conduction performance.
  • a heat dissipation device including: a housing, the housing has an inner cavity, and the housing has a first opening and a second opening, and the first opening and the second opening It communicates with the inner cavity and is used for inputting cooling medium into the inner cavity and outputting the cooling medium out of the inner cavity, and at least one surface of the housing is a flexible surface.
  • the heat dissipation device in the embodiment of the present application has a simple process.
  • the cooling medium is used to press the flexible surface of the heat dissipation device, so that the first outer surface of the heat dissipation device bulges out flexibly, and actively contacts with the device to be dissipated in a large area, so that the device to be dissipated is in contact with the heat sink. Efficient heat transfer between heat sinks.
  • the pressure of the cooling medium can be controlled manually, so that the first outer surface of the heat sink is in full contact with the surface of the heat sink, but the stress level of the material does not exceed its yield limit, so that the heat transfer is stable and effective for a long time.
  • the flexible surface is made of a flexible heat-conducting material.
  • the housing includes multiple surfaces, and the thickness of the flexible surface is smaller than that of other surfaces of the housing.
  • the thickness of the flexible surface of the heat sink can be reduced by milling, so that the flexible surface of the heat sink is more likely to be elastically deformed under the pressure of the cooling medium, so as to be in close contact with the heat dissipation surface of the heat sink.
  • the pressure of the cooling medium is greater than or equal to 70% of the elastic limit of the material of the flexible surface, and less than the elastic limit of the material of the flexible surface.
  • an electronic device comprising: the heat dissipation device described in any one of the implementations of the first aspect above; a device to be dissipated, the flexible surface of the heat dissipation device is arranged relative to the heat dissipation surface of the device .
  • the flexible surface of the heat dissipation device protrudes in the direction opposite to the inner cavity under the pressure of the cooling medium, or the flexible surface is used to transfer the heat dissipated by the heat dissipation device to the cooling medium.
  • the flexible surface protrudes toward the device to be dissipated under the action of the cooling medium.
  • the cooling device is connected to the device to be cooled.
  • the heat dissipation device has an extended part
  • the device to be dissipated has an extended part
  • the extended part of the heat sink is connected to the extended part of the device to be dissipated
  • the device to be dissipated and the heat dissipated device are designed to be detachable, the processing cost is low, and it is convenient for subsequent replacement and maintenance.
  • the distance between the flexible surface of the heat dissipation device and the heat dissipation surface of the device to be dissipated is less than a distance threshold, including: the flexible surface of the heat dissipation device is in contact with the heat dissipation surface of the device to be dissipated.
  • the distance between the cooling device and the device to be cooled is relatively small, and can be in contact or not, and can be flexibly set according to actual use.
  • the device to be dissipated includes a casing, the casing of the device to be dissipated is made of a heat-conducting metal material, and the casing of the heat-dissipating device is made of a heat-conducting metal material.
  • Both the heat dissipation device and the device to be dissipated can be made of metal materials with good thermal conductivity, so that the heat of the device to be dissipated can be efficiently transferred to the heat dissipation device.
  • a heat dissipation method comprising: the first opening of the heat dissipation device receives the cooling medium output by the liquid supply system; the flexible surface of the heat dissipation device contacts the heat dissipation surface of the heat dissipation device under the pressure of the cooling medium Form the first contact surface; the heat dissipation device transfers the heat of the device to be dissipated to the cooling medium through the first contact surface, so that the temperature of the cooling medium increases; the heat dissipation device discharges the cooled medium after the temperature is raised to the outside through the second opening Environment.
  • the liquid supply system can adjust the pressure of the cooling medium according to the temperature of the device to be dissipated.
  • a temperature sensor is provided between the liquid supply system and the device to be dissipated.
  • the liquid supply system can increase the pressure of the cooling medium so that the gap between the flexible surface of the heat dissipating device and the heat dissipation surface of the device to be dissipated The area of the first contact surface between them is increased, thereby improving the heat transfer performance.
  • Figure 1 is a schematic block diagram of a heat dissipation solution in a low computing power scenario
  • FIG. 2 is a schematic block diagram of four liquid cooling solutions
  • Figure 3 is a schematic block diagram of a built-in cold plate liquid cooling solution and a housing cold plate integrated liquid cooling solution
  • Fig. 4 is a schematic block diagram of the indirect contact liquid cooling heat dissipation scheme of the cold plate shell and the hard contact liquid cooling heat dissipation scheme of the cold plate shell;
  • Fig. 5 is a microscopic schematic diagram of the contact surface between the heat dissipation device of the heat dissipation device and the device to be dissipated;
  • Fig. 6 is a schematic block diagram of the heat dissipation device of the present application.
  • Fig. 7 is a microscopic schematic diagram of the contact surface between the heat dissipation device of the heat dissipation device of the present application and the device to be dissipated;
  • Fig. 8 is a schematic flow chart of the heat dissipation method of the present application.
  • Fig. 9 is a schematic block diagram of a state in which the cooling liquid is not passed through the cooling device in the electronic equipment of the present application.
  • Fig. 10 is a schematic block diagram of a state in which cooling liquid is passed through the cooling device in the electronic equipment of the present application.
  • FIG. 1 shows an application scenario of an air-cooled heat dissipation solution.
  • a thermal device 1101, a circuit board 1102, a housing 1103, and a cover plate 1106 constitute a hardware module to be dissipated, wherein the thermal device 1101 is integrated On the circuit board 1102, the thermal device 1101 is a heat generation source.
  • the thermal device 1101 can be a resistor, an inductor, a capacitor, or a computing chip, etc., and the resistor, inductor, capacitor, or computing chip, etc. are installed on the circuit board 1102, and the shell
  • the body 1103 and the cover plate 1106 are used to protect the thermal device 1101 and the circuit board 1102 , and the cover plate 1106 can be opened to facilitate maintenance and replacement of the thermal device 1101 and the circuit board 1102 in the housing 1103 .
  • a heat conduction material 1104 can be provided between the thermal device 1101 and the housing 1103 to improve heat conduction efficiency, and a plurality of heat dissipation teeth 1105 are provided on the surface of the housing 1103 to increase the heat dissipation area.
  • the thermal element 1101 transmits heat to the heat dissipation teeth 1105 on the surface of the casing 1103 through the heat conduction material 1104, and then dissipates heat through natural convection.
  • a fan 1107 may be installed near the cooling teeth 1105, and the fan 1107 may be used for forced ventilation to improve heat dissipation efficiency. Due to the low heat dissipation efficiency of air cooling, this solution can only meet the heat dissipation requirements in low computing power scenarios, such as the heat dissipation requirements of hardware modules in semi-autonomous driving and below driving scenarios.
  • FIG. 2 shows four schemes that use liquid cooling to transfer heat from heat-generating devices (also known as thermal devices) to the external environment.
  • the scheme 12 is an integrated heat dissipation scheme, that is, the hardware module is integrated with the cold plate, and the scheme 34 It is a separate heat dissipation solution, that is, the hardware module and the cold plate are designed independently.
  • the principle of the liquid cooling solution is that the thermal device transfers heat to the cold plate, and the cold plate is passed into a circulating cooling liquid, and the cooling liquid takes the heat out to the external environment, so as to achieve the purpose of heat dissipation.
  • a heat conduction material may be arranged between the heat component and the cold plate to improve heat conduction efficiency.
  • Fig. 3 shows a schematic block diagram of an integrated heat dissipation solution, including a built-in cold plate liquid cooling heat dissipation solution and a housing cold plate integrated liquid cooling heat dissipation solution.
  • the thermal device 2101, the circuit board 2102, the housing 2103 and the cover plate 2105 constitute the hardware module to be dissipated, and the cold plate 2106 is placed in the inner cavity of the hardware module housing 2103 Among them, the water inlet and water outlet on the cold plate 2106 are exposed outside the housing 2103, and different sealing structures can be designed between the water inlet, the water outlet and the housing 2103 according to the requirements of the protection level, and circuit boards, such as printed circuit boards ( printed circuit board (PCB), the thermal device 2101 that needs to dissipate heat on the 2102 is attached to the cold plate 2106 through the heat-conducting material 2104, so that the cold plate 2106 realizes heat exchange with the thermal device
  • PCB printed circuit board
  • the thermal device 2201, the circuit board 2202, the housing 2203 and the cover plate 2205 constitute a hardware module to be dissipated
  • the cold plate 2206 is integrally processed with the housing 2203
  • the housing 2203 is set
  • the coolant channel, water inlet and water outlet are exposed outside the housing 2203
  • the thermal device 2201 on the circuit board 2202 that needs to dissipate heat is bonded to the cold plate 2206 through the thermal conductive material 2204, so that the cold plate 2206 and the thermal device 2201 realize heat exchange and cooling Liquid circulates in the cold plate 2206 through the water inlet and outlet, carrying heat out to the external environment.
  • the above-mentioned built-in cold plate liquid cooling solution and the housing cold plate integrated liquid cooling solution are all integrated heat dissipation solutions. Since the cold plate and hardware module are integrated in this solution, if the hardware module needs to be replaced, the hardware module must be disassembled from the cold plate. It is easy to damage the integrity of the cold plate, causing the coolant to leak. The leakage of the coolant will cause short circuit or damage to the equipment. In addition, the integration of the cold plate and the hardware module makes the overall structure complicated. The cold plate needs to be processed by brazing, friction welding, etc. Integrated with the hardware module, the installation is difficult and the manufacturing cost is high.
  • Fig. 4 shows a schematic block diagram of a separated heat dissipation solution, including a cold plate shell hard contact liquid cooling heat dissipation scheme and a cold plate shell indirect contact liquid cooling heat dissipation scheme.
  • the thermal device 3101, the circuit board 3102, the housing 3103 and the cover plate 3104 constitute a hardware module to be dissipated, and a thermally conductive material 3105 is arranged between the thermal device 3101 and the housing 3103, In order to improve the heat conduction efficiency.
  • the cold plate 3104 is independently designed with the hardware module, and is set close to the housing 3103.
  • the cold plate 3104 is provided with a water inlet and a water outlet, and the inside of the cold plate 3104 is provided with a cooling liquid channel.
  • the heat of the thermal device 3101 is first transferred to the cold plate 3104 through the heat-conducting material 3105 in the cavity of the housing 3103 and the housing 3103, and then the circulating coolant in the cold plate 3104 takes the heat out to the external environment to achieve heat dissipation and cooling the goal of.
  • the indirect contact liquid cooling solution of the cold plate shell is similar to the hard contact liquid cooling heat dissipation solution of the cold plate shell.
  • the thermal component 3201, the circuit board 3202, the shell 3203 and the cover plate 3204 constitute the hardware module to be dissipated.
  • the thermal component 3201 and the A heat conduction material 3205 is provided between the housings 3203 to improve heat conduction efficiency.
  • a heat conduction material 3206 is provided between the housing 3203 and the cold plate 3204 to further improve heat conduction efficiency.
  • Both the hard contact liquid cooling scheme of the cold plate shell and the indirect contact liquid cooling heat dissipation scheme of the cold plate shell belong to the separated heat dissipation scheme.
  • the cold plate and the hardware module are independently designed in the separate heat dissipation scheme.
  • the cold plate and the hardware module can be installed together so that the cold plate is in hard contact or indirect contact with the housing of the hardware module, and the processing and installation are less difficult; when the hardware module needs to be replaced, the cold plate and the hardware module can be separated and replaced. Will not damage the overall structure of the cold plate.
  • the hard contact liquid cooling scheme of the cold plate shell the cold plate needs to be closely attached to the shell of the hardware module during installation to provide effective heat conduction.
  • Figure 5 shows the microscopic contact surface between the cold plate and the hardware module shell
  • the contact surface between the cold plate and the hardware module shell can be seen even if you look at it.
  • the gap between the contact surface between the cold plate and the hardware module shell will become larger and larger as the service time prolongs, and the thermal conductivity will further decrease.
  • adding heat-conducting materials between the cold plate and the shell of the hardware module can improve the thermal conductivity.
  • the heat-conducting material between the cold plate and the shell of the hardware module is in the external environment.
  • the heat-conducting material is exposed to the external environment for a long time without protection and is prone to failure. Therefore, the heat-conducting material needs to be replaced frequently, which increases the cost of use.
  • the embodiment of the present application further provides a heat dissipation device.
  • the heat dissipation device and the hardware module to be dissipated are independently designed. When in use, the heat dissipation device and the hardware module to be dissipated are installed together. The hardware modules can be detached without destroying the overall structure of either party.
  • the heat dissipation device in the following embodiments of the present application is installed with the hardware module to be dissipated, the housing of the hardware module to be dissipated does not need to be closely bonded, and it is not necessary to add heat-conducting materials between the heat dissipation device and the housing of the hardware module to be dissipated.
  • the heat dissipation device above can provide heat dissipation efficiency, and can be applied to scenarios with high-computing hardware modules, for example, it can be applied to the heat dissipation of vehicle-mounted computing modules such as automatic driving and assisted driving, and can also be applied to other vehicle-mounted modules that require heat dissipation.
  • the heat dissipation in scenarios such as battery packs and battery packs can also be applied to other devices with heat dissipation requirements other than vehicles.
  • the cooling medium in the embodiments of the present application may be a cooling liquid, such as water, fluorinated liquid, or non-conductive oil, and may also be a cooling medium in other forms, such as a gaseous state.
  • the above-mentioned thermally conductive material may be a thermally conductive pad, thermally conductive silicone grease, or thermally conductive gel.
  • Fig. 6 shows a heat dissipation device 4200 provided by the embodiment of the present application, and also shows a heat dissipation device 4100.
  • the heat dissipation device shown in Fig. 6 can be applied to heat dissipation scenarios with on-board modules, or other heat dissipation requirements In the scenario, the heat dissipation device of the embodiment of the present application can not only dissipate heat from the device to be dissipated in FIG. 6 , but also dissipate heat from other types of devices to be dissipated, such as a battery pack.
  • the heat dissipation device in FIG. 6 will be described in detail below.
  • the device 4100 to be dissipated includes a thermal device 4101 and a housing 4102.
  • the thermal device 4101 is placed in the cavity of the housing 4102, and the heat generated by the thermal device 4101 is transferred to the external environment through the housing 4102.
  • the outside of the device to be dissipated 4100 can be understood as the external environment, but the heat can only be transferred outside the device to be dissipated 4100 to achieve the purpose of heat dissipation, so the heat dissipating device 4200 is required for heat dissipation and cooling.
  • the device 4100 to be dissipated in the embodiment of the present application may also include other components, for example, a thermally conductive material may also be provided between the thermal device 4101 and the housing 4102, so that the thermal device 4101 passes through the thermally conductive material and the inner surface of the housing 4102 The indirect contact improves the heat transfer performance between the thermal device 4101 and the housing 4102, so as to quickly transfer the heat of the thermal device 4101 to the external environment.
  • a thermally conductive material may also be provided between the thermal device 4101 and the housing 4102, so that the thermal device 4101 passes through the thermally conductive material and the inner surface of the housing 4102
  • the indirect contact improves the heat transfer performance between the thermal device 4101 and the housing 4102, so as to quickly transfer the heat of the thermal device 4101 to the external environment.
  • this embodiment of the present application does not limit the specific form of the heat dissipation device 4100, for example, the thermal device 4101 may not be located in the housing 4102, for example, it may be directly disposed on a heat dissipation plate.
  • the heat dissipation device 4200 is used for heat dissipation and cooling of the heat dissipation device 4100, and includes a housing 4201 having an inner cavity, and a first opening and a second opening on the housing 4201 for inflow and outflow of cooling medium respectively.
  • the first opening and the second opening can be called the liquid inlet and the liquid outlet respectively, and the liquid inlet and the liquid outlet communicate with the inner cavity, and the cooling liquid flows through the liquid inlet. It is input into the inner cavity and output from the inner cavity through the liquid outlet.
  • the surface of the heat sink 4200 opposite to the housing 4102 is a flexible surface, which means that the surface can be elastically deformed under the pressure of the cooling medium, for example, the flexible surface is opposite to the inner cavity of the heat sink 4200 under the pressure of the cooling medium.
  • the flexible surface is a heat dissipation surface, which is used to transfer the heat dissipated from the device 4100 to be dissipated to the cooling medium, and the flexible surface protrudes toward the device 4100 to be dissipated under the action of the cooling medium. As shown in FIG.
  • the positional relationship between the heat dissipation device 4200 and the device to be dissipated 4100 is that the first outer surface of the heat dissipation device 4200 is opposite to the first outer surface of the housing 4102, and the first outer surface of the heat dissipation device 4200 is disposed opposite to the first outer surface of the housing 4102.
  • One outer surface is a flexible surface, and the first outer surface of the heat sink 4200 and the first outer surface of the housing 4102 are theoretically bonded together, but it is also allowed to leave a certain gap during assembly due to the difficulty of assembly.
  • the relative area between the first outer surface of the heat sink 4200 and the first outer surface of the housing 4102 can reach a certain area, for example, the relative area can reach 20 square centimeters.
  • the setting area is not fixed, and can be adjusted according to the conditions of the device to be dissipated, which is not limited in this embodiment of the present application.
  • the first outer surface of the heat sink 4200 may be greater than a certain percentage of the area of the first outer surface of the housing 4102 , for example greater than or equal to 60%-80% of the area of the first outer surface of the housing 4102 .
  • the inner cavity of the cooling device 4200 is filled with a cooling medium, and the first outer surface of the cooling device 4200 protrudes outward under the pressure of the cooling medium to form a first contact surface with the first outer surface of the housing 4102 .
  • the thermal device 4101 transfers heat to the housing 4102, and the housing 4102 transfers the heat to the heat sink 4200 through the first contact surface, and the cooling medium in the heat sink 4200 takes the heat out to the external environment, thereby realizing the heat dissipation of the heat sink. Cool down.
  • the flexible surface of the heat sink 4200 is more likely to elastically deform under the pressure of the cooling medium than other surfaces, that is, the flexible surface of the heat sink 4200 has a lower rigidity than other surfaces and is more resistant to deformation. Low. In this way, the overall structure of the heat sink 4200 is more stable and durable.
  • the pressure of the cooling medium is greater than or equal to the material elastic limit of 70% of the flexible surface of the heat sink 4200, and is smaller than the material elastic limit of the flexible surface of the heat sink 4200, so that the flexible surface of the heat sink 4200 can be generated under the pressure of the cooling medium. Elastic deformation, not plastic deformation.
  • the distance between the first outer surface of the heat sink 4200 and the first outer surface of the housing 4102 is less than a distance threshold, including that the first outer surface of the heat sink 4200 is in direct contact with the first outer surface of the housing 4102 .
  • the contact surface is similar to the microscopic appearance of the contact surface shown in FIG. There will be a large amount of air gaps between the first outer surfaces, and the thermal resistance of the air is large, so the thermal conductivity is reduced.
  • the microscopic appearance of the first contact surface is shown in FIG. 7 .
  • the first outer surface of the heat sink 4200 is in close contact with the first outer surface of the housing 4102 under pressure, the air gap between the interfaces is greatly reduced, or even no, and the thermal resistance is reduced, so the thermal conductivity is improved.
  • the first outer surface of the heat sink 4200 is a flexible surface, which can be realized by reducing the thickness of the first outer surface of the heat sink 4200, so that the thickness of the first outer surface of the heat sink 4200 is smaller than the thickness of other surfaces.
  • the thickness of the first region of the first outer surface of the heat sink 4200 can be milled to be less than a thickness threshold through a milling process, and the thickness threshold is set , so that the first region of the first outer surface of the heat sink 4200 is more likely to be elastically deformed under the pressure of the cooling medium, so as to be in close contact with the first outer surface of the housing 4102 .
  • the area of the first area of the first outer surface of the heat sink 4200 can be set, for example, the area of the first contact surface can be determined according to actual needs, and then the area of the first area of the first outer surface of the heat sink 4200 can be determined, wherein The area of the first region of the first outer surface of the heat sink 4200 is larger than the area of the first contact surface.
  • the area of the first outer surface of the heat sink 4200 and the area of the first outer surface of the housing 4102 are both 50 square centimeters, and the area of the first contact surface is determined to be at least 20 square centimeters according to actual needs, then the area of the heat sink 4200 The area of the first region of the first outer surface is greater than 20 square centimeters.
  • the first outer surface of the heat sink 4200 is a flexible surface, which can be realized by partially or entirely making the first outer surface of the heat sink 4200 from a material that is prone to elastic deformation, so that the first outer surface of the heat sink 4200 is easier to Elastic deformation occurs under the pressure of the cooling medium, so as to be in close contact with the first outer surface of the housing 4102 .
  • the elastic modulus of the material is within the first preset range, and the material does not undergo plastic deformation while undergoing elastic deformation within this range, for example, it can be made of aluminum alloy, magnesium alloy, copper alloy or steel plate, etc. .
  • the area of the first contact surface can be set to be close to the projected area of the thermal element 4101 on the first outer surface of the casing 4102, for example, the difference between the two can be less than or equal to a preset threshold, so The heat of the thermal device 4101 can be fully transferred to the heat sink 4200 .
  • the device to be dissipated 4100 and the dissipating device 4200 can be fixed together.
  • a protruding part can be provided on the housing 4102, and a protruding part can also be provided on the heat sink 4200 at the same time, and then the protruding part of the housing 4102 can be connected with the protruding part of the heat sink 4200, and the connection method can be It is connected by detachable connection methods such as screws, rivets or buckles, so that the heat dissipation device 4100 and the heat dissipation device 4200 can be disassembled without damage during subsequent maintenance and replacement.
  • both the heat sink 4200 and the housing 4102 can be made of materials with good thermal conductivity, for example, thermally conductive metal materials, so that the heat of the thermal device 4101 can be efficiently transferred to the heat sink 4200 .
  • the heat sink 4200 is also provided with a first opening and a second opening, the first opening and the second opening communicate with the inner cavity of the heat sink 4200, the cooling medium enters the inner cavity of the heat sink 4200 from the first opening, and is connected with the heat sink 4100 After heat exchange, the heat is carried out to the external environment through the second opening.
  • the cooling medium can be pressurized after or before passing into the inner cavity, so that the pressure of the cooling medium passing into the inner cavity of the cooling device 4200 is higher than the atmospheric pressure of the external environment, for example, 280kPa higher than the atmospheric pressure.
  • the cooling medium itself has pressure.
  • the cooling medium is compressed cooling liquid, which is also one of the implementation methods.
  • the application does not limit the specific form of the cooling medium here, as long as the pressure in the inner cavity of the cooling device 4200 can be higher than The atmospheric pressure of the external environment is sufficient.
  • the actual contact surface is as shown in Figure 5.
  • the heat dissipation device in the above embodiments of the present application has a simple process.
  • the first outer surface of the heat dissipation device is pressurized by the cooling medium, so that the first outer surface of the heat dissipation device bulges out flexibly, actively contacts the device to be dissipated in a large area, and dissipates heat.
  • the first outer surface of the device Under the action of pressure, the first outer surface of the device is in close contact with the first outer surface of the housing of the device to be dissipated, as shown in Figure 7, thereby realizing efficient transmission between the device to be dissipated and the heat dissipating device. hot.
  • the pressure of the cooling medium can be controlled, so that the contact area between the first outer surface of the heat sink and the first outer surface of the housing changes, thereby adjusting the heat dissipation efficiency to adapt to the use of heat sinks of different sizes, but the stress level of the material It does not exceed its yield limit, making the heat transfer stable and effective for a long time.
  • the device to be dissipated and the heat dissipated device in the embodiment of the present application are designed to be detachable, the processing cost is low, and it is convenient for subsequent replacement and maintenance.
  • Fig. 8 shows a schematic flowchart of a heat dissipation method according to an embodiment of the present application, including steps 801 to 804.
  • the heat dissipation device in Fig. 6 can be used to implement steps 801 to 804 in Fig. 8 , which will be briefly introduced below.
  • the first opening of the cooling device receives the cooling medium output by the cooling medium supply system.
  • the heat dissipation device here is the heat dissipation device introduced in FIG. 6 , which includes a first opening and a second opening, and a circulating cooling medium is provided by an external cooling medium supply system.
  • the cooling medium here may be cooling liquid, and after passing the cooling liquid into the inner cavity of the heat sink, the pressure in the inner cavity of the heat sink is higher than the atmospheric pressure of the external environment.
  • the cooling liquid itself has pressure.
  • the cooling liquid is compressed cooling liquid, which is one of the implementation methods. This application does not limit the specific form of the cooling medium here, as long as it can make the pressure in the inner cavity of the cooling device higher than the external pressure.
  • the atmospheric pressure of the environment will suffice.
  • the flexible surface of the heat dissipation device forms a first contact surface with the heat dissipation surface of the heat dissipation device under the pressure of the cooling medium.
  • the flexible surface of the heat sink is partially thinned or made of heat-conducting materials that are prone to elastic deformation, and can bulge outward under the pressure of the cooling medium, so that the flexible surface of the heat sink and the heat dissipation surface of the device to be cooled form a shape as shown in Figure 7.
  • the heat dissipation device transfers the heat of the device to be dissipated to the cooling medium through the first contact surface, so as to increase the temperature of the cooling medium.
  • the heat dissipation device discharges the cooling medium whose temperature has risen to the external environment through the second opening
  • the thermal device is placed in the cavity of the housing, and the heat of the thermal device is transferred to the cooling medium of the heat sink through the housing, and the heat is taken out to the external environment by the cooling medium.
  • the heat dissipation method of the embodiment of the present application uses the heat dissipation device in FIG. 6 for heat dissipation.
  • the flexible surface of the heat dissipation device is fully in contact with the heat dissipation surface of the heat dissipation device under the pressure of the cooling medium, so that the circulating cooling medium can flow through the heat dissipation device. Take the heat of the thermal device out to the external environment to achieve efficient heat transfer.
  • the cooling medium supply system can adjust the pressure of the cooling medium according to the temperature of the thermal components in the device to be dissipated.
  • a temperature sensor is provided between the cooling medium supply system and the thermal device.
  • the cooling medium supply system increases the pressure of the cooling medium, so that the gap between the flexible surface of the heat dissipation device and the heat dissipation surface of the heat dissipation device The area of the first contact surface is increased, thereby improving the heat transfer performance.
  • the heat dissipation method of the embodiment of the present application is performed by the heat dissipation device in FIG. 6 .
  • the heat dissipation device For a specific description of the heat dissipation device, refer to the above description of FIG. 6 .
  • FIG. 9 shows a schematic block diagram of an electronic device according to an embodiment of the present application, including a heat dissipation device 9100 and a heat dissipation device 9200 .
  • the flexible surface of the heat dissipation device 9200 is arranged relative to the heat dissipation surface of the heat dissipation device 9100 .
  • the part of the device 9100 to be dissipated includes a thermal device 9101 , a casing 9102 , a cover plate 9103 , a circuit board 9104 , and a thermally conductive material 9105 .
  • the thermal device 9101 is integrated on the circuit board 9104 and placed in the housing 9102.
  • the housing 9102 is provided with a cover plate 9103 so that the housing 9102 can be opened to facilitate the inspection of the thermal device 9101, the circuit board 9104 and the heat-conducting material inside the housing.
  • 9105 for installation, maintenance and replacement, and a heat conduction material 9105 is set between the heat element 9101 and the housing 9102 to further improve heat conduction performance.
  • the part of the device to be dissipated may not completely include the part shown in FIG. 9 , or may include a part not shown in FIG. 9 , which is not limited in this embodiment of the present application.
  • the cooling device 9200 includes a cavity 9201 , a cold plate cover 9202 , a liquid inlet 9203 , a liquid outlet 9204 , and a liquid supply system 9205 .
  • the cooling medium is taken as cooling liquid as an example.
  • the cold plate cover 9202 is used as the flexible surface of the cooling device 9200, and it is designed to be detachable from the cavity 9201, which is convenient for maintenance and cleaning inside the cavity of the cooling device 9200.
  • the cold plate cover 9202 and the cavity 9201 is connected, and the sealing performance meets the requirements; the liquid supply system 9205 is connected to the liquid inlet 9203 and the liquid outlet 9204 respectively.
  • the thickness of the cold plate cover is smaller than the thickness of other surfaces of the heat sink 9200, for example, the lower surface of the cold plate cover 9202 is partially milled to reduce the local thickness, for example, the overall thickness of the cold plate cover is 2 mm, local milling to make the local thickness 0.5 mm, the milling area can be determined according to the projected area of the thermal device on the bottom surface of the shell, for example, the milled area can be equal to the projected area, or the gap between the milled area and the projected area is within a certain threshold.
  • the heat dissipation device 9100 and the heat dissipation device 9200 are detachably connected, and the connection method may be the connection using screws 9300 as shown in FIG. 9 .
  • the heat dissipation device 9100 and the heat dissipation device 9200 can be disassembled and separated without destroying the integrity of either one.
  • the cooling device 9200 shown in Figure 9 is not filled with cooling fluid. At this time, the cooling device 9100 and the cooling device 9200 are connected by screws 9300. The cooling device 9100 and the cooling device 9200 can be in contact or not, but both The distance between them is within a preset range, for example, the distance between the two is less than 1 centimeter.
  • the liquid supply system 9205 feeds cooling liquid into the cavity 9201 of the cooling device 9200 through the liquid inlet 9203, the state of the cooling device 9200 is shown in Figure 10.
  • the cooling liquid supply system 9205 provides enough Under hydraulic pressure (for example, 300Kpa), the partially milled surface of the cold plate cover 9202 bulges toward the shell 9102 side under the action of coolant pressure, forming a large area of bonding with the shell 9102, and the supply system 9205 is kept stable by the pressure controller
  • the hydraulic pressure can keep the pressure on the contact surface between the housing 9102 and the cold plate cover 9202 stable for a long time.
  • the flexible contact surface between the housing 9102 and the cold plate cover 9202 gets rid of the influence of shape, position, dimension deviation and installation deformation, and fits tightly, the actual effective contact area is large, and the thermal resistance is small and stable.
  • the heat dissipation device of the embodiment of the present application adopts a detachable design of the cold plate and the heat dissipation device, which has low processing cost and can be detached after installation for easy maintenance.
  • the heat dissipation device of the embodiment of the present application does not increase the connection point between the cold plate and the device to be dissipated, so that the internal design of the device to be dissipated is not constrained by the connection point, and the processing quality and installation quality requirements of the mating surface of the cold plate and the device to be dissipated are low, and the contact The surface is not easily affected by material creep, ensuring long-term effective contact and maintaining a stable low value of thermal resistance.
  • the embodiment of the present application also provides a device, the device includes a heat dissipation device and a heat dissipation device, wherein the heat dissipation device and the heat dissipation device can be the heat dissipation device and the heat dissipation device in Figure 6, Figure 9 and Figure 10 respectively, and the heat dissipation device It can be a device with a contactable plane such as an on-board module or a battery pack, and the heat dissipation device dissipates heat from the heat dissipation device under the action of a cooling medium.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

提供了一种散热装置(4200、9200)和电子设备,散热装置(4200、9200)包括壳体(4201),壳体(4201)具有内腔,且壳体(4201)具有第一开口和第二开口,且第一开口和第二开口与内腔连通,用于向内腔输入冷却介质,且将冷却介质输出内腔,壳体(4201)的至少一个面为柔性面。散热装置(4200、9200)可有效降低散热装置(4200、9200)与待散热硬件模块(4101、9101)之间的热阻,提升硬件模块和散热装置(4200、9200)之间的导热性能,且导热性能具有稳定性。

Description

散热装置和电子设备 技术领域
本申请实施例涉及器件散热技术领域,并且更具体地,涉及一种散热装置和电子设备。
背景技术
人工智能(artificial intelligence,AI)时代自动驾驶逐渐成为汽车行业最前沿的领域。高算力硬件模块作为自动驾驶解决方案的承载平台,其功耗大且集成度高,在数据处理过程中会产生大量热量,因此需要通过合理的散热设计来满足使用环境需求。
现有的硬件模块散热技术一般是通过自然对流或强制风冷等对硬件模块进行散热,强制风冷是指在待散热硬件模块周围安装风扇,通过风扇加速空气流动,以降低硬件模块的表面温度,但是风扇体积较大且散热效率较低,不能满足高算力硬件模块的散热需求。
发明内容
本申请实施例提供一种散热装置和电子设备,可有效降低散热装置与待散热硬件模块之间的热阻,提升硬件模块和散热装置之间的导热性能,且导热性能具有稳定性。
第一方面,提供了一种散热装置,包括:壳体,所述壳体具有内腔,且所述壳体具有第一开口和第二开口,且所述第一开口和所述第二开口与所述内腔连通,用于向所述内腔输入冷却介质,且将所述冷却介质输出内腔,所述壳体的至少一个面为柔性面。
本申请实施例的散热装置具有简单的工艺,通过冷却介质给散热装置的柔性面施压,使得散热装置的第一外表面柔性鼓出,主动与待散热装置大面积接触,实现待散热装置与散热装置之间的高效传热。冷却介质的压力可以由人为控制,使得散热装置的第一外表面与待散热装置表面充分接触,但材料的应力水平又不超过其屈服极限,使得传热长期稳定有效。
结合第一方面,在第一方面的某些实现方式中,柔性面由柔性导热材料制成。
结合第一方面,在第一方面的某些实现方式中,所述壳体包括多个面,所述柔性面的厚度小于所述壳体的其它面的厚度。
可以通过铣削工艺降低散热装置的柔性面的厚度,使得散热装置的柔性面更容易在冷却介质的压力作用下发生弹性变形,从而与待散热装置的散热面紧密接触。
结合第一方面,在第一方面的某些实现方式中,冷却介质的压力大于或等于柔性面的70%的材料弹性极限,且小于柔性面的材料弹性极限。
第二方面,提供了一种电子设备,包括:上述第一方面中任一种实现方式所述的散热装置;待散热装置,所述散热装置的柔性面相对于所述待散热装置的散热面设置。
本申请实施例的电子设备,散热装置的柔性面在冷却介质的压力下,向与内腔相反的方向凸起,或者,该柔性面用于将待散热装置散发的热量传递给冷却介质,该柔性面在冷却介质的作用下向待散热装置凸起。
结合第二方面,在第二方面的某些实现方式中,散热装置与待散热装置连接。
结合第二方面,在第二方面的某些实现方式中,散热装置具有伸出部分,待散热装置具有伸出部分,散热装置的伸出部分与待散热装置的伸出部分连接
本申请实施例的电子设备中,待散热装置和散热装置为可拆离设计,加工成本低,且便于后续更换和维护。
结合第二方面,在第二方面的某些实现方式中,散热装置的柔性面与待散热装置的散热面的距离小于距离阈值,包括:散热装置的柔性面与待散热装置的散热面接触。
本申请实施例的电子设备中,在未通入冷却液时,散热装置与待散热装置之间的距离较小,可以接触,也可以不接触,可以根据实际使用灵活设定。
结合第二方面,在第二方面的某些实现方式中,待散热装置包括壳体,所述待散热装置的壳体为导热金属材料,且该散热装置的壳体为导热金属材料。
散热装置和待散热装置均可以由导热性能良好的金属材料制成,以便待散热装置的热量可以高效传递到散热装置。
第三方面,提供了一种散热方法,该散热方法包括:散热装置的第一开口接收供液系统输出的冷却介质;散热装置的柔性面在冷却介质的压力作用下与待散热装置的散热面形成第一接触面;散热装置通过第一接触面将待散热装置的热量传递到冷却介质中,使冷却介质的温度升高;散热装置将温度升高后的冷却介质通过第二开口排出到外部环境中。
供液系统可以根据待散热装置的温度调整冷却介质的压力。例如,供液系统和待散热装置之间设置有温度传感器,当待散热装置温度升高时,供液系统可以增大冷却介质的压力,使得散热装置的柔性面与待散热装置的散热面之间的第一接触面面积增大,从而提升热传递性能。
附图说明
图1是一种在低算力场景中的散热方案的示意性框图;
图2是四种的液冷散热方案的示意性框图;
图3是内置冷板式液冷散热方案和壳体冷板一体式液冷散热方案的示意性框图;
图4是冷板壳体间接接触液冷散热方案和冷板壳体硬接触液冷散热方案的示意性框图;
图5是散热装置的散热装置与待散热装置的接触面微观示意图;
图6是本申请的散热装置的示意性框图;
图7是本申请的散热装置的散热装置与待散热装置的接触面微观示意图;
图8是本申请的散热方法的示意性流程图;
图9是本申请的电子设备中散热装置未通入冷却液的状态的示意性框图;
图10是本申请的电子设备中散热装置通入冷却液的状态的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
具有运算能力的硬件设备在工作时会产生热量,热量积累到一定程度会影响硬件设备的工作效率,甚至导致硬件设备故障或失效。因此需要通过散热设计来提升硬件设备的散 热效率。例如,图1示出了一种风冷散热方案的应用场景,如图1所示,热器件1101、电路板1102、壳体1103、盖板1106构成待散热的硬件模块,其中热器件1101集成在电路板1102上,热器件1101为热量的产生源,具体的,热器件1101可以是电阻、电感、电容或计算芯片等,电阻、电感、电容或计算芯片等安装在电路板1102上,壳体1103和盖板1106用于保护热器件1101与电路板1102,盖板1106可以打开,方便对壳体1103内的热器件1101和电路板1102进行维修和更换等。热器件1101与壳体1103之间可以设置导热材料1104,用于提高导热效率,壳体1103表面设置多个散热齿1105,用于增大散热面积。需要散热时,热器件1101通过导热材料1104将热量传输到壳体1103表面的散热齿1105,然后通过自然对流的方式进行散热。或者,在散热齿1105附近可以安装风扇1107,使用风扇1107强制通风的方法提高散热效率。由于风冷的散热效率较低,因此该方案只能满足低算力场景中的散热需求,例如半自动驾驶及以下的驾驶场景中的硬件模块的散热需求。
然而在更高算力场景,例如高度自动驾驶及以上的驾驶场景中,高算力硬件模块功耗更大、在数据处理过程中产生热量更多,此外,更高算力场景中集成的功能模块更多,空间有限,而风冷的散热方案中风扇会占用较大的空间,因此风冷的散热方案并不能满足更高算力场景的需求。而液冷散热方案相比于风冷的散热方案,散热效率更高且占用空间更小,液冷可以在不提高硬件模块内部温度的情况下将热量传递到外部环境中,因此液冷散热方案成为更高算力场景中的主要散热方案。图2示出了四种采用液冷散热的方案将发热器件(又称为热器件)的热量传递到外部环境中,其中①②方案为集成式散热方案,即硬件模块与冷板集成,③④方案为分离式散热方案,即硬件模块与冷板独立设计。如图2所示,液冷散热方案的原理为,热器件将热量传递给冷板,冷板中通入循环冷却液,由冷却液将热量带出到外部环境中,从而达到散热的目的。可选的,热器件与冷板之间可以设置导热材料,以提高导热效率。
图3示出了集成式散热方案的示意性框图,包括内置冷板式液冷散热方案和壳体冷板一体式液冷散热方案。如图3所示,内置冷板式液冷散热方案中,热器件2101、电路板2102、壳体2103和盖板2105构成了待散热的硬件模块,冷板2106置于硬件模块壳体2103内腔中,冷板2106上的进水口和出水口外露于壳体2103外,进水口和出水口与壳体2103之间可以按防护等级要求设计不同的密封结构,电路板,例如印制电路板(printed circuit board,PCB),2102上需要散热的热器件2101通过导热材料2104与冷板2106贴合,使得冷板2106在壳体2103腔内与热器件2101实现换热,冷却液通过进水口和出水口在冷板2106中循环,将热量带出到外部环境,从而实现对硬件模块的散热。壳体冷板一体式液冷散热方案中,热器件2201、电路板2202、壳体2203和盖板2205构成了待散热的硬件模块,冷板2206与壳体2203一体加工,壳体2203内设置冷却液通道,进水口和出水口暴露在壳体2203外,电路板2202上需要散热的热器件2201通过导热材料2204与冷板2206贴合,使得冷板2206与热器件2201实现换热,冷却液通过进水口和出水口在冷板2206中循环,将热量带出到外部环境。
上述内置冷板式液冷散热方案和壳体冷板一体式液冷散热方案均属于集成式散热方案,该方案由于冷板和硬件模块集成,如果需要更换硬件模块时,硬件模块必须与冷板拆离,易破坏冷板的整体性,使得冷却液泄露,冷却液泄露会导致设备短路或损坏,此外, 冷板与硬件模块集成使得整体结构复杂,冷板需采用钎焊、摩擦焊等加工方式与硬件模块集成在一起,安装难度大,制造成本高。
图4示出了分离式散热方案的示意性框图,包括冷板壳体硬接触液冷散热方案和冷板壳体间接接触液冷散热方案。其中,冷板壳体硬接触液冷散热方案中热器件3101、电路板3102、壳体3103和盖板3104构成了待散热的硬件模块,热器件3101与壳体3103之间设置导热材料3105,以提高导热效率。冷板3104与硬件模块独立设计,并与壳体3103紧贴设置,冷板3104上设置进水口与出水口,冷板3104内部设置冷却液通道。散热时,热器件3101的热量先通过壳体3103腔内的导热材料3105和壳体3103传递给冷板3104,然后由冷板3104内的循环冷却液将热量带出到外部环境,达到散热降温的目的。冷板壳体间接接触液冷散热方案与冷板壳体硬接触液冷散热方案类似,热器件3201、电路板3202、壳体3203和盖板3204构成了待散热的硬件模块,热器件3201与壳体3203之间设置导热材料3205,以提高导热效率。此外,壳体3203与冷板3204之间还设置导热材料3206,以进一步提高导热效率。散热时,热器件3201的热量通过壳体3203腔内的导热材料3205传递到壳体3203上,壳体3203再将热量通过导热材料3206传递到冷板3204,最后由冷板3204内的冷却液将热量带出到外部环境,以实现散热降温。
冷板壳体硬接触液冷散热方案和冷板壳体间接接触液冷散热方案均属于分离式散热方案,与集成式散热方案相比,分离式散热方案中冷板与硬件模块分别独立设计,使用时可以将冷板与硬件模块安装在一起使得冷板与硬件模块的壳体硬接触或者间接接触,加工和安装难度小;当硬件模块需要更换时,可以将冷板与硬件模块拆离而不会破坏冷板的整体结构。但冷板壳体硬接触液冷散热方案中冷板在安装时需要与硬件模块的壳体紧密贴合,以提供有效的热传导,图5示出了冷板与硬件模块壳体接触面的微观形貌,由图5可知,由于材料表面无法做到绝对的光滑,并且冷板与硬件模块壳体的接触面形状也无法做到绝对的一致,因此冷板与硬件模块壳体接触面即便看起来贴合,实际接触面之间有大量的缝隙,而空气的热阻大,使得导热性能降低。且受材料蠕变的影响,随着使用时间的延长,冷板与硬件模块壳体的接触面之间的缝隙会越来越大越来越多,导热性能进一步下降。冷板壳体间接接触液冷散热方案中冷板与硬件模块的壳体之间增加导热材料,可以提高导热性能,然而冷板与硬件模块的壳体之间的导热材料是处于外部环境中的,导热材料长期暴露在外部环境中无保护易失效,因此导热材料需要经常更换,增加了使用成本。
因此本申请实施例进一步提供一种散热装置,该散热装置与待散热硬件模块分别独立设计,在使用时散热装置与待散热硬件模块安装在一起,在有维修更换需求时,散热装置与待散热硬件模块可以拆离且不会破坏任一方的整体结构。此外,本申请实施例以下的散热装置与待散热硬件模块安装时无需待散热硬件模块的壳体紧密贴合,也可以不在散热装置与待散热硬件模块的壳体之间增加导热材料,即可有效降低散热装置与待散热硬件模块之间的热阻,提升待散热硬件模块和散热装置之间的导热性能,由于冷板与待散热硬件模块硬接触的方案中,随时间延长,材料逐渐变形,冷板与待散热硬件模块之间的接触面减小,导热性能降低,而以下散热装置,由于散热装置与待散热硬件模块在不工作时无需紧密接触,在工作时散热装置在冷却介质压力作用下与待散热硬件模块紧密贴合,即使材料随时间延长产生变形,在冷却介质压力作用下依然会与待散热硬件模块紧密贴合,因此导热性能具有稳定性。因此,以上散热装置可以提供散热效率,可以应用于具有高算力硬件 模块的场景中,例如可以应用于自动驾驶、辅助驾驶等车载计算模块的散热,还可以应用于其他有散热需求的车载模块、电池包等场景中的散热,还可以应用于车辆以外的其它具有散热需求的装置中。
应理解,本申请实施例中的冷却介质,可以是冷却液,例如水、氟化液或不导电的油等,还可以是其它形态的冷却介质,例如气态。
上述导热材料可以是导热垫、导热硅脂或导热凝胶等。
图6示出了本申请实施例提供的一种散热装置4200,还示出了待散热装置4100,图6所示的散热装置可以应用于有车载模块的散热场景中,或者其他有散热需求的场景中,本申请实施例的散热装置除了可以对图6中待散热装置进行散热,还可以对其他形态的待散热装置例如电池包等进行散热。以下对图6中的散热装置进行详细介绍。
待散热装置4100包括热器件4101和壳体4102,热器件4101置于壳体4102腔内,热器件4101产生的热量通过壳体4102传递到外部环境中。应理解,待散热装置4100之外即可理解为外部环境,但是热量只传递到待散热装置4100之外还不能达到散热的目的,因此需要散热装置4200进行散热降温。
可选的,本申请实施例的待散热装置4100还可以包括其他部件,例如在热器件4101和壳体4102之间还可以设置导热材料,使得热器件4101通过导热材料与壳体4102的内表面间接接触,从而提升热器件4101和壳体4102之间的传热性能,以便快速将热器件4101的热量传递到外部环境中。
可选的,本申请实施例不对待散热装置4100的具体形态做限制,例如该热器件4101也可以不位于壳体4102内,例如,直接设置于散热板上。
散热装置4200用于对待散热装置4100进行散热冷却,包括壳体4201,壳体4201具有内腔,壳体4201上具有第一开口和第二开口,分别用于冷却介质的流入和流出。在此,以冷却介质为冷却液为例,则第一开口和第二开口分别可以称为进液口和出液口,进液口和出液口与内腔连通,冷却液从进液口输入内腔,从出液口输出内腔。散热装置4200与壳体4102相对的面为柔性面,柔性面是指该面在冷却介质的压力作用下能够发生弹性变形,例如柔性面在冷却介质的压力下,向与散热装置4200内腔相反的方向凸起,该柔性面为散热面,用于该将待散热装置4100的散发的热量传导至冷却介质,该柔性面在冷却介质的作用下向待散热装置4100凸起。如图6所示,在进行散热冷却时,散热装置4200与待散热装置4100的位置关系为,散热装置4200的第一外表面与壳体4102的第一外表面相对设置,散热装置4200的第一外表面为柔性面,散热装置4200的第一外表面与壳体4102的第一外表面理论上贴合,但也允许组装时由于组装难度而留有一定缝隙。为了提升散热效率,可以让散热装置4200的第一外表面与壳体4102的第一外表面(即相对设置的两个表面)的相对面积达到一定面积,例如相对面积达到20平方厘米等,该设定面积不是固定的,可以根据待散热装置的情况调整,本申请实施例不做限制。或者,散热装置4200的第一外表面可以大于壳体4102的第一外表面面积的一定比例,例如大于或等于壳体4102的第一外表面面积的60%-80%等。散热装置4200内腔中通入冷却介质,散热装置4200的第一外表面在冷却介质的压力作用下向外凸起与壳体4102的第一外表面形成第一接触面。如此,热器件4101将热量传递给壳体4102,壳体4102通过第一接触面将热量传递给散热装置4200,散热装置4200中的冷却介质将热量带出到外部环境,从而实现 对待散热装置的冷却降温。
可选的,散热装置4200的柔性面相较于其他面在冷却介质的压力作用下更容易发生弹性变形,也就是说,散热装置4200的柔性面的刚度比其他面更低,抵抗变形的能力更低。如此,散热装置4200的整体结构更加稳固耐用。冷却介质的压力大于或等于散热装置4200的柔性面的70%的材料弹性极限,且小于散热装置4200的柔性面的材料弹性极限,使得散热装置4200的柔性面可以在冷却介质的压力作用下发生弹性变形,而不至于发生塑性变形。
可选的,散热装置4200的第一外表面与壳体4102的第一外表面的距离小于距离阈值,包括散热装置4200的第一外表面与壳体4102的第一外表面直接接触。当散热装置4200的第一外表面与壳体4102的第一外表面直接接触时,其接触面与图5所示的接触面微观形貌类似,散热装置4200的第一外表面与壳体4102的第一外表面之间会存在大量空气间隙,而空气的热阻大,因此导热性能降低。当散热装置4200的第一外表面在冷却介质的压力作用下向外凸起与壳体4102的第一外表面形成第一接触面时,第一接触面的微观形貌如图7所示,散热装置4200的第一外表面在压力作用下与壳体4102的第一外表面紧密贴合,界面之间空气间隙大大减少,甚至没有,热阻减小,因此导热性能提升。
可选的,散热装置4200的第一外表面为柔性面,可以通过减小散热装置4200的第一外表面的厚度来实现,使得散热装置4200的第一外表面的厚度小于其他面的厚度。为了使散热装置4200的第一外表面在压力作用下更容易变形凸起,可以通过铣削工艺将散热装置4200的第一外表面的第一区域的厚度铣削到小于厚度阈值,厚度阈值为设定的值,使得散热装置4200的第一外表面的第一区域更容易在冷却介质的压力作用下发生弹性变形,从而与壳体4102的第一外表面紧密接触。其中散热装置4200的第一外表面的第一区域的面积可以设定,例如可以根据实际需要确定第一接触面的面积,然后确定散热装置4200的第一外表面的第一区域的面积,其中散热装置4200的第一外表面的第一区域的面积大于第一接触面的面积。例如,散热装置4200的第一外表面的面积和壳体4102的第一外表面的面积均为50平方厘米,根据实际需要确定第一接触面的面积至少为20平方厘米,则散热装置4200的第一外表面的第一区域的面积大于20平方厘米。
或者,散热装置4200的第一外表面为柔性面,可以通过散热装置4200的第一外表面局部或整体由容易发生弹性变形的材料制成来实现,使得散热装置4200的第一外表面更容易在冷却介质的压力作用下发生弹性变形,从而与壳体4102的第一外表面紧密接触。具体的,材料的弹性模量在第一预设范围内,且该材料在该范围内发生弹性变形的同时不发生塑性变形,例如可以由铝合金、镁合金、铜合金或钢板等材料制成。
可选的,第一接触面的面积可以设定为与热器件4101在壳体4102的第一外表面上的投影面积相近,例如两者之间的差值可以小于或等于预设阈值,如此可以使热器件4101的热量充分传递到散热装置4200。
在安装待散热装置4100和散热装置4200时,可以将待散热装置4100和散热装置4200固定在一起。具体的,可以在壳体4102上设置伸出部分,同时在散热装置4200上也设置伸出部分,然后将壳体4102的伸出部分与散热装置4200的伸出部分连接起来,连接方式可以是通过螺钉、铆钉或者卡扣等可拆卸的连接方式连接,便于之后维修更换时可以将待散热装置4100和散热装置4200无损坏拆分。
可选的,散热装置4200和壳体4102均可以由导热性能良好的材料制成,例如,导热金属材料,以便热器件4101的热量可以高效传递到散热装置4200。
散热装置4200上还设置有第一开口和第二开口,第一开口和第二开口与散热装置4200的内腔相通,冷却介质从第一开口进入散热装置4200的内腔,与待散热装置4100进行热交换后,将热量通过第二开口带出到外部环境。
冷却介质,在通入内腔之后或通入内腔之前可以进行加压处理,使得通入散热装置4200内腔中冷却介质的压力高于外部环境的大气压强,例如比大气压强高280kPa。冷却介质本身具有压力,例如冷却介质是被压缩的冷却液,也是其中一种实现方式,本申请在此并不限定冷却介质的具体形式,只要能达到使得散热装置4200内腔中的压力高于外部环境的大气压强即可。
一般来说,待散热装置和散热装置之间即便看起来贴合,实际接触面也如图5所示,其实接触面之间有大量缝隙,导热性能较低。本申请以上实施例的散热装置具有简单的工艺,通过冷却介质给散热装置的第一外表面施压,使得散热装置的第一外表面柔性鼓出,主动与待散热装置大面积接触,且散热装置的第一外表面在压力作用下,即便微观上也与待散热装置壳体的第一外表面紧密贴合,如图7所示,由此实现待散热装置与散热装置之间的高效传热。冷却介质的压力可以由进行控制,使得散热装置的第一外表面与壳体的第一外表面接触面积发生变化,从而调整散热效率,以适应不同尺寸待散热装置的使用,但材料的应力水平又不超过其屈服极限,使得传热长期稳定有效。本申请实施例的待散热装置和散热装置为可拆离设计,加工成本低,且便于后续更换和维护。
图8示出了本申请实施例的散热方法的示意性流程图,包括步骤801至步骤804,图6中的散热装置可以用于实现图8中的步骤801至步骤804,以下进行简要介绍。
S801,散热装置的第一开口接收冷却介质供应系统输出的冷却介质。
这里的散热装置即图6中介绍的散热装置,包括第一开口和第二开口,由外接的冷却介质供应系统提供循环的冷却介质。例如,这里的冷却介质,可以是冷却液,且在散热装置内腔中通入冷却液后使得散热装置内腔中的压力高于外部环境的大气压强。冷却液本身具有压力,例如冷却液是被压缩的冷却液,是其中一种实现方式,本申请在此并不限定冷却介质的具体形式,只要能达到使得散热装置内腔中的压力高于外部环境的大气压强即可。
S802,散热装置的柔性面在冷却介质的压力作用下与待散热装置的散热面形成第一接触面。
散热装置的柔性面局部铣薄或者由易发生弹性变形的导热材料制成,可以在冷却介质的压力作用下向外鼓出,使得散热装置的柔性面与待散热装置的散热面形成图7所示的接触面,从而与待散热装置的散热面充分接触,大大减少图5所示的微观空隙,以提高热传导效率。
S803,散热装置通过第一接触面将待散热装置的热量传递到冷却介质中,使冷却介质的温度升高。
S804,散热装置将温度升高后的冷却介质通过第二开口排出到外部环境中
热器件置于壳体腔内,热器件的热量通过壳体传递到散热装置的冷却介质中,并由冷却介质将热量带出到外部环境中。
本申请实施例的散热方法使用图6中的散热装置进行散热,散热装置的柔性面在冷却 介质的压力作用下与待散热装置的散热面充分接触,使得循环冷却介质在流经散热装置时可以将热器件的热量带出到外部环境,实现热量的高效传递。
可选的,冷却介质供应系统可以根据待散热装置中的热器件的温度调整冷却介质的压力。例如,冷却介质供应系统和热器件之间设置有温度传感器,当热器件温度升高时,冷却介质供应系统增大冷却介质的压力,使得散热装置的柔性面与待散热装置的散热面之间的第一接触面面积增大,从而提升热传递性能。
应理解,本申请实施例的散热方法由图6中的散热装置执行,具体对于散热装置的描述可以参见上述对于图6的描述,为了简洁,本申请实施例在此不再赘述。
图9示出了本申请实施例的电子设备的示意性框图,包括待散热装置9100和散热装置9200,散热装置9200的柔性面相对于待散热装置9100的散热面设置。
图9所示的电子设备中,待散热装置9100部分包括热器件9101、壳体9102、盖板9103、电路板9104、导热材料9105。热器件9101集成在电路板9104上,置于壳体9102中,壳体9102上设置有盖板9103,使得壳体9102可以打开,便于对壳体内部的热器件9101、电路板9104和导热材料9105进行安装、维护和更换,热器件9101与壳体9102之间设置导热材料9105,以进一步提升导热性能。应理解,待散热装置部分可以不完全包括图9中示出的部分,也可以包括图9中未示出的部分,本申请实施例在此不做限定。
散热装置9200,包括腔体9201、冷板盖9202、进液口9203、出液口9204、供液系统9205。在此,以冷却介质为冷却液为例。其中冷板盖9202作为散热装置9200的柔性面,与腔体9201为可拆离设计,便于对散热装置9200的腔体内部进行维护和清理,在进行散热使用时,冷板盖9202与腔体9201连接,且密封性能符合需求;供液系统9205分别与进液口9203和出液口9204连接。如图9所示,为了提高接触效果,冷板盖的厚度小于散热装置9200的其他面的厚度,例如冷板盖9202下表面通过局部铣削以降低局部厚度,例如,冷板盖整体厚度为2毫米,局部铣削使局部厚度为0.5毫米,铣削面积可以根据热器件在壳体底面的投影面积决定,例如铣削面积可以等于投影面积,或者铣削面积与投影面积的差距在一定阈值内。
待散热装置9100与散热装置9200为可拆卸连接,连接的方式可以是图9所示的使用螺钉9300连接。当待散热装置9100与散热装置9200任一者需要维护时,待散热装置9100与散热装置9200可以拆卸分离而不会破坏任一者的完整性。
图9所示的散热装置9200状态为未充冷却液,此时待散热装置9100与散热装置9200通过螺钉9300连接,待散热装置9100与散热装置9200之间可以接触也可以不接触,但两者之间的距离在预设范围内,例如两者之间的距离小于1厘米。当供液系统9205通过进液口9203向散热装置9200的腔体9201中通入冷却液后,散热装置9200的状态如图10所示,当冷却液供液系统9205为腔体9201提供足够的液压(例如300Kpa)时,冷板盖9202的局部铣薄面在冷却液压力作用下向壳体9102侧鼓起,与壳体9102形成大面积的贴合,供应系统9205通过压力控制器保持稳定的液压,可以使得壳体9102与冷板盖9202之间的接触面所受的压力长期保持稳定。此时,壳体9102与冷板盖9202之间的柔性接触面摆脱了形位尺寸偏差和安装形变的影响,贴合紧密,实际有效接触面积大,热阻小且稳定。
本申请实施例的散热装置,采用冷板和待散热装置可拆离的设计,加工成本低,安装 后可拆离便于维护。本申请实施例的散热装置不增加冷板和待散热装置的连接点,使得待散热装置内部设计不受连接点约束,冷板和待散热装置的配合面加工质量和安装质量要求低,且接触面不易受材料蠕变影响,确保接触长期有效,热阻保持稳定的低值。
本申请实施例还提供一种设备,该设备包括散热装置和待散热装置,其中散热装置和待散热装置可以分别为图6、图9和图10中的散热装置和待散热装置,待散热装置可以是车载模块或电池包等具有可接触平面的装置,散热装置在冷却介质的作用下对待散热装置进行散热。
产品形态在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种散热装置,其特征在于,包括:
    壳体,所述壳体具有内腔,且所述壳体具有第一开口和第二开口,且所述第一开口和所述第二开口与所述内腔连通,用于向所述内腔输入冷却介质,且将所述冷却介质输出内腔,所述壳体的至少一个面为柔性面。
  2. 如权利要求1所述的装置,其特征在于,所述柔性面由柔性导热材料制成。
  3. 如权利要求1或2所述的装置,其特征在于,所述壳体包括多个面,所述柔性面的厚度小于所述壳体的其它面的厚度。
  4. 如权利要求1至3中任一项所述的装置,其特征在于,所述冷却介质的压力大于或等于所述柔性面的70%的材料弹性极限,且小于所述柔性面的材料弹性极限。
  5. 一种电子设备,其特征在于,包括:
    如权利要求1至4中任一项所述的散热装置;
    待散热装置,所述散热装置的柔性面相对于所述待散热装置的散热面设置。
  6. 如权利要求5所述的电子设备,其特征在于,所述散热装置与所述待散热装置连接。
  7. 如权利要求6所述的电子设备,其特征在于,所述散热装置具有伸出部分,所述待散热装置具有伸出部分,所述散热装置的伸出部分与所述待散热装置的伸出部分连接。
  8. 如权利要求5至7中任一项所述的电子设备,其特征在于,所述待散热装置包括壳体,所述待散热装置的壳体为导热金属材料,且所述散热装置的壳体为导热金属材料。
  9. 一种散热方法,其特征在于,包括:
    散热装置的第一开口接收冷却介质供应系统输出的冷却介质;
    所述散热装置的柔性面在所述冷却介质的压力作用下与待散热装置的散热面形成第一接触面;
    所述散热装置通过所述第一接触面将所述待散热装置的热量传递到所述冷却介质中,使所述冷却介质的温度升高;
    所述散热装置将温度升高后的冷却介质通过第二开口排出到外部环境中。
PCT/CN2021/102992 2021-06-29 2021-06-29 散热装置和电子设备 WO2023272473A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/102992 WO2023272473A1 (zh) 2021-06-29 2021-06-29 散热装置和电子设备
CN202180001850.1A CN113615326B (zh) 2021-06-29 2021-06-29 散热装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102992 WO2023272473A1 (zh) 2021-06-29 2021-06-29 散热装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023272473A1 true WO2023272473A1 (zh) 2023-01-05

Family

ID=78310962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102992 WO2023272473A1 (zh) 2021-06-29 2021-06-29 散热装置和电子设备

Country Status (2)

Country Link
CN (1) CN113615326B (zh)
WO (1) WO2023272473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761386A (zh) * 2023-05-19 2023-09-15 华为数字能源技术有限公司 一种带风液复合散热机组的功率变换器及储能系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115891709A (zh) * 2022-11-07 2023-04-04 华为数字能源技术有限公司 一种充电设备和充电系统
CN118055592A (zh) * 2022-11-15 2024-05-17 华为技术有限公司 液冷散热装置、散热系统及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489498A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Liquid cooling of large computer and liquid cooling device therefor
JPH11204978A (ja) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp 電子機器
KR20040006636A (ko) * 2002-07-13 2004-01-24 천기완 전자장치의 수냉식 연질 냉각재킷 및 이를 이용한 완충재킷
US20050061474A1 (en) * 2003-09-18 2005-03-24 Gelorme Jeffrey D. Method and apparatus for chip-cooling
CN103477430A (zh) * 2012-02-08 2013-12-25 华为技术有限公司 具有集成散热器的用于电子设备的壳体
CN204810787U (zh) * 2015-06-12 2015-11-25 联想(北京)有限公司 一种散热组件及电子设备
CN106686954A (zh) * 2017-02-10 2017-05-17 联想(北京)有限公司 散热结构、电子设备及其组装方法
CN112638113A (zh) * 2019-10-07 2021-04-09 马勒国际有限公司 用于控制电气设备的温度的温度控制设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167366B2 (en) * 2002-09-11 2007-01-23 Kioan Cheon Soft cooling jacket for electronic device
CN1980558B (zh) * 2005-12-09 2011-09-28 鸿富锦精密工业(深圳)有限公司 液冷式散热组合和液冷式散热装置
EP2166569A1 (de) * 2008-09-22 2010-03-24 ABB Schweiz AG Kühlvorrichtung für ein Leistungsbauelement
CN105955434A (zh) * 2016-06-30 2016-09-21 华为技术有限公司 一种柔性换热单元、液冷散热装置及液冷散热系统
CN213187044U (zh) * 2020-10-29 2021-05-11 西安易朴通讯技术有限公司 散热装置和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489498A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Liquid cooling of large computer and liquid cooling device therefor
JPH11204978A (ja) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp 電子機器
KR20040006636A (ko) * 2002-07-13 2004-01-24 천기완 전자장치의 수냉식 연질 냉각재킷 및 이를 이용한 완충재킷
US20050061474A1 (en) * 2003-09-18 2005-03-24 Gelorme Jeffrey D. Method and apparatus for chip-cooling
CN103477430A (zh) * 2012-02-08 2013-12-25 华为技术有限公司 具有集成散热器的用于电子设备的壳体
CN204810787U (zh) * 2015-06-12 2015-11-25 联想(北京)有限公司 一种散热组件及电子设备
CN106686954A (zh) * 2017-02-10 2017-05-17 联想(北京)有限公司 散热结构、电子设备及其组装方法
CN112638113A (zh) * 2019-10-07 2021-04-09 马勒国际有限公司 用于控制电气设备的温度的温度控制设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761386A (zh) * 2023-05-19 2023-09-15 华为数字能源技术有限公司 一种带风液复合散热机组的功率变换器及储能系统

Also Published As

Publication number Publication date
CN113615326A (zh) 2021-11-05
CN113615326B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023272473A1 (zh) 散热装置和电子设备
US11109518B2 (en) Water-cooled motor controller
US8432691B2 (en) Liquid cooling system for an electronic system
EP3193365B1 (en) Heat dissipation system
JP6389364B2 (ja) 液冷システムを備える電子ボード
US20070227699A1 (en) Method, apparatus and system for flow distribution through a heat exchanger
US7537048B2 (en) Integrated liquid cooling system for electronic components
US7360583B2 (en) Integrated liquid cooling system for electronic components
JP5472955B2 (ja) 放熱モジュール
US9318410B2 (en) Cooling assembly using heatspreader
JP7483851B2 (ja) 車載デバイスおよび車両
US9377251B2 (en) Thermal ground plane for cooling a computer
US20210378142A1 (en) Heat dissipation device and server using same
US20140020869A1 (en) Cooling of Personal Computers and Other Apparatus
TWM522390U (zh) 散熱組件
JP5297353B2 (ja) 電子機器装置
US11943895B2 (en) Liquid cooling device and electronic device
JP2014529120A (ja) サーバ及びサーバの冷却方法
EP4210443A1 (en) Radiator and electronic device
KR20080082814A (ko) 컴퓨터 냉각장치
TWM565471U (zh) Liquid cooled heat dissipation structure
TWI813324B (zh) 液冷裝置及電子組件
TWI414225B (zh) 電子裝置
TWI812477B (zh) 散熱裝置
CN220933456U (zh) 一种计算机双散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE