WO2023249042A1 - 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法 - Google Patents

積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法 Download PDF

Info

Publication number
WO2023249042A1
WO2023249042A1 PCT/JP2023/022886 JP2023022886W WO2023249042A1 WO 2023249042 A1 WO2023249042 A1 WO 2023249042A1 JP 2023022886 W JP2023022886 W JP 2023022886W WO 2023249042 A1 WO2023249042 A1 WO 2023249042A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
welding
metal
region
Prior art date
Application number
PCT/JP2023/022886
Other languages
English (en)
French (fr)
Inventor
絢太郎 宮川
貴也 齊藤
良基 高柳
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2023249042A1 publication Critical patent/WO2023249042A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminate, an electrode structure, a battery, a flying vehicle, a method for producing a laminate, and a method for producing an electrode structure.
  • Patent Document 1 discloses a welding method for welding a semi-insulator having a chemically formed film and a metal conductor.
  • Patent Document 2 discloses a welding method for welding a first metal material and a second metal material of an electronic component in which a first metal material and a second metal material are stacked on both sides with a resin insulating plate in between.
  • Patent Document 3 discloses a current collector in which a conductive layer is formed on both sides of a support layer, and a through hole penetrating the support layer and the conductive layer is filled with a conductive material.
  • Patent Document 1 JP2004-130331A
  • Patent Document 2 JP2006-305591A
  • Patent Document 3 JP2019-186204A
  • a laminate in a first aspect of the present invention, includes, for example, a plurality of laminated sheet materials.
  • each of the plurality of sheet materials has a support layer containing, for example, a thermoplastic resin material.
  • Each of the plurality of sheet materials has, for example, a first metal layer and a second metal layer formed on both sides of the support layer.
  • the resin material may be a thermoplastic resin material.
  • the proportion may be between 5 and 50%.
  • the plurality of sheet materials may have a first sheet material disposed at the outermost side on one side of the plurality of sheet materials.
  • Any of the above laminates may include an electrically conductive first support member that supports the first sheet material.
  • the main component of the first support member, the main components of the plurality of first metal layers, and the main components of the plurality of second metal layers may be different.
  • the volume of the same type of metal as the main component of the plurality of first metal layers and the same type of metal as the main component of the plurality of second metal layers in the integrated region may be 5 to 50%.
  • the proportion may be 10% or less.
  • the plurality of sheet materials include a first sheet material disposed at the outermost side of one side of the plurality of sheet materials, and a first sheet material disposed at the outermost side of the other side of the plurality of sheet materials. and a second sheet material.
  • Any of the above laminates may include a conductive first support member that supports the first sheet material, and a conductive or non-conductive second support member that supports the second sheet material.
  • each of the plurality of sheet materials has a structure that penetrates each sheet material in the vicinity of an integrated region where the plurality of first metal layers and the plurality of second metal layers are integrated. It may have a region in which a plurality of through holes are formed.
  • Any of the above laminates may include a conductive layer disposed on the inner walls of at least some of the plurality of through holes.
  • the conductive layer may have three or more layers having different main components.
  • a thermoplastic resin material may be disposed inside at least a portion of the plurality of through holes.
  • the equivalent circular diameter of the plurality of through holes may be 15 ⁇ m to 150 ⁇ m.
  • the distance between two adjacent through holes among the plurality of through holes may be 30 ⁇ m to 250 ⁇ m.
  • the plurality of first metal layers and the plurality of second metal layers are included in the integrated region where the plurality of first metal layers and the plurality of second metal layers are integrated.
  • the first ratio which is the ratio of the volume of the thermoplastic resin material included in the integrated region to the volume of the metal contained in the integrated region, is (b) from the end of the integrated region of the third sheet material included in the plurality of sheet materials. It is smaller than the second ratio which is the ratio of the volume of the thermoplastic resin material to the volume of the metal at a position 5 mm or more away.
  • the third sheet material may be the sheet material with the largest second ratio among the plurality of sheet materials.
  • the value of the first ratio may be 0.1 to 0.7 times the value of the second ratio.
  • an electrode structure in a second aspect of the invention, includes, for example, a first electrode and a second electrode.
  • the above electrode structure includes, for example, a third electrode and a fourth electrode.
  • the above electrode structure includes, for example, a first separator, a second separator, and a third separator.
  • a first electrode, a first separator, a third electrode, a second separator, a second electrode, a third separator, and a fourth electrode are stacked in this order.
  • each of the first electrode and the second electrode includes, for example, a current collector.
  • each of the first electrode and the second electrode has, for example, an active material layer disposed on at least one surface of the current collector.
  • the current collector includes, for example, a support layer containing a thermoplastic resin material.
  • the current collector includes, for example, a first metal layer and a second metal layer formed on both sides of the support layer.
  • the above resin material may include a thermoplastic resin material.
  • the volume of metal contained in the integrated region which is the region where the plurality of first metal layers and the plurality of second metal layers are integrated.
  • the first ratio which is the volume ratio of the thermoplastic resin material contained in the metal, is (b) at a position 5 mm or more away from the end of the integrated region of the current collector included in the first electrode or the second electrode.
  • the ratio may be smaller than the second ratio, which is the ratio of the volume of the thermoplastic resin material to the volume of the thermoplastic resin material.
  • the second ratio may be the above-mentioned ratio in a current collector in which the above-mentioned ratio is large among the current collector of the first electrode and the current collector of the second electrode.
  • a battery in a third aspect of the invention, includes, for example, any electrode structure according to the second aspect described above.
  • the above battery includes, for example, a housing that houses the electrode structure.
  • a flying vehicle in a fourth aspect of the present invention, includes, for example, any one of the batteries according to the above-mentioned second aspect.
  • the above-mentioned flying object includes, for example, a propulsive force generating device that generates propulsive force using electrical energy stored in a battery.
  • a method of producing a laminate includes, for example, a preparation step of preparing a welding object including a support layer containing a thermoplastic resin material, and a first metal layer and a second metal layer formed on both sides of the support layer.
  • the above method includes, for example, a stacking step of stacking a plurality of welding objects.
  • the above method includes, for example, a softening step in which energy is applied to a softening region disposed in a part of a plurality of welding targets to soften the resin material in the softening region.
  • the method described above includes, for example, a pressing step of pressing a welding area located at least in part of the softened area.
  • the method described above includes a welding step of welding the first and second metal layers of the plurality of welding objects, for example by applying current and/or voltage to the pressed welding area.
  • the first metal layer and the second metal layer of each of the plurality of welding targets are, for example, electrically connected.
  • a plurality of through holes are formed in at least a portion of each of the softened regions of the plurality of welding targets, for example, penetrating the support layer, the first metal layer, and the second metal layer.
  • a conductive member that electrically connects the first metal layer and the second metal layer may be disposed on the inner wall of at least a portion of the plurality of through holes.
  • the conductive member may include multiple layers.
  • each of the plurality of layers may be made of different materials.
  • a plurality of through holes penetrating the support layer, the first metal layer, and the second metal layer may be formed in each welding region of the plurality of welding targets.
  • a plurality of through holes penetrating the first metal layer and the second metal layer may be formed in a region adjacent to the welding region of each softened region of the plurality of welding targets.
  • the pressing step may include applying pressure to a plurality of laminated objects to be welded so that the softened resin material flows into at least some of the through holes.
  • the pressing step may include a step of bringing the respective first metal layers and second metal layers of the plurality of welding targets close to each other to a weldable distance.
  • a conductive member that electrically connects the first metal layer and the second metal layer may be disposed on the inner wall of at least a portion of the plurality of through holes.
  • the softened resin material breaks the conductive member disposed on the inner wall of at least some of the through holes, so that at least some of the through holes are welded.
  • the method may include applying pressure to the stacked plurality of welding objects so as to flow into the holes.
  • the welding step may include applying current and/or voltage to the welding region while further pressing the welding region pressed in the pressing step.
  • Any of the above methods includes a supporting step of sandwiching a plurality of softened regions or weld regions to be welded using a conductive first support member and a conductive or non-conductive second support member. It's fine.
  • the supporting step may be performed before the softening or pressing step.
  • a method of producing an electrode structure includes, for example, providing a first electrode and a second electrode.
  • the above method includes, for example, providing a third electrode and a fourth electrode.
  • the above method includes, for example, providing a first separator, a second separator, and a third separator.
  • the above method includes, for example, stacking a first electrode, a first separator, a third electrode, a second separator, a second electrode, a third separator, and a fourth electrode in this order.
  • the above method includes, for example, welding a portion of the first electrode and the second electrode.
  • each of the first electrode and the second electrode includes, for example, a current collector.
  • each of the first electrode and the second electrode includes, for example, an active material layer disposed on at least one surface of the current collector.
  • the current collector has, for example, a support layer containing a thermoplastic resin material.
  • the current collector has, for example, a first metal layer and a second metal layer formed on both sides of the support layer.
  • the first metal layer and the second metal layer are, for example, electrically connected.
  • a plurality of through holes passing through the support layer, the first metal layer, and the second metal layer are formed in at least a part of the softened region arranged in a part of the current collector. .
  • the step of welding part of the first electrode and the second electrode includes, for example, the step of laminating the current collector of the first electrode and the current collector of the second electrode.
  • the step of welding a portion of the first electrode and the second electrode includes, for example, a softening step of applying energy to the softened region of the current collector to soften the resin material in the softened region.
  • Welding a portion of the first electrode and the second electrode includes, for example, pressing a welding region located in at least a portion of the softened region.
  • the step of welding a portion of the first electrode and a portion of the second electrode may include, for example, applying a current and/or voltage to the pressed welding area to including a welding step of welding the metal layer and the second metal layer.
  • FIG. 1 schematically shows an example of a system configuration of an aircraft 100.
  • An example of a power storage cell 112 is schematically shown.
  • Another example of the electricity storage cell 112 is schematically shown.
  • An example of a current collector 400 is schematically shown.
  • An example of a current collector 500 is schematically shown.
  • An example of a current collector 600 is schematically shown.
  • An example of a laminated structure 760 is schematically shown.
  • An example of the electrical connection relationship of the electrodes of the laminated structure 760 is schematically shown.
  • An example of a method for manufacturing the electricity storage cell 112 is schematically shown.
  • An example of a method for manufacturing the positive electrode 220 is schematically shown.
  • An example of a welding procedure using a welding device 1120 is shown.
  • An example of a plurality of through holes 620 arranged in a current collector 1102 is shown.
  • An example of a plurality of through holes 620 arranged in a current collector 1102 is shown.
  • An example of a procedure for manufacturing the laminated structure 760 will be shown.
  • An example of a cross section of an integrated region of the positive electrode connection part 820 is schematically shown.
  • An example of a SEM image of a cross section of the integrated region of Example 1 is shown.
  • a laminate is produced by welding a part of a plurality of stacked objects to be welded.
  • Each of the plurality of welding targets described above includes a support layer containing a resin material, and a first metal layer and a second metal layer formed on both sides of the support layer.
  • the object to be welded may be a sheet-like material (sometimes referred to as a sheet material).
  • the object to be welded may be a current collector used for an electrode of a battery.
  • the first metal layer and second metal layer of each of the plurality of welding targets described above are electrically connected. Thereby, the first metal layer and the second metal layer can be welded, for example by resistance welding.
  • the support layer may be substantially made of a thermoplastic resin material, and the support layer may be made of a thermoplastic resin material.
  • thermoplastic resin material as the main component of the support layer, for example, when the laminate is used as an electrode of a battery, the safety of the battery is improved. More specifically, when the battery described above experiences thermal runaway, the thermoplastic resin material is fused due to the heat. As a result, thermal runaway can be stopped.
  • thermoplastic resin materials soften when the temperature of the resin material increases, improving fluidity.
  • the resin material placed between the first metal layer and the second metal layer easily moves, and the first The metal layer and the second metal layer are in close proximity or contact. In this state, the first metal layer and the second metal layer are integrated by applying energy to the first metal layer and the second metal layer.
  • the support layer includes a thermoplastic resin material
  • a portion of each of the plurality of welding targets includes the support layer, the first metal layer, and the second metal layer.
  • a plurality of through holes are formed through the layer. Further, at least a portion of the region where the above-mentioned through hole is formed is welded. This suppresses volumetric expansion around the welding location.
  • a plurality of objects to be welded are welded according to the following procedure.
  • energy is applied to a softened region located in a part of a plurality of welding targets.
  • the support layer to be welded in this embodiment mainly includes, for example, a thermoplastic resin material.
  • the temperature of the thermoplastic resin material included in the support layer increases and the resin material softens.
  • a welding area located at least in part of the softened area of the welding target is pressed.
  • pressure is applied to the resin material of the support layer disposed between the first metal layer and the second metal layer.
  • the resin material present inside the welding area is softened and has appropriate fluidity. Therefore, when an appropriate amount of pressure is applied to the resin material of the support layer, the resin material moves inside the welding target.
  • a plurality of through holes penetrating the support layer, the first metal layer, and the second metal layer are formed in the welding area to be welded in this embodiment. Therefore, compared to the case where no through hole is formed in the welding area, the amount of resin material that causes the above-mentioned volumetric expansion is small.
  • the resin material present inside the welding region flows into the through-holes present around the welding region.
  • a part of the resin material existing inside the welding area flows into the inside of the through hole formed in the first metal layer and the second metal layer existing inside the welding area.
  • the amount of resin material extruded from the welding area during welding is small. Furthermore, the resin material extruded during welding flows into the through hole. As a result, according to this embodiment, the above-mentioned volumetric expansion is largely suppressed compared to the case where no through hole is formed in the welding region.
  • the above welding object is, for example, a current collector used for the electrode of a battery, and the method of producing the above-mentioned laminate or welding a plurality of laminated welding objects is suitable for batteries (particularly The present invention can be applied to the production of an electrode structure disposed inside the case of a rechargeable battery.
  • the through hole is formed in a part of the current collector, the apparent density of the current collector is reduced.
  • the density of the resin material may be smaller than the density of the metal materials forming the first metal layer and the second metal layer.
  • the energy density per unit mass of the power storage cell [Wh/kg-power storage cell] and/or the capacity per unit mass of the active material [ mAh/g-active material] can be improved.
  • a part of the current collector is formed of a substance (typically air or a resin material) having a lower density than the aluminum foil or copper foil. Ru.
  • a power storage cell with excellent energy density per unit mass and/or capacity per unit mass of active material can be provided.
  • a power storage cell having an energy density per unit mass of 350 [Wh/kg-power storage cell] or more can be provided.
  • the battery including the storage cell according to the present embodiment has a high energy density per unit mass, it is particularly suitable for use in an aircraft.
  • the laminate, electrode structure, battery, and manufacturing method thereof according to the present embodiment are suitable for achieving Sustainable Development Goals (SDGs) Goal 7 "Affordable and Clean Energy” or Goal 13 "Climate Change”. It can contribute to the achievement of specific measures such as "take concrete measures.”
  • SDGs Sustainable Development Goals
  • FIG. 1 schematically shows an example of a system configuration of an aircraft 100.
  • the flying object 100 includes a storage battery 110, a power control circuit 120, one or more electric motors 130, one or more propellers 140, one or more sensors 150, and a control device 160.
  • the storage battery 110 has one or more storage cells 112.
  • the flying object 100 flies using electrical energy stored in the storage battery 110.
  • Examples of the flying object 100 include an airplane, an airship, a balloon, a balloon, a helicopter, and a drone.
  • the storage battery 110 receives electrical energy from an external charging device (not shown) via the power control circuit 120 and stores the electrical energy in one or more storage cells 112. Further, storage battery 110 supplies electrical energy stored in one or more storage cells 112 to electric motor 130 via power control circuit 120 .
  • the power storage cell 112 stores electrical energy (sometimes referred to as charging the power storage cell 112). Furthermore, the power storage cell 112 releases the stored electrical energy (this may be referred to as discharging the power storage cell 112). Power storage cell 112 may be a secondary battery.
  • the electricity storage cell 112 may be an all-solid-state battery.
  • the power storage cell 112 may be an all-solid-state secondary battery.
  • An all-solid-state secondary battery is a secondary battery that does not substantially contain the electrolytic solution or gel electrolyte described above, and includes, for example, a pair of electrodes and a solid electrolyte layer disposed between the pair of electrodes. .
  • a secondary battery does not substantially contain an electrolytic solution or gel electrolyte not only when the secondary battery does not contain an electrolytic solution or gel electrolyte, but also when the secondary battery contains a small amount of electrolytic solution or gel electrolyte. also means Even if the constituent materials of the secondary battery are dissolved in the solvent contained in the electrolyte or gel electrolyte, if the amount of solvent contained in the secondary battery is small, the constituent materials of the secondary battery may dissolve in the solvent. This is because the influence on battery performance can be ignored.
  • the electricity storage cell 112 does not include at least one of (i) an electrolytic solution containing a supporting electrolyte salt and a solvent, and (ii) a gel electrolyte containing a supporting electrolyte salt, an organic polymer compound, and an organic solvent.
  • the ratio of the mass [kg] of the electrolytic solution and the gel electrolyte to the mass [kg] of the organic compound used as the active material is less than 5%.
  • Examples of carrier ions for secondary batteries include lithium, sodium, potassium, magnesium, and calcium.
  • Examples of the secondary battery include a sodium ion secondary battery, a lithium ion secondary battery, a lithium metal secondary battery, a lithium air secondary battery, a lithium sulfur secondary battery, and a magnesium ion secondary battery.
  • the power storage cell 112 is mounted on the aircraft 100. Therefore, the active material used in the power storage cell 112 is preferably a material that can accumulate a large amount of charge per unit mass.
  • the mass energy density of the electricity storage cell 112 is preferably 350 [Wh/kg - electricity storage cell] or more, more preferably 400 Wh/kg - electricity storage cell] or more, and 500 Wh/kg - electricity storage cell] or more. It is more preferable that it is 600 [Wh/kg-electrical storage cell] or more, and it is even more preferable that it is 700 [Wh/g-electrical storage cell] or more. This results in a storage cell that is particularly suitable for use as a power source for aircraft.
  • the volumetric energy density of the electricity storage cell 112 may be greater than or equal to 300 [Wh/m 3 -storage cell] and less than or equal to 1200 [Wh/m 3 -storage cell], and may be greater than or equal to 400 [Wh/m 3 -storage cell] and less than or equal to 1000 [Wh/m 3 -storage cell]. Wh/m 3 -storage cell] or less.
  • the volumetric energy density of the power storage cell 112 may be 600 [Wh/m 3 -power storage cell] or less, and may be 800 [Wh/m 3 -power storage cell] or less. Wh/m 3 -storage cell] or less.
  • the electricity storage cell 112 may have a mass energy density within the above numerical range and a volumetric energy density within the above numerical range. Thereby, a power storage cell, which is relatively difficult to use as a power source for a vehicle, can be used as a power source for an aircraft. Details of the power storage cell 112 will be described later.
  • the power control circuit 120 controls the input and output of power to the storage battery 110.
  • the power control circuit 120 may control input and output of power to the storage battery 110 based on instructions from the control device 160.
  • Power control circuit 120 includes, for example, a plurality of switching elements that operate based on control signals from control device 160.
  • the electric motor 130 receives electrical energy from the storage battery 110 via the power control circuit 120. Electric motor 130 uses electrical energy received from storage battery 110 to rotate propeller 140 . Thereby, the electric motor 130 can generate the propulsion force for the aircraft 100 using the electrical energy stored in the power storage cell 112.
  • the sensor 150 measures various physical quantities related to the position and attitude of the flying object 100.
  • sensors for measuring various physical quantities related to the position and attitude of the flying object 100 include a GPS signal receiver, an acceleration sensor, an angular acceleration sensor, and a gyro sensor.
  • the sensor 150 may measure various physical quantities related to the state of the storage battery 110.
  • sensors for measuring various physical quantities related to the state of the storage battery 110 include a temperature sensor, a current sensor, and a voltage sensor.
  • the control device 160 controls the flying object 100.
  • the control device 160 may control input/output of power to the storage battery 110 by controlling the power control circuit 120 .
  • the control device 160 controls the output current, output voltage, input current, input voltage, etc. of the storage battery 110.
  • the control device 160 can control the position and attitude of the flying object 100.
  • the control device 160 may control the position and attitude of the flying object 100 by controlling the power control circuit 120 based on the output from the sensor 150.
  • the storage battery 110 may be an example of a secondary battery.
  • the power storage cell 112 may be an example of a secondary battery.
  • Electric motor 130 may be an example of a propulsive force generating device.
  • a secondary battery may be an example of a battery.
  • FIG. 2 schematically shows an example of the electricity storage cell 112.
  • the power storage cell 112 is a coin-type all-solid-state secondary battery.
  • the power storage cell 112 is not limited to a coin-shaped all-solid-state secondary battery.
  • the power storage cell 112 includes a positive electrode case 212, a negative electrode case 214, a sealant 216, and a metal spring 218. Furthermore, the power storage cell 112 includes a positive electrode 220, a separator 230, and a negative electrode 240.
  • the positive electrode 220 includes a positive electrode current collector 222 and a positive electrode active material layer 224.
  • the negative electrode 240 includes a negative electrode current collector 242 and a negative electrode active material layer 244.
  • the electricity storage cell 112 includes a structure 260 having a positive electrode 220, a separator 230, and a negative electrode 240. As shown in FIG. 2, the positive electrode 220, the separator 230, and the negative electrode 240 are stacked in this order, and the separator 230 is disposed between the positive electrode 220 and the negative electrode 240.
  • the details of the power storage cell 112 will be explained using an example in which the power storage cell 112 does not substantially contain an electrolytic solution or a gel electrolyte. Further, in this embodiment, the details of the electricity storage cell 112 will be explained by taking as an example a case where the positive electrode current collector 222 has (i) a conductive layer containing a conductive material and (ii) a support layer that supports the conductive layer. Ru.
  • a space is formed inside the positive electrode case 212 and the negative electrode case 214.
  • a metal spring 218, a positive electrode 220, a separator 230, and a negative electrode 240 are housed inside the positive electrode case 212 and the negative electrode case 214 by the repulsive force of the metal spring 218.
  • the positive electrode case 212 and the negative electrode case 214 are made of, for example, a conductive material having a disc-like thin plate shape.
  • the sealant 216 seals the gap formed between the positive electrode case 212 and the negative electrode case 214.
  • Encapsulant 216 includes an insulating material. The sealant 216 insulates the positive electrode case 212 and the negative electrode case 214.
  • the positive electrode current collector 222 holds the positive electrode active material layer 224.
  • the positive electrode current collector 222 has an electrical resistance of 0.01 m ⁇ to 1 ⁇ .
  • a current is applied to the conductive layer under specific measurement conditions. Fluctuations in the voltage measured by applying the voltage are suppressed to, for example, less than 100 mV.
  • the positive electrode current collector 222 may have an electrical resistance of 0.01 m ⁇ to 333 m ⁇ , or may have an electrical resistance of 0.01 m ⁇ to 100 m ⁇ .
  • the density of the positive electrode current collector 222 is adjusted to, for example, about 1.1 to 2.0 g/cm 3 .
  • the main components of the active material contained in the positive electrode active material layer 224 are anthraquinone (density: 1.3 g/cm 3 ), anthracene (density: 1.25 g/cm 3 ), and/or naphthalene (density: 1.14 g/cm 3 ), the mass of the positive electrode 220 having the positive electrode current collector 222 and the positive electrode active material layer 224 becomes very light, and the mass energy density of the electricity storage cell 112 becomes large.
  • At least a portion of the positive electrode current collector 222 is formed of a material with a lower density than metal. At least a portion of the positive electrode current collector 222 may be formed of a material with a lower density than aluminum. For example, at least a portion of the positive electrode current collector 222 is formed of resin. Thereby, the weight of the power storage cell 112 can be reduced.
  • separator 230 whose main component is a solid electrolyte is used
  • the mass of separator 230 becomes relatively large depending on the type of solid electrolyte.
  • at least a portion of the positive electrode current collector 222 is formed of resin, an increase in the overall mass of the power storage cell 112 is suppressed. As a result, the capacity per mass of the power storage cell 112 and the energy density of the power storage cell 112 are improved.
  • the positive electrode current collector 222 includes a conductive layer containing a conductive material and a support layer that supports the conductive layer. Details of the conductive layer and support layer will be described later.
  • Examples of the shape of the positive electrode current collector 222 include a foil shape (sometimes referred to as a plate shape, a film shape, a sheet shape, etc.), a mesh shape, a perforated plate shape, and the like.
  • the thickness of the positive electrode current collector 222 is not particularly limited, but is preferably 1 to 200 ⁇ m.
  • the thickness of the positive electrode current collector 222 may be 6 to 20 ⁇ m, or 4 to 10 ⁇ m.
  • the positive electrode active material layer 224 is formed on at least one surface of the positive electrode current collector 222.
  • the thickness of the positive electrode active material layer 224 may be 1 to 100 ⁇ m or 5 to 50 ⁇ m per side of the positive electrode current collector 222.
  • the positive electrode active material layer 224 includes, for example, a positive electrode active material and a binding material (sometimes referred to as a binder).
  • the positive electrode active material layer 224 may further include at least one of a conductive material and an ion conductive material.
  • the positive electrode active material layer 224 may include a positive electrode active material and an ion conductive material. Thereby, cutting of the ion conduction path and/or electron conduction path formed inside the positive electrode active material layer 224 can be suppressed.
  • the positive electrode active material layer 224 is formed by applying a slurry containing a material and a solvent constituting the positive electrode active material layer 224 on at least one surface of the positive electrode current collector 222, and drying the slurry. is formed.
  • the above-mentioned solvent include various solvent substances or mixtures thereof.
  • the type of the above-mentioned solvent substance is not particularly limited, examples of the above-mentioned solvent substance include N-methylpyrrolidone (NMP) and water.
  • the positive electrode active material layer 224 is formed by mixing materials constituting the positive electrode active material layer 224 and molding the mixture into a sheet, and pressing the sheet-like mixture onto at least one surface of the positive electrode current collector 222. It is formed by When an organic compound is used as the positive electrode active material, the positive electrode current collector 222 and the positive electrode active material layer 224 are pressure bonded so that excessive pressure is not applied to the positive electrode active material layer 224 in the above pressure bonding process.
  • the pressure applied to the precursor material for the positive electrode active material layer 224 is adjusted.
  • the coating gap by the coater is set to be 180 ⁇ m or more.
  • the above coating gap may be set to 200 ⁇ m or more. This suppresses cutting of the ion conduction path and/or electron conduction path in the positive electrode active material layer 224.
  • the volume ratio of the organic compound functioning as the positive electrode active material to the volume of the positive electrode active material layer 224 (sometimes referred to as active material volume ratio) is 60%. It may be more than that.
  • the volume ratio of the organic compound functioning as a positive electrode active material to the volume of the positive electrode active material layer 224 is preferably 60 to 80%, more preferably 65 to 75%.
  • the volume ratio of the organic compound functioning as the positive electrode active material to the volume of the positive electrode active material layer 224 exceeds 80%.
  • the ion conduction path becomes thin or the ion conduction path is cut.
  • the above-mentioned high pressure may mean 50 MPa or more, 100 MPa or more, or 500 MPa or more.
  • the volume ratio of the organic compound functioning as a positive electrode active material to the volume of the positive electrode active material layer 224 is less than 60%, although the conductivity of carrier ions becomes good, the density of the positive electrode active material becomes small. , the mass of the positive electrode active material contained in the positive electrode active material layer 224 may decrease. As a result, the capacity of the positive electrode active material layer 224 becomes smaller.
  • the ratio of the volume of the organic compound functioning as the positive electrode active material to the volume of the positive electrode active material layer 224 is determined, for example, based on observation results using three-dimensional SEM (Scanning Electron Microscopy). For example, "Numerical evaluation of active material volume using three-dimensional SEM (C0316)" proposed by the Materials Science and Technology Foundation (https://www.mst.or.jp/casestudy/tabid/1318/pdid /87/Default.aspx), by repeating SEM observation and acquiring several dozen consecutive images, information such as the abundance ratio and average volume of each substance in a given volume can be acquired.
  • the volume ratio of the active material in the positive electrode active material layer 224 is determined, for example, by the magnitude of the pressure applied to the positive electrode active material layer 224 in the manufacturing process of the storage cell 112.
  • the active material volume ratio in the positive electrode active material layer 224 increases.
  • the relationship between the magnitude of the pressure applied to the positive electrode active material layer 224 and the degree of increase in the active material volume ratio in the positive electrode active material layer 224 differs depending on the type of organic active material, for example.
  • the active material volume ratio in the positive electrode active material layer 224 included in the manufactured power storage cell 112 is set to 80% or less during the manufacturing process of the power storage cell 112.
  • the maximum value of the pressure applied to the positive electrode active material layer 224 is adjusted or managed. This suppresses the occurrence of a phenomenon in which the actual capacity of the positive electrode and/or battery is significantly reduced compared to the theoretical capacity of the positive electrode and/or battery.
  • the Young's modulus of the positive electrode active material layer 224 may be adjusted to be approximately the same as the Young's modulus of the separator 230.
  • the separator 230 is mainly composed of a solid polymer electrolyte and the positive electrode active material is an organic compound, the ratio of the Young's modulus of the solid polymer electrolyte to the Young's modulus of the positive electrode active material is 0.7 to 1.
  • the material and/or manufacturing conditions of the positive electrode active material layer 224 are determined so that
  • the above Young's modulus is measured, for example, by a bending test specified in JIS K7171. In the above bending test, the strain rate is set to be approximately 1%/min.
  • the Young's modulus of the positive electrode active material layer 224 is not particularly limited.
  • the material of the positive electrode active material layer 224 can be arbitrarily selected without considering the Young's modulus of the positive electrode active material layer 224. can be determined.
  • the pressure applied to the positive electrode current collector 222 and the positive electrode active material layer 224 is set as described above or be adjusted. Thereby, even if the conductive layer included in the positive electrode current collector 222 is thin, breakage of the conductive layer is suppressed. As a result, an increase in the electrical resistance of the positive electrode current collector 222 is suppressed. According to the present embodiment, not only a decrease in capacity due to a decrease in ion conduction paths and/or conductive paths of the positive electrode active material layer 224 is suppressed, but also a decrease in capacity due to an increase in the electrical resistance of the positive electrode current collector 222 is suppressed. The decrease can also be suppressed.
  • the pressure in the fixing step is set so that the volume ratio of the organic compound functioning as the positive electrode active material to the volume of the positive electrode active material layer 224 is 60 to 80%. or adjusted.
  • the ratio of the volume of the voids to the volume of the positive electrode active material layer 224 (sometimes referred to as porosity, porosity, etc.) is 25 to 40%.
  • the positive electrode active material contained in the positive electrode active material layer 224 various materials that can occlude and release carrier ions of the electricity storage cell 112 are used.
  • the positive electrode active material is mainly composed of a single or multiple types of organic compounds.
  • the positive electrode active material may include an inorganic compound. For example, 80% by mass or more of the positive electrode active material contained in the positive electrode active material layer 224 is composed of an organic compound.
  • the positive electrode 220 includes the positive electrode current collector 222 and the positive electrode active material layer 224.
  • the mass of the positive electrode active material layer 224 may be 80% or more of the total mass of the positive electrode 220.
  • the mass of the positive electrode active material may be 80% or more of the total mass of the positive electrode active material layer 224.
  • the mass of the organic compound used as the positive electrode active material may be 80% or more of the total mass of the positive electrode active material.
  • inorganic compounds used as positive electrode active materials include metal oxides, metal silicates, metal phosphates, metal borates, and the like.
  • examples of the above metals include transition metals such as V, Mn, Ni, and Co.
  • organic compound used as the positive electrode active material (sometimes referred to as an organic positive electrode active material), various redox active compounds are used as the organic positive electrode active material.
  • organic positive electrode active materials include conjugated polymers, disulfides, quinones, localized radicals, and nonlocalized radicals.
  • the organic positive electrode active material consists of aromatic hydrocarbons, aromatic heterocyclic compounds, alkenes substituted with one or more cyano groups, disulfides, derivatives thereof, and compounds containing structures or structural units derived from these. It may be at least one compound selected from the group.
  • the organic positive electrode active material is a compound containing the above structural unit, its degree of polymerization may be 100 or less.
  • one or more hydrogen atoms are a ketone group, OH group, OM group (M is a metal. Examples of M include a battery carrier metal, an alkali metal, an alkaline earth metal, etc.), It may be a compound substituted with a nitro group or the like.
  • Organic positive electrode active materials include compounds containing a structure in which at least two oxygen atoms are bonded to a benzene ring, compounds containing a structure in which at least two hydroxyl groups are bonded to a benzene ring, and compounds in which at least two carbon atoms in the benzene ring are nitrogen atoms.
  • the organic positive electrode active material is a compound containing the above structural unit
  • its degree of polymerization may be 100 or less.
  • one or more hydrogen atoms are a ketone group, OH group, OM group (M is a metal.
  • M include a battery carrier metal, an alkali metal, an alkaline earth metal, etc.), It may be a compound substituted with a nitro group or the like.
  • a compound containing a structure derived from a specific compound may be a compound containing a group or structure formed by removing at least one hydrogen contained in the specific compound.
  • a compound containing a structure derived from a specific compound may be a monomer, a dimer, or a multimer of the compound.
  • examples of compounds containing a structure derived from benzoquinone, which is an example of an aromatic hydrocarbon derivative include polycyclic aromatic hydrocarbon derivatives such as naphthoquinone, anthraquinone, and phenanthrenequinone.
  • 1,4-naphthoquinone, 5,8-dihydroxy-1,4-naphthoquinone, and 9,10-anthraquinone contain structures derived from benzoquinone.
  • 5,8-dihydroxy-1,4-naphthoquinone (sometimes referred to as naphthazarin) may be an example of a compound that includes a structure derived from 1,4-naphthoquinone.
  • 9,10-anthraquinone may be an example of a compound containing a structure derived from 1,4-naphthoquinone.
  • a compound containing a structural unit derived from a specific compound refers to a polymer containing as a repeating unit a group or structure formed by removing at least one hydrogen contained in the specific compound or the specific compound.
  • An example is an oligomer.
  • the compound containing a structural unit derived from a specific compound is preferably an oligomer having a degree of polymerization of 100 or less. Thereby, a battery with high mass energy density can be produced.
  • the organic positive electrode active material is a compound such that when the volume ratio of the active material in the positive electrode active material layer 224 exceeds 80%, the capacity of the positive electrode active material layer 224 is less than 50% of the theoretical capacity of the positive electrode active material layer 224. It's good. When the volume ratio of the active material in the positive electrode active material layer 224 exceeds 80%, the organic positive electrode active material has a capacity of less than 50% of the theoretical capacity of the positive electrode active material layer 224, and When the active material volume ratio in the material layer 224 is 65 to 75%, the capacity of the positive electrode active material layer 224 is 50% or more (more preferably 70% or more) of the theoretical capacity of the positive electrode active material layer 224. It may be a compound such that As described above, according to this embodiment, even when such an organic compound is used as a positive electrode active material of a battery, a high capacity battery can be manufactured.
  • organic compounds examples include organic molecules that have a relatively small molecular weight and have the ability to transfer multiple electrons.
  • the molecular weight of the organic molecule is, for example, 500 or less.
  • the molecular weight of the above organic molecule may be 200 or less.
  • the organic molecule is a polymer or oligomer, the molecular weight of the organic molecule is, for example, 5,000 or less.
  • the molecular weight of the above organic molecule may be 3000 or less.
  • the organic positive electrode active material is an organic compound having a solubility in ethylene carbonate (EC) of 0.01 to 40 [mmol/l-EC] under conditions of 0.1013 MPa and 25°C, and 0.1013 MPa and 25°C. It may be at least one compound selected from the group consisting of organic compounds having a solubility in diethyl carbonate (DEC) of 0.01 to 40 [mmol/l-DEC].
  • DEC diethyl carbonate
  • the upper limit of the above numerical range regarding solubility is preferably 10 [mmol/l-solvent].
  • organic compounds examples include organic molecules that have a relatively small molecular weight and have the ability to transfer multiple electrons.
  • the molecular weight of the organic molecule is, for example, 500 or less.
  • the molecular weight of the above organic molecule may be 200 or less.
  • the organic molecule is a polymer or oligomer, the molecular weight of the organic molecule is, for example, 5,000 or less.
  • the molecular weight of the above organic molecule may be 3000 or less.
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) are aprotic organic solvents that are widely used as solvents for electrolytes or gel electrolytes. Therefore, when the positive electrode active material layer 224 contains an organic compound having the above-mentioned solubility, the effect of the electricity storage cell 112 substantially not containing an electrolytic solution or a gel electrolyte can be increased.
  • the organic positive electrode active material include at least one compound selected from the group consisting of compounds represented by each of the following chemical formulas, derivatives thereof, and compounds containing structures or structural units derived from these. Illustrated. As described above, a compound containing a structure derived from a specific compound may be a compound containing a group or structure formed by removing at least one hydrogen contained in the specific compound. Similarly, a compound containing a structural unit derived from a specific compound refers to a polymer containing as a repeating unit a group or structure formed by removing at least one hydrogen contained in the specific compound or the specific compound. An example is an oligomer.
  • the above derivatives include deuterium, hydroxyl group, OM group (M is a metal.
  • M include battery carrier metal, alkali metal, alkaline earth metal, etc.), halogen, etc. , and may be a compound substituted with various organic groups.
  • the molecular weight of at least one compound selected from the above group is, for example, 500 or less.
  • the molecular weight of at least one compound selected from the above group may be 200 or less.
  • the compound containing the above structural unit is preferably an oligomer having a degree of polymerization of 100 or less.
  • R and R' each independently represent hydrogen, deuterium, hydroxyl group, OM group (M is a metal.
  • M is a carrier metal of a battery, an alkali metal, an alkaline earth metal, etc.) ), a nitro group, an amino group, a sulfo group, or an organic group.
  • Examples of the above organic group include various monovalent groups. Examples of the above organic group include an alkyl group, an alkenyl group, a ketone group, a carboxyl group, a carbonyl group, an aryl group, a cyano group, and a group containing a heterocycle.
  • R and R' are each independently hydrogen, deuterium, hydroxyl group, OM group (M is a metal. Examples of M include a battery carrier metal, an alkali metal, an alkaline earth metal, etc.) , a ketone group, a cyano group, a carbonyl group, and a group containing a heterocycle.
  • the above organic group may be a monovalent group having a structure derived from a compound represented by each of the following chemical formulas or a derivative thereof.
  • the monovalent group having a structure derived from a compound represented by each of the above chemical formulas may be a group formed by removing one of the hydrogens bonded to the aromatic ring in each of the above chemical formulas.
  • Derivatives of compounds represented by each of the above chemical formulas include derivatives of compounds represented by each of the above chemical formulas, in which one or more hydrogens are deuterium, halogen, hydroxyl group, OM group (M is a metal. M is a battery carrier metal , alkali metals, alkaline earth metals, etc.), nitro groups, amino groups, sulfo groups, organic groups, and the like.
  • the monovalent group having a structure derived from the above derivative may be a group formed by removing one of the hydrogens bonded to the aromatic ring of the derivative.
  • the separator 230 is formed by a solid electrolyte layer mainly containing at least one compound selected from polyethylene oxide (PEO), poly(3,4-ethylenedioxythiophene) (PEDOT), and derivatives thereof.
  • the positive electrode active material layer 224 is selected from the group consisting of compounds represented by each of the above chemical formulas, derivatives thereof, and compounds containing structures or structural units derived from these, as an organic positive electrode active material. contains at least one compound that is This suppresses the above-mentioned decrease in the capacity of the organic positive electrode active material.
  • the compounds represented by each of the above chemical formulas and their derivatives have a small molecular weight and the ability to donate and accept multiple electrons. Therefore, by using these as the active material of the power storage cell 112, the energy density and/or capacity of the power storage cell 112 is improved.
  • the electricity storage cell 112 does not substantially contain an electrolytic solution or a gel electrolyte.
  • the positive electrode active material layer 224 has a porosity of 20% or more. This further improves the energy density and/or capacity of the power storage cell 112.
  • examples of compounds containing a structure derived from p-benzoquinone include 5,8-dihydroxy-1,4-naphthoquinone (sometimes referred to as naphthazarin), naphthazarin dimer, etc. .
  • examples of compounds containing a structure derived from p-benzenediol include naphthazarin and naphthazarin dimer.
  • the compound containing a structure derived from p-benzoquinone may be 2,4-dihydroxy-p-benzoquinone.
  • examples of compounds containing a structure derived from o-benzoquinone include 4-nitro-1,2-benzoquinone.
  • the binding material included in the positive electrode active material layer 224 binds the materials forming the positive electrode active material layer 224 and maintains the electrode shape of the positive electrode 220.
  • the binding material for example, various polymeric materials are used.
  • the above polymer materials include carboxymethyl cellulose, styrene-butadiene rubber, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylic acid, polyethylene oxide (PEO), poly(3,4-ethylene dioxy Examples include thiophene (PEDOT) and derivatives thereof.
  • the binding material may be a material that dissolves the organic positive electrode active material in a solvent in which the solubility is higher than a predetermined value.
  • the solubility of the binding material in the above solvent may be equal to or higher than the solubility of the organic positive electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the conductive material contained in the positive electrode active material layer 224 improves the conductivity of the positive electrode active material layer 224. This reduces the resistance of the positive electrode 220.
  • the conductive material is not particularly limited as long as it has electronic conductivity. Examples of the conductive material include carbon-based materials, metal-based materials, and conductive polymer materials. These conductive materials may be used alone, or two or more types of conductive aids may be combined.
  • Examples of carbon-based materials include graphite, carbon black (for example, acetylene black, Ketjen black, etc.), coke, amorphous carbon, carbon fiber, carbon nanotubes, graphene, and the like.
  • Examples of metallic materials include aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, titanium, and nickel.
  • Examples of the conductive polymer material include polyphenylene derivatives.
  • the conductive material may be a material that dissolves in a solvent in which the solubility of the organic positive electrode active material is greater than a predetermined value.
  • the solubility of the conductive material in the above solvent may be equal to or higher than the solubility of the organic positive electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the conductive material contained in the positive electrode active material layer 224 improves the conductivity of carrier ions in the positive electrode active material layer 224.
  • various solid electrolytes are used.
  • solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, and polymer solid electrolytes.
  • a solid polymer electrolyte may be used as the conductive material.
  • the solid polymer electrolyte include polyethylene oxide (PEO), poly(3,4-ethylenedioxythiophene) (PEDOT), and at least one compound selected from derivatives thereof.
  • the separator 230 includes a solid polymer electrolyte.
  • the type of solid polymer electrolyte used as the conductive material may be the same as or different from the type of solid polymer electrolyte included in the separator 230.
  • the conductive material may be a material that dissolves the organic positive electrode active material in a solvent whose solubility is greater than a predetermined value.
  • the solubility of the conductive material in the above solvent may be equal to or higher than the solubility of the organic positive electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the separator 230 is disposed between the positive electrode 220 and the negative electrode 240 to isolate the positive electrode 220 and the negative electrode 240. Furthermore, the separator 230 ensures conductivity of carrier ions between the positive electrode 220 and the negative electrode 240.
  • the thickness of the separator 230 is not particularly limited, but is preferably 10 to 50 ⁇ m.
  • the separator 230 includes a layered (sometimes referred to as a plate, film, sheet, etc.) solid electrolyte (sometimes referred to as a solid electrolyte layer).
  • the solid electrolyte layer functions as a separator of the electricity storage cell 112.
  • a solid electrolyte layer is used as the separator 230.
  • the solid electrolyte layer may be composed of a single solid electrolyte layer or a plurality of solid electrolyte layers.
  • the separator 230 is a laminate of one or more solid electrolyte layers and other layers containing materials other than the solid electrolyte.
  • Other layers may be ionically conductive. Examples of other layers include a composite material including a resin in which a plurality of through holes are formed and an ion conductive material filled in the through holes.
  • a secondary battery containing no electrolyte or gel electrolyte can be produced.
  • the organic active material may be dissolved in the electrolytic solution or the gel electrolyte solvent. Decrease in battery life can be suppressed.
  • the separator 230 is not limited to the above embodiment.
  • a porous material in which a solid electrolyte is arranged inside pores is used as the separator 230.
  • a suitable support material or retention material is immersed in a gel electrolyte or an electrolytic solution, and after the gel electrolyte or electrolyte is infiltrated into the inside of the support material or the retention material, the gel electrolyte or the electrolyte is placed inside the support material or the retention material.
  • the separator 230 may be manufactured by solidifying the electrolyte. For example, by drying a support material or a holding material containing a gel electrolyte or an electrolytic solution, the electrolyte disposed inside the support material or the holding material solidifies.
  • solvents for the electrolytic solution or gel electrolyte include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), butylene carbonate (BC), and fluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • BC butylene carbonate
  • FEC fluoroethylene carbonate
  • ⁇ -butyrolactone sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof.
  • the separator 230 includes a solid electrolyte layer containing a polymer solid electrolyte as a main constituent material.
  • the solid electrolyte layer contains, for example, 80% by mass or more of a true polymer solid electrolyte.
  • the positive electrode active material layer 224 and/or the negative electrode active material layer 244 have a porosity of 20% or more. is obtained.
  • the porosity of the positive electrode active material layer 224 and/or the negative electrode active material layer 244 is 20% or more
  • the ratio of the capacity of the positive electrode active material layer 224 and/or the negative electrode active material layer 244 to the theoretical capacity is A large storage cell 112 can be obtained.
  • the ratio of the capacity of the positive electrode active material layer 224 and/or the negative electrode active material layer 244 to the theoretical capacity is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more. preferable.
  • the solid electrolyte layer is produced, for example, by applying a slurry containing a material constituting the solid electrolyte layer and a solvent onto a smooth support plate, and drying the slurry.
  • the above-mentioned solvents include various solvents and mixtures thereof.
  • the type of the above-mentioned solvent is not particularly limited, examples of the above-mentioned solvent include N-methylpyrrolidone (NMP), water, and methanol.
  • the solid polymer electrolyte constituting the solid electrolyte layer for example, a polymer material having an ionic conductivity of 1 ⁇ 10 ⁇ 4 [S/cm] or more at 60° C. is used.
  • the ratio of the Young's modulus of the polymer material to the Young's modulus of the organic compound is 0.7 to 1.3.
  • the type, composition, and molecular weight of the polymeric material may be determined.
  • the pressure inside the power storage cell 112 during use of the power storage cell 112 is usually about 0.1 to 0.2 [MPa].
  • the pressure inside the storage cell during use is usually increased to about 500 [MPa].
  • solid polymer electrolyte constituting the solid electrolyte layer examples include polyethylene oxide (PEO), poly(3,4-ethylenedioxythiophene) (PEDOT), and at least one compound selected from derivatives thereof. be done.
  • the solid electrolyte layer may be substantially composed of a single polymer solid electrolyte, or may include two or more types of polymer solid electrolytes.
  • the negative electrode current collector 242 holds the negative electrode active material layer 244.
  • Examples of the material for the negative electrode current collector 242 include copper, aluminum, stainless steel, nickel, titanium, and alloys thereof.
  • the negative electrode current collector 242 may include conductive resin.
  • the negative electrode current collector 242 may be made of conductive resin.
  • the conductive resin includes a conductive polymer.
  • the conductive resin may be a polymer containing a conductive filler.
  • the negative electrode current collector 242 may have the same configuration as the positive electrode current collector 222.
  • the negative electrode current collector 242 includes a conductive layer containing a conductive material and a support layer that supports the conductive layer.
  • the support layer is formed of a material having a lower density than metal.
  • the support layer may be formed of a material with a lower density than aluminum.
  • the support layer is formed of resin. Thereby, the weight of the power storage cell 112 can be reduced.
  • the carrier metal can also serve as a current collector.
  • the carrier metal of the power storage cell 112 is lithium and the negative electrode active material is lithium metal, lithium metal is used as the current collector. In this case, the electricity storage cell 112 does not need to include the negative electrode current collector 242.
  • Examples of the shape of the negative electrode current collector 242 include a foil shape (sometimes referred to as a plate shape, a film shape, etc.), a mesh shape, a perforated plate shape, and the like.
  • the thickness of the negative electrode current collector 242 is not particularly limited, but may be 1 to 200 ⁇ m.
  • the thickness of the negative electrode current collector 242 may be 4 to 20 ⁇ m, or 6 to 10 ⁇ m.
  • the negative electrode active material layer 244 is formed on at least one surface of the negative electrode current collector 242.
  • the thickness of the negative electrode active material layer 244 may be 0 to 200 ⁇ m or 1 to 100 ⁇ m per one side of the negative electrode current collector 242.
  • the negative electrode active material layer 244 includes, for example, a negative electrode active material and a binding material (sometimes referred to as a binder).
  • the negative electrode active material layer 244 may further include at least one of a conductive material and an ion conductive material.
  • the negative electrode active material layer 244 may include a negative electrode active material and an ion conductive material. Thereby, cutting of the ion conduction path and/or electron conduction path formed inside the negative electrode active material layer 244 can be suppressed.
  • the negative electrode active material layer 244 is formed by applying a slurry containing a material constituting the negative electrode active material layer 244 and an organic solvent onto at least one surface of the negative electrode current collector 242, and drying the slurry.
  • a slurry containing a material constituting the negative electrode active material layer 244 and an organic solvent onto at least one surface of the negative electrode current collector 242, and drying the slurry.
  • the above-mentioned solvent include various solvent substances or mixtures thereof.
  • examples of the above-mentioned solvent substance include N-methylpyrrolidone (NMP) and water.
  • the negative electrode active material layer 244 is formed by mixing materials constituting the negative electrode active material layer 244 and molding the mixture into a sheet, and pressing the sheet-like mixture onto at least one surface of the negative electrode current collector 242. It is formed by doing.
  • an organic compound is used as the negative electrode active material, the negative electrode current collector 242 and the negative electrode active material layer 244 are pressure bonded so that excessive pressure is not applied to the negative electrode active material layer 244 in the above pressure bonding process.
  • the pressure applied to the precursor material for the negative electrode active material layer 244 is adjusted.
  • the coating gap by the coater is set to be 180 ⁇ m or more.
  • the above coating gap may be set to 200 ⁇ m or more.
  • the volume ratio of the organic compound functioning as the negative electrode active material to the volume of the negative electrode active material layer 244 (sometimes referred to as active material volume ratio) is 60%. It may be more than that.
  • the volume ratio of the organic compound functioning as a negative electrode active material to the volume of the negative electrode active material layer 244 is preferably 60 to 80%, more preferably 65 to 75%.
  • the volume ratio of the organic compound functioning as the negative electrode active material to the volume of the negative electrode active material layer 244 exceeds 80%.
  • the ion conduction path becomes thin or the ion conduction path is cut.
  • the above-mentioned high pressure may mean 50 MPa or more, 100 MPa or more, or 500 MPa or more.
  • the volume ratio of the organic compound functioning as a negative electrode active material to the volume of the negative electrode active material layer 244 is less than 60%, although the conductivity of carrier ions becomes good, the density of the negative electrode active material becomes small. , the mass of the positive electrode active material contained in the negative electrode active material layer 244 may decrease. As a result, the capacity of the negative electrode active material layer 244 becomes smaller.
  • the active material volume ratio in the negative electrode active material layer 244 is derived by the same procedure as the active material volume ratio in the positive electrode active material layer 224.
  • the active material volume ratio in the negative electrode active material layer 244 is determined based on observation results using three-dimensional scanning electron microscopy (SEM).
  • the volume ratio of the active material in the negative electrode active material layer 244 is determined, for example, by the magnitude of the pressure applied to the negative electrode active material layer 244 in the manufacturing process of the storage cell 112. As the pressure applied to the negative electrode active material layer 244 increases in the manufacturing process of the electricity storage cell 112, the active material volume ratio in the negative electrode active material layer 244 increases. The relationship between the magnitude of the pressure applied to the negative electrode active material layer 244 and the degree of increase in the active material volume ratio in the negative electrode active material layer 244 differs depending on the type of organic active material, for example.
  • the active material volume ratio in the negative electrode active material layer 244 included in the manufactured power storage cell 112 is set to 80% or less during the manufacturing process of the power storage cell 112.
  • the maximum value of the pressure applied to the negative electrode active material layer 244 is adjusted or managed. This suppresses the occurrence of a phenomenon in which the actual capacity of the negative electrode and/or battery is significantly reduced compared to the theoretical capacity of the negative electrode and/or battery.
  • the Young's modulus of the negative electrode active material layer 244 may be adjusted to be approximately the same as the Young's modulus of the separator 230.
  • the separator 230 is mainly composed of a solid polymer electrolyte and the negative electrode active material is an organic compound
  • the ratio of the Young's modulus of the solid polymer electrolyte to the Young's modulus of the negative electrode active material is 0.7 to 1.
  • the material and/or manufacturing conditions of the negative electrode active material layer 244 are determined so as to be 3.
  • the above Young's modulus is measured, for example, by a bending test specified in JIS K7171. In the above bending test, the strain rate is set to be approximately 1%/min.
  • the Young's modulus of the negative electrode active material layer 244 is not particularly limited.
  • the material of the negative electrode active material layer 244 can be arbitrarily selected without considering the Young's modulus of the negative electrode active material layer 244. can be determined.
  • a foil of a carrier metal such as lithium metal may be used as the negative electrode active material layer.
  • the material of the negative electrode active material layer can be determined without considering the Young's modulus of the negative electrode active material layer.
  • the negative electrode active material contained in the negative electrode active material layer 244 various materials that can occlude and release carrier ions of the electricity storage cell 112 are used.
  • the negative electrode active material may be an inorganic compound or an organic compound. These negative electrode active materials may be used alone, or two or more types of negative electrode active materials may be used in combination.
  • a metal foil capable of releasing carrier ions from the power storage cell 112 is used as the negative electrode active material layer 244. This improves the mass energy density of the electricity storage cell 112.
  • the negative electrode current collector 242 includes a conductive layer containing a conductive material and a support layer that supports the conductive layer similarly to the positive electrode current collector 222
  • a metal for example, Li metal
  • the negative electrode active material may be comprised primarily of a single or multiple types of organic compounds.
  • the negative electrode active material may include an inorganic compound. For example, 80% by mass or more of the negative electrode active material contained in the negative electrode active material layer 244 is composed of an organic compound.
  • Inorganic compounds used as negative electrode active materials include (i) carrier metals and alloys containing them, (ii) tin, silicon, and alloys containing these; ) silicon oxide, (iv) titanium oxide, etc.
  • carrier metals and alloys containing them include (i) carrier metals and alloys containing them, (ii) tin, silicon, and alloys containing these; ) silicon oxide, (iv) titanium oxide, etc.
  • LTO lithium titanium oxide
  • the material may be pre-doped with the carrier metal.
  • Organic compounds used as negative electrode active materials include aromatic heterocyclic compounds, derivatives thereof, and compounds containing structures or structural units derived from these. It may be at least one compound selected from.
  • the organic negative electrode active material is a compound containing the above structural unit, its degree of polymerization may be 100 or less.
  • one or more hydrogen atoms are a ketone group, OH group, OM group (M is a metal. Examples of M include a battery carrier metal, an alkali metal, an alkaline earth metal, etc.), It may be a compound substituted with a nitro group or the like.
  • the negative electrode active material layer 244 may include a foil-shaped carrier metal.
  • the negative electrode active material layer 244 includes lithium metal foil.
  • the carrier metal is supplied to the power storage cell 112.
  • the thickness of the metal foil may be 1-200 ⁇ m, 10-100 ⁇ m, 20-50 ⁇ m.
  • the thickness and/or mass of the metal foil may be determined depending on the content of the positive electrode active material in the positive electrode active material layer 224.
  • the binding material contained in the negative electrode active material layer 244 binds the materials forming the negative electrode active material layer 244 and maintains the electrode shape of the negative electrode 240.
  • the binding material for example, various polymeric materials are used.
  • the above polymer materials include carboxymethyl cellulose, styrene-butadiene rubber, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylic acid, polyethylene oxide (PEO), poly(3,4-ethylene dioxy Examples include thiophene (PEDOT) and derivatives thereof.
  • the binding material may be a material that dissolves the organic negative electrode active material in a solvent whose solubility is higher than a predetermined value.
  • the solubility of the binding material in the above solvent may be equal to or higher than the solubility of the organic negative electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the conductive material contained in the negative electrode active material layer 244 improves the conductivity of the negative electrode active material layer 244. This reduces the resistance of the negative electrode 240.
  • the conductive material is not particularly limited as long as it has electronic conductivity. Examples of the conductive material include carbon-based materials, metal-based materials, and conductive polymer materials. These conductive materials may be used alone, or two or more types of conductive aids may be combined.
  • Examples of carbon-based materials include graphite, carbon black (for example, acetylene black, Ketjen black, etc.), coke, amorphous carbon, carbon fiber, carbon nanotubes, graphene, and the like.
  • Examples of metallic materials include aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, titanium, and nickel.
  • Examples of the conductive polymer material include polyphenylene derivatives.
  • the conductive material may be a material that dissolves the organic negative electrode active material in a solvent in which the solubility is greater than a predetermined value.
  • the solubility of the binding material in the above solvent may be equal to or higher than the solubility of the organic negative electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the conductive material contained in the negative electrode active material layer 244 improves the conductivity of carrier ions in the negative electrode active material layer 244.
  • various solid electrolytes are used.
  • solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, and polymer solid electrolytes.
  • a solid polymer electrolyte may be used as the conductive material.
  • the solid polymer electrolyte include polyethylene oxide (PEO), poly(3,4-ethylenedioxythiophene) (PEDOT), and at least one compound selected from derivatives thereof.
  • the separator 230 includes a solid polymer electrolyte.
  • the type of solid polymer electrolyte used as the conductive material may be the same as or different from the type of solid polymer electrolyte included in the separator 230.
  • the conductive material may be a material that dissolves the organic negative electrode active material in a solvent in which the solubility is greater than a predetermined value.
  • the solubility of the conductive material in the above solvent may be equal to or higher than the solubility of the organic negative electrode active material in the above solvent. This facilitates the process of disassembling the power storage cell 112, for example, when reusing the constituent material of the power storage cell 112.
  • the positive electrode case 212 may be an example of a housing.
  • Negative electrode case 214 may be an example of a housing.
  • the positive electrode 220 may be an example of an electrode.
  • the positive electrode current collector 222 may be an example of a current collector.
  • the positive electrode active material layer 224 may be an example of an active material layer.
  • Negative electrode 240 may be an example of an electrode.
  • the negative electrode current collector 242 may be an example of a current collector.
  • the negative electrode active material layer 244 may be an example of an active material layer.
  • the organic active material may be an example of an organic compound.
  • the organic positive electrode active material may be an example of an organic compound.
  • the organic negative electrode active material may be an example of an organic compound.
  • the details of the power storage cell 112 have been explained by taking as an example the case where the power storage cell 112 is a coin-type secondary battery.
  • the type, structure, etc. of the power storage cell 112 are not limited to this embodiment.
  • the storage cell 112 may be a cylindrical battery including a wound electrode body in which a positive electrode, a separator, and a negative electrode are spirally wound.
  • the storage cell 112 may be a laminated battery in which a laminated electrode body in which positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween is sealed with a laminate.
  • the structure 260 may include a plurality of stacked positive electrodes 220, and in a part of the stacked positive electrodes 220, the positive electrode current collectors 222 of the stacked positive electrodes 220 may be integrated. good.
  • the structure 260 may be an example of a laminate or an electrode structure.
  • the structure 260 includes a plurality of stacked negative electrodes 240, and the negative electrode current collectors 242 of the stacked negative electrodes 240 are integrated in a part of the stacked negative electrodes 240. good.
  • the structure 260 may be an example of a laminate or an electrode structure.
  • the details of the electricity storage cell 112 have been described using an example in which the negative electrode 240 has the negative electrode current collector 242 and the negative electrode active material layer 244.
  • the negative electrode of power storage cell 112 is not limited to this embodiment.
  • a foil-like carrier metal functions as the negative electrode current collector 242 and the negative electrode active material layer 244.
  • metal lithium may be used as the negative electrode.
  • the positive electrode current collector 222 has (i) a conductive layer containing a conductive material and (ii) a support layer that supports the conductive layer, and the positive electrode active material layer 224 mainly contains an organic compound as an active material.
  • the details of the electricity storage cell 112 have been explained by taking as an example the case where the negative electrode 240 has an arbitrary configuration. However, the negative electrode of power storage cell 112 is not limited to this embodiment.
  • the negative electrode current collector 242 has (i) a conductive layer containing a conductive material and (ii) a support layer supporting the conductive layer, and the negative electrode active material layer 244 mainly contains an organic compound as an active material.
  • the positive electrode 220 may have any configuration.
  • the positive electrode current collector 222 and the negative electrode current collector 242 have (i) a conductive layer containing a conductive material and (ii) a support layer supporting the conductive layer, and the positive electrode active material layer 224 and The negative electrode active material layer 244 may mainly contain an organic compound as an active material.
  • FIG. 3 schematically shows another example of the electricity storage cell 112.
  • the energy storage cell 112 described with reference to FIG. It differs from the electricity storage cell 112 described in connection with FIG. 2 in that an electrolyte 350 is accommodated therein, and a material other than the solid electrolyte can be used as the separator 230.
  • the power storage cell 112 described in relation to FIG. 3 may have the same configuration as the power storage cell 112 described in relation to FIG. 2, except for the above-mentioned differences.
  • liquid or gel electrolyte 350 a known electrolyte or gel electrolyte may be used.
  • separator 230 a known separator can be used.
  • FIG. 4 schematically shows a cross-sectional view of a current collector 400, which is an example of the positive electrode current collector 222.
  • FIG. 5 schematically shows an example of a cross-sectional view of a current collector 500, which is an example of the positive electrode current collector 222.
  • FIG. 6 schematically shows an example of a cross-sectional view of a current collector 600, which is an example of the positive electrode current collector 222.
  • the current collector 400 includes a support layer 420, a conductive layer 442, and a conductive layer 444.
  • the support layer 420 has a first plane 422, a second plane 424, and a side surface 426.
  • conductive layer 442 is disposed on first plane 422 of support layer 420 .
  • a conductive layer 444 is disposed on the second plane 424 of the support layer 420.
  • the support layer 420 supports the conductive layer 442 and the conductive layer 444. This suppresses damage to the conductive layer 442 and the conductive layer 444.
  • the density of support layer 420 is less than the density of conductive layer 442 or conductive layer 444.
  • the support layer 420 is made of a material whose density is smaller than the density of the conductive layer 442 or the conductive layer 444.
  • Support layer 420 may be a sheet-shaped resin material.
  • the resin material may be a thermoplastic resin or a thermosetting resin.
  • the support layer 420 may be made of a single type of resin material, or may include multiple types of resin materials. As described above, when a portion of the plurality of stacked current collectors 400 is welded, it is preferable that the resin material mainly contains a thermoplastic resin or is substantially composed of a thermoplastic resin. . Thereby, for example, the support layer is heated before welding, thereby improving the fluidity of the support layer.
  • the support layer 420 mainly contains a thermoplastic resin
  • the support layer 420 when the support layer 420 is substantially composed of a thermoplastic resin, when the support layer 420 mainly contains a thermosetting resin, or when the support layer 420 is substantially composed of a thermoplastic resin, Compared to the case where the current collectors 400 are made of thermosetting resin, the plurality of current collectors 400 are firmly welded. As a result, a laminate having excellent strength at the welded portions and low electrical resistance at the welded portions can be produced.
  • the conductivity of the support layer 420 is not particularly limited, the conductivity of the support layer 420 may be lower than the conductivity of the conductive layer 442 or the conductive layer 444.
  • the thickness of the support layer 420 is not particularly limited, the thickness of the support layer 420 may be greater than the thickness of the conductive layer 442 or the conductive layer 444. As the thickness of the support layer 420 increases, the mass of the support layer 420 also increases. Therefore, when the support layer 420 is a sheet-like resin material, the thickness of the support layer 420 may be 10 ⁇ m or less, preferably 7 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • conductive layer 442 and conductive layer 444 include a conductive material.
  • the conductive material may have a resistivity of 8.0 ⁇ 10 ⁇ 8 [ ⁇ m] or more.
  • the conductive material may be metal. Examples of the above metals include aluminum, stainless steel, nickel, and alloys thereof. Examples of stainless steel include SUS-430 and SUS-304.
  • the conductive material may be aluminum.
  • the thickness of the conductive layer 442 and/or the conductive layer 444 may be 0.05 ⁇ m to 7 ⁇ m.
  • the thickness of the conductive layer 442 and/or the conductive layer 444 may be 0.05 ⁇ m to 5 ⁇ m, 0.1 ⁇ m to 3 ⁇ m, 0.1 ⁇ m to 2 ⁇ m, or 0.5 ⁇ m. It may be ⁇ 1 ⁇ m.
  • the thickness of the conductive layer 442 and/or the conductive layer 444 may be 0.05 ⁇ m to 4 ⁇ m, 0.05 ⁇ m to 3 ⁇ m, 0.05 ⁇ m to 2 ⁇ m, or 0.05 ⁇ m. It may be ⁇ 1 ⁇ m.
  • the thickness of the conductive layer 442 and/or the conductive layer 444 is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m. Since commercially available aluminum foil has a thickness of 6 to 10 ⁇ m even if it is a relatively thin aluminum foil, the current collector 400 should include a conductive layer 442 and/or a conductive layer 444 having a thickness of 5 ⁇ m or less. As a result, the energy density per unit mass of the power storage cell [Wh/kg-power storage cell] is improved compared to the case where commercially available aluminum foil is used as the conductive layer 442 and/or the conductive layer 444.
  • At least one of the conductive layer 442 and/or the conductive layer 444 may be a layered or foil-like aluminum having the above-mentioned thickness.
  • the layered or foil-like aluminum may be placed on the surface of the support layer 420 by pasting, or may be formed on the surface of the support layer 420 by a vapor deposition method, a deposition method, or the like.
  • the thickness of the conductive layer 442 and/or the conductive layer 444 When the thickness of the conductive layer 442 and/or the conductive layer 444 is 7 ⁇ m or less, the mass energy density of the electricity storage cell 112 is improved. When the thickness of conductive layer 442 and/or conductive layer 444 is 5 ⁇ m or less, the mass energy density of power storage cell 112 is further improved. When the thickness of the conductive layer 442 and/or the conductive layer 444 is 1 ⁇ m or less, the mass energy density of the electricity storage cell 112 is greatly improved. Generally, when the thickness of the conductive layer is 0.1 ⁇ m or less or less than 0.1 ⁇ m, the thickness of the conductive layer 442 and/or the conductive layer 444 becomes easily damaged.
  • the conductive layer 442 and the conductive layer 444 according to this embodiment are supported by the support layer 420. Therefore, even when the thickness of the conductive layer 442 and/or the conductive layer 444 is about 0.05 to 0.1 ⁇ m, damage to the conductive layer 442 and/or the conductive layer 444 can be suppressed.
  • the resistance to breakage of the conductive layer 442 and the conductive layer 444 in the above-mentioned fixing process is comparable to the resistance to breakage of the current collector 400 in the above-mentioned fixation process.
  • the degree of resistance to breakage of the current collector 400 is determined, for example, by a tensile test of a sample cut out from the current collector 400 into a strip including the support layer 420, the conductive layer 442, and the conductive layer 444. . Note that if part of the conductive layer 442 and the conductive layer 444 are broken during the fixing process, the electrical resistance of the conductive layer 442 and the conductive layer 444 may increase compared to before the fixing process is performed.
  • the size and shape of the sample can be determined by, for example, "Testing Machine Academia” (Keyence Corporation, [online] https://www.keyence.co.jp/ss/products/recorder/testing-machine/material/tension.jsp (April 6, 2022)), it has a rectangular overall shape with a width of 20 mm and a length of 100 mm, and has a Taber region with a length of 40 mm in the center.
  • the tapered region has a narrow region in the center with a width of 10 mm and a length of 20 mm. One end of the tapered region and one end of the narrow region are connected, and the other end of the tapered region and the other end of the narrow region are connected.
  • the tensile test is carried out, for example, according to or in accordance with IPC-TM-650. Specifically, the tensile strength of the sample is measured by attaching fixtures to both ends of the sample and pulling the sample up and down. The tensile speed is set, for example, to 2 inches/min (50.8 mm/min). The tensile strength under the above conditions may be expressed as, for example, Ts(50). The numbers in parentheses above indicate the tensile speed.
  • the tensile strength Ts(50) of the above sample may be 360 MPa or more.
  • the tensile strength Ts(50) may be 450 MPa or more.
  • the current collector 500 differs from the current collector 400 described in relation to FIG. 4 in that a plurality of through holes 522 are formed in the support layer 420.
  • Current collector 500 may have the same configuration as current collector 400 except for the above differences.
  • the metal foil When a simple metal foil is used as a current collector, if an attempt is made to form a through hole in the current collector, the metal foil may be bent, making it difficult to form the through hole. Therefore, especially when active material layers are formed on both sides of the metal foil, it is difficult to form through holes in the current collector.
  • the conductive layer is supported by a support layer such as a resin sheet, the current collector is relatively difficult to bend even if a through hole is formed in the current collector.
  • some of the plurality of through holes 522 are filled with a conductive material 546.
  • Conductive material 546 electrically connects conductive layer 442 and conductive layer 444.
  • the equivalent circle diameter (sometimes referred to as circle equivalent diameter) of each of the plurality of through holes 522 may be 15 ⁇ m to 150 ⁇ m.
  • the distance between two adjacent through holes 522 may be 30 ⁇ m to 250 ⁇ m.
  • a conductive layer (sometimes referred to as an internal conductive layer) for electrically connecting the conductive layer 442 and the conductive layer 444 is formed on the inner wall surface of the through hole 522. ), the thickness of the conductive layer formed on the inner wall surface becomes smaller, and the electrical resistance of the conductive layer becomes larger.
  • the equivalent circle diameter of the through hole 522 is larger than 150 ⁇ m, when forming a conductive layer for electrically connecting the conductive layer 442 and the conductive layer 444 on the inner wall surface of the through hole 522, the conductive layer As a result, the electrical resistance of the conductive layers 442 and 444 increases. Further, if the equivalent circle diameter of the through hole 522 is larger than 150 ⁇ m, the strength of the current collector 500 may be insufficient.
  • the equivalent circle diameter (sometimes referred to as circle equivalent diameter) of each of the plurality of through holes 522 may be 15 ⁇ m to 150 ⁇ m, 15 ⁇ m to 50 ⁇ m, or 15 ⁇ m to 35 ⁇ m. Good too.
  • the equivalent circle diameter of the through hole 522 not filled with the conductive material 546 may be 15 ⁇ m to 50 ⁇ m, or 15 ⁇ m to 35 ⁇ m.
  • the equivalent circle diameter of the through hole 522 filled with the conductive material 546 is not particularly limited. Thereby, the current collector 500 can be weighed while suppressing breakage of the conductive layer 442 and the conductive layer 444.
  • the ratio of the total area of the plurality of through holes 522 on one surface of the current collector 500 to the area of the outer shape of the one surface of the current collector 500 may be 30% or more.
  • the ratio of the total area of the through holes 522 not filled with the conductive material 546 on one side of the current collector 500 to the area of the outer shape of the one side of the current collector 500 is 30% or more. Good too. Thereby, the current collector 500 can be weighed while suppressing breakage of the conductive layer 442 and the conductive layer 444.
  • the current collector 600 is similar to the collector described in connection with FIG. This is different from the electric body 500.
  • Current collector 500 may have the same configuration as current collector 500 except for the above differences.
  • a conductive layer 642 is formed on the surface of the inner wall portion 622 of at least a portion of the plurality of through holes 620.
  • the conductive layer 642 may electrically connect the conductive layer 442 and the conductive layer 444.
  • the conductive layer 642 includes a conductive material.
  • the conductive material may be metal. Examples of the above metals include aluminum, stainless steel, nickel, and alloys thereof. Examples of stainless steel include SUS-430 and SUS-304.
  • the conductive material may be aluminum.
  • the conductive layer 642 may have multiple layers with different main components.
  • the conductive layer 642 may have three or more layers having different main components.
  • the conductive layer 642 includes, for example, an auxiliary layer, a target layer, and a protective layer.
  • a first layer mainly composed of nickel is formed on the surface of the inner wall 622 of the through hole 620
  • a second layer mainly composed of copper is formed on the first layer
  • a second layer mainly composed of copper is formed on the first layer.
  • a chromate film is formed.
  • the thickness of the first layer may be on the order of 0.1 ⁇ m
  • the thickness of the second layer may be on the order of 1 ⁇ m
  • the thickness of the chromate coating may be on the order of 0.3 ⁇ m.
  • the current collector 400 may be an example of a sheet material.
  • Current collector 400 may be an example of a first sheet material, a second sheet material, or a third sheet material.
  • Support layer 420 may be an example of a support layer.
  • the conductive layer 442 may be an example of one of the first metal layer and the second metal layer.
  • the conductive layer 444 may be an example of the other of the first metal layer and the second metal layer.
  • the current collector 500 may be an example of a sheet material.
  • Current collector 500 may be an example of a first sheet material, a second sheet material, or a third sheet material.
  • the current collector 600 may be an example of a sheet material.
  • Current collector 600 may be an example of a first sheet material, a second sheet material, or a third sheet material.
  • the inner wall portion 622 may be an example of an inner wall of a through hole.
  • the conductive layer 642 may be an example of a conductive layer disposed on the inner wall of the through hole.
  • Conductive layer 642 may be an example of an internal conductive layer.
  • the support layer 420 mainly contains a thermoplastic resin or is substantially made of a thermosetting resin.
  • the details of the current collector 400, the current collector 500, and the current collector 600 were explained using the case where the current collector 400, the current collector 500, and the current collector 600 were used as an example. However, the current collector 400, the current collector 500, and the current collector 600 are not limited to this embodiment.
  • the support layer 420 may mainly contain a thermosetting resin, It may be substantially made of thermosetting resin.
  • thermosetting resin may be substantially made of thermosetting resin.
  • at least some of the through holes 522 are filled with conductive material 546.
  • a conductive layer 642 is formed inside at least a portion of the plurality of through holes 620. Therefore, even if the single current collector conductive layer 442 and the single conductive layer 444 do not come close to each other or come into contact with each other, a portion of the multiple stacked current collectors can be integrated by welding. Furthermore, heating the support layer before welding reduces the fluidity of the support layer. This prevents the support layer from being pushed out to the periphery of the welding location, and as a result, volumetric expansion around the welding location can be suppressed.
  • FIG. 7 schematically shows an example of a cross section of a laminated structure 760.
  • FIG. 8 schematically shows an example of the electrical connection relationship between the electrodes of the laminated structure 760.
  • the structure 260 is a structure (electrode structure) that constitutes a part of the battery, taking as an example a case where the positive electrode 220, the separator 230, and the negative electrode 240 are laminated in this order. (sometimes referred to as the body) was explained in detail.
  • the electrode structure is not limited to structure 260.
  • the laminated structure 760 differs from the structure 260 in that it includes a plurality of positive electrodes 220, a plurality of separators 230, and a plurality of negative electrodes 240.
  • Laminated structure 760 may have the same configuration as structure 260 except for the above differences.
  • the laminated structure 760 includes one or more positive electrodes 220, one or more negative electrodes 240, each of one or more positive electrodes 220, and each of one or more negative electrodes 240. and one or more separators 230 arranged therebetween.
  • the laminated structure 760 includes a plurality of positive electrodes 220, a plurality of negative electrodes 240, and a plurality of separators 230 disposed between each of the plurality of positive electrodes 220 and each of the plurality of negative electrodes 240. Equipped with.
  • each of the plurality of cathodes 220 has a cathode active material layer 224 disposed on both sides of the cathode current collector 222.
  • the outermost cathode 220 of the laminated structure 760 has a cathode active material layer 224 disposed on one surface of the cathode current collector 222 .
  • each of the plurality of negative electrodes 240 has a negative electrode active material layer 244 disposed on both sides of the negative electrode current collector 242.
  • the negative electrode 240 disposed on the outermost side of the laminated structure 760 has a negative electrode active material layer 244 disposed on one surface of the negative electrode current collector 242 .
  • the positive electrode active material layer 224 is arranged on a part of the positive electrode current collector 222.
  • the positive electrode active material layer 224 is not formed on at least one surface of the positive electrode current collector 222.
  • the plurality of positive electrodes 220 are stacked, for example, so that the end portions on the side where the positive electrode active material layer 224 is not formed face substantially the same direction.
  • the negative electrode active material layer 244 is arranged on a part of the negative electrode current collector 242. For example, in the vicinity of at least one end of the negative electrode current collector 242, the negative electrode active material layer 244 is not formed on at least one surface of the negative electrode current collector 242.
  • the plurality of negative electrodes 240 are stacked, for example, so that the end portions on the side where the negative electrode active material layer 244 is not formed face substantially the same direction.
  • the laminated structure 760 includes a positive electrode connection part 820 that electrically connects each of the plurality of positive electrodes 220.
  • the positive electrode connecting portion 820 includes a lead 822 and a sub-lead 824 that sandwich and support a portion of the plurality of positive electrodes 220. This improves the strength of the joint portions of the plurality of positive electrodes 220.
  • the lead 822 and the sub-lead 824 sandwich and support the end of the positive electrode current collector 222 of each of the plurality of positive electrodes 220 and/or the vicinity of the end.
  • the positive electrode active material layer 224 is not formed near at least one end of each of the plurality of positive electrodes 220.
  • the lead 822 and the sub-lead 824 are arranged to sandwich the plurality of stacked positive electrode current collectors 222 . Note that in other embodiments, the sub-lead 824 may not be used.
  • the plurality of positive electrodes 220 may be physically connected by welding.
  • welding For example, by physically joining the plurality of stacked positive electrode current collectors 222 by welding, the ends and/or the vicinity of the ends of the plurality of positive electrode current collectors 222 are integrated. Thereby, the plurality of positive electrodes 220 are physically coupled.
  • the plurality of positive electrode current collectors 222 may be integrated with the leads 822 and/or the sub-leads 824 at the ends and/or near the ends of the plurality of positive electrode current collectors 222 .
  • welding methods include ultrasonic welding, resistance welding, laser welding, and the like.
  • each positive electrode current collector 222 of a plurality of positive electrodes 220 (sometimes referred to as a welding region)
  • the plurality of positive electrodes 220 The details of the laminated structure 760 will be explained using an example in which the respective positive electrode current collectors 222 are physically coupled. Note that in other embodiments, the welding region may be arranged to include the end portions of the positive electrode current collectors 222 of each of the plurality of positive electrodes 220.
  • Conductive layer 442 and conductive layer 444 are electrically connected by, for example, conductive material 546 and/or conductive layer 642.
  • the composition or material of the support layer 420 between each of the plurality of positive electrode current collectors 222 may be the same or different.
  • the composition or material of the support layer 420 of one positive electrode current collector 222 and the composition or material of the support layer 420 of the other positive electrode current collector 222 may be the same or different.
  • the welding region is arranged, for example, in the vicinity of the ends of the plurality of positive electrode current collectors 222 and at least in part of the region sandwiched between the leads 822 and the sub-leads 824.
  • the planar dimension of the sub-lead 824 may be larger than the planar dimension of the welding area.
  • the planar dimension of the lead 822 may be larger than the planar dimension of the sub-lead 824.
  • the lead 822 is made of, for example, a plate-shaped conductive material.
  • the thickness of the lead 822 may be 10 to 300 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the material of the sub-lead 824 is not particularly limited.
  • the sub-lead 824 is made of, for example, aluminum, nickel, stainless steel, or an alloy thereof.
  • the sub-lead 824 may be made of a resin material such as polypropylene or polyimide.
  • the thickness of the sub-lead 824 may be 10 to 300 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the laminated structure 760 includes a negative electrode connection part 840 that electrically connects each of the plurality of negative electrodes 240.
  • the negative electrode connection section 840 includes a lead 842 and a sub-lead 844 that sandwich and support a portion of the plurality of positive electrodes 220. This improves the strength of the joint portions of the plurality of negative electrodes 240.
  • the lead 842 and the sub-lead 844 sandwich and support the end of the negative electrode current collector 242 of each of the plurality of negative electrodes 240 and/or the vicinity of the end.
  • the negative electrode active material layer 244 is not formed near at least one end of each of the plurality of negative electrodes 240.
  • the leads 842 and sub-leads 844 are arranged to sandwich the plurality of stacked negative electrode current collectors 242. Note that in other embodiments, the sub-lead 844 may not be used.
  • the plurality of negative electrodes 240 may be physically connected by welding. For example, by physically joining the stacked negative electrode current collectors 242 by welding, the ends and/or the vicinity of the ends of the negative electrode current collectors 242 are integrated. Thereby, the plurality of negative electrodes 240 are physically coupled.
  • the plurality of negative electrode current collectors 242 may be integrated with the leads 842 and/or the sub-leads 844 at the ends and/or near the ends of the plurality of negative electrode current collectors 242. Examples of welding methods include ultrasonic welding, resistance welding, laser welding, and the like.
  • a region located near the end of each negative electrode current collector 242 of a plurality of negative electrodes 240 (sometimes referred to as a welding region) a plurality of negative electrodes 240 can be welded.
  • the details of the laminated structure 760 will be explained by taking as an example a case where the negative electrode current collectors 242 of 240 are physically coupled.
  • the welding region may be arranged to include the ends of the negative electrode current collectors 242 of each of the plurality of negative electrodes 240.
  • Conductive layer 442 and conductive layer 444 are electrically connected by, for example, conductive material 546 and/or conductive layer 642.
  • the composition or material of the support layer 420 between each of the plurality of negative electrode current collectors 242 may be the same or different.
  • the composition or material of the support layer 420 of one negative electrode current collector 242 and the composition or material of the support layer 420 of the other negative electrode current collector 242 may be the same or different.
  • the welding region is arranged, for example, in the vicinity of the ends of the plurality of negative electrode current collectors 242 and at least in part of the region sandwiched between the leads 842 and the sub-leads 844.
  • the planar dimension of the sub-lead 844 may be larger than the planar dimension of the welding area.
  • the planar dimension of the lead 842 may be larger than the planar dimension of the sub-lead 844.
  • the lead 842 is made of, for example, a plate-shaped conductive material.
  • the thickness of the lead 842 may be 10 to 300 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the material of the sub-lead 844 is not particularly limited.
  • the sub-lead 844 is made of, for example, aluminum, nickel, stainless steel, or an alloy thereof.
  • the sub-lead 844 may be made of a resin material such as polypropylene or polyimide.
  • the thickness of the sub-lead 844 may be 10 to 300 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the lead 822 and sub-lead 824 may be an example of a positive electrode support part.
  • the lead 842 and sub-lead 844 may be an example of a negative electrode support section.
  • the lead 822 may be an example of the first support member.
  • the sub-lead 824 may be an example of a second support member.
  • the lead 842 may be an example of a first support member.
  • the sub-lead 844 may be an example of a second support member.
  • the laminated structure 760 may be an example of an electrode structure.
  • the plurality of positive electrode current collectors 222 included in the laminated structure 760 may be an example of a plurality of laminated sheet materials.
  • the plurality of negative electrode current collectors 242 included in the laminated structure 760 may be an example of a plurality of laminated sheet materials.
  • the positive electrode current collector 222 in contact with the lead 822 may be an example of the first sheet material or the third sheet material.
  • the positive electrode current collector 222 in contact with the sub-lead 824 may be an example of the second sheet material or the third sheet material.
  • the negative electrode current collector 242 stacked in the negative electrode connection portion 840 the negative electrode current collector 242 in contact with the lead 842 may be an example of the first sheet material or the third sheet material.
  • the negative electrode current collector 242 in contact with the sub-lead 844 may be an example of the second sheet material or the third sheet material.
  • the plurality of positive electrodes 220 included in the stacked structure 760 are an example of a first electrode and a second electrode, and the plurality of negative electrodes 240 included in the stacked structure 760 are an example of a third electrode and a fourth electrode. good.
  • the plurality of positive electrodes 220 included in the stacked structure 760 are an example of a third electrode and a fourth electrode, and the plurality of negative electrodes 240 included in the stacked structure 760 are an example of a first electrode and a second electrode. Good too.
  • the plurality of separators 230 included in the laminated structure 760 may be an example of a first separator, a second separator, and a third separator.
  • the details of the laminated structure 760 have been explained by taking as an example the case where the laminated structure 760 includes the positive electrode connection part 820 and the negative electrode connection part 840.
  • the laminated structure 760 is not limited to this embodiment. In other embodiments, the laminated structure 760 may include at least one of a positive electrode connection portion 820 and a negative electrode connection portion 840.
  • the details of the positive electrode connecting portion 820 have been described using an example in which a plurality of positive electrode current collectors 222 are supported by the leads 822 and the sub-leads 824 in the positive electrode connecting portion 820.
  • the positive electrode connection portion 820 is not limited to this embodiment. In other embodiments, the positive connection portion 820 may not include the sub-lead 824. In this case, the plurality of positive electrode current collectors 222 are supported by leads 822.
  • the details of the negative electrode connection portion 840 have been described using an example in which a plurality of negative electrode current collectors 242 are supported by the lead 842 and the sub-lead 844 in the negative electrode connection portion 840.
  • the negative electrode connection section 840 is not limited to this embodiment. In other embodiments, the negative electrode connection portion 840 may not include the sub-lead 844. In this case, the plurality of negative electrode current collectors 242 are supported by leads 842.
  • FIG. 9 schematically shows an example of a method for manufacturing the electricity storage cell 112.
  • a method for producing a storage cell 112 including a stacked structure 760 will be described.
  • step 912 step may be abbreviated as S
  • a plurality of positive electrodes 220 and a plurality of negative electrodes 240 are prepared. Details of how to prepare the positive electrode 220 or the negative electrode 240 will be described later.
  • S914 a plurality of separators 230 are prepared.
  • S920 the positive electrode 220, separator 230, and negative electrode 240 are stacked in this order. As a result, a laminated structure 760 is manufactured.
  • the plurality of positive electrodes 220 of the stacked structure 760 are electrically connected. Further, in S934, the plurality of negative electrodes 240 of the stacked structure 760 are electrically connected. Thereafter, in S940, the stacked structure 760 is housed inside the positive electrode case 212 and the negative electrode case 214, and the power storage cell 112 is assembled.
  • the plurality of positive electrodes 220 prepared in S912 may be an example of a first electrode and a second electrode, and the plurality of negative electrodes 240 prepared in S912 may be an example of a third electrode and a fourth electrode.
  • the plurality of positive electrodes 220 prepared in S912 may be an example of the third electrode and the fourth electrode, and the plurality of negative electrodes 240 prepared in S912 may be an example of the first electrode and the second electrode.
  • the plurality of separators 230 prepared in S914 may be an example of a first separator, a second separator, and a third separator.
  • the stacked structure 760 may be an example of an electrode structure in which a first electrode, a first separator, three electrodes, a second separator, a second electrode, a third separator, and a fourth negative electrode are stacked in this order.
  • FIG. 10 schematically shows an example of a method for manufacturing the positive electrode 220.
  • the positive electrode current collector 222 is prepared.
  • a positive electrode slurry containing a positive electrode active material and a solvent is prepared.
  • a positive electrode slurry is applied to the surface of the positive electrode current collector 222.
  • the positive electrode slurry is dried.
  • a positive electrode active material layer 224 is formed on the surface of the positive electrode current collector 222.
  • the positive electrode active material layer 224 and the positive electrode current collector 222 are fixed. More specifically, by applying pressure to the stacked cathode active material layer 224 and cathode current collector 222, the cathode active material layer 224 and cathode current collector 222 are fixed.
  • the pressure in the fixing step is such that (i) the rate of change in electrical resistance (specific resistance) of the current collector before and after the pressure is applied to the active material layer and the current collector is within 50%; or (ii) Setting or adjusting so that the absolute value of the difference in electrical resistance (specific resistance) of the current collector before and after pressure is applied to the active material layer and the current collector is 1 [ ⁇ ] or less. be done.
  • the pressure in the fixing step may be set or adjusted so that the absolute value of the above difference is less than 1 [ ⁇ ].
  • the pressure in the fixing step is preferably set or adjusted so that the absolute value of the above difference is 500 m [ ⁇ ] or less, and it is set or adjusted so that the absolute value of the above difference is 100 m [ ⁇ ] or less.
  • the electrical resistance of the current collector can be measured, for example, by a four-terminal, four-probe method using a low resistivity meter (Lorestar GX MCP-T700, manufactured by Nitto Seiko Analytech Co., Ltd.).
  • the pressure in the fixing step is determined from (i) the value of the second voltage measured by applying a current to the conductive layer of the current collector after the pressure is applied, and (ii) the pressure being applied.
  • the voltage is set or adjusted so that the value obtained by subtracting the first voltage measured by applying a current to the conductive layer of the current collector before being applied is less than 100 mV. This suppresses breakage of the conductive layer of the current collector.
  • the first voltage and the second voltage are measured, for example, by a low resistivity meter that has a voltage value measurement function and an output function.
  • the above-mentioned first voltage and second voltage can be measured, for example, by a four-terminal, four-probe method using a low resistivity meter (Lorestar GX MCP-T700, manufactured by Nitto Seiko Analytech Co., Ltd.).
  • a low resistivity meter Litto Seiko Analytech Co., Ltd.
  • the pressure in the fixing step is set or adjusted such that the porosity of the active material layer after the pressure is applied is 20-40%, thereby increasing the porosity of the conductive layer of the current collector. Breakage is suppressed.
  • the linear pressure applied to the positive electrode active material layer 224 and the positive electrode current collector 222 is 1.0 kgf/cm to The roll press is controlled so that the pressure is 200 kgf/cm.
  • the roll press may be controlled so that the above linear pressure is 2 kgf/cm to 150 kgf/cm, or the roll press may be controlled so that the above linear pressure is 10 kgf/cm to 100 kgf/cm.
  • Steps to physically connect multiple electrodes An example of a procedure for physically coupling a plurality of electrodes will be explained using FIGS. 11, 12, 13, and 14.
  • the plurality of positive electrodes 220 are physically coupled by welding at the positive electrode connection portion 820.
  • the positive electrode current collectors 222 of each of the plurality of positive electrodes 220 are physically coupled by welding.
  • the plurality of negative electrodes 240 are physically coupled by welding at the negative electrode connection portion 840.
  • the negative electrode current collectors 242 of each of the plurality of negative electrodes 240 are physically coupled by welding.
  • one positive electrode 220 is connected to the current collector 1102 and at least one surface of the current collector 1102.
  • the other positive electrode 220 includes a current collector 1104 and a positive electrode active material layer 224 located on at least one surface of the current collector 1104.
  • details of the procedure for physically coupling multiple electrodes are described.
  • details of the procedure for physically bonding a plurality of electrodes will be described, taking as an example a case where the positive electrode active material layer 224 is not formed near the ends of the current collector 1102 and the current collector 1104. is explained.
  • FIG. 11 shows an example of the system configuration of the welding device 1120 along with an example of the ends of the current collector 1102 and the current collector 1104 and/or the vicinity thereof.
  • An example of a welding procedure using the welding device 1120 will be explained using FIG. 11. More specifically, using FIG. 11, the welding device 1120 welds the current collectors 1102 and 1104 while pressing the ends of the current collectors 1102 and the current collectors 1104 and the vicinity of the ends.
  • An example of a procedure for manufacturing the positive electrode connection portion 820 by welding a portion near the end will be described.
  • the current collector 1102 and the current collector 1104 to be subjected to the welding process have the same configuration as the current collector 600 described in relation to FIG. 6 .
  • the current collector 600 includes a support layer 420, and a conductive layer 442 and a conductive layer 444 formed on both sides of the support layer 420.
  • a plurality of through holes 620 are formed in the current collector 600, penetrating the support layer 420, the conductive layer 442, and the conductive layer 444.
  • the shape of the through hole 620 is not particularly limited.
  • a conductive layer 642 that electrically connects the conductive layer 442 and the conductive layer 444 is formed on the surface of the inner wall portion 622 of at least a portion of the plurality of through holes 620 .
  • the support layer 420 of the current collector 1102 and the current collector 1104 includes a thermoplastic resin material (sometimes referred to as a thermoplastic resin).
  • the support layer 420 of the current collector 1102 and the current collector 1104 may be a resin layer made of a substantially thermoplastic resin material.
  • the support layer 420 of the current collector 1102 and the current collector 1104 may be an insulating layer made of a substantially thermoplastic resin material.
  • the temperature of the support layer 420 increases and the resin material included in the support layer 420 softens.
  • the resin material can move inside the support layer 420.
  • the above-mentioned energy may be any energy that can increase the temperature of the support layer 420 and/or the resin material included in the support layer 420, and its type is not particularly limited.
  • the above energy may be thermal energy.
  • the thermoplastic resin material may be a resin material having a heat shrinkage rate of 1% or less at 25°C.
  • thermoplastic resin materials include PE, PET, PAN, PP, and PPS.
  • the thickness of the support layer 420 of the current collector 1102 and the current collector 1104 may be 0.5 ⁇ m to 20 ⁇ m.
  • the thickness of the support layer 420 is preferably 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 8 ⁇ m.
  • the conductive layer 442 and the conductive layer 444 of the current collector 1102 and the current collector 1104 each contain a metal material.
  • the conductive layer 442 and the conductive layer 444 of the current collector 1102 and the current collector 1104 may be a metal layer substantially made of a metal material.
  • a metal layer substantially made of a metal material contains, for example, inevitable impurities.
  • the metal material contained in the conductive layer 442 and the conductive layer 444 may be a single metal or an alloy.
  • the thickness of the conductive layer 442 and conductive layer 444 of the current collector 1102 and the current collector 1104 may be 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the conductive layer 442 and the conductive layer 444 is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m.
  • the conductive layer 442 and the conductive layer 444 of the current collector 1102 and the current collector 1104 are electrically connected.
  • the welding current applied to the conductive layer 442 of the current collector 1102 by the welding device 1120 is applied to the conductive layer 442 of the current collector 1102, the conductive layer 442 of the current collector 1104, and the conductive layer 442 of the current collector 1104. flows.
  • the conductive layer 442 and the conductive layer 444 may be electrically connected in any manner.
  • a conductive member is disposed on the side surface 426 of the support layer 420 to electrically connect the conductive layer 442 and the conductive layer 444.
  • a conductive member is disposed within the support layer 420 to electrically connect the conductive layer 442 and the conductive layer 444.
  • a plurality of through holes 620 are formed in a part of the current collector 1102, penetrating the support layer 420, the conductive layer 442, and the conductive layer 444 of the current collector 1102. At least a portion of the plurality of through holes 620 are arranged in the above-mentioned welding region (represented as Rw in FIG. 11).
  • the amount of resin material that is displaced as the conductive layers 442 and 444 are welded is reduced, and volumetric expansion around the welding area due to welding is suppressed.
  • the through holes 620 are also formed in the conductive layer 442 and the conductive layer 444.
  • the resin material pushed away due to welding of the conductive layer 442 and the conductive layer 444 can flow into the through hole 620 provided in the conductive layer 442 and the conductive layer 444.
  • volumetric expansion around the welding area due to welding is suppressed.
  • At least a portion of the plurality of through holes 620 may be arranged in a region adjacent to the welding region (sometimes referred to as an adjacent region).
  • a region adjacent to the welding region sometimes referred to as an adjacent region.
  • the resin material pushed away due to welding of the conductive layer 442 and the conductive layer 444 is inside the through-hole 620 arranged in the adjacent region. can flow into the country. As a result, volumetric expansion around the welding area due to welding is suppressed.
  • At least a portion of the plurality of through holes 620 may be arranged in the welding area and an area adjacent to the welding area. This further suppresses volumetric expansion around the welding area due to welding. Details of the through hole 620 will be described later.
  • a conductive layer 642 that electrically connects the conductive layer 442 and the conductive layer 444 is disposed on the surface of the inner wall portion 622 of at least a portion of the plurality of through holes 620.
  • the material constituting the conductive layer 642 may be any conductive substance, and its type and structure are not particularly limited.
  • Conductive layer 642 may include a metal material.
  • the conductive layer 642 may be a metal layer consisting essentially of a metal material.
  • a metal layer substantially made of a metal material contains, for example, inevitable impurities.
  • the metal material contained in the conductive layer 642 may be a single metal or an alloy.
  • the metal material contained in the conductive layer 642 may be the same as or different from the metal material contained in at least one of the conductive layer 442 and the conductive layer 444.
  • Examples of the above metal materials include copper, nickel, aluminum, stainless steel, and alloys thereof.
  • Examples of stainless steel include SUS304 and SUS430.
  • the conductive layer 642 may include multiple layers. Each of the plurality of layers may be made of different materials.
  • the conductive layer 642 is between a layer for electrically connecting the conductive layers 442 and 444 (sometimes referred to as a target layer), and the inner wall 622 of the through hole 620 and the target layer. and an auxiliary layer disposed thereon.
  • the auxiliary layer is formed to assist the conductivity of the target layer and improve the adhesion between the through hole 620 and the target layer.
  • a protective layer for protecting the target layer may be formed on the surface of the target layer. Examples of the protective layer include a chromate film and a zinc film.
  • the conductive layer 642 may include an auxiliary layer, a purpose layer, and a protective layer.
  • a first layer mainly composed of nickel is formed on the surface of the inner wall 622 of the through hole 620
  • a second layer mainly composed of copper is formed on the first layer
  • a second layer mainly composed of copper is formed on the first layer.
  • a chromate film is formed.
  • the thickness of the first layer may be on the order of 0.1 ⁇ m
  • the thickness of the second layer may be on the order of 1 ⁇ m
  • the thickness of the chromate coating may be on the order of 0.3 ⁇ m.
  • the thickness of the conductive layer 642 of the current collector 1102 and the current collector 1104 may be 0 ⁇ m to 5 ⁇ m.
  • the thickness of the conductive layer 642 is preferably 0.1 ⁇ m to 3 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m.
  • the conductive layer 642 is formed by a known method.
  • conductive layer 642 is formed by electroless plating, vapor deposition, or sputtering.
  • the conductive layer 642 may be formed by various secondary growth methods, or may be formed by pasting metal foil on the surface of the inner wall portion 622 of the through hole 620.
  • a plurality of through holes 620 are formed in a part of the current collector 1104, penetrating the support layer 420, the conductive layer 442, and the conductive layer 444 of the current collector 1104.
  • a conductive layer 642 that electrically connects the conductive layer 442 and the conductive layer 444 is disposed on the surface of the inner wall portion 622 of at least a portion of the plurality of through holes 620 .
  • Conductive layer 642 of current collector 1104 may have similar characteristics to those described in connection with conductive layer 642 of current collector 1102.
  • the conductive layer 442 and the conductive layer 444 are formed of metal thin films, and therefore have relatively low strength. Therefore, according to this embodiment, the current collector 1102 and the current collector 1104 are supported using the lead 822 and sub-lead 824 described in relation to FIG. In this embodiment, the lead 822 and the sub-lead 824 are arranged to sandwich the stacked current collector 1102 and current collector 1104. This suppresses breakage of the metal thin film during welding.
  • a conductive member is used as the lead 822.
  • a conductive or non-conductive member is used as the sub-lead 824.
  • the welding device 1120 includes a pair of welding heads 1130, a heating power source 1140, a welding power source 1150, and a controller 1160.
  • the welding device 1120 includes a pair of heating power sources 1140 that supply power to each of the pair of welding heads 1130.
  • the welding head 1130 includes a position adjustment section 1132, a heating section 1134, and a welding section 1136.
  • the welding head 1130 applies energy to the welding target.
  • welding head 1130 heats the welding target.
  • Welding head 1130 presses the object to be welded. This allows the welding head 1130 to apply pressure to the welding target.
  • the position adjustment section 1132 adjusts the position of the welding head 1130. For example, the position adjustment unit 1132 moves the welding head 1130 to a welding area to be welded. For example, the position adjustment unit 1132 presses the welding head 1130 against a welding area to be welded. This causes the welding head 1130 to press the welding area to be welded. As a result, pressure is applied to the welding area to be welded.
  • the heating unit 1134 applies energy to the softened region to be welded. This heats the softened region of the welding target.
  • the welding section 1136 applies current and/or voltage to the welding area to be welded. As a result, the welding area to be welded is welded.
  • the heating power source 1140 supplies power to the heating section 1134.
  • the welding power source 1150 supplies power to the position adjustment section 1132 and the welding section 1136.
  • the controller 1160 controls the operation of each part of the welding device 1120.
  • a current collector 1102 and a current collector 1104 to be welded are prepared.
  • current collectors 1102 and 1104 having the structures described above are fabricated. In other embodiments, current collectors 1102 and 1104 having the structure described above are purchased.
  • the current collector 1102 and the current collector 1104 are welded to produce a laminate in which a portion of the current collector 1102 and the current collector 1104 are combined. More specifically, first, current collector 1102 and current collector 1104 are stacked. For example, the current collector 1102 and the current collector 1104 are stacked such that the second plane 424 side of the current collector 1102 and the first plane 422 side of the current collector 1104 are in contact with each other.
  • the plurality of through holes 620 in current collector 1102 and the plurality of through holes 620 in current collector 1104 are aligned. In other embodiments, alignment between the plurality of through holes 620 in current collector 1102 and the plurality of through holes 620 in current collector 1104 is not performed.
  • the current collector 1102 and the current collector 1104 are reinforced using the lead 822 and the sub-lead 824.
  • the current collector 1102 and the current collector 1104 and the lead 822 and the sub-lead 824 are welded so that the lead 822 and the sub-lead 824 sandwich the welding area of the current collector 1102 and the current collector 1104 or the area around it. Install the device 1120 in the working position.
  • the welding areas of current collector 1102 and current collector 1104 are determined.
  • a region including the welding region of the stacked current collectors 1102 and 1104, and a region to be subjected to heat treatment (for example, a softened region represented as Rs in FIG. 11) It is determined.
  • the user of the welding device 1120 operates the welding device 1120 to input the positions of the welding region and the softened region to the welding device 1120.
  • the controller 1160 of the welding device 1120 controls the position adjustment unit 1132 to move the welding head 1130 to any position in the softened region of the current collectors 1102 and 1104 (for example, the welding region).
  • Controller 1160 of welding device 1120 controls position adjustment unit 1132 to bring welding head 1130 into contact with the softened regions of current collector 1102 and current collector 1104.
  • a region (sometimes referred to as a softened region) including the welded region of the stacked current collectors 1102 and 1104 to soften the resin material in the softened region.
  • the controller 1160 of the welding device 1120 controls the heating power source 1140 to supply power from the heating power source 1140 to the heating section 1134.
  • the heating section 1134 increases the temperature of the welding head 1130.
  • thermal energy is applied from the welding head 1130 to the softened regions of the current collectors 1102 and 1104.
  • the support layer 420 of the current collector 1102 and the current collector 1104 includes a thermoplastic resin.
  • the thermoplastic resin disposed in the softened regions is softened.
  • the controller 1160 of the welding device 1120 controls the position adjustment unit 1132 to force the welding head 1130 against the welding area.
  • the controller 1160 controls the position adjustment unit 1132 to bring the conductive layers 442 and 444 of the current collectors 1102 and 1104 close to each other to a weldable distance.
  • pressure is also applied to the thermoplastic resin disposed between the conductive layer 442 and the conductive layer 444.
  • the thermoplastic resin is softened and has appropriate fluidity. Therefore, when an appropriate pressure is applied to the thermoplastic resin, the thermoplastic resin moves toward the inside of the through hole 620 formed in the conductive layer 442 and the conductive layer 444 in the welding area and/or toward the outside of the welding area. and move.
  • the controller 1160 of the welding device 1120 controls the position adjustment section 1132 so that the softened resin material flows into at least some of the through holes 620 disposed in the softened region and/or the welded region. Pressure may be applied to the current collector 1102 and the current collector 1104. This greatly suppresses volumetric expansion around the welding area due to welding.
  • the controller 1160 controls the position adjustment unit 1132 so that the softened resin material can be applied to the conductive layer 642 disposed on the surface of the inner wall portion 622 of at least some of the through holes 620 disposed in the softened region and/or the welded region. Pressure may be applied to the stacked current collectors 1102 and 1104 so that the current collectors 1102 and 1104 break and flow into the through holes 620. This greatly suppresses volumetric expansion around the welding area due to welding.
  • a current and/or voltage is applied to the pressed welding area.
  • the conductive layers 442 and 444 of the current collectors 1102 and 1104 are welded.
  • the conductive layer 444 of the current collector 1102 and the conductive layer 442 of the current collector 1104 are welded.
  • a laminate in which a portion of the conductive layer 442 and conductive layer 444 of the current collector 1102 and the current collector 1104 are integrated is manufactured.
  • the controller 1160 of the welding device 1120 controls the welding power source 1150 to supply power from the welding power source 1150 to the welding section 1136. As a result, a current and/or voltage is applied to the pressed welding area, and a welding current flows through the conductive layer 442 and the conductive layer 444 of the current collector 1102 and the current collector 1104, respectively. At this time, the controller 1160 of the welding device 1120 may control the position adjustment unit 1132 and the welding power source 1150 to apply current and/or voltage to the welding area while further pressing the welding area.
  • the conductive layer 442 and the conductive layer 444 are electrically connected by the conductive layer 642.
  • welding current flows through the conductive layer 442 and the conductive layer 444 of the current collector 1102 and the conductive layer 442 and the conductive layer 444 of the current collector 1104.
  • the four conductive layers are integrated in at least a portion of the weld area.
  • a laminate is produced.
  • a thermoplastic resin may be present in a region where parts of the conductive layer 442 and the conductive layer 444 are integrated (sometimes referred to as an integrated region).
  • a void may exist in the integrated region.
  • a laminate is produced in which at least one of the thermoplastic resin and the voids is dispersed inside the integrated metal.
  • the conductive layer 442 and the conductive layer 444 may have a different shape than before welding.
  • the thermoplastic resin included in support layer 420 may have a different shape than before welding.
  • a portion of the integrated region may include conductive layer 442, conductive layer 444, and/or support layer 420 that maintains substantially the same shape as before welding.
  • the integrated region refers to a region where the leads 822, the conductive layer 442, and part of the conductive layer 444 are integrated.
  • the lead 822 and the sub-lead 824 are made of metal, the lead 822, the conductive layer 442 and the conductive layer 444 of the current collector 1102, the conductive layer 442 and the conductive layer 444 of the current collector 1104, and the sub-lead A laminate in which 824 is integrated may be produced.
  • the integrated region refers to a region where the lead 822, the conductive layer 442, the conductive layer 444, and a portion of the sub-lead 824 are integrated.
  • a plurality of through holes 620 are formed in the welding area of the current collector 1102. Similarly, a plurality of through holes 620 are formed in the welding area of the current collector 1104. During welding, some of the plurality of through holes 620 are filled with the metal contained in the conductive layer 442, the conductive layer 444, and/or the conductive layer 642. As a result, some of the plurality of through holes 620 disappear, or the volume of the void in some of the plurality of through holes 620 decreases. Similarly, during welding, a portion of the plurality of through holes 620 is filled with the thermoplastic resin contained in the support layer 420.
  • thermoplastic resin and/or voids may remain in the integrated region.
  • the integrated region does not need to contain thermoplastic resin, and the integrated region does not need to contain voids.
  • the integrated region does not need to contain voids. For example, by adjusting the degree of pressure during welding and/or the magnitude of welding current, a laminate that does not contain thermoplastic resin and/or voids in the integrated region can be produced.
  • the ratio of the volume of the resin present in the integrated region to the volume of the metal present in the integrated region may be 0%, and may be 0%. .1 to 50%.
  • the resin content is preferably 0.1 to 50%, more preferably 1 to 30%, even more preferably 5 to 20%.
  • the lead 822 and/or the sub-lead 824 are made of metal, the conductive layer 442 and the conductive layer 444 of the current collector 1102, and the conductive layer 442 and the conductive layer 444 of the current collector 1104.
  • the resin content in the integrated region is the resin content in the integrated region relative to the volume of metal originating from the conductive layer 442 and the conductive layer 444 present in the integrated region.
  • the volume of the metal originating from the conductive layer 442, the conductive layer 444, and/or the conductive layer 642 is the same as the component (sometimes referred to as the main component) that mainly constitutes the conductive layer 442, the conductive layer 444, and/or the conductive layer 642. ) may be the volume of the same type of metal.
  • the main components of the leads 822 and/or sub-leads 824 are different from the main components of the conductive layers 442 and 444 of the current collector 1102, and the main components of the conductive layers 442 and 444 of the current collector 1104.
  • the boundary between the metal originating from the lead 822 and/or the sub-lead 824 and the metal originating from the conductive layer 442 and/or the conductive layer 444 may, for example, It is determined by observing a cross section obtained by cutting along a plane substantially parallel to the stacking direction (the vertical direction in FIG. 11) using a scanning electron microscope (SEM).
  • the main components of the lead 822 and/or the sub-lead 824, the main components of the conductive layer 442, the conductive layer 444, and the conductive layer 642 of the current collector 1102, and the conductive layer 442, the conductive layer 444, and the conductive layer 642 of the current collector 1104 The same applies when the main components of are different from each other.
  • the position of the above boundary is determined from observation of the cross section of the integrated region. It may be relatively difficult to do so.
  • the position of the above-mentioned boundary is determined by the position of the lead 822 and/or sub-lead 824 in the adjacent region where the metal originating from the lead 822 and/or the sub-lead 824 and the metal originating from the conductive layer 442 and/or the conductive layer 444 are not integrated.
  • the above resin content may be 5 to 50%.
  • the resin content is preferably 5 to 30%, more preferably 5 to 20%.
  • the through hole 620 is formed in the softened region and/or the welded region. Therefore, the resin content may be higher than in the case where the through hole 620 is not formed in the softened region and/or the welded region. Also, a relatively large resin content may indicate that through holes 620 were formed in the softened and/or welded regions.
  • the resin content exceeds 50%, welding will be insufficient and the durability of the weld will decrease. Further, when the resin content exceeds 50%, the conductivity between the lead 822 and the sub-lead 824 decreases, and the resistance increases. On the other hand, when an appropriate amount of resin is included in the integrated region, the resin can contribute to ensuring the strength of the integrated region. Furthermore, in this case, since the integrated region contains a sufficient amount of conductive material, the electrical conductivity of the integrated region is ensured.
  • the thermoplastic resin originating from the support layer 420 among the resins present in the integration region relative to the volume of the metal originating from the conductive layer 442, the conductive layer 444, and/or the conductive layer 642 The volume ratio of may be 5 to 50%.
  • the above ratio may be 10 to 50%, 10 to 40%, or 5 to 30%.
  • the resin content in the integrated region is determined by, for example, cutting the integrated region in a plane substantially parallel to the stacking direction (the vertical direction in FIG. 11) of a plurality of integrated current collectors. It is determined by observing the cross section obtained by using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the above cross section (that is, the SEM observation surface) has an integrated region that is approximately parallel to the stacking direction (the vertical direction in FIG. 11) of a plurality of integrated current collectors, and , a cross section obtained by cutting the plurality of current collectors along a plane substantially perpendicular to the stretching direction (the left-right direction in FIG. 11) (which is a plane that penetrates the plane of paper substantially perpendicularly in FIG. 11). It's fine.
  • the above cross section may be a plane passing approximately through the center of the integrated region.
  • the approximate center of the integrated region is determined, for example, by visually observing the surface of one side (for example, the first plane 422) of the plurality of integrated current collectors.
  • the above-mentioned surface may be a surface on the first plane 422 side of the current collector disposed on the top surface, or a surface on the second plane 424 side of the current collector disposed on the bottom surface. Good too.
  • the approximate position of the outer edge of the integrated region is determined, for example, by visually checking the welding traces. . Note that the exact position of the outer edge of the integrated region is determined, for example, by observing the cross section with an SEM after the integrated region of the laminate is cut.
  • the magnification of the SEM image near the outer edge of the integrated region is appropriately adjusted so that the plurality of conductive layers are simply in contact with the region where the plurality of conductive layers are integrated. It is possible to visually distinguish between regions that are not integrated with each other. This allows the position of the outer edge (sometimes referred to as an end) of the integrated region to be determined.
  • the position of the outer edge of the integrated region is determined based on the length (sometimes referred to as thickness) of the laminate in the stacking direction of the plurality of current collectors. For example, a position where the thickness near the end of the integrated region is 1.1 times the average value of the thickness (for example, Hu described later) near the center of the integrated region, Determined as the edge of the integrated area.
  • the thickness near the center of the integrated region is determined, for example, by averaging the thicknesses at three positions in the SEM image near the center of the integrated region.
  • the thickness of the integrated region may be the distance between the leads and sub-leads.
  • the resin content in the integrated region is derived, for example, as the ratio of the area of the thermoplastic resin in the SEM image to the area of the metal in the SEM image.
  • the resin content in the integrated region may be derived as the average value of the resin content obtained by observing each of a plurality of SEMs at different observation positions in a single cross section. For example, first, five resin content rates corresponding to each of the five SEM images are derived. Next, three of the five resin content measurements, excluding the maximum and minimum measurements, are averaged. This determines the resin content in the integrated region.
  • One of the plurality of SEM images may be an image approximately at the center of the integrated region.
  • the ratio of the volume of voids to the volume of metal in the integrated region may be 0 to 10%.
  • the porosity in the integrated region is preferably 0 to 10%, more preferably 0.1 to 8%, even more preferably 0.1 to 5%.
  • the porosity in the integrated region may exceed 10%, but as the porosity increases, the strength and conductivity of the integrated region decreases. Therefore, the porosity in the integrated region is preferably 10% or less.
  • the through hole 620 is formed in the softened region and/or the welded region. Therefore, the above-mentioned porosity can be increased compared to the case where the through hole 620 is not formed in the softened region and/or the welded region. Also, the relatively large porosity may indicate that through-holes 620 were formed in the softened and/or welded regions.
  • the porosity in the integrated region is determined by, for example, a cross section obtained by cutting the integrated region along a plane substantially parallel to the stacking direction (the vertical direction in FIG. 11) of a plurality of integrated current collectors. , determined by observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the above laminate constitutes a part of the laminate structure 760.
  • the laminated structure 760 includes the first positive electrode 220, the first separator 230, the first negative electrode 240, the second separator 230, and the second positive electrode 220. , the third separator 230, and the second negative electrode 240 are stacked in this order.
  • the positive electrode connection portion 820 including the stacked body of the current collector 1102 and the current collector 1104 is arranged near the ends of the positive electrode 220 including the current collector 1102 and the positive electrode 220 including the current collector 1104. Ru. Therefore, according to this embodiment, the two positive electrodes 220 are integrated near their ends. Accordingly, the mass of the power storage cell 112 is reduced compared to a case where a tab is provided on each of the plurality of current collectors and the tabs of the plurality of current collectors are electrically connected by wiring. As a result, a power storage cell 112 with a large mass energy density is obtained.
  • the current collector 1102 and the current collector 1104 are reinforced using the lead 822 and the sub-lead 824 before the above-described softening treatment or pressing treatment of the thermoplastic resin is performed. This suppresses breakage of the conductive layer 442 and/or the conductive layer 444 due to pressure applied during welding.
  • the current collector 1102 may be an example of a welding target, a sheet material, a first sheet material, or a third sheet material.
  • the current collector 1104 may be an example of a welding target, a sheet material, a second sheet material, or a third sheet material.
  • the conductive layer 442 of the current collector 1102 and the current collector 1104 may be an example of a first metal layer.
  • the conductive layer 444 of the current collector 1102 and the current collector 1104 may be an example of a second metal layer.
  • the conductive layer 642 of the current collector 1102 and the current collector 1104 may be an example of a conductive member disposed on the inner wall of the through hole.
  • FIG. 12 is an example of a top view of the current collector 1102.
  • FIG. 13 is an example of a cross-sectional view of the current collector 1102. Note that the plurality of through holes 620 arranged in the current collector 1104 may have the same characteristics as the plurality of through holes 620 arranged in the current collector 1102.
  • the diameter d of each of the plurality of through holes 620 may be 15 ⁇ m to 150 ⁇ m.
  • the diameter d is less than 15 ⁇ m, it becomes difficult for the thermoplastic resin to flow into the through hole 620 .
  • the volume of the through hole 620 is small, the volume expansion coefficient of the welded laminate becomes large.
  • the diameter d exceeds 150 ⁇ m, the strength of the current collector 1102 decreases, and the current collector 1102 becomes easily broken during welding.
  • the interval (sometimes referred to as pitch) P between two adjacent through holes 620 may be 30 ⁇ m to 250 ⁇ m.
  • the pitch P is less than 30 ⁇ m, the strength of the current collector 1102 decreases, and the current collector 1102 becomes easily broken during welding. Furthermore, the resistance of the current collector 1102 increases.
  • the pitch P exceeds 250 ⁇ m, the amount of movement of the thermoplastic resin increases, and the volumetric expansion coefficient of the welded laminate increases.
  • the length TL of the current collector 1102 in the stretching direction may be larger than the length HL of the region (sometimes referred to as a through-hole band) in which the plurality of through-holes 620 are formed, and TL and HL are They may be substantially the same.
  • the length TW in the direction substantially perpendicular to the stretching direction of the current collector 1102 (sometimes referred to as the width direction) may be larger than the length HW in the width direction of the through-hole band, and TW and HW are They may be substantially the same.
  • the above-mentioned welding area is arranged inside the through-hole band. At least a portion of the softened region described above is located within the perforation zone. For example, the adjacent regions described above are located within the through-hole zone. The softened region described above may be arranged inside the perforation zone.
  • the size of the softened region Rs may be determined based on the size of the welded region Rw.
  • the size of the softened region Rs is, for example, the size of the softened region Rs on the first plane 422 or the second plane 424 of the support layer 420 with respect to the area Sw of the welding region Rw on the first plane 422 or the second plane 424 of the support layer 420.
  • the ratio of the area Ss is determined as shown by the following formula (1). Thereby, the volume of the through hole 620 existing inside the softened region Rs becomes equal to or larger than the volume of the thermoplastic resin existing inside the welding region Rw. (Formula 1) Ss/Sw ⁇ (1- ⁇ w+ ⁇ out)/ ⁇ out
  • Equation 1 ⁇ w represents the porosity of the plurality of through holes in the welding region Rw.
  • ⁇ out represents the porosity of the plurality of through holes in the softened region Rs other than the welded region Rw.
  • ⁇ w and ⁇ out are the porosity at the temperature of the softening treatment.
  • the porosity ⁇ w of the plurality of through holes in the welding region Rw may be 10% or more at the temperature of the softening treatment.
  • the porosity ⁇ w at the temperature of the softening treatment is preferably 20% or more, more preferably 30% or more.
  • a conductive layer 642 is formed inside the through hole 620. Therefore, the diameter dv of the space formed inside the through hole 620 is smaller than the diameter d of the through hole 620.
  • the thickness Hd of the conductive layer 642 may be 0 ⁇ m to 5 ⁇ m.
  • the thickness Hd of the conductive layer 642 is preferably 0.1 ⁇ m to 3 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m.
  • the thickness hr of the support layer 420 may be between 0.5 ⁇ m and 20 ⁇ m.
  • the thickness hr of the support layer 420 is preferably 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 8 ⁇ m.
  • the thickness hm of the conductive layer 442 and the conductive layer 444 may be 0.1 ⁇ m to 10 ⁇ m.
  • the thickness hm of the conductive layer 442 and the conductive layer 444 is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m.
  • FIG. 14 shows an example of a procedure for manufacturing a laminated structure 760 in which a portion of each of the positive electrode current collectors 222 of a plurality of positive electrodes 220 is integrated.
  • a plurality of positive electrodes 220 are prepared.
  • the ends of the positive electrode current collectors 222 of the plurality of positive electrodes 220 are stacked.
  • the leads 822 and sub-leads 824 are installed so as to sandwich the ends of the stacked positive electrode current collector 222.
  • FIG. 15 schematically shows an example of the end portions of the current collector 1102 and the current collector 1104 in the positive electrode connection portion 820 described in relation to FIG. 11, and a cross section near the end portions.
  • the negative electrode connection section 840 may also have the same configuration as the positive electrode connection section 820.
  • an integrated region, an adjacent region adjacent to the integrated region, and a peripheral region adjacent to the adjacent region are arranged near the ends of the current collectors 1102 and 1104. .
  • FIG. 15 for the purpose of simplifying the explanation, a gap is drawn between the current collector 1102 and the current collector 1104.
  • the current collector 1102 and the current collector 1104 are in contact with each other.
  • the through holes formed in the current collector 1102 and the current collector 1104 are not drawn for the purpose of simplifying the explanation.
  • the details of the positive electrode connection part 820 will be explained using an example in which two current collectors are stacked. be done. However, it should be noted that the number of stacked current collectors is not limited to two.
  • the ends of the current collectors 1102 and 1104 and parts of the vicinity of the ends are sandwiched between the leads 822 and the sub-leads 824, and welded.
  • the process is carried out. Therefore, the thermoplastic resin extruded from the welding area including the integrated area flows into the adjacent area. As a result, a portion of the adjacent region has a raised shape.
  • current collector 1102 and current collector 1104 have the same shape as before welding.
  • the average thickness Hp of the peripheral region is larger than the average thickness Hu of the integrated region and smaller than the maximum thickness Hmax of the adjacent region.
  • the average value Hu of the thickness of the integrated region may be the average value of the thickness of the integrated region near the center of the integrated region.
  • the average value of the thickness of the integrated region is determined by averaging the measured values at three locations.
  • the average thickness of the peripheral region is determined by averaging the measurements at three locations.
  • the thickness of each region may be measured at five locations, and the average value of the measured values at three locations excluding the maximum and minimum values may be derived as the average value of the thickness of each region.
  • the measurement interval is appropriately set so that the above number of measured values can be obtained.
  • the integrated region has a length of Lu.
  • a metal material 1522 and at least one of a thermoplastic resin material 1524 and a void 1526 are present in the integrated region.
  • a thermoplastic resin material 1524 is placed inside the metal material 1522.
  • a void 1526 is disposed within the metal material 1522.
  • One or more resin materials 1524 may be placed inside the metal material 1522, and one or more voids 1526 may be placed inside the metal material 1522.
  • a plurality of resin materials 1524 may be distributed and arranged, and a plurality of voids 1526 may be distributed and arranged.
  • thermoplastic resin material 1524 is derived from the thermoplastic resin contained in the support layer 420, for example.
  • the void 1526 originates from the through hole 620 formed in the conductive layer 442 and/or the conductive layer 444, for example.
  • the metal material 1522 includes, for example, the same type of conductive material as the conductive material (eg, metal) included in the conductive layer 442 and/or the conductive layer 444.
  • the conductive layer 442 and/or the conductive layer 444 may include the same type of conductive material (eg, metal) as a main component.
  • Metal material 1522 may include the same type of conductive material (eg, metal) included in conductive layer 642.
  • Metal material 1522 may include the same type of conductive material (eg, metal) as the main component of conductive layer 642.
  • Metal material 1522 may include the same type of conductive material (eg, metal) included in lead 822.
  • Metal material 1522 may include the same type of conductive material as the main component of lead 822 (eg, metal).
  • the adjacent region is, for example, a region whose distance from the end of the integrated region is 0 or more and less than La.
  • the welding area is arranged inside the through-hole zone of the current collector, and a part of the thermoplastic resin extruded from the welding area during the welding process is inside the through-holes arranged in the adjacent area. Flow into. Therefore, in the adjacent region, there may be a through hole, a through hole partially filled with thermoplastic resin, and/or a through hole completely filled with thermoplastic resin.
  • the peripheral region is, for example, a region whose distance from the end of the integrated region is greater than or equal to La and less than or equal to Lp.
  • the thickness of the end of the integrated region is 1.1 times the average thickness Hu of the integrated region. This is the position. If there are multiple positions having a thickness 1.1 times the average thickness Hu of the integrated area, the edge of the integrated area is the center of the integrated area among the multiple positions. may be the closest position.
  • the peripheral region is a region whose shape hardly changes before and after the welding process.
  • a portion of the thermoplastic resin that was present in the integrated region before welding moves to the adjacent region during welding. Therefore, (a) the resin content in the integrated region after welding is smaller than (b) the resin content in the peripheral region of current collector 1102 or current collector 1104 after welding.
  • the resin content in the integrated region after welding may be 0.1 to 0.7 times the resin content in (b) the peripheral region after welding.
  • the resin content in the peripheral region it is preferable to adopt the resin content at a position 5 mm or more away from the end of the integrated region.
  • the resin content in the peripheral region differs between the plurality of current collectors laminated in the positive electrode connection part 820, (a) the resin content in the integrated region after welding and (b) the laminated Among the plurality of current collectors, the resin content rate of the current collector having the largest resin content in the peripheral region may be compared.
  • La may be 1 mm, 5 mm, or 10 mm.
  • Lp is a larger value than La, and may be 1 mm, 5 mm, or 10 mm.
  • the maximum value Hmax of the thickness of the adjacent region is, for example, 1.5 times or less of the average value Hp of the thickness of the peripheral region.
  • the maximum thickness Hmax of the adjacent region is preferably 1.3 times or less the average thickness Hp of the peripheral region, and 1.1 times or less the average thickness Hp of the peripheral region. is more preferable.
  • the thickness at a distance of 100 ⁇ m from the end of the integrated region may be 1.5 times or less than the thickness at a distance of 1 mm from the end of the integrated region. .
  • the thickness at a position at a distance of 100 ⁇ m from the end of the integrated region may be 1.3 times or less than the thickness at a position at a distance of 1 mm from the end of the integrated region.
  • the thickness may be 1.1 times or less the thickness at a position 1 mm from the end.
  • a portion of the thermoplastic resin that was present in the integrated region before welding moves to the adjacent region during welding. Therefore, before and after the welding process, a portion of the adjacent region is raised compared to the surrounding region.
  • the height Hr of the raised portion on one side may be 25% or less, 15% or less, or 5% or less of Hp.
  • the ratio of Hr to Hp may be 0.1 to 20%, preferably 1 to 15%, and more preferably 2 to 10%.
  • the thermoplastic resin of the support layer 420 may not be sufficiently softened, and welding may also be insufficient.
  • the ratio of Hr to Hp exceeds 25%, local expansion of the current collector may cause weld peeling, breakage of the foil, partial cracking of the conductive layer, etc. Also, as a result, battery performance may deteriorate.
  • the through hole 620 is formed in the softened region and/or the welded region. Therefore, the ratio of Hr to Hp becomes smaller compared to the case where the through hole 620 is not formed in the softened region and/or the welded region. Thereby, weld peeling, foil breakage, partial cracking of the conductive layer, etc. can be suppressed. Moreover, as a result, the performance of the battery can be improved.
  • the relatively small ratio of Hr to Hp may suggest that the through hole 620 was formed in the softened region and/or the welded region.
  • (a) the resin content in the integrated region after welding is smaller than the resin content in the peripheral region after welding
  • (b) means that the through hole 620 is formed in the softened region and/or the welded region. This may suggest that
  • the current collector 1102 may be an example of a current collector included in the first electrode or the second electrode.
  • the current collector 1104 may be an example of a current collector included in the first electrode or the second electrode.
  • a plurality of stacked current collectors may be an example of a plurality of sheet materials.
  • the current collector with the highest resin content in the peripheral region may be an example of the third sheet material.
  • the resin content rate in the integrated region after welding may be an example of the first ratio.
  • the resin content rate in the peripheral area after welding may be an example of the second ratio.
  • Example 1 A current collector to be welded was prepared according to the following procedure. In addition, a laminate was produced by welding a portion of the five current collectors.
  • a polyimide film manufactured by DuPont-Toray, Kapton, thickness 5 ⁇ m
  • a nickel layer and a copper layer were formed on both sides of the polyimide film by electroless plating.
  • a nickel layer was formed between the polyimide film and the copper layer.
  • the thickness of the nickel layer was 0.1 ⁇ m.
  • the thickness of the copper layer was 1 ⁇ m.
  • a through-hole band in which a plurality of through-holes were formed was formed in a part of the polyimide film.
  • the cross-sectional shape of each through-hole was circular, and the average diameter of each through-hole was 50 ⁇ m. Further, the pitch of the through holes was 100 ⁇ m.
  • a copper layer was formed on the inner wall of the through hole by electroless plating.
  • the thickness of the copper layer was 1 ⁇ m.
  • the average diameter of the through-hole spaces after the copper layer was formed was 48 ⁇ m.
  • each current collector Five current collectors were produced by cutting the polyimide film on which the through-hole band and the copper layer in the through-hole were formed.
  • the above polyimide film was cut so that each current collector had an L-shaped planar shape having a rectangular current collecting portion measuring 37 mm x 32 mm and a square tab portion measuring 10 mm x 10 mm.
  • the above polyimide film was cut so that one side of the tab portion was in contact with one of the long sides of the current collecting portion.
  • the above polyimide film was cut so that the other side of the tab portion and one of the short sides of the current collecting portion were arranged on the same straight line.
  • the other side of the above-mentioned tab portion is a side that is in contact with a side that is in contact with one of the long sides of the current collecting portion.
  • the TL of the tab portion of each current collector was 10 mm, and the TW was 10 mm.
  • a through-hole band was formed in the tab portion of each current collector, and the HL and HW of each current collector were 7 mm and 10 mm, respectively.
  • the distance from the side of the tab portion that was in contact with the current collecting portion to the through hole band was 1 mm.
  • the distance from the side of the tab portion opposite to the side in contact with the current collecting portion to the through-hole band was 2 mm.
  • the welding device 1120 As the welding device 1120, a lithium ion battery laminated foil welding device manufactured by Nag System Co., Ltd. was used. After the welding head 1130 of the welding device 1120 was brought into contact with the welding area, power was supplied to the heating unit 1134 to heat the welding area. Thereafter, power was supplied to the welding section 1136 to weld the welding area.
  • the power supply conditions for heating and welding were a current of 1.0 to 2.5 kA, a voltage of 1.5 to 2.5 V, and an application time of 10 to 70 ms.
  • Example 2 The number of laminated current collector layers, the thickness of sub-leads, the diameter of the through-hole, the pitch of the through-hole, the thickness per side of the conductive layer formed on both sides of the support layer, the thickness of the copper layer formed on the inner surface of the through-hole.
  • Laminated bodies were produced in the same manner as in Example 1, but with different thicknesses. Details of the conditions for producing the laminate are shown in Table 1.
  • Example 1 Five current collectors were prepared in the same manner as in Example 1. Five current collectors were prepared using the same procedure as in Example 1, except that a high-power ultrasonic metal bonding machine manufactured by Seidensha Electronics Co., Ltd. was used and the heating process before the welding process was omitted. The body was welded.
  • the conditions for ultrasonic welding using a high-power ultrasonic metal welding machine are: power supply 600kW, welding frequency 19.15kHz, pressure value 623N, welding depth 0.1mm, welding time 0.5-1s, amplitude 80%, and soft start. 100 ms, power 100 W, speed 300 mm/s, no cooling, frequency offset 20 Hz. Further, the current value was about 5 to 19A.
  • Example 2 A laminate was produced in the same manner as in Example 1, except that no through holes were formed in the polyimide film. Details of the conditions for producing the laminate are shown in Table 1.
  • Example 3 A laminate was produced in the same manner as in Example 1, except that no sub-lead was used. Details of the conditions for producing the laminate are shown in Table 1.
  • Example 4 A laminate was produced in the same manner as in Example 1 by changing the thickness of the sub-leads, the diameter of the through-holes, and the pitch of the through-holes. Details of the conditions for producing the laminate are shown in Table 1.
  • Example 5 A laminate was produced in the same manner as in Example 1 by changing the thickness of the sub-leads, the diameter of the through-holes, and the pitch of the through-holes. Details of the conditions for producing the laminate are shown in Table 1.
  • the tensile test of the current collector was conducted in the same manner as the tensile test of the sample described in connection with the degree of resistance to breakage of the current collector 400. Those whose tensile strength was 450 MPa or more were rated ⁇ , those whose tensile strength was 360 MPa or more were rated ⁇ , and the others were rated ⁇ .
  • the welding confirmation test for the laminate was conducted by peeling off the leads from the welded laminate and then measuring the force required to peel off the current collectors one by one from the welded laminate using a spring balance. Specifically, the following procedure was used to confirm whether or not welding was possible with sufficient strength.
  • the leads placed on one side of the welded laminate were peeled off.
  • the other side of the laminate was adhered with an adhesive onto a substantially horizontally arranged flat surface.
  • the welded laminate was firmly fixed to the flat surface.
  • a spring is attached to the tip of one end of the uppermost current collector. I just installed it. By pulling the spring balance so that the pulling direction was approximately vertical, the current collector disposed at the top was peeled off from the remaining current collectors. The above procedure was repeated to peel off the current collectors one by one.
  • n is an integer from 2 to m, inclusive
  • the resistance value measurement test was conducted by measuring the resistance value of each of the plurality of current collectors included in the laminate with a lead attached to the laminate. First, a sample of the welded laminate was cut into a size of 10 mm x 40 mm so that the entire tab portion of each current collector was included. As shown in Table 1, in each Example and each Comparative Example, the laminate includes 5 or 15 current collectors. Therefore, the resistance value was measured for each current collector according to the following procedure. The resistance value of each current collector included in the sample was measured using a resistance measuring device. One of the pair of measurement electrodes was brought into contact with the lead, and one of the pair of measurement electrodes was brought into contact with the conductive layer (metal foil) of the current collector to be measured. A voltage was applied to the measurement electrode to measure the resistance value of each current collector.
  • FIG. 16 shows a SEM image of the integrated region of the laminate in Example 1.
  • FIG. 16 shows a SEM image of the laminate near the center of the weld area.
  • resin and voids exist in the integrated region of the laminate.
  • the resin content in the integrated region was about 10%.
  • the porosity in the integrated region was about 3 to 5%.
  • a step of preparing a current collector forming an active material layer containing an organic compound as an active material on at least one surface of the current collector; fixing the active material layer and the current collector; has
  • the above current collector is a conductive layer including a conductive material; a support layer that supports the conductive layer; Equipped with The electrical conductivity of the support layer is lower than the electrical conductivity of the electrically conductive layer, The density of the support layer is lower than the density of the conductive layer,
  • the step of fixing the active material layer and the current collector includes: applying pressure to the laminated active material layer and the current collector; including; The above pressure is (i) so that the rate of change in electrical resistance of the current collector before and after pressure is applied to the active material layer and the current collector is within 50%, or (ii) so that the absolute value of the difference in electrical resistance of the current collector before and after pressure is applied to the active material layer and the current collector is less than 1 [ ⁇ ]; set or adjusted; How to produce electrodes
  • (Item 2) a step of preparing a current collector; forming an active material layer containing an organic compound as an active material on at least one surface of the current collector; fixing the active material layer and the current collector; has
  • the above current collector is a conductive layer including a conductive material; a support layer that supports the conductive layer; Equipped with The electrical conductivity of the support layer is lower than the electrical conductivity of the electrically conductive layer, The density of the support layer is lower than the density of the conductive layer,
  • the step of fixing the active material layer and the current collector includes: applying pressure to the laminated active material layer and the current collector; including; The pressure is calculated from (i) the value of the second voltage measured by applying a current to the conductive layer of the current collector after the pressure is applied, and (ii) the value of the second voltage measured by applying the current to the conductive layer of the current collector after the pressure is applied.
  • a step of preparing a current collector includes: applying pressure to the laminated active material layer and the current collector; including; The above pressure is so that the porosity of the active material layer after pressure is applied is 25 to 40%, set or adjusted; How to produce electrodes.
  • the step of applying the pressure is as follows: applying pressure to the laminated active material layer and the current collector using a roll press so that the linear pressure is 1.0 kgf/cm to 200 kgf/cm; including, The method described in any one of items 1 to 3.
  • the support layer is a sheet-shaped resin material, The method described in any one of items 1 to 3.
  • the conductive layer includes layered or foil aluminum, The thickness of the layered or foil-like aluminum is 0.05 ⁇ m to 5 ⁇ m, The method described in any one of items 1 to 3.
  • (Item 7) preparing a positive electrode and a negative electrode; a step of preparing a separator; laminating the positive electrode, the separator, and the negative electrode in this order; has The step of preparing the positive electrode and negative electrode is as follows: producing at least one of the positive electrode and the negative electrode by the method described in any one of items 1 to 3; including, Method of producing electrode structures.
  • a current collector ; an active material layer disposed on at least one surface of the current collector and containing an organic compound as an active material;
  • An electrode comprising: The above current collector is a conductive layer including a conductive material; a support layer that supports the conductive layer; Equipped with The thickness of the conductive layer is 0.05 ⁇ m to 5 m, The electrical conductivity of the support layer is lower than the electrical conductivity of the electrically conductive layer, The density of the support layer is lower than the density of the conductive layer, The electrical resistance of the current collector is 0.01 m ⁇ to 1 ⁇ , electrode. (Item 9) The porosity of the active material layer is 25 to 40%, The electrode according to item 8.
  • the conductive layer is aluminum foil,
  • the support layer is a sheet-shaped resin material,
  • the current collector has a plurality of through holes formed therein, The equivalent circle diameter of each of the plurality of through holes is 15 ⁇ m to 150 ⁇ m,
  • the ratio of the total area of the plurality of through holes on the one surface of the current collector to the area of the outer shape of the one surface of the current collector is 30% or more.
  • the electrode according to item 11. (Item 13) further comprising an internal conductive layer disposed on an inner wall of at least a portion of the plurality of through holes and containing a conductive material; The electrode according to item 11.
  • the internal conductive layer has three or more layers having different main components, The laminate according to item 13.
  • Electrode structure. (Item 16)
  • the separator includes a polymer solid electrolyte, The electrode structure according to item 15.
  • (Item 18) At least one of a positive electrode connection part that electrically connects the one or more positive electrodes, and a negative electrode connection part that electrically connects the one or more negative electrodes, Furthermore,
  • the positive electrode connection part has a positive electrode support part that sandwiches and supports a part of the one or more positive electrodes,
  • the negative electrode connection part has a negative electrode support part that sandwiches and supports a part of the one or more negative electrodes,
  • Batteries described in item 17 (item 19) The battery described in item 17, a propulsive force generating device that generates propulsive force using electrical energy stored in the battery; A flying vehicle equipped with.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

積層された複数のシート材料を備える積層体が提供される。複数のシート材料のそれぞれは、樹脂材料を含む支持層と、支持層の両面に形成される第1金属層及び第2金属層とを有する。複数のシート材料の一部において、複数のシート材料に含まれる複数の第1金属層及び複数の第2金属層が一体化している。樹脂材料は、熱可塑性の樹脂材料であってよい。複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる樹脂の体積の割合は、5~50%であってよい。複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる空隙の体積の割合は、10%以上であってよい。

Description

積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法
 本発明は、積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法に関する。
 特許文献1には、化成膜を有する半絶縁体と、金属製導体とを溶接するための溶接方法が開示されている。特許文献2には、樹脂絶縁板を間として両面に第1金属材料及び第2金属材料が重ね合わされた電子部品の当該第1金属材料及び第2金属材料を溶接するための溶接方法が開示されている。特許文献3には、支持層の両面に導電層が形成された集電体であって、支持層及び導電層を貫通する貫通孔の内部の導電材料が充填された集電体が開示されている。
 (先行技術文献)
 (特許文献)
 (特許文献1) 特開2004-130331号公報
 (特許文献2) 特開2006-305591号公報
 (特許文献3) 特開2019-186204号公報
一般的開示
 本発明の第1の態様においては、積層体が提供される。上記の積層体は、例えば、積層された複数のシート材料を備える。上記の積層体において、複数のシート材料のそれぞれは、例えば、熱可塑性の樹脂材料を含む支持層を有する。複数のシート材料のそれぞれは、例えば、支持層の両面に形成される第1金属層及び第2金属層を有する。上記の積層体は、例えば、複数のシート材料の一部において、複数のシート材料に含まれる複数の第1金属層及び複数の第2金属層が一体化している。樹脂材料は、熱可塑性の樹脂材料であってよい。
 上記の何れかの積層体において、複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる樹脂の体積の割合は、5~50%であってよい。上記の何れかの積層体において、複数のシート材料は、複数のシート材料の一方の側の最も外側に配された第1シート材料を有してよい。上記の何れかの積層体は、第1シート材料を支持する導電性の第1支持部材を備えてよい。上記の何れかの積層体において、第1支持部材の主成分と、複数の第1金属層の主成分及び複数の第2金属層の主成分とが異なってよい。上記の何れかの積層体において、一体化領域において、複数の第1金属層の主成分と同一の種類の金属と、複数の第2金属層の主成分と同一の種類の金属の体積との合計に対する、樹脂材料の体積の割合は、5~50%であってよい。
 上記の何れかの積層体において、複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる空隙の体積の割合は、10%以下であってよい。上記の何れかの積層体において、複数のシート材料は、複数のシート材料の一方の側の最も外側に配された第1シート材料と、複数のシート材料の他方の側の最も外側に配された第2シート材料とを有してよい。上記の何れかの積層体は、第1シート材料を支持する導電性の第1支持部材と、第2シート材料を支持する導電性又は非導電性の第2支持部材とを備えてよい。
 上記の何れかの積層体において、複数のシート材料のそれぞれは、複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域の近傍に、各シート材料を貫通する複数の貫通孔が形成された領域を有してよい。上記の何れかの積層体は、複数の貫通孔の少なくとも一部の内壁に配される導電層を備えてよい。上記の何れかの積層体において、導電層は、主成分の異なる3以上の層を有してよい。上記の何れかの積層体において、複数の貫通孔の少なくとも一部の内部には、熱可塑性の樹脂材料が配されてよい。上記の何れかの積層体において、複数の貫通孔の円相当直径は、15μm~150μmであってよい。上記の何れかの積層体において、複数の貫通孔のうち隣接する2つの貫通孔の間隔は、30μm~250μmであってよい。
 上記の何れかの積層体によれば、例えば、複数のシート材料のそれぞれにおいて、(a)複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる熱可塑性の樹脂材料の体積の割合である第1割合が、(b)複数のシート材料に含まれる第3シート材料の一体化領域の端部から5mm以上離れた位置における、金属の体積に対する熱可塑性の樹脂材料の体積の割合である第2割合よりも小さい。上記の何れかの積層体において、第3シート材料は、複数のシート材料のうち、第2割合が最も大きなシート材料であってよい。上記の何れかの積層体において、第1割合の値は、第2割合の値の0.1~0.7倍であってよい。
 本発明の第2の態様においては、電極構造体が提供される。上記の電極構造体は、例えば、第1電極及び第2電極を備える。上記の電極構造体は、例えば、第3電極及び第4電極を備える。上記の電極構造体は、例えば、第1セパレータ、第2セパレータ及び第3セパレータを備える。上記の電極構造体において、例えば、第1電極、第1セパレータ、第3電極、第2セパレータ、第2電極、第3セパレータ、及び、第4電極が、この順に積層されている。上記の電極構造体において、第1電極及び第2電極のそれぞれは、例えば、集電体を有する。上記の電極構造体において、第1電極及び第2電極のそれぞれは、例えば、集電体の少なくとも一方の面に配された活物質層を有する。上記の電極構造体において、集電体は、例えば、熱可塑性の樹脂材料を含む支持層を含む。上記の電極構造体において、集電体は、例えば、支持層の両面に形成される第1金属層及び第2金属層を含む。上記の樹脂材料は、熱可塑性の樹脂材料を含んでよい。上記の電極構造体によれば、例えば、第1電極及び第2電極の端部の近傍において、第1電極の第1金属層及び第2金属層、並びに、第2電極の第1金属層及び第2金属層が一体化している。
 上記の何れかの電極構造体において、(a)複数の第1金属層及び複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、一体化領域に含まれる熱可塑性の樹脂材料の体積の割合である第1割合は、(b)第1電極又は第2電極に含まれる集電体の前記一体化領域の端部から5mm以上離れた位置における、金属の体積に対する熱可塑性の樹脂材料の体積の割合である第2割合よりも小さくてよい。第2割合は、第1電極の集電体及び第2電極の集電体のうち上記の割合が大きな集電体における、上記の割合であってよい。
 本発明の第3の態様においては、電池が提供される。上記の電池は、例えば、上記の第2の態様に係る何れかの電極構造体を備える。上記の電池は、例えば、電極構造体を収容する筐体を備える。
 本発明の第4の態様においては、飛行体が提供される。上記の飛行体は、例えば、上記の第2の態様に係る何れかの電池を備える。上記の飛行体は、例えば、電池に蓄積された電気エネルギーを利用して推進力を発生させる推進力発生装置を備える。
 本発明の第5の態様においては、積層体を生産する方法が提供される。上記の方法は、例えば、熱可塑性の樹脂材料を含む支持層、並びに、支持層の両面に形成される第1金属層及び第2金属層とを備える溶接対象を準備する準備段階を有する。上記の方法は、例えば、複数の溶接対象を積層する積層段階を有する。上記の方法は、例えば、複数の溶接対象の一部に配された軟化領域にエネルギーを印加して、軟化領域の樹脂材料を軟化させる軟化段階を有する。上記の方法は、例えば、軟化領域の少なくとも一部に配された溶接領域を押圧する押圧段階を有する。上記の方法は、例えば、押圧された溶接領域に電流及び/又は電圧を印加して、複数の溶接対象の第1金属層及び第2金属層を溶接する溶接段階を有する。上記の方法において、複数の溶接対象のそれぞれの第1金属層及び第2金属層は、例えば、電気的に接続されている。上記の方法において、複数の溶接対象のそれぞれの軟化領域の少なくとも一部には、例えば、支持層、第1金属層及び第2金属層を貫通する複数の貫通孔が形成されている。
 上記の何れかの方法において、複数の貫通孔の少なくとも一部の内壁に、第1金属層及び第2金属層を電気的に接続する導電部材が配されていてもよい。上記の何れかの方法において、導電部材は、複数の層を含んでよい。上記の何れかの方法において、複数の層のそれぞれは、互いに異なる材料により構成されてよい。上記の何れかの方法において、複数の溶接対象のそれぞれの溶接領域に、支持層、第1金属層及び第2金属層を貫通する複数の貫通孔が形成されていてもよい。上記の何れかの方法において、複数の溶接対象のそれぞれの軟化領域の溶接領域に隣接する領域に、第1金属層及び第2金属層を貫通する複数の貫通孔が形成されていてもよい。
 上記の何れかの方法において、押圧段階は、軟化した樹脂材料が少なくとも一部の貫通孔の内部に流入するように、積層された複数の溶接対象に圧力を印加する段階を含んでよい。上記の何れかの方法において、押圧段階は、複数の溶接対象のそれぞれの第1金属層及び第2金属層を、溶接可能な距離まで近接させる段階を含んでよい。上記の何れかの方法において、複数の貫通孔の少なくとも一部の内壁に、第1金属層及び第2金属層を電気的に接続する導電部材が配されてよい。上記の何れかの方法において、複数の溶接対象に圧力を印加する段階は、軟化した樹脂材料が、少なくとも一部の貫通孔の内壁に配された導電部材を破断して、少なくとも一部の貫通孔の内部に流入するように、積層された複数の溶接対象に圧力を印加する段階を含んでよい。
 上記の何れかの方法において、溶接段階は、押圧段階において押圧された溶接領域をさらに押圧しながら、溶接領域に電流及び/又は電圧を印加する段階を含んでよい。上記の何れかの方法は、導電性の第1支持部材と、導電性又は非導電性の第2支持部材とを用いて、複数の溶接対象の軟化領域又は溶接領域を挟み込む支持段階を有してよい。支持段階は、軟化段階又は押圧段階の前に実施されてよい。
 本発明の第6の態様においては、電極構造体を生産する方法が提供される。上記の方法は、例えば、第1電極及び第2電極を準備する段階を有する。上記の方法は、例えば、第3電極及び第4電極を準備する段階を有する。上記の方法は、例えば、第1セパレータ、第2セパレータ及び第3セパレータを準備する段階を有する。上記の方法は、例えば、第1電極、第1セパレータ、第3電極、第2セパレータ、第2電極、第3セパレータ、及び、第4電極を、この順に積層する段階を有する。上記の方法は、例えば、第1電極及び第2電極の一部を溶接する段階を有する。上記の方法において、第1電極及び第2電極のそれぞれは、例えば、集電体を備える。上記の方法において、第1電極及び第2電極のそれぞれは、例えば、集電体の少なくとも一方の面に配された活物質層を備える。上記の方法において、集電体は、例えば、熱可塑性の樹脂材料を含む支持層を有する。上記の方法において、集電体は、例えば、支持層の両面に形成される第1金属層及び第2金属層を有する。上記の方法において、第1金属層及び第2金属層は、例えば、電気的に接続されている。上記の方法において、集電体の一部に配された軟化領域の少なくとも一部には、例えば、支持層、第1金属層及び第2金属層を貫通する複数の貫通孔が形成されている。
 上記の方法において、第1電極及び第2電極の一部を溶接する段階は、例えば、第1電極の集電体、及び、第2電極の集電体を積層する段階を含む。第1電極及び第2電極の一部を溶接する段階は、例えば、集電体の軟化領域にエネルギーを印加して、軟化領域の樹脂材料を軟化させる軟化段階を含む。第1電極及び第2電極の一部を溶接する段階は、例えば、軟化領域の少なくとも一部に配された溶接領域を押圧する押圧段階を含む。第1電極及び第2電極の一部を溶接する段階は、例えば、押圧された溶接領域に電流及び/又は電圧を印加して、第1電極及び第2電極のそれぞれの集電体の第1金属層及び第2金属層を溶接する溶接段階を含む。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
飛行体100のシステム構成の一例を概略的に示す。 蓄電セル112の一例を概略的に示す。 蓄電セル112の他の例を概略的に示す。 集電体400の一例を概略的に示す。 集電体500の一例を概略的に示す。 集電体600の一例を概略的に示す。 積層構造体760の一例を概略的に示す。 積層構造体760の電極の電気的な接続関係の一例を概略的に示す。 蓄電セル112の製造方法の一例を概略的に示す。 正極220の製造方法の一例を概略的に示す。 溶接装置1120を用いた溶接手順の一例を示す。 集電体1102に配された複数の貫通孔620の一例を示す 集電体1102に配された複数の貫通孔620の一例を示す 積層構造体760を作製する手順の一例を示す。 正極接続部820の一体化領域の断面の一例を概略的に示す。 実施例1の一体化領域の断面のSEM画像の一例を示す。
 本明細書において例示される一実施形態(本実施形態と称される場合がある。)によれば、積層された複数の溶接対象の一部を溶接することで、積層体を作製する。上記の複数の溶接対象のそれぞれは、樹脂材料を含む支持層と、支持層の両面に形成される第1金属層及び第2金属層とを備える。上記の溶接対象は、シート状の材料(シート材料と称される場合がある。)であってよい。上記の溶接対象は、電池の電極に用いられる集電体であってよい。
 上記の複数の溶接対象のそれぞれの第1金属層及び第2金属層は、電気的に接続されている。これにより、第1金属層及び第2金属層が、例えば、抵抗溶接により溶接され得る。
 上記の樹脂材料の種類は特に限定されるものではないが、当該樹脂材料としては、任意の熱可塑性の樹脂材料が用いられ得る。支持層は、実質的に熱可塑性の樹脂材料により構成されていてもよく、支持層は、熱可塑性の樹脂材料であってもよい。
 支持層の主成分として熱可塑性の樹脂材料が用いられることにより、例えば、積層体が電池の電極として用いられた場合における当該電池の安全性が向上する。より具体的には、上記の電池が熱暴走した場合に、当該熱により当該熱可塑性の樹脂材料が溶断される。その結果、熱暴走が終息し得る。
 また、熱可塑性の樹脂材料は、当該樹脂材料の温度が上昇すると軟化し、流動性が向上する。これにより、複数の溶接対象の溶接工程において、加熱された溶接対象に圧力が印加されると、第1金属層及び第2金属層の間に配された樹脂材料が容易に移動し、第1金属層及び第2金属層が近接又は接触する。この状態において、第1金属層及び第2金属層にエネルギーが印加されることにより、第1金属層及び第2金属層が一体化する。
 第1金属層及び第2金属層を溶接する場合に、第1金属層及び第2金属層に圧力を印加して第1金属層及び第2金属層を近接又は接触させると、第1金属層及び第2金属層の間に配された支持層が溶接箇所の周辺に押し出される。その結果、溶接箇所の周辺の体積が膨張し、平滑性が損なわれる。積層される溶接対象の個数が増えるにつれて、上記の体積膨張の影響も大きくなる。
 これに対して、本実施形態の一例によれば、支持層が熱可塑性の樹脂材料を含み、上記の複数の溶接対象のそれぞれの一部には、支持層、第1金属層及び第2金属層を貫通する複数の貫通孔が形成される。また、上記の貫通孔が形成された領域の少なくとも一部が溶接される。これにより、溶接箇所の周辺の体積膨張が抑制される。
 本実施形態の一例によれば、複数の溶接対象が、下記の手順により溶接される。まず、複数の溶接対象の一部に配された軟化領域にエネルギーを印加する。上述されたとおり、本実施形態の溶接対象の支持層は、例えば、主に熱可塑性の樹脂材料を含む。溶接対象の軟化領域に適切なエネルギーが印加されると、支持層に含まれる熱可塑性の樹脂材料の温度が上昇し、当該樹脂材料が軟化する。
 次に、溶接対象の軟化領域の少なくとも一部に配された溶接領域を押圧する。これにより、第1金属層及び第2金属層の間に配された支持層の樹脂材料に圧力が印加される。溶接領域の内部に存在する樹脂材料は、軟化しており、適度な流動性を有する。そのため、支持層の樹脂材料に適切な大きさの圧力が印加されると、当該樹脂材料は溶接対象の内部を移動する。
 上述されたとおり、本実施形態の溶接対象の溶接領域には、支持層、第1金属層及び第2金属層を貫通する複数の貫通孔が形成されている。そのため、溶接領域に貫通孔が形成されていない場合と比較して、上述された体積膨張を引き起こす樹脂材料の量が少ない。加えて、本実施形態によれば、溶接領域の内部に存在する樹脂材料は、溶接領域の周辺に存在する貫通孔の内部に流れ込む。また、溶接領域の内部に存在する樹脂材料の一部は、溶接領域の内部に存在する第1金属層及び第2金属層に形成された貫通孔の内部に流れ込む。
 溶接対象のが溶接領域が押圧され、第1金属層及び第2金属層が近接又は接触すると、溶接対象の溶接領域に電流及び/又は電圧が印加される。これにより、複数の溶接対象のそれぞれの第1金属層及び第2金属層が溶接される。また、隣接する溶接対象の第1金属層及び第2金属層が溶接される。
 上述されたとおり、本実施形態によれば、溶接に伴い溶接領域から押し出される樹脂材料の量が少ない。また、溶接に伴い押し出された樹脂材料が貫通孔の内部に流れ込む。これにより、本実施形態によれば、溶接領域に貫通孔が形成されていない場合と比較して、上述された体積膨張が大きく抑制される。
 上述されたとおり、上記の溶接対象は、例えば、電池の電極に用いられる集電体であり、上記の積層体を生産する方法又は積層された複数の溶接対象を溶接する方法は、電池(特に、二次電池である。)の筐体の内部に配される電極構造体の作製に適用され得る。本実施形態によれば、集電体の一部に貫通孔が形成されているので、集電体の見かけ密度が小さくなる。また、樹脂材料の密度は、第1金属層及び第2金属層を構成する金属材料の密度よりも小さくなりうる。これにより、本実施形態によれば、従来の蓄電セルと比較して、蓄電セルの単位質量当たりのエネルギー密度[Wh/kg-蓄電セル]、及び/又は、活物質の単位質量あたりの容量[mAh/g-活物質]が向上し得る。
 例えば、従来、集電体として、8~20μm程度の厚さを有するアルミニウム箔、銅箔などが用いられている。そのため、従来の電池においては、蓄電セルの質量に対する正極及び負極の集電体の質量の割合は、20~25%であった。これに対して、本実施形態によれば、集電体の一部が、アルミニウム箔又は銅箔よりも密度の小さな物質(典型的には、空気、又は、樹脂材料である。)により形成される。その結果、単位質量当たりのエネルギー密度及び/又は活物質の単位質量あたりの容量に優れた蓄電セルが提供され得る。例えば、本実施形態によれば、単位質量あたりのエネルギー密度が350[Wh/kg-蓄電セル]以上の蓄電セルが提供され得る。また、本実施形態に係る蓄電セルを備えた電池は、単位質量あたりのエネルギー密度が大きいので、飛行体の用途に特に適している。
 以上のとおり、本実施形態によれば、例えば、充電式電池における重量当たりのエネルギー量を改善することができ、より軽量でより多くの電力を蓄えることができる充電式電池を実現できる。充電式電池は、例えば、災害現場へ持ち込まれ、被災者へのエネルギー供給などに活用され得る。そのため、本実施形態に係る積層体、電極構造体及び電池、並びに、これらの製造方法は、持続可能な開発目標(SDGs)の目標7「エネルギーをみんなにそしてクリーンに」又は目標13「気候変動に具体的な対策を」などの達成に貢献できる。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本明細書において、数値範囲が「A~B」と表記される場合、当該表記はA以上B以下を意味する。また、「置換又は非置換」とは、「任意の置換基で置換されている、又は、置換基で置換されていない」ことを意味する。上記の置換基の種類は、明細書中で言及されない限り、特に制限されない。また、上記の置換基の個数は、明細書中で言及されない限り、特に制限されない。
 (飛行体100の概要)
 図1は、飛行体100のシステム構成の一例を概略的に示す。本実施形態において、飛行体100は、蓄電池110と、電力制御回路120と、1又は複数の電動機130と、1又は複数のプロペラ140と、1又は複数のセンサ150と、制御装置160とを備える。本実施形態において、蓄電池110は、1又は複数の蓄電セル112を有する。
 本実施形態において、飛行体100は、蓄電池110に蓄積された電気エネルギーを利用して飛行する。飛行体100としては、飛行機、飛行船又は風船、気球、ヘリコプター、ドローンなどが例示される。
 本実施形態において、蓄電池110は、電力制御回路120を介して、外部の充電装置(図示されていない。)から電気エネルギーを受領し、当該電気エネルギーを1以上の蓄電セル112に蓄積する。また、蓄電池110は、電力制御回路120を介して、1以上の蓄電セル112に蓄積された電気エネルギーを電動機130に供給する。
 本実施形態において、蓄電セル112は、電気エネルギーを蓄積する(蓄電セル112の充電と称される場合がる)。また、蓄電セル112は、蓄積された電気エネルギーを放出する(蓄電セル112の放電と称される場合がある)。蓄電セル112は、二次電池であってよい。
 蓄電セル112は、全固体電池であってよい。蓄電セル112は、全固体二次電池であってよい。全固体二次電池は、上述された電解液又はゲル電解質を実質的に含まない二次電池であり、例えば、一対の電極と、当該一対の電極の間に配される固体電解質層とを備える。
 二次電池が電解液又はゲル電解質を実質的に含まないとは、二次電池が電解液又はゲル電解質を含まない場合だけでなく、二次電池が少量の電解液又はゲル電解質を含む場合をも意味する。二次電池の構成材料が電解液又はゲル電解質に含まれる溶媒に溶解する場合であっても、二次電池に含まれる溶媒の量が少なければ、二次電池の構成材料が溶媒に溶解することの電池性能に対する影響が無視し得るからである。
 一実施形態において、蓄電セル112は、(i)支持電解質塩及び溶媒を含む電解液、及び、(ii)支持電解質塩、有機高分子化合物及び有機溶媒を含むゲル電解質の少なくとも一方を含まない。他の実施形態において、活物質として用いられる有機化合物の質量[kg]に対する、電解液及びゲル電解質の質量[kg]の割合は、5%未満である。
 二次電池のキャリアイオンとしては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウムなどが例示される。二次電池としては、ナトリウムイオン二次電池、リチウムイオン二次電池、リチウム金属二次電池、リチウム空気二次電池、リチウム硫黄二次電池、マグネシウムイオン二次電池などが例示される。
 例えば、車両に搭載される二次電池用の活物質としては、単位体積あたりに蓄積できる電荷量の大きな材料が選択されることが多い。一方、本実施形態において、蓄電セル112は飛行体100に搭載される。そのため、蓄電セル112に用いられる活物質は、単位質量あたりに蓄積できる電荷量の大きな材料であることが好ましい。
 蓄電セル112の質量エネルギー密度は、350[Wh/kg‐蓄電セル]以上であることが好ましく、400Wh/kg‐蓄電セル]以上であることがより好ましく、500Wh/kg‐蓄電セル]以上であることがより好ましく、600Wh/kg‐蓄電セル]以上であることがより好ましく、700[Wh/g‐蓄電セル]以上であることがさらに好ましい。これにより、飛行体の電源の用途に特に適した蓄電セルが得られる。
 蓄電セル112の体積エネルギー密度は、300[Wh/m‐蓄電セル]以上1200[Wh/m‐蓄電セル]以下であってもよく、400[Wh/m‐蓄電セル]以上1000[Wh/m‐蓄電セル]以下であってもよい。蓄電セル112が飛行体100の電源の一部として飛行体100に搭載される場合、蓄電セル112の体積エネルギー密度は、600[Wh/m‐蓄電セル]以下であってもよく、800[Wh/m‐蓄電セル]以下であってもよい。
 蓄電セル112は、上記の数値範囲内の質量エネルギー密度と、上記の数値範囲内の体積エネルギー密度を有してもよい。これにより、車両の電源に用いることが比較的困難な蓄電セルを、飛行体の電源として利用することができる。蓄電セル112の詳細は後述される。
 本実施形態において、電力制御回路120は、蓄電池110の電力の入力及び出力を制御する。電力制御回路120は、制御装置160からの命令に基づいて、蓄電池110の電力の入力及び出力を制御してよい。電力制御回路120は、例えば、制御装置160からの制御信号に基づいて動作する複数のスイッチング素子を含む。
 本実施形態において、電動機130は、電力制御回路120を介して、蓄電池110から電気エネルギーを受領する。電動機130は、蓄電池110から受領した電気エネルギーを利用して、プロペラ140を回転させる。これにより、電動機130は、蓄電セル112に蓄積された電気エネルギーを利用して、飛行体100の推進力を発生させることができる。
 本実施形態において、センサ150は、飛行体100の位置及び姿勢に関する各種の物理量を測定する。飛行体100の位置及び姿勢に関する各種の物理量を測定するためのセンサとしては、GPS信号受信機、加速度センサ、角加速度センサ、ジャイロセンサなどが例示される。センサ150は、蓄電池110の状態に関する各種の物理量を測定してよい。蓄電池110の状態に関する各種の物理量を測定するためのセンサとしては、温度センサ、電流センサ、電圧センサなどが例示される。
 本実施形態において、制御装置160は、飛行体100を制御する。制御装置160は、電力制御回路120を制御することで、蓄電池110の電力の入出力を制御してよい。例えば、制御装置160は、蓄電池110の出力電流、出力電圧、入力電流、入力電圧などを制御する。これにより、制御装置160は、飛行体100の位置及び姿勢を制御することができる。制御装置160は、センサ150からの出力に基づいて電力制御回路120を制御することで、飛行体100の位置及び姿勢を制御してよい。
 蓄電池110は、二次電池の一例であってよい。蓄電セル112は、二次電池の一例であってよい。電動機130は、推進力発生装置の一例であってよい。二次電池は、電池の一例であってよい。
 (蓄電セル112の概要)
 図2は、蓄電セル112の一例を概略的に示す。本実施形態においては、蓄電セル112がコイン型の全固体二次電池である場合を例として、蓄電セル112の詳細が説明される。しかしながら、蓄電セル112はコイン型の全固体二次電池に限定されないことに留意されたい。
 (蓄電セル)
 本実施形態において、蓄電セル112は、正極ケース212と、負極ケース214と、封止剤216と、金属バネ218とを備える。また、蓄電セル112は、正極220と、セパレータ230と、負極240とを備える。本実施形態において、正極220は、正極集電体222と、正極活物質層224とを有する。本実施形態において、負極240は、負極集電体242と、負極活物質層244とを有する。
 本実施形態において、蓄電セル112は、正極220と、セパレータ230と、負極240とを有する構造体260を備える。図2に示されるとおり、正極220、セパレータ230及び負極240はこの順に積層されており、セパレータ230は、正極220及び負極240の間に配される。
 本実施形態においては、蓄電セル112が、電解液又はゲル電解質を実質的に含まない場合を例として、蓄電セル112の詳細が説明される。また、本実施形態においては、正極集電体222が(i)導電性材料を含む導電層及び(ii)導電層を支持する支持層を有する場合を例として、蓄電セル112の詳細が説明される。
 本実施形態において、正極ケース212及び負極ケース214を組み立てることで、正極ケース212及び負極ケース214の内部に空間が形成される。正極ケース212及び負極ケース214により形成された空間の内部には、金属バネ218、正極220、セパレータ230及び負極240が収容される。正極220、セパレータ230及び負極240は、金属バネ218の反発力により、正極ケース212及び負極ケース214の内部に固定される。
 正極ケース212及び負極ケース214は、例えば、円盤状の薄板形状を有する導電性の材料により構成される。本実施形態において、封止剤216は、正極ケース212及び負極ケース214の間に形成される隙間を封止する。封止剤216は、絶縁性材料を含む。封止剤216は、正極ケース212及び負極ケース214を絶縁する。
 (正極)
 本実施形態において、正極集電体222は、正極活物質層224を保持する。本実施形態において、正極集電体222は、0.01mΩ~1Ωの電気抵抗を有する。これにより、正極集電体222の製造中に正極集電体222の導電層(導電層の詳細は後述される。)に圧力が印加される前後において、特定の測定条件で当該導電層に電流を印加して測定される電圧の変動が、例えば、100mV未満に抑制される。正極集電体222は、0.01mΩ~333mΩの電気抵抗を有してもよく、0.01mΩ~100mΩの電気抵抗を有してもよい。
 正極集電体222の密度は、例えば、1.1~2.0g/cm程度に調整される。これにより、例えば、正極活物質層224に含まれる活物質の主成分が、アントラキノン(密度:1.3g/cm)、アントラセン(密度:1.25g/cm)及び/又はナフタレン(密度:1.14g/cm)である場合、正極集電体222及び正極活物質層224を有する正極220の質量が非常に軽くなり、蓄電セル112の質量エネルギー密度が大きくなる。
 本実施形態において、正極集電体222の少なくとも一部は、金属よりも密度の小さな材料により形成される。正極集電体222の少なくとも一部は、アルミニウムよりも密度の小さな材料により形成されてもよい。例えば、正極集電体222の少なくとも一部は、樹脂により形成される。これにより、蓄電セル112が軽量化され得る。
 特に、固体電解質を主成分とするセパレータ230が用いられる場合、固体電解質の種類によっては、セパレータ230の質量が比較的大きくなる。このような場合であっても、正極集電体222の少なくとも一部が樹脂により形成されることにより、蓄電セル112の全体の質量の増加が抑制される。その結果、蓄電セル112の質量当たりの容量、及び、蓄電セル112のエネルギー密度が向上する。
 例えば、正極集電体222は、導電性材料を含む導電層と、当該導電層を支持する支持層とを備える。導電層及び支持層の詳細は後述される。
 正極集電体222の形状としては、箔形状(板形状、フィルム形状、シート形状などと称される場合がある)、メッシュ形状、穴あき板形状などが例示される。正極集電体222の厚さは、特に限定されるものではないが、1~200μmであることが好ましい。正極集電体222の厚さは、6~20μmであってもよく、4~10μmであってもよい。
 本実施形態において、正極活物質層224は、正極集電体222の少なくとも一方の面に形成される。正極活物質層224の厚さは、正極集電体222の片面あたり1~100μmであってもよく、5~50μmであってもよい。
 正極活物質層224は、例えば、正極活物質と、結着材料(バインダーと称される場合がある。)とを含む。正極活物質層224は、導電性材料及びイオン伝導性材料の少なくとも一方をさらに含んでよい。正極活物質層224は、正極活物質と、イオン伝導性材料とを含んでもよい。これにより、正極活物質層224の内部に形成されるイオン伝導パス及び/又は電子伝導パスの切断が抑制され得る。
 一実施形態において、正極活物質層224は、正極集電体222の少なくとも一方の面の上に、正極活物質層224を構成する材料及び溶媒を含むスラリーを塗布し、当該スラリーを乾燥させることで形成される。上記の溶媒としては、各種の溶媒物質又はその混合物が例示される。上記の溶媒物質の種類は特に限定されるものではないが、上記の溶媒物質としては、N-メチルピロリドン(NMP)、水などが例示される。
 他の実施形態において、正極活物質層224は、正極活物質層224を構成する材料を混合してシート状に成型し、当該シート状の混合物を正極集電体222の少なくとも一方の面に圧着することで形成される。正極活物質として有機化合物が用いられる場合、上記の圧着工程において正極活物質層224に過度の圧力が印加されないように、正極集電体222及び正極活物質層224が圧着される。
 例えば、コーターを用いて、正極集電体222の上に正極活物質層224の前駆材料が塗工されるときに、正極活物質層224の前駆材料に印加される圧力が調整される。例えば、コーターによる塗工ギャップが180μm以上となるように設定される。上記の塗工ギャップは200μm以上に設定されてもよい。これにより、正極活物質層224中のイオン伝導パス及び/又は電子伝導パスの切断が抑制される。
 正極活物質として有機化合物が用いられる場合、正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合(活物質体積割合と称される場合がある。)は、60%以上であってよい。正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合は、60~80%であることが好ましく、65~75%であることがより好ましい。
 正極活物質層224が高圧でプレスされると、正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合が80%を超える。上記の割合が80%を超えると、イオン伝導パスが細くなったり、イオン伝導パスが切断されたりする。その結果、正極活物質層224の容量が小さくなる。上記の高圧は、50MPa以上を意味してもよく、100MPa以上を意味してもよく、500MPa以上を意味してもよい。
 一方、正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合が60%未満になると、キャリアイオンの伝導性は良好になるものの、正極活物質の密度が小さくなったり、正極活物質層224に含まれる正極活物質の質量が少なくなったりする。その結果、正極活物質層224の容量が小さくなる。
 正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合は、例えば、三次元SEM(Scanning Electron Microscopy)を用いた観察結果に基づいて決定される。例えば、一般財団法人材料科学技術振興財団により提唱されている「三次元SEMによる活物質体積の数値評価(C0316)」(https://www.mst.or.jp/casestudy/tabid/1318/pdid/87/Default.aspx)によれば、SEM観察を繰り返し、数十枚の連続画像を取得することで、一定体積中の各物質の存在比率、平均体積などの情報が取得され得る。
 正極活物質層224における活物質体積割合は、例えば、蓄電セル112の製造工程において正極活物質層224に加えられる圧力の大きさにより決定される。蓄電セル112の製造工程において正極活物質層224に印加される圧力が大きくなると、正極活物質層224における活物質体積割合は大きくなる。正極活物質層224に印加される圧力の大きさと、正極活物質層224における活物質体積割合の増加の度合いとの関係は、例えば、有機活物質の種類によって異なる。
 そこで、例えば、正極活物質として有機化合物が用いられる場合、作製された蓄電セル112に含まれる正極活物質層224における活物質体積割合が80%以下となるように、蓄電セル112の製造工程中に正極活物質層224に印加される圧力の最大値が調整又は管理される。これにより、正極及び又は電池の実容量が、正極及び又は電池の理論容量と比較して大きく減少するという現象の発生が抑制される。
 また、正極活物質層224のヤング率が小さいほど、正極活物質層224に高圧が印加された場合における活物質体積割合の増加の度合いが大きくなり得る。そこで、正極活物質が有機化合物である場合、正極活物質層224のヤング率が、セパレータ230のヤング率と同程度に調整されてよい。例えば、セパレータ230が主として高分子固体電解質により構成され、且つ、正極活物質が有機化合物である場合、正極活物質のヤング率に対する高分子固体電解質のヤング率の割合が、0.7~1.3となるように、正極活物質層224の材料及び/又は製造条件が決定される。
 上記のヤング率は、例えば、JIS K7171に規定される曲げ試験により測定される。上記の曲げ試験においては、歪み速度が約1%/分となるように設定される。
 なお、正極活物質層224のヤング率は、特に限定されない。例えば、蓄電セル112の製造工程において正極活物質層224に印加される圧力が比較的小さい場合、正極活物質層224の材料は、正極活物質層224のヤング率を考慮することなく、任意に決定され得る。
 また、本実施形態によれば、正極集電体222及び正極活物質層224の固着工程においても、正極集電体222及び正極活物質層224に印加される圧力が、上記のとおりに設定又は調整される。これにより、正極集電体222に含まれる導電層が薄い場合であっても、当該導電層の破断が抑制される。その結果、正極集電体222の電気抵抗の増加が抑制される。本実施形態によれば、正極活物質層224のイオン伝導パス及び/又は導電パスの減少に伴う容量の低下が抑制されるだけでなく、正極集電体222の電気抵抗の増大に伴う容量の低下も抑制され得る。
 上述されたとおり、本実施形態によれば、正極活物質層224の体積に対する、正極活物質として機能する有機化合物の体積の割合が、60~80%となるように、固着工程における圧力が設定又は調整される。この場合、正極活物質層224の体積に対する、空隙の体積の割合(空隙率、ポロシティなどと称される場合がある)は、25~40%となる。
 (正極活物質)
 正極活物質層224に含まれる正極活物質としては、蓄電セル112のキャリアイオンを吸蔵及び放出することができる各種の物質が用いられる。本実施形態においては、正極活物質は、主として、単一又は複数の種類の有機化合物により構成される。正極活物質は、無機化合物を含んでもよい。例えば、正極活物質層224に含まれる正極活物質のうち、80質量%以上が有機化合物により構成される。
 上述されたとおり、正極220は、正極集電体222と、正極活物質層224とを有する。正極活物質層224の質量は、正極220の全質量の80%以上であってよい。正極活物質の質量は、正極活物質層224の全質量の80%以上であってよい。正極活物質として用いられる有機化合物の質量は、正極活物質の全質量の80%以上であってよい。
 正極活物質として用いられる無機化合物(無機正極活物質と称される場合がある。)としては、金属酸化物、金属ケイ酸塩、金属リン酸塩、金属ホウ酸塩などが例示される。上記の金属としては、V、Mn、Ni、Coなどの遷移金属が例示される。
 正極活物質として用いられる有機化合物(有機正極活物質と称される場合がある。)としては、各種の酸化還元活性な化合物が有機正極活物質として用いられる。有機正極活物質としては、共役系高分子、ジスルフィド、キノン、局在型ラジカル、非局在型ラジカルなどが例示される。
 有機正極活物質は、芳香族炭化水素、芳香族複素環化合物、1以上のシアノ基により置換されたアルケン、ジスルフィド、及び、その誘導体、並びに、これらに由来する構造又は構造単位を含む化合物からなる群から選択される少なくとも1種の化合物であってよい。有機正極活物質が上記の構造単位を含む化合物である場合、その重合度は100以下であってよい。上記の誘導体は、1以上の水素が、ケトン基、OH基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ニトロ基などにより置換された化合物であってよい。
 有機正極活物質は、ベンゼン環に少なくとも2個の酸素原子が結合した構造を含む化合物、ベンゼン環に少なくとも2個の水酸基が結合した構造を含む化合物、ベンゼン環の少なくとも2個の炭素原子が窒素原子に置換された構造を含む化合物、炭素の二重結合に少なくとも2個のシアノ基が結合した構造を含む化合物、ジスルフィド結合を含む化合物、及び、その誘導体、並びに、これらに由来する構造又は構造単位を含む化合物からなる群から選択される少なくとも1種の化合物であってよい。有機正極活物質が上記の構造単位を含む化合物である場合、その重合度は100以下であってよい。上記の誘導体は、1以上の水素が、ケトン基、OH基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ニトロ基などにより置換された化合物であってよい。
 特定の化合物に由来する構造を含む化合物は、当該特定の化合物に含まれる少なくとも1つの水素が除かれてできる基又は構造を含む化合物であってよい。特定の化合物に由来する構造を含む化合物は、当該化合物の単量体であってもよく、二量体又は多量体であってもよい。例えば、芳香族炭化水素の誘導体の一例であるベンゾキノンに由来する構造を含む化合物としては、ナフトキノン、アントラキノン、フェナントレンキノンなどの多環芳香族炭化水素の誘導体が例示される。
 例えば、1,4-ナフトキノン、5,8-ジヒドロキシ-1,4-ナフトキノン、及び、9,10-アントラキノンは、ベンゾキノンに由来する構造を含む。5,8-ジヒドロキシ-1,4-ナフトキノン(ナフタザリンと称される場合がある。)は、1,4-ナフトキノンに由来する構造を含む化合物の一例であってよい。また、9,10-アントラキノンは、1,4-ナフトキノンに由来する構造を含む化合物の一例であってよい。
 同様に、特定の化合物に由来する構造単位を含む化合物は、当該特定の化合物、又は、当該特定の化合物に含まれる少なくとも1つの水素が除かれてできる基若しくは構造を、繰り返し単位として含むポリマー又はオリゴマーが例示される。上述されたとおり、特定の化合物に由来する構造単位を含む化合物は、重合度が100以下のオリゴマーであることが好ましい。これにより、質量エネルギー密度の大きな電池が作製され得る。
 有機正極活物質は、正極活物質層224における活物質体積割合が80%を超える場合に、正極活物質層224の容量が正極活物質層224の理論容量の50%未満となるような化合物であってよい。有機正極活物質は、正極活物質層224における活物質体積割合が80%を超える場合に、正極活物質層224の容量が正極活物質層224の理論容量の50%未満となり、且つ、正極活物質層224における活物質体積割合が65~75%の場合に、正極活物質層224の容量が正極活物質層224の理論容量の50%以上(より好ましくは、70%以上である。)となるような化合物であってよい。上述されたとおり、本実施形態によれば、このような有機化合物が電池の正極活物質として用いられた場合であっても、高容量の電池が作製され得る。
 このような有機化合物としては、分子量が比較的小さく、且つ、多電子授受能を有する有機分子が例示される。上記の有機分子が低分子化合物である場合、当該有機分子の分子量は、例えば、500以下である。上記の有機分子の分子量は、200以下であってもよい。上記の有機分子がポリマー又はオリゴマーである場合、当該有機分子の分子量は、例えば、5000以下である。上記の有機分子の分子量は、3000以下であってもよい。
 有機正極活物質は、0.1013MPa、25℃の条件下におけるエチレンカーボネート(EC)に対する溶解度が0.01~40[mmol/l‐EC]の有機化合物、及び、0.1013MPa、25℃の条件下におけるジエチルカーボネート(DEC)に対する溶解度が0.01~40[mmol/l‐DEC]の有機化合物からなる群から選択される少なくとも1種の化合物であってよい。上記の溶解度に関する数値範囲の上限は、10[mmol/l‐溶媒]であることが好ましい。上述されたとおり、本実施形態によれば、このような有機化合物が電池の正極活物質として用いられた場合であっても、比較的寿命の長い電池が作製され得る。
 このような有機化合物としては、分子量が比較的小さく、且つ、多電子授受能を有する有機分子が例示される。上記の有機分子が低分子化合物である場合、当該有機分子の分子量は、例えば、500以下である。上記の有機分子の分子量は、200以下であってもよい。上記の有機分子がポリマー又はオリゴマーである場合、当該有機分子の分子量は、例えば、5000以下である。上記の有機分子の分子量は、3000以下であってもよい。
 上述されたとおり、蓄電セル112の有機活物質が電解液又はゲル電解質の溶媒に溶解しやすいほど、蓄電セル112が電解液又はゲル電解質を実質的に含まないことの効果が大きくなる。エチレンカーボネート(EC)及びジエチルカーボネート(DEC)は、電解液又はゲル電解質の溶媒として広く用いられている非プロトン性有機溶媒である。そのため、正極活物質層224が上記のような溶解度を有する有機化合物を含む場合、蓄電セル112が電解液又はゲル電解質を実質的に含まないことの効果が大きくなり得る。
 有機正極活物質の具体例としては、下記の化学式のそれぞれにより表される化合物及びその誘導体、並びに、これらに由来する構造又は構造単位を含む化合物からなる群から選択される少なくとも1種の化合物が例示される。上述されたとおり、特定の化合物に由来する構造を含む化合物は、当該特定の化合物に含まれる少なくとも1つの水素が除かれてできる基又は構造を含む化合物であってよい。同様に、特定の化合物に由来する構造単位を含む化合物は、当該特定の化合物、又は、当該特定の化合物に含まれる少なくとも1つの水素が除かれてできる基若しくは構造を、繰り返し単位として含むポリマー又はオリゴマーが例示される。
Figure JPOXMLDOC01-appb-C000001
 上記の誘導体は、1以上の水素が、重水素、水酸基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ハロゲン、各種の有機基などにより置換された化合物であってよい。上記の群から選択される少なくとも1種の化合物の分子量は、例えば500以下である。上記の群から選択される少なくとも1種の化合物の分子量は、200以下であってもよい。上記の構造単位を含む化合物は、重合度が100以下のオリゴマーであることが好ましい。
 上記の化学式において、R及びR'は、それぞれ独立して、水素、重水素、水酸基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ニトロ基、アミノ基、スルホ基、又は、有機基を示す。上記の有機基としては、各種の1価の基が例示される。上記の有機基としては、アルキル基、アルケニル基、ケトン基、カルボキシル基、カルボニル基、アリール基、シアノ基、ヘテロ環を含む基などが例示される。R及びR'は、それぞれ独立して、水素、重水素、水酸基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ケトン基、シアノ基、カルボニル基、及び、ヘテロ環を含む基から選択される1つであってよい。
 上記の有機基は、下記の化学式のそれぞれにより表される化合物又はその誘導体に由来する構造を有する1価の基であってよい。
Figure JPOXMLDOC01-appb-C000002
 上記の化学式のそれぞれにより表される化合物に由来する構造を有する1価の基は、上記の化学式のそれぞれにおいて、芳香環に結合する水素のうちの1つが除かれてできる基であってよい。上記の化学式のそれぞれにより表される化合物の誘導体は、上記の化学式において、1以上の水素が、重水素、ハロゲン、水酸基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ニトロ基、アミノ基、スルホ基、有機基などにより置換された化合物であってよい。上記の誘導体に由来する構造を有する1価の基は、当該誘導体の芳香環に結合する水素のうちの1つが除かれてできる基であってよい。
 例えば、セパレータ230が、主に、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体から選択される少なくとも1種の化合物を含む固体電解質層により構成される場合、正極活物質層224は、有機正極活物質として、上記の化学式のそれぞれにより表される化合物及びその誘導体、並びに、これらに由来する構造又は構造単位を含む化合物からなる群から選択される少なくとも1種の化合物を含む。これにより、上述された有機正極活物質の容量の低下が抑制される。
 上記の化学式のそれぞれにより表される化合物及びその誘導体は、分子量が小さく、且つ、多電子授受能を有する。そのため、これらが蓄電セル112の活物質として用いられることで、蓄電セル112のエネルギー密度及び/又は容量が向上する。特に、本実施形態によれば、蓄電セル112が電解液又はゲル電解質を実質的に含まない。また、正極活物質層224が20%以上のポロシティを有する。これにより、蓄電セル112のエネルギー密度及び/又は容量がさらに向上する。
 上記の化学式のうち、p-ベンゾキノンに由来する構造を含む化合物としては、5,8-ジヒドロキシ-1,4-ナフトキノン(ナフタザリンと称される場合がある)、ナフタザリン二量体などが例示される。同様に、p-ベンゼンジオールに由来する構造を含む化合物としては、ナフタザリン、ナフタザリン二量体などが例示される。これらの化合物が正極活物質として用いられることで、エネルギー密度の大きな電池が作製され得る。
 p-ベンゾキノンに由来する構造を含む化合物は、2,4-ジヒドロキシ-p-ベンゾキノンであってもよい。また、上記の化学式のうち、o-ベンゾキノンに由来する構造を含む化合物としては、4-ニトロ-1,2-ベンゾキノンなどが例示される。これらの化合物が正極活物質として用いられることで、エネルギー密度の大きな電池が作製され得る。
 (正極活物質以外の材料)
 正極活物質層224に含まれる結着材料は、正極活物質層224を構成する材料を結着し、正極220の電極形状を保持する。結着材料としては、例えば、各種の高分子材料が用いられる。上記の高分子材料としては、カルボキシメチルセルロース、スチレン-ブタジエンゴム、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体などが例示される。
 結着材料は、有機正極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する結着材料の溶解度は、上記の溶媒に対する有機正極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 正極活物質層224に含まれる導電性材料は、正極活物質層224の導電率を向上させる。これにより、正極220の抵抗が小さくなる。導電性材料は、電子伝導性を有する材料であれば特に限定されない。導電性材料としては、炭素系材料、金属系材料、導電性高分子材料などが例示される。これらの導電性材料は、単独で用いられてもよく、2種以上の導電助剤が組み合せられてもよい。
 炭素系材料としては、黒鉛、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラックなどである)、コークス、非晶質炭素、炭素繊維、カーボンナノチューブ、グラフェンなどが例示される。金属系材料としては、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、チタン、ニッケルなどが例示される。導電性高分子材料としては、ポリフェニレン誘導体などが例示される。
 導電性材料は、有機正極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する導電性材料の溶解度は、上記の溶媒に対する有機正極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 正極活物質層224に含まれる伝導性材料は、正極活物質層224におけるキャリアイオンの伝導性を向上させる。伝導性材料としては、例えば、各種の固体電解質が用いられる。固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、高分子固体電解質などが例示される。伝導性材料として、高分子固体電解質が用いられてよい。高分子固体電解質としては、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体から選択される少なくとも1種の化合物が例示される。
 後述されるとおり、本実施形態において、セパレータ230は、高分子固体電解質を含む。伝導性材料として用いられる高分子固体電解質の種類は、セパレータ230に含まれる高分子固体電解質の種類と同一であってもよく、異なってもよい。
 伝導性材料は、有機正極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する伝導性材料の溶解度は、上記の溶媒に対する有機正極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 (セパレータ)
 本実施形態において、セパレータ230は、正極220及び負極240の間に配され、正極220及び負極240を隔離する。また、セパレータ230は、正極220及び負極240の間におけるキャリアイオンの伝導性を確保する。セパレータ230の厚さは、特に限定されるものではないが、10~50μmであることが好ましい。
 本実施形態において、セパレータ230は、層状(板状、フィルム状、シート状などと称される場合がある。)の固体電解質(固体電解質層と称される場合がある。)を備える。これにより、固体電解質層が、蓄電セル112のセパレータとして機能する。
 一実施形態において、セパレータ230として、固体電解質層が用いられる。固体電解質層は、単一の固体電解質層により構成されてもよく、複数の固体電解質層により構成されてもよい。他の実施形態において、セパレータ230として、1又は複数の固体電解質層と、固体電解質以外の材料を含む他の層との積層体が用いられる。他の層は、イオン伝導性を有してよい。他の層としては、複数の貫通孔が形成された樹脂と、当該貫通孔の内部に充填されたイオン伝導性材料とを備える複合材料が例示される。
 これにより、電解液又はゲル電解質を含まない二次電池が作製され得る。その結果、正極活物質層224及び/又は負極活物質層244が、主な活物質として有機活物質を含む場合であっても、有機活物質が電解液又はゲル電解質の溶媒に溶解することによる電池寿命の減少が抑制され得る。
 なお、セパレータ230は、上記の実施形態に限定されない。例えば、細孔の内部に固体電解質が配された多孔質材料が、セパレータ230として用いられる。適切な支持材料又は保持材料をゲル電解質又は電解液に浸漬し、当該支持材料又は当該保持材料の内部にゲル電解質又は電解液を浸潤させた後、当該支持材料又は当該保持材料の内部に配された電解質を固化させることで、セパレータ230が作製されてもよい。例えば、ゲル電解質又は電解液を含む支持材料又は保持材料を乾燥させることで、当該支持材料又は当該保持材料の内部に配された電解質が固化する。
 電解液又はゲル電解質の溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、及び、これらの混合物が例示される。特に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及び、エチルメチルカーボネート(EMC)は、電解液又はゲル電解質の溶媒として広く用いられている。
 (固体電解質層)
 本実施形態において、セパレータ230は、高分子固体電解質を主な構成材料として含む固体電解質層を備える。固体電解質層は、例えば、80質量%以上の真正高分子固体電解質を含む。セパレータ230が高分子固体電解質を主な構成材料として含む場合、高圧のプレス工程を経ることなく、セパレータ230と、正極220及び/又は負極240とが接合され得る。
 その結果、例えば、正極活物質層224及び/又は負極活物質層244が有機活物質を含む場合であっても、20%以上のポロシティを有する正極活物質層224及び/又は負極活物質層244が得られる。上述されたとおり、正極活物質層224及び/又は負極活物質層244のポロシティが20%以上である場合、理論容量に対する、正極活物質層224及び/又は負極活物質層244の容量の割合が大きな蓄電セル112が得られる。理論容量に対する、正極活物質層224及び/又は負極活物質層244の容量の割合は、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
 固体電解質層は、例えば、平滑な支持板の上に、固体電解質層を構成する材料及び溶媒を含むスラリーを塗布し、当該スラリーを乾燥させることで作製される。上記の溶媒としては、各種の溶媒又はその混合物が例示される。上記の溶媒の種類は特に限定されるものではないが、上記の溶媒としては、N-メチルピロリドン(NMP)、水、メタノールなどが例示される。
 固体電解質層を構成する高分子固体電解質としては、例えば、60℃の条件下で1×10-4 [S/cm]以上のイオン伝導度を有する高分子材料が用いられる。蓄電セル112の正極活物質及び/又は負極活物質として有機化合物が用いられる場合、当該有機化合物のヤング率に対する上記の高分子材料のヤング率の割合が0.7~1.3となるように、高分子材料の種類、組成及び分子量の少なくとも1つが決定されてよい。
 これにより、蓄電セル112の製造過程又は使用過程における、活物質のポロシティの低下がさらに抑制される。なお、固体電解質層が主として高分子固体電解質により構成される場合、蓄電セル112の使用過程における蓄電セル112の内部の圧力は、通常、0.1~0.2[MPa]程度である。一方、固体電解質層が主として無機系の固体電解質により構成される場合、蓄電セルの使用過程における蓄電セルの内部の圧力は、通常、500[MPa]程度まで加圧される。
 固体電解質層を構成する高分子固体電解質としては、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体から選択される少なくとも1種の化合物が例示される。固体電解質層は、実質的に単一高分子固体電解質により構成されてもよく、2以上の種類の高分子固体電解質を含んでよい。
 (負極)
 本実施形態において、負極集電体242は、負極活物質層244を保持する。負極集電体242の材料としては、銅、アルミニウム、ステンレススチール、ニッケル、チタン又はこれらの合金などが例示される。
 負極集電体242は、導電性樹脂を含んでもよい。負極集電体242は、導電性樹脂であってもよい。一実施形態において、導電性樹脂は、導電性高分子を含む。他の実施形態において、導電性樹脂は、導電性フィラーを含む高分子であってよい。
 負極集電体242は、正極集電体222と同様の構成を有してもよい。例えば、負極集電体242は、導電性材料を含む導電層と、当該導電層を支持する支持層とを備える。支持層は、金属よりも密度の小さな材料により形成される。支持層は、アルミニウムよりも密度の小さな材料により形成されてもよい。例えば、支持層は、樹脂により形成される。これにより、蓄電セル112が軽量化され得る。
 負極活物質としてキャリア金属が用いられる場合、当該キャリア金属が集電体の役割を兼ね得る。例えば、蓄電セル112のキャリア金属がリチウムであり、負極活物質がリチウム金属である場合、リチウム金属が集電体として用いられる。この場合、蓄電セル112は、負極集電体242を備えなくてもよい。
 負極集電体242の形状としては、箔形状(板形状、フィルム形状などと称される場合がある)、メッシュ形状、穴あき板形状などが例示される。負極集電体242の厚さは、特に限定されるものではないが、1~200μmであってよい。負極集電体242の厚さは、4~20μmであってもよく、6~10μmであってもよい。
 本実施形態において、負極活物質層244は、負極集電体242の少なくとも一方の面に形成される。負極活物質層244の厚さは、負極集電体242の片面あたり、0~200μmであってもよく、1~100μmであってもよい。
 負極活物質層244は、例えば、負極活物質と、結着材料(バインダーと称される場合がある。)とを含む。負極活物質層244は、導電性材料及びイオン伝導性材料の少なくとも一方をさらに含んでよい。負極活物質層244は、負極活物質と、イオン伝導性材料とを含んでもよい。これにより、負極活物質層244の内部に形成されるイオン伝導パス及び/又は電子伝導パスの切断が抑制され得る。
 一実施形態において、負極活物質層244は、負極集電体242の少なくとも一方の面の上に、負極活物質層244を構成する材料及び有機溶媒を含むスラリーを塗布し、当該スラリーを乾燥させることで作製される。上記の溶媒としては、各種の溶媒物質又はその混合物が例示される。上記の溶媒物質の種類は特に限定されるものではないが、上記の溶媒物質としては、N-メチルピロリドン(NMP)、水などが例示される。
 他の実施形態において、負極活物質層244は、負極活物質層244を構成する材料を混合してシート状に成型し、当該シート状の混合物を負極集電体242の少なくとも一方の面に圧着することで形成される。負極活物質として有機化合物が用いられる場合、上記の圧着工程において負極活物質層244に過度の圧力が印加されないように、負極集電体242及び負極活物質層244が圧着される。
 例えば、コーターを用いて、負極集電体242の上に負極活物質層244の前駆材料が塗工されるときに、負極活物質層244の前駆材料に印加される圧力が調整される。例えば、コーターによる塗工ギャップが180μm以上となるように設定される。上記の塗工ギャップは200μm以上に設定されてもよい。これにより、負極活物質層244中のイオン伝導パス及び/又は電子伝導パスの切断が抑制される。
 負極活物質として有機化合物が用いられる場合、負極活物質層244の体積に対する、負極活物質として機能する有機化合物の体積の割合(活物質体積割合と称される場合がある。)は、60%以上であってよい。負極活物質層244の体積に対する、負極活物質として機能する有機化合物の体積の割合は、60~80%であることが好ましく、65~75%であることがより好ましい。
 負極活物質層244が高圧でプレスされると、負極活物質層244の体積に対する、負極活物質として機能する有機化合物の体積の割合が80%を超える。上記の割合が80%を超えると、イオン伝導パスが細くなったり、イオン伝導パスが切断されたりする。その結果、負極活物質層244の容量が小さくなる。上記の高圧は、50MPa以上を意味してもよく、100MPa以上を意味してもよく、500MPa以上を意味してもよい。
 一方、負極活物質層244の体積に対する、負極活物質として機能する有機化合物の体積の割合が60%未満になると、キャリアイオンの伝導性は良好になるものの、負極活物質の密度が小さくなったり、負極活物質層244に含まれる正極活物質の質量が少なくなったりする。その結果、負極活物質層244の容量が小さくなる。
 負極活物質層244における活物質体積割合は、正極活物質層224における活物質体積割合と同様の手順により導出される。例えば、負極活物質層244における活物質体積割合は、三次元SEM(Scanning Electron Microscopy)を用いた観察結果に基づいて決定される。
 負極活物質層244における活物質体積割合は、例えば、蓄電セル112の製造工程において負極活物質層244に加えられる圧力の大きさにより決定される。蓄電セル112の製造工程において負極活物質層244に加えられる圧力が大きくなると、負極活物質層244における活物質体積割合は大きくなる。負極活物質層244に印加される圧力の大きさと、負極活物質層244における活物質体積割合の増加の度合いとの関係は、例えば、有機活物質の種類によって異なる。
 そこで、例えば、負極活物質として有機化合物が用いられる場合、作製された蓄電セル112に含まれる負極活物質層244における活物質体積割合が80%以下となるように、蓄電セル112の製造工程中に負極活物質層244に印加される圧力の最大値が調整又は管理される。これにより、負極及び又は電池の実容量が、負極及び又は電池の理論容量と比較して大きく減少するという現象の発生が抑制される。
 また、負極活物質層244のヤング率が小さいほど、負極活物質層244に高圧が印加された場合における活物質体積割合の増加の度合いが大きくなり得る。そこで、負極活物質が有機化合物である場合、負極活物質層244のヤング率が、セパレータ230のヤング率と同程度に調整されてよい。例えば、セパレータ230が主として高分子固体電解質により構成され、且つ、負極活物質が有機化合物である場合、負極活物質のヤング率に対する高分子固体電解質のヤング率の割合が、0.7~1.3となるように、負極活物質層244の材料及び/又は製造条件が決定される。
 上記のヤング率は、例えば、JIS K7171に規定される曲げ試験により測定される。上記の曲げ試験においては、歪み速度が約1%/分となるように設定される。
 なお、負極活物質層244のヤング率は、特に限定されない。例えば、蓄電セル112の製造工程において負極活物質層244に印加される圧力が比較的小さい場合、負極活物質層244の材料は、負極活物質層244のヤング率を考慮することなく、任意に決定され得る。
 後述されるとおり、負極活物質層として、リチウム金属などのキャリア金属の箔が用いられる場合がある。この場合、負極活物質層の材料は、負極活物質層のヤング率を考慮することなく決定され得る。
 (負極活物質)
 負極活物質層244に含まれる負極活物質としては、蓄電セル112のキャリアイオンを吸蔵及び放出することができる各種の物質が用いられる。負極活物質は、無機化合物であってもよく、有機化合物であってもよい。これらの負極活物質は単独で用いられてもよく、2種以上の負極活物質が組み合せられてもよい。例えば、蓄電セル112のキャリアイオンを放出可能な金属箔が、負極活物質層244として用いられる。これにより、蓄電セル112の質量エネルギー密度が向上する。
 負極集電体242が、正極集電体222と同様に、導電性材料を含む導電層と、当該導電層を支持する支持層とを備える場合、一実施形態によれば、負極活物質として、蓄電セル112のキャリアイオンを放出可能な金属(例えば、Li金属である。)が用いられる。この場合、負極活物質層244に含まれる負極活物質のほぼ全体が、当該金属により構成される。他の実施形態において、負極活物質は、主として、単一又は複数の種類の有機化合物により構成されてよい。負極活物質は、無機化合物を含んでもよい。例えば、負極活物質層244に含まれる負極活物質のうち、80質量%以上が有機化合物により構成される。
 負極活物質として用いられる無機化合物(無機負極活物質と称される場合がある。)としては、(i)キャリア金属及びこれを含む合金、(ii)スズ、シリコン及びこれらを含む合金、(iii)珪素酸化物、(iv)チタン酸化物などが例示される。例えば、蓄電セル112がリチウム二次電池である場合、負極活物質として、金属リチウム、リチウム・チタン酸化物(LTO)などが用いられる。キャリア金属を含まない材料が負極活物質として用いられる場合、当該材料にキャリア金属がプレドープされてよい。
 負極活物質として用いられる有機化合物(有機負極活物質と称される場合がある。)としては、芳香族複素環化合物及びその誘導体、並びに、これらに由来する構造又は構造単位を含む化合物からなる群から選択される少なくとも1種の化合物であってよい。有機負極活物質が上記の構造単位を含む化合物である場合、その重合度は100以下であってよい。上記の誘導体は、1以上の水素が、ケトン基、OH基、OM基(Mは、金属である。Mとしては、電池のキャリア金属、アルカリ金属、アルカリ土類金属などが例示される)、ニトロ基などにより置換された化合物であってよい。
 上述されたとおり、負極活物質層244は、箔状のキャリア金属を含んでよい。例えば、負極活物質層244は、リチウム金属箔を含む。これにより、蓄電セル112にキャリア金属が供給される。金属箔の厚さは、1~200μmであってよく、10~100μmであってよく、20~50μmであってよい。金属箔の厚さ及び/又は質量は、正極活物質層224における正極活物質の含有量に応じて決定されてよい。
 (負極活物質以外の材料)
 負極活物質層244に含まれる結着材料は、負極活物質層244を構成する材料を結着し、負極240の電極形状を保持する。結着材料としては、例えば、各種の高分子材料が用いられる。上記の高分子材料としては、カルボキシメチルセルロース、スチレン-ブタジエンゴム、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体などが例示される。
 結着材料は、有機負極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する結着材料の溶解度は、上記の溶媒に対する有機負極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 負極活物質層244に含まれる導電性材料は、負極活物質層244の導電率を向上させる。これにより、負極240の抵抗が小さくなる。導電性材料は、電子伝導性を有する材料であれば特に限定されない。導電性材料としては、炭素系材料、金属系材料、導電性高分子材料などが例示される。これらの導電性材料は、単独で用いられてもよく、2種以上の導電助剤が組み合せられてもよい。
 炭素系材料としては、黒鉛、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラックなどである)、コークス、非晶質炭素、炭素繊維、カーボンナノチューブ、グラフェンなどが例示される。金属系材料としては、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、チタン、ニッケルなどが例示される。導電性高分子材料としては、ポリフェニレン誘導体などが例示される。
 導電性材料は、有機負極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する結着材料の溶解度は、上記の溶媒に対する有機負極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 負極活物質層244に含まれる伝導性材料は、負極活物質層244におけるキャリアイオンの伝導性を向上させる。伝導性材料としては、例えば、各種の固体電解質が用いられる。固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、高分子固体電解質などが例示される。伝導性材料として、高分子固体電解質が用いられてよい。高分子固体電解質としては、ポリエチレンオキシド(PEO)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、及び、これらの誘導体から選択される少なくとも1種の化合物が例示される。
 上述されたとおり、本実施形態において、セパレータ230は、高分子固体電解質を含む。伝導性材料として用いられる高分子固体電解質の種類は、セパレータ230に含まれる高分子固体電解質の種類と同一であってもよく、異なってもよい。
 伝導性材料は、有機負極活物質の溶解度が予め定められた値よりも大きな溶媒に溶解する材料であってもよい。上記の溶媒に対する伝導性材料の溶解度は、上記の溶媒に対する有機負極活物質の溶解度と同等以上であってよい。これにより、例えば、蓄電セル112の構成材料を再利用する場合に、蓄電セル112の分解工程が容易になる。
 正極ケース212は、筐体の一例であってよい。負極ケース214は、筐体の一例であってよい。正極220は、電極の一例であってよい。正極集電体222は、集電体の一例であってよい。正極活物質層224は、活物質層の一例であってよい。負極240は、電極の一例であってよい。負極集電体242は、集電体の一例であってよい。負極活物質層244は、活物質層の一例であってよい。有機活物質は、有機化合物の一例であってよい。有機正極活物質は、有機化合物の一例であってよい。有機負極活物質は、有機化合物の一例であってよい。
 (別実施形態の一例)
 本実施形態においては、蓄電セル112がコイン型二次電池である場合を例として、蓄電セル112の詳細が説明された。しかしながら、蓄電セル112の種類、構造などは、本実施形態に限定されない。他の実施形態において、蓄電セル112は、正極、セパレータ及び負極が渦巻状に巻回した巻回電極体を備える円筒型電池であってもよい。さらに他の実施形態において、蓄電セル112は、正極及び負極がセパレータを挟んで交互に積層した積層電極体が、ラミネートで封止されたラミネート型電池であってもよい。さらに他の実施形態において、構造体260が積層された複数の正極220を備え、積層された正極220の一部において、積層された正極220のそれぞれの正極集電体222が一体化していてもよい。この場合、構造体260は、積層体又は電極構造体の一例であってよい。さらに他の実施形態において、構造体260が積層された複数の負極240を備え、積層された負極240の一部において、積層された負極240のそれぞれの負極集電体242が一体化していてもよい。この場合、構造体260は、積層体又は電極構造体の一例であってよい。
 本実施形態においては、負極240が、負極集電体242及び負極活物質層244を有する場合を例として、蓄電セル112の詳細が説明された。しかしながら、蓄電セル112の負極は、本実施形態に限定されない。他の実施形態において、箔状のキャリア金属が、負極集電体242及び負極活物質層244として機能する。例えば、蓄電セル112がリチウム金属二次電池である場合、金属リチウムが負極として使用され得る。
 本実施形態においては、正極集電体222が(i)導電性材料を含む導電層及び(ii)導電層を支持する支持層を有し、正極活物質層224が活物質として主として有機化合物を含み、負極240が任意の構成を有する場合を例として、蓄電セル112の詳細が説明された。しかしながら、蓄電セル112の負極は、本実施形態に限定されない。
 他の実施形態において、負極集電体242が(i)導電性材料を含む導電層及び(ii)導電層を支持する支持層を有し、負極活物質層244が活物質として主として有機化合物を含み、正極220が任意の構成を有してよい。さらに他の実施形態において、正極集電体222及び負極集電体242が(i)導電性材料を含む導電層及び(ii)導電層を支持する支持層を有し、正極活物質層224及び負極活物質層244が活物質として主として有機化合物を含んでもよい。
 図3は、蓄電セル112の他の例を概略的に示す。図3に関連して説明される蓄電セル112は、正極ケース212及び負極ケース214により形成された空間の内部に、金属バネ218、正極220、セパレータ230及び負極240に加えて、液体又はゲル状の電解質350が収容される点と、セパレータ230として固体電解質以外の材料が採用され得る点とで、図2に関連して説明された蓄電セル112と相違する。図3に関連して説明される蓄電セル112は、上記の相違点を除き、図2に関連して説明された蓄電セル112と同様の構成を有してよい。
 液体又はゲル状の電解質350としては、公知の電解液又はゲル電解質が使用され得る。セパレータ230としては、公知のセパレータが使用され得る。
 図4、図5及び図6を用いて、正極集電体222の詳細が説明される。上述されたとおり、負極集電体242も、正極集電体222と同様の構成を有してよい。図4は、正極集電体222の一例である集電体400の断面図を概略的に示す。図5は、正極集電体222の一例である集電体500の断面図の一例を概略的に示す。図6は、正極集電体222の一例である集電体600の断面図の一例を概略的に示す。
 図4に示されるとおり、集電体400は、支持層420と、導電層442と、導電層444とを備える。本実施形態において、支持層420は、第1平面422と、第2平面424と、側面426とを有する。本実施形態において、導電層442は、支持層420の第1平面422に配される。導電層444は、支持層420の第2平面424に配される。
 本実施形態において、支持層420は、導電層442及び導電層444を支持する。これにより、導電層442及び導電層444の破損が抑制される。支持層420の密度は、導電層442又は導電層444の密度より小さい。例えば、支持層420は、密度が導電層442又は導電層444の密度よりも小さな材料により構成される。支持層420は、シート状の樹脂材料であってよい。
 樹脂材料は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。支持層420は、単一の種類の樹脂材料により構成されてもよく、複数の種類の樹脂材料を含んでもよい。上述されたとおり、積層された複数の集電体400の一部が溶接される場合、樹脂材料は、主に熱可塑性樹脂を含む、又は、実質的に熱可塑性樹脂により構成されることが好ましい。これにより、例えば、溶接前に支持層が加熱されることで、支持層の流動性が向上する。また、支持層420が主に熱可塑性樹脂を含む場合又は支持層420が実質的に熱可塑性樹脂により構成される場合、支持層420が主に熱硬化性樹脂を含む場合又は支持層420が実質的に熱硬化性樹脂により構成される場合と比較して、複数の集電体400がしっかりと溶接される。これにより、溶接個所の強度に優れ、溶接個所の電気抵抗の小さな積層体が作製され得る。
 支持層420の導電率は特に限定されるものではないが、支持層420の導電率は、導電層442又は導電層444の導電率より小さくてもよい。支持層420の厚さは特に限定されるものではないが、支持層420の厚さは、導電層442又は導電層444の厚さより大きくてもよい。支持層420の厚さが大きくなると、支持層420の質量も大きくなる。そこで、支持層420がシート状の樹脂材料である場合、支持層420の厚さは、10μm以下であってもよく、7μm以下であることが好ましく、5μm以下であることがさらに好ましい。
 本実施形態において、導電層442及び導電層444は、導電性材料を含む。導電性材料は、抵抗率が8.0×10-8[Ω・m]以上の材料であってよい。導電性材料は、金属であってよい。上記の金属としては、アルミニウム、ステンレススチール、ニッケル又はこれらの合金などが例示される。ステンレススチールとしては、SUS-430、SUS-304などが例示される。導電性材料は、アルミニウムであってもよい。
 導電層442及び/又は導電層444の厚さ(図中、上下方向の長さとして示される。)は、0.05μm~7μmであってよい。導電層442及び/又は導電層444の厚さは、0.05μm~5μmであってもよく、0.1μm~3μmであってもよく、0.1μm~2μmであってもよく、0.5μm~1μmであってもよい。導電層442及び/又は導電層444の厚さは、0.05μm~4μmであってもよく、0.05μm~3μmであってもよく、0.05μm~2μmであってもよく、0.05μm~1μmであってもよい。導電層442及び/又は導電層444の厚さは、0.1μm~5μmであることが好ましく、0.1μm~1μmであることがさらに好ましい。市販のアルミニウム箔は、比較的薄いアルミニウム箔であっても6~10μmの厚さを有することから、集電体400が5μm以下の厚さを有する導電層442及び/又は導電層444を備えることにより、導電層442及び/又は導電層444として市販のアルミニウム箔が用いられた場合と比較して、蓄電セルの単位質量当たりのエネルギー密度[Wh/kg-蓄電セル]が向上する。
 導電層442及び/又は導電層444の少なくとも一方は、上記の厚さを有する層状又は箔状のアルミニウムであってよい。層状又は箔状のアルミニウムは、貼り付けにより支持層420の表面に配されてもよく、蒸着法、堆積法などにより支持層420の表面に形成されてもよい。
 導電層442及び/又は導電層444の厚さが7μm以下である場合、蓄電セル112の質量エネルギー密度が向上する。導電層442及び/又は導電層444の厚さが5μm以下である場合、蓄電セル112の質量エネルギー密度がさらに向上する。導電層442及び/又は導電層444の厚さが1μm以下である場合、蓄電セル112の質量エネルギー密度が大きく向上する。一般的に、導電層の厚さが0.1μm以下又は0.1μm未満になると、導電層442及び/又は導電層444の厚さが破損しやすくなる。しかしながら、本実施形態に係る導電層442及び導電層444は、支持層420により支持されている。そのため、導電層442及び/又は導電層444の厚さが0.05~0.1μm程度の場合であっても、導電層442及び/又は導電層444の破損が抑制され得る。
 支持層420が樹脂材料である場合、上述された固着工程における導電層442及び導電層444の破断に対する耐性は、上述された固着工程における集電体400の破断に対する耐性と同程度である。集電体400の破断に対する耐性の度合いは、例えば、集電体400から、支持層420、導電層442及び導電層444を含んだ状態で短冊状に切り出されたサンプルの引張試験により決定される。なお、固着工程中に導電層442及び導電層444の一部が破断した場合、導電層442及び導電層444の電気抵抗は、固着工程が実施される前と比較して増加し得る。
 サンプルの大きさ及び形状は、例えば、「試験機アカデミア」(株式会社キーエンス、[online]https://www.keyence.co.jp/ss/products/recorder/testing-machine/material/tension.jsp(2022年4月6日))に開示されているように、幅20mm×長さ100mmの短冊状の全体形状を有し、中央に長さ40mmのテーバー領域を有する。テーパー領域は、中央に幅10mm×長さ20mmの狭幅領域を有する。テーパー領域の一方の端部及び狭幅領域の一方の端部が連結され、テーパー領域の他方の端部及び狭幅領域の他方の端部が連結される。
 引張試験は、例えば、IPC-TM-650に従って、又は、IPC-TM-650に準拠して実施される。具体的には、サンプルの両端に固定治具を取り付け、当該サンプルを上下に引っ張ることで、サンプルの引張強度を測定する。引張速度は、例えば、2inch/min(50.8mm/min)に設定される。上記の条件における引張強度が、例えば、Ts(50)のように表記される場合がある。上記のカッコ内の数値は、引張速度を示す。
 上記のサンプルの引張強度Ts(50)は、360MPa以上であってよい。引張強度Ts(50)は、450MPa以上であってよい。
 図5に示されるとおり、集電体500は、支持層420に複数の貫通孔522が形成されている点で、図4に関連して説明された集電体400と相違する。集電体500は、上記の相違点を除き、集電体400と同様の構成を有してよい。
 集電体として単なる金属箔を用いた場合、当該集電体に貫通孔を形成しようとすると、当該金属箔が屈曲してしまい、貫通孔を形成することが困難になる場合がある。そのため、特に、金属箔の両面に活物質層が形成される場合には、集電体に貫通孔を形成することが難しい。これに対して、本実施形態によれば、導電層が樹脂シートなどの支持層により支持されているので、集電体に貫通孔を形成しても集電体が比較的屈曲しにくい。
 本実施形態によれば、複数の貫通孔522の一部に、導電性材料546が充填される。導電性材料546は、導電層442及び導電層444を電気的に接続する。
 複数の貫通孔522のそれぞれの円相当径(円相当直径と称される場合がある。)は、15μm~150μmであってよい。隣接する2つの貫通孔522の間隔は、30μm~250μmであってよい。
 貫通孔522の円相当径が15μmよりも小さくなると、貫通孔522の内壁面に、導電層442及び導電層444を電気的に接続するための導電層(内部導電層と称される場合がある。)を形成する場合に、当該内壁面に形成される導電層の厚さが小さくなり、当該導電層の電気抵抗が大きくなる。一方、貫通孔522の円相当径が150μmよりも大きくなると、貫通孔522の内壁面に、導電層442及び導電層444を電気的に接続するための導電層を形成する場合に、当該導電層の総量が少なくなり、導電層442及び導電層444の電気抵抗が大きくなる。また、貫通孔522の円相当径が150μmよりも大きくなると、集電体500の強度が不足する可能性がある。
 複数の貫通孔522のそれぞれの円相当径(円相当直径と称される場合がある。)は、15μm~150μmであってもよく、15μm~50μmであってもよく、15~35μmであってもよい。導電性材料546が充填されていない貫通孔522の円相当径は、15μm~50μmであってよく、15~35μmであってもよい。導電性材料546が充填されている貫通孔522の円相当径は、特に限定されない。これにより、導電層442及び導電層444の破断が抑制されつつ、集電体500の計量化が実現され得る。
 集電体500の一方の面の外形の面積に対する、集電体500の一方の面における複数の貫通孔522の面積の総和の割合は、30%以上であってよい。集電体500の一方の面の外形の面積に対する、集電体500の一方の面における、導電性材料546が充填されていない貫通孔522の面積の総和の割合は、30%以上であってもよい。これにより、導電層442及び導電層444の破断が抑制されつつ、集電体500の計量化が実現され得る。
 図6に示されるとおり、集電体600は、支持層420、導電層442及び導電層444を貫通する複数の貫通孔620が形成されている点で、図5に関連して説明された集電体500と相違する。集電体500は、上記の相違点を除き、集電体500と同様の構成を有してよい。
 本実施形態において、複数の貫通孔620の少なくとも一部の内壁部622の表面には、導電層642が形成されている。導電層642は、導電層442及び導電層444を電気的に接続してよい。
 本実施形態において、導電層642は、導電性材料を含む。導電性材料は、金属であってよい。上記の金属としては、アルミニウム、ステンレススチール、ニッケル又はこれらの合金などが例示される。ステンレススチールとしては、SUS-430、SUS-304などが例示される。導電性材料は、アルミニウムであってもよい。
 導電層642は、主成分の異なる複数の層を有してよい。導電層642は、主成分の異なる3以上の層を有してよい。導電層642は、例えば、補助層と、目的層と、保護層とを備える。例えば、貫通孔620の内壁部622の表面にニッケルを主成分とする第1層が形成され、第1層の上に銅を主成分とする第2層が形成され、第2層の上にクロメート被膜が形成される。第1層の厚さは0.1μm程度であってよく、第2層の厚さは1μm程度であってよく、クロメート被膜の厚さは0.3μm程度であってよい。
 集電体400は、シート材料の一例であってよい。集電体400は、第1シート材料、第2シート材料又は第3シート材料の一例であってよい。支持層420は、支持層の一例であってよい。導電層442は、第1金属層及び第2金属層の一方の一例であってよい。導電層444は、第1金属層及び第2金属層の他方の一例であってよい。
 集電体500は、シート材料の一例であってよい。集電体500は、第1シート材料、第2シート材料又は第3シート材料の一例であってよい。
 集電体600は、シート材料の一例であってよい。集電体600は、第1シート材料、第2シート材料又は第3シート材料の一例であってよい。内壁部622は、貫通孔の内壁の一例であってよい。導電層642は、貫通孔の内壁に配される導電層の一例であってよい。導電層642は、内部導電層の一例であってよい。 
 (別実施形態の一例)
 本実施形態においては、積層された複数の集電体の一部が溶接される場合には、支持層420が、主に熱可塑性樹脂を含む、又は、実質的に熱硬化性樹脂により構成される場合を例として、集電体400、集電体500及び集電体600の詳細が説明された。しかしながら、集電体400、集電体500及び集電体600は、本実施形態に限定されない。
 他の実施形態において、支持層420の両面に配された導電層442及び導電層444が電気的に接続してされている場合、支持層420は、主に熱硬化性樹脂を含んでもよく、実質的に熱硬化性樹脂により構成されてもよい。特に、集電体500によれば、複数の貫通孔522の少なくとも一部の内部に導電性材料546が充填されている。同様に、集電体600によれば、複数の貫通孔620の少なくとも一部の内部に導電層642が形成される。そのため、単一の集電体導電層442及び導電層444が近接又は接触しなくても、溶接により、積層された複数の集電体の一部が一体化し得る。また、溶接前に支持層が加熱されることで、支持層の流動性が低下する。これにより、支持層が溶接箇所の周辺に押し出されることが抑制され、その結果、溶接箇所の周辺の体積膨張が抑制され得る。
 図7及び図8を用いて、電極構造体の他の例である積層構造体760の詳細が説明される。図7は、積層構造体760の断面の一例を概略的に示す。図8は、積層構造体760の電極の電気的な接続関係の一例を概略的に示す。
 図2に関連して説明された実施形態においては、構造体260が、正極220、セパレータ230及び負極240はこの順に積層されている場合を例として、電池の一部構成する構造体(電極構造体と称される場合がある。)の詳細が説明された。しかしながら、電極構造体は、構造体260に限定されない。積層構造体760は、複数の正極220と、複数のセパレータ230と、複数の負極240とを備える点で、構造体260と相違する。積層構造体760は、上記の相違点を除き、構造体260と同様の構成を有してよい。
 図7に示されるとおり、本実施形態において、積層構造体760は、1以上の正極220と、1以上の負極240と、1以上の正極220のそれぞれ、及び、1以上の負極240のそれぞれの間に配される1以上のセパレータ230とを備える。図7に示されるとおり、積層構造体760は、複数の正極220と、複数の負極240と、複数の正極220のそれぞれ、及び、複数の負極240のそれぞれの間に配される複数のセパレータ230とを備える。
 積層構造体760の最も外側に配される正極220を除き、複数の正極220のそれぞれは、正極集電体222の両面に配された正極活物質層224を有する。積層構造体760の最も外側に配される正極220は、正極集電体222の一方の面に配された正極活物質層224を有する。
 積層構造体760の最も外側に配される負極240を除き、複数の負極240のそれぞれは、負極集電体242の両面に配された負極活物質層244を有する。積層構造体760の最も外側に配される負極240は、負極集電体242の一方の面に配された負極活物質層244を有する。
 本実施形態において、正極活物質層224は、正極集電体222の一部に配される。例えば、正極集電体222の少なくとも一方の端部の近傍において、正極集電体222の少なくとも一方の面には、正極活物質層224が形成されていない。複数の正極220は、例えば、正極活物質層224が形成されていない側の端部が略同一の方向を向くように、積層される。
 本実施形態において、負極活物質層244は、負極集電体242の一部に配される。例えば、負極集電体242の少なくとも一方の端部の近傍において、負極集電体242の少なくとも一方の面には、負極活物質層244が形成されていない。複数の負極240は、例えば、負極活物質層244が形成されていない側の端部が略同一の方向を向くように、積層される。
 図8に示されるとおり、積層構造体760は、複数の正極220のそれぞれを電気的に接続する正極接続部820を備える。本実施形態によれば、正極接続部820は、複数の正極220の一部を挟み込んで支持するリード822及びサブリード824を有する。これにより、複数の正極220の結合箇所の強度が向上する。
 本実施形態においては、リード822及びサブリード824は、複数の正極220のそれぞれの正極集電体222の端部及び/又は当該端部の近傍を挟み込んで支持する。上述されたとおり、複数の正極220のそれぞれの少なくとも一方の端部の近傍には、正極活物質層224が形成されていない。リード822及びサブリード824は、積層された複数の正極集電体222を挟み込むように配される。なお、他の実施形態において、サブリード824が用いられなくてもよい。
 正極接続部820において、複数の正極220が溶接により物理的に結合されてよい。例えば、積層された複数の正極集電体222が溶接により物理的に結合されることで、複数の正極集電体222の端部及び/又は端部の近傍が一体化する。これにより、複数の正極220が物理的に結合される。複数の正極集電体222の端部及び/又は端部の近傍において、複数の正極集電体222と、リード822及び/又はサブリード824とが一体化してもよい。溶接方法としては、超音波溶接、抵抗溶接、レーザー溶接などが例示される。
 本実施形態においては、複数の正極220のそれぞれの正極集電体222の端部の近傍に位置する領域(溶接領域と称される場合がある。)が溶接されることで、複数の正極220のそれぞれの正極集電体222が物理的に結合される場合を例として、積層構造体760の詳細が説明される。なお、他の実施形態において、溶接領域は、複数の正極220のそれぞれの正極集電体222の端部を含むように配されてもよい。
 例えば、図4、図5又は図6に関連して説明されたとおり、複数の正極集電体222のそれぞれは、支持層420と、支持層420の両面に形成される導電層442及び導電層444を有する。導電層442及び導電層444は、例えば、導電性材料546及び/又は導電層642により電気的に接続されている。複数の正極集電体222のそれぞれの間で、支持層420の組成又は材料は、同一であってもよく、異なってもよい。一の正極集電体222の支持層420の組成又は材料と、他の正極集電体222の支持層420の組成又は材料とが、同一であってもよく、異なってもよい。
 本実施形態において、溶接領域は、例えば、複数の正極集電体222の端部の近傍であって、リード822及びサブリード824に挟み込まれた領域の少なくとも一部に配される。サブリード824の平面寸法は、溶接領域の平面寸法より大きくてよい。リード822の平面寸法は、サブリード824の平面寸法より大きくてよい。
 リード822は、例えば、板状の導電性材料により構成される。リード822の厚さは、10~300μmであってもよく、30~200μmであることが好ましく、50~100μmであることがさらに好ましい。
 サブリード824の材質は特に限定されない。サブリード824は、例えば、アルミニウム、ニッケル、ステンレス及びこれらの合金により構成される。サブリード824は、ポリプロピレン、ポリイミドなどの樹脂材料により構成されてもよい。サブリード824の厚さは、10~300μmであってもよく、30~200μmであることが好ましく、50~100μmであることがさらに好ましい。
 同様に、積層構造体760は、複数の負極240のそれぞれを電気的に接続する負極接続部840を備える。本実施形態によれば、負極接続部840は、複数の正極220の一部を挟み込んで支持するリード842及びサブリード844を有する。これにより、複数の負極240の結合箇所の強度が向上する。
 本実施形態において、リード842及びサブリード844は、複数の負極240のそれぞれの負極集電体242の端部及び/又は当該端部の近傍を挟み込んで支持する。上述されたとおり、複数の負極240のそれぞれの少なくとも一方の端部の近傍には、負極活物質層244が形成されていない。リード842及びサブリード844は、積層された複数の負極集電体242を挟み込むように配される。なお、他の実施形態において、サブリード844が用いられなくてもよい。
 負極接続部840において、複数の負極240が溶接により物理的に結合されてよい。例えば、積層された複数の負極集電体242が溶接により物理的に結合されることで、複数の負極集電体242の端部及び/又は端部の近傍が一体化する。これにより、複数の負極240が物理的に結合される。複数の負極集電体242の端部及び/又は端部の近傍において、複数の負極集電体242と、リード842及び/又はサブリード844とが一体化してもよい。溶接方法としては、超音波溶接、抵抗溶接、レーザー溶接などが例示される。
 本実施形態によれば、複数の負極240のそれぞれの負極集電体242の端部の近傍に位置する領域(溶接領域と称される場合がある。)が溶接されることで、複数の負極240のそれぞれの負極集電体242が物理的に結合される場合を例として、積層構造体760の詳細が説明される。なお、他の実施形態において、溶接領域は、複数の負極240のそれぞれの負極集電体242の端部を含むように配されてもよい。
 例えば、図4、図5又は図6に関連して説明されたとおり、複数の負極集電体242のそれぞれは、支持層420と、支持層420の両面に形成される導電層442及び導電層444を有する。導電層442及び導電層444は、例えば、導電性材料546及び/又は導電層642により電気的に接続されている。複数の負極集電体242のそれぞれの間で、支持層420の組成又は材料は、同一であってもよく、異なってもよい。一の負極集電体242の支持層420の組成又は材料と、他の負極集電体242の支持層420の組成又は材料とが、同一であってもよく、異なってもよい。
 本実施形態において、溶接領域は、例えば、複数の負極集電体242の端部の近傍であって、リード842及びサブリード844に挟み込まれた領域の少なくとも一部に配される。サブリード844の平面寸法は、溶接領域の平面寸法より大きくてよい。リード842の平面寸法は、サブリード844の平面寸法より大きくてよい。
 リード842は、例えば、板状の導電性材料により構成される。リード842の厚さは、10~300μmであってもよく、30~200μmであることが好ましく、50~100μmであることがさらに好ましい。
 サブリード844の材質は特に限定されない。サブリード844は、例えば、アルミニウム、ニッケル、ステンレス及びこれらの合金により構成される。サブリード844は、ポリプロピレン、ポリイミドなどの樹脂材料により構成されてもよい。サブリード844の厚さは、10~300μmであってもよく、30~200μmであることが好ましく、50~100μmであることがさらに好ましい。
 リード822及びサブリード824は、正極支持部の一例であってよい。リード842及びサブリード844は、負極支持部の一例であってよい。
 リード822は、第1支持部材の一例であってよい。サブリード824は、第2支持部材の一例であってよい。リード842は、第1支持部材の一例であってよい。サブリード844は、第2支持部材の一例であってよい。積層構造体760は、電極構造体の一例であってよい。積層構造体760に含まれる複数の正極集電体222は、積層された複数のシート材料の一例であってよい。積層構造体760に含まれる複数の負極集電体242は、積層された複数のシート材料の一例であってよい。
 正極接続部820において積層された複数の正極集電体222のうち、リード822と接する正極集電体222は、第1シート材料又は第3シート材料の一例であってよい。正極接続部820において積層された複数の正極集電体222のうち、サブリード824と接する正極集電体222は、第2シート材料又は第3シート材料の一例であってよい。負極接続部840において積層された複数の負極集電体242のうち、リード842と接する負極集電体242は、第1シート材料又は第3シート材料の一例であってよい。負極接続部840において積層された複数の負極集電体242のうち、サブリード844と接する負極集電体242は、第2シート材料又は第3シート材料の一例であってよい。
 積層構造体760に含まれる複数の正極220が、第1電極及び第2電極の一例であり、積層構造体760に含まれる複数の負極240が、第3電極及び第4電極の一例であってよい。積層構造体760に含まれる複数の正極220が、第3電極及び第4電極の一例であり、積層構造体760に含まれる複数の負極240が、第1電極及び第2電極の一例であってもよい。積層構造体760に含まれる複数のセパレータ230は、第1セパレータ、第2セパレータ及び第3セパレータの一例であってよい。
 (別実施形態の一例)
 本実施形態においては、積層構造体760が正極接続部820及び負極接続部840を備える場合を例として、積層構造体760の詳細が説明された。しかしながら、積層構造体760は本実施形態に限定されない。他の実施形態において、積層構造体760は、正極接続部820及び負極接続部840の少なくとも一方を備えてよい。
 本実施形態においては、正極接続部820において、複数の正極集電体222がリード822及びサブリード824により支持される場合を例として、正極接続部820の詳細が説明された。しかしながら、正極接続部820は本実施形態に限定されない。他の実施形態において、正極接続部820はサブリード824を備えなくてもよい。この場合、複数の正極集電体222はリード822により支持される。
 本実施形態においては、負極接続部840において、複数の負極集電体242がリード842及びサブリード844により支持される場合を例として、負極接続部840の詳細が説明された。しかしながら、負極接続部840は本実施形態に限定されない。他の実施形態において、負極接続部840はサブリード844を備えなくてもよい。この場合、複数の負極集電体242はリード842により支持される。
 図9は、蓄電セル112の製造方法の一例を概略的に示す。本実施形態において、積層構造体760を備える蓄電セル112を生産する方法が説明される。本実施形態によれば、まず、ステップ912(ステップがSと省略される場合がある。)において、複数の正極220と、複数の負極240とが準備される。正極220又は負極240を準備する方法の詳細は後述される。また、S914において、複数のセパレータ230が準備される。次に、S920において、正極220、セパレータ230及び負極240がこの順に積層される。これにより、積層構造体760が作製される。
 次に、S932において、積層構造体760の複数の正極220が電気的に接続される。また、S934において、積層構造体760の複数の負極240が電気的に接続される。その後、S940において、積層構造体760が正極ケース212及び負極ケース214の内部に収容され、蓄電セル112が組み立てられる。
 S912において準備される複数の正極220が、第1電極及び第2電極の一例であり、S912において準備される複数の負極240が、第3電極及び第4電極の一例であってよい。S912において準備される複数の正極220が、第3電極及び第4電極の一例であり、S912において準備される複数の負極240が、第1電極及び第2電極の一例であってもよい。S914において準備される複数のセパレータ230は、第1セパレータ、第2セパレータ及び第3セパレータの一例であってよい。積層構造体760は、第1電極、第1セパレータ、3電極、第2セパレータ、第2電極、第3セパレータ及び第4負極がこの順に積層された電極構造体の一例であってよい。
 図10は、正極220の製造方法の一例を概略的に示す。本実施形態によれば、まず、S1010において、正極集電体222が準備される。次に、S1022において、正極活物質及び溶媒を含む正極スラリーが調整される。次に、S1024において、正極集電体222の表面に正極スラリーが塗布される。また、正極スラリーを乾燥させる。これにより、正極集電体222の表面に正極活物質層224が形成される。
 次に、S1030において、正極活物質層224及び正極集電体222を固着させる。より具体的には、積層された正極活物質層224及び正極集電体222に圧力を印加することで、正極活物質層224及び正極集電体222を固着させる。
 一実施形態において、固着工程における圧力は、(i)活物質層及び集電体に圧力が印加される前後における集電体の電気抵抗(比抵抗)の変化率が50%以内となるように、又は、(ii)活物質層及び集電体に圧力が印加される前後における集電体の電気抵抗(比抵抗)の差の絶対値が1[Ω]以下となるように、設定又は調整される。固着工程における圧力は、上記の差の絶対値が1[Ω]未満となるように設定又は調整されてもよい。固着工程における圧力は、上記の差の絶対値が500m[Ω]以下となるように設定又は調整されることが好ましく、上記の差の絶対値が100m[Ω]以下となるように設定又は調整されることがさらに好ましい。これにより、集電体の導電層の破断が抑制される。上記の集電体の電気抵抗は、例えば、低抵抗率計(日東精工アナリテック株式会社製、ロレスタ-GX MCP-T700)を用いた4端子4探針方式により測定され得る。
 他の実施形態において、固着工程における圧力は、(i)圧力が印加された後の集電体の導電層に電流を印加して測定された第2電圧の値から、(ii)圧力が印加される前の集電体の導電層に電流を印加して測定された第1電圧の値を引いた値が、100mV未満となるように設定又は調整される。これにより、集電体の導電層の破断が抑制される。上記の第1電圧及び第2電圧は、例えば、電圧値の測定機能及び出力機能を有する低抵抗率計により測定される。上記の第1電圧及び第2電圧は、例えば、低抵抗率計(日東精工アナリテック株式会社製、ロレスタ-GX MCP-T700)を用いた4端子4探針方式により測定され得る。
 他の実施形態において、固着工程における圧力は、圧力が印加された後の活物質層のポロシティが20~40%となるように、設定又は調整される、これにより、集電体の導電層の破断が抑制される。
 例えば、ロールプレスを用いて、正極活物質層224及び正極集電体222に圧力を印加する場合、正極活物質層224及び正極集電体222に印加される線圧が1.0kgf/cm~200kgf/cmとなるように、ロールプレスが制御される。上記の線圧が2kgf/cm~150kgf/cmとなるようにロールプレスが制御されてもよく、上記の線圧が10kgf/cm~100kgf/cmとなるようにロールプレスが制御されてもよい。これにより、上記の特性を有する正極集電体222が作製される。
 (複数の電極を物理的に結合する手順)
 図11、図12、図13及び図14を用いて、複数の電極を物理的に結合する手順の一例が説明される。例えば、図8及び図9に関連して説明されたとおり、積層構造体760の一実施形態によれば、正極接続部820において、複数の正極220が溶接により物理的に結合される。例えば、複数の正極220のそれぞれの正極集電体222が溶接により物理的に結合される。積層構造体760の一実施形態によれば、負極接続部840において、複数の負極240が溶接により物理的に結合される。例えば、複数の負極240のそれぞれの負極集電体242が溶接により物理的に結合される。
 本実施形態においては、複数の電極を物理的に結合する手順の理解を容易にすることを目的として、溶接装置1120を用いて、2個の正極220の一部を溶接により結合する場合を例として、複数の電極を物理的に結合する手順の詳細が説明される。なお、溶接により結合される電極の個数は、2個に限定されない。他の実施形態において、3個以上の電極が溶接により結合されてよい。
 また、本実施形態においては、複数の電極を物理的に結合する手順の理解を容易にすることを目的として、一方の正極220が、集電体1102と、集電体1102の少なくとも一方の面に配された正極活物質層224とを備え、他方の正極220が、集電体1104と、集電体1104の少なくとも一方の面に配された正極活物質層224とを備える場合を例として、複数の電極を物理的に結合する手順の詳細が説明される。本実施形態においては、集電体1102及び集電体1104の端部の近傍には、正極活物質層224が形成されていない場合を例として、複数の電極を物理的に結合する手順の詳細が説明される。
 図11は、溶接装置1120のシステム構成の一例を、集電体1102及び集電体1104の端部及び/又は当該の近傍の一例とともに示す。図11を用いて、溶接装置1120を用いた溶接手順の一例が説明される。より具体的には、図11を用いて、溶接装置1120が、集電体1102及び集電体1104の端部及び当該端部の近傍を押圧しながら、集電体1102及び集電体1104の端部の近傍の一部を溶接して、正極接続部820を作製する手順の一例が説明される。
 (溶接対象)
 本実施形態において、溶接処理の対象となる集電体1102及び集電体1104は、図6に関連して説明された集電体600と同様の構成を有する。図6に関連して説明されたとおり、集電体600は、支持層420と、支持層420の両面に形成される導電層442及び導電層444を有する。集電体600には、支持層420、導電層442及び導電層444を貫通する複数の貫通孔620が形成されている。貫通孔620の形状は特に限定されない。複数の貫通孔620の少なくとも一部の内壁部622の表面には、導電層442及び導電層444を電気的に接続する導電層642が形成されている。
 本実施形態において、集電体1102及び集電体1104の支持層420は、熱可塑性の樹脂材料(熱可塑性樹脂と称される場合がある。)を含む。本実施形態において、集電体1102及び集電体1104の支持層420は、実質的に熱可塑性の樹脂材料からなる樹脂層であってよい。集電体1102及び集電体1104の支持層420は、実質的に熱可塑性の樹脂材料からなる絶縁層であってよい。
 本実施形態によれば、集電体1102及び集電体1104の支持層420にエネルギーが印加されると、支持層420の温度が上昇し、支持層420に含まれる樹脂材料が軟化する。支持層420に含まれる樹脂材料が軟化した状態で集電体1102及び集電体1104に圧力が印加されると、樹脂材料が支持層420の内部を移動し得る。上記のエネルギーは、支持層420及び/又は支持層420に含まれる樹脂材料の温度を上昇させることができるものであればよく、その種類は特に限定されない。上記のエネルギーは、熱エネルギーであってよい。
 熱可塑性の樹脂材料は、25℃における熱収縮率が1%以下の樹脂材料であってよい。熱可塑性の樹脂材料としては、PE、PET、PAN、PP、PPSなどが例示される。
 集電体1102及び集電体1104の支持層420の厚さは、0.5μm~20μmであってよい。上記の支持層420の厚さは、1μm~10μmであることが好ましく、2μm~8μmであることがさらに好ましい。
 本実施形態において、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444は、金属材料を含む。集電体1102及び集電体1104のそれぞれの導電層442及び導電層444は、実質的に金属材料からなる金属層であってよい。実質的に金属材料からなる金属層は、例えば、不可避不純物を含む。導電層442及び導電層444に含まれる金属材料は、金属の単体であってもよく、合金であってもよい。
 集電体1102及び集電体1104の導電層442及び導電層444の厚さは、0.1μm~10μmであってよい。上記の導電層442及び導電層444の厚さは、0.1μm~5μmであることが好ましく、0.1μm~1μmであることがさらに好ましい。
 本実施形態において、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444は、電気的に接続されている。これより、溶接装置1120により、集電体1102の導電層442に印加された溶接電流が、集電体1102の導電層442、集電体1104の導電層442及び集電体1104の導電層444を流れる。
 導電層442及び導電層444は、任意の態様で電気的に接続されてよい。一実施形態において、支持層420の側面426に、導電層442及び導電層444を電気的に接続する導電部材が配される。他の実施形態において、支持層420の内部に、導電層442及び導電層444を電気的に接続する導電部材が配される。
 本実施形態において、集電体1102の一部には、集電体1102の支持層420、導電層442及び導電層444を貫通する複数の貫通孔620が形成されている。複数の貫通孔620の少なくとも一部は、上述された溶接領域(図11において、Rwとして表される。)に配される。これにより、支持層420の溶接領域に貫通孔又は溝若しくは凹部が形成されていない場合と比較して、支持層420の溶接領域に存在する樹脂材料の量が減少する。その結果、導電層442及び導電層444の溶接に伴って押しのけられる樹脂材料の量が減少し、溶接に伴う溶接領域の周辺の体積膨張が抑制される。
 本実施形態によれば、導電層442及び導電層444にも貫通孔620が形成されている。これにより、導電層442及び導電層444の溶接に伴って押しのけられた樹脂材料が、導電層442及び導電層444に配された貫通孔620の内部に流入することができる。その結果、溶接に伴う溶接領域の周辺の体積膨張が抑制される。
 複数の貫通孔620の少なくとも一部が、溶接領域に隣接する領域(隣接領域と称される場合がある。)に配されてもよい。上述されたとおり、導電層442及び導電層444の溶接に伴って、溶接前に溶接領域に存在した樹脂材料の一部が押しのけられて、隣接領域に向かって移動する。本実施形態によれば、隣接領域に貫通孔620が形成されているので、導電層442及び導電層444の溶接に伴って押しのけられた樹脂材料が、隣接領域に配された貫通孔620の内部に流入することができる。その結果、溶接に伴う溶接領域の周辺の体積膨張が抑制される。
 複数の貫通孔620の少なくとも一部は、溶接領域及び当該溶接領域に隣接する領域に配されてもよい。これにより、溶接に伴う溶接領域の周辺の体積膨張がさらに抑制される。貫通孔620の詳細は後述される。
 本実施形態において、複数の貫通孔620の少なくとも一部の内壁部622の表面には、導電層442及び導電層444を電気的に接続する導電層642が配される。導電層642を構成する材料は、導電性を有する物質であればよく、その種類及び構造は特に限定されない。導電層642は、金属材料を含んでよい。導電層642は、実質的に金属材料からなる金属層であってよい。実質的に金属材料からなる金属層は、例えば、不可避不純物を含む。
 導電層642に含まれる金属材料は、金属の単体であってもよく、合金であってもよい。導電層642に含まれる金属材料は、導電層442及び導電層444の少なくとも一方に含まれる金属材料と同一であってもよく、異なってもよい。上記の金属材料としては、銅、ニッケル、アルミニウム、ステンレス及びこれらの合金などが例示される。ステンレスとしては、SUS304、SUS430などが例示される。
 導電層642は、複数の層を含んでよい。複数の層のそれぞれは、互いに異なる材料により構成されてよい。例えば、導電層642は、導電層442及び導電層444を電気的に接続するための層(目的層と称される場合がある。)と、貫通孔620の内壁部622及び目的層の間に配される補助層とを備えてよい。補助層は、目的層の導電性を補助したり、貫通孔620及び目的層の密着性を向上させたりするために形成される。目的層の表面に、目的層を保護するための保護層が形成されてもよい。保護層としては、クロメート被膜、亜鉛皮膜などが例示される。
 導電層642は、補助層と、目的層と、保護層とを備えてもよい。例えば、貫通孔620の内壁部622の表面にニッケルを主成分とする第1層が形成され、第1層の上に銅を主成分とする第2層が形成され、第2層の上にクロメート被膜が形成される。第1層の厚さは0.1μm程度であってよく、第2層の厚さは1μm程度であってよく、クロメート被膜の厚さは0.3μm程度であってよい。
 上述されたとおり、集電体1102及び集電体1104の導電層642の厚さは、0μm~5μmであってよい。上記の導電層642の厚さは、0.1μm~3μmであることが好ましく、0.1μm~1μmであることがさらに好ましい。
 導電層642は、公知の手法により形成される。例えば、導電層642は、無電解メッキ、蒸着又はスパッタリングにより形成される。導電層642は、各種の二次成長法により形成されてもよく、貫通孔620の内壁部622の表面に金属箔が貼り付けられることで形成されてもよい。
 同様に、集電体1104の一部には、集電体1104の支持層420、導電層442及び導電層444を貫通する複数の貫通孔620が形成されている。複数の貫通孔620の少なくとも一部の内壁部622の表面には、導電層442及び導電層444を電気的に接続する導電層642が配される。集電体1104の導電層642は、集電体1102の導電層642に関連して説明された特徴と同様の特徴を有してよい。
 (支持部材)
 上述されたとおり、本実施形態に係る導電層442及び導電層444は金属薄膜により形成されので、強度が比較的小さい。そこで、本実施形態によれば、図8に関連して説明されたリード822及びサブリード824を用いて、集電体1102及び集電体1104を支持する。本実施形態において、リード822及びサブリード824は、積層された集電体1102及び集電体1104を挟み込むように配される。これにより、溶接時における金属薄膜の破断が抑制される。
 上述されたとおり、リード822としては、導電性の部材が用いられる。一方、サブリード824としては、導電性又は非導電性の部材が用いられる。
 (溶接装置)
 本実施形態において、溶接装置1120は、一対の溶接ヘッド1130と、加熱用電源1140と、溶接用電源1150と、コントローラ1160とを備える。本実施形態において、溶接装置1120は、一対の溶接ヘッド1130のそれぞれに電力を供給する一対の加熱用電源1140を備える。本実施形態において、溶接ヘッド1130は、位置調節部1132と、加熱部1134と、溶接部1136とを備える。
 本実施形態において、溶接ヘッド1130は、溶接対象にエネルギーを印加する。例えば、溶接ヘッド1130は、溶接対象を加熱する。溶接ヘッド1130は、溶接対象を押圧する。これにより、溶接ヘッド1130は、溶接対象に圧力を印加することができる。
 本実施形態において、位置調節部1132は、溶接ヘッド1130の位置を調節する。例えば、位置調節部1132は、溶接ヘッド1130を溶接対象の溶接領域に移動させる。例えば、位置調節部1132は、溶接ヘッド1130を溶接対象の溶接領域に押し付ける。これにより、溶接ヘッド1130が、溶接対象の溶接領域を押圧する。その結果、溶接対象の溶接領域に圧力が印加される。
 本実施形態において、加熱部1134は、溶接対象の軟化領域にエネルギーを印加する。これにより、溶接対象の軟化領域が加熱される。本実施形態において、溶接部1136は、溶接対象の溶接領域に電流及び/又は電圧を印加する。これにより、溶接対象の溶接領域が溶接される。
 本実施形態において、加熱用電源1140は、加熱部1134に電力を供給する。本実施形態において、溶接用電源1150は、位置調節部1132及び溶接部1136に電力を供給する。本実施形態において、コントローラ1160は、溶接装置1120の各部の動作を制御する。
 (溶接手順)
 次に、溶接装置1120を用いて集電体1102及び集電体1104の一部を溶接する手順の一例が説明される。本実施形態によれば、まず、溶接対象となる集電体1102及び集電体1104が準備される。一実施形態において、上述された構造を有する集電体1102及び集電体1104が作製される。他の実施形態において、上述された構造を有する集電体1102及び集電体1104が購入される。
 次に、集電体1102及び集電体1104を溶接して、集電体1102及び集電体1104の一部が結合された積層体が作製される。より具体的には、まず、集電体1102及び集電体1104が積層される。例えば、集電体1102の第2平面424の側と、集電体1104の第1平面422の側とが接するように、集電体1102及び集電体1104が積層される。
 一実施形態において、集電体1102の複数の貫通孔620と、集電体1104の複数の貫通孔620とが位置合わせされる。他の実施形態において、集電体1102の複数の貫通孔620と、集電体1104の複数の貫通孔620との位置合わせが実行されない。
 次に、リード822及びサブリード824を用いて、集電体1102及び集電体1104を補強する。例えば、リード822及びサブリード824が集電体1102及び集電体1104の溶接領域又はその周辺の領域を挟み込むように、集電体1102及び集電体1104と、リード822及びサブリード824とを、溶接装置1120の作業位置に設置する。
 次に、集電体1102及び集電体1104の溶接領域が決定される。また、積層された集電体1102及び集電体1104の溶接領域を含む領域であって、加熱処理の対象となる領域(例えば、図11において、Rsとして表される軟化領域である。)が決定される。
 例えば、溶接装置1120のユーザは、溶接装置1120を操作して、溶接領域及び軟化領域の位置を溶接装置1120に入力する。溶接装置1120のコントローラ1160は、位置調節部1132を制御して、溶接ヘッド1130を、集電体1102及び集電体1104の軟化領域の任意の位置(例えば、溶接領域である。)まで移動させる。溶接装置1120のコントローラ1160は、位置調節部1132を制御して、溶接ヘッド1130を、集電体1102及び集電体1104の軟化領域に接触させる。
 次に、積層された集電体1102及び集電体1104の溶接領域を含む領域(軟化領域と称される場合がある。)にエネルギーを印加して軟化領域の樹脂材料を軟化させる。例えば、溶接装置1120のコントローラ1160が、加熱用電源1140を制御して、加熱用電源1140から加熱部1134に電力を供給する。これにより、加熱部1134が溶接ヘッド1130の温度を上昇させる。その結果、溶接ヘッド1130から集電体1102及び集電体1104の軟化領域に熱エネルギーが印加される。
 上述されたとおり、本実施形態において、集電体1102及び集電体1104の支持層420は、熱可塑性樹脂を含む。集電体1102及び集電体1104の軟化領域に熱エネルギーが印加されると、軟化領域に配された熱可塑性樹脂が軟化する。
 次に、軟化領域の少なくとも一部に配された溶接領域が押圧される。例えば、溶接装置1120のコントローラ1160は、位置調節部1132を制御して、溶接ヘッド1130を溶接領域に押し付ける。
 例えば、コントローラ1160は、位置調節部1132を制御して、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444を、溶接可能な距離まで近接させる。このとき、導電層442及び導電層444の間に配された熱可塑性樹脂にも圧力が印加される。本実施形態によれば、熱可塑性樹脂は軟化しており適度な流動性を有する。そのため、熱可塑性樹脂に適切な圧力が印加されると、熱可塑性樹脂は、溶接領域の導電層442及び導電層444に形成された貫通孔620の内部、及び/又は、溶接領域の外側に向かって移動する。
 溶接装置1120のコントローラ1160は、位置調節部1132を制御して、軟化した樹脂材料が、軟化領域及び/又は溶接領域に配された少なくとも一部の貫通孔620の内部に流入するように、積層された集電体1102及び集電体1104に圧力を印加してよい。これにより、溶接に伴う溶接領域の周辺の体積膨張が大きく抑制される。
 コントローラ1160は、位置調節部1132を制御して、軟化した樹脂材料が、軟化領域及び/又は溶接領域に配された少なくとも一部の貫通孔620の内壁部622の表面に配された導電層642を破断して、貫通孔620の内部に流入するように、積層された集電体1102及び集電体1104に圧力を印加してよい。これにより、溶接に伴う溶接領域の周辺の体積膨張が大きく抑制される。
 次に、押圧された溶接領域に電流及び/又は電圧が印加される。これにより、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444が溶接される。また、例えば、集電体1102の導電層444と、集電体1104の導電層442とが溶接される。その結果、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444の一部が一体化した積層体が作製される。
 例えば、溶接装置1120のコントローラ1160は、溶接用電源1150を制御して、溶接用電源1150から溶接部1136に電力を供給する。これにより、押圧された溶接領域に電流及び/又は電圧が印加され、集電体1102及び集電体1104のそれぞれの導電層442及び導電層444に溶接電流が流れる。このとき、溶接装置1120のコントローラ1160は、位置調節部1132及び溶接用電源1150を制御して、溶接領域をさらに押圧しながら、溶接領域に電流及び/又は電圧を印加してもよい。
 本実施形態によれば、集電体1102及び集電体1104のそれぞれにおいて、導電層442及び導電層444が導電層642により電気的に接続されている。これにより、集電体1102の導電層442及び導電層444、並びに、集電体1104の導電層442及び導電層444に溶接電流が流れる。その結果、溶接領域の少なくとも一部において、4個の導電層が一体化する。
 これにより、集電体1102及び集電体1104の一方の端部の近傍において、集電体1102の導電層442及び導電層444と、集電体1104の導電層442及び導電層444とが一体化した積層体が作製される。導電層442及び導電層444の一部が一体化した領域(一体化領域と称される場合がある。)に、熱可塑性樹脂が存在していてもよい。一体化領域に空隙が存在していてもよい。これにより、熱可塑性樹脂及び空隙の少なくとも一方が、一体化した金属の内部に分散した積層体が作製される。
 一体化領域において、導電層442及び導電層444は、溶接前とは異なる形状を有してよい。同様に、支持層420に含まれる熱可塑性樹脂は、溶接前とは異なる形状を有してよい。一体化領域の一部に、溶接前とほぼ同様の形状が維持された導電層442、導電層444及び/又は支持層420が含まれてもよい。
 リード822が金属により構成されている場合、リード822と、集電体1102の導電層442及び導電層444と、集電体1104の導電層442及び導電層444とが一体化した積層体が作製されてもよい。この場合において、一体化領域は、リード822、導電層442及び導電層444の一部が一体化した領域を示す。同様に、リード822及びサブリード824が金属により構成されている場合、リード822と、集電体1102の導電層442及び導電層444と、集電体1104の導電層442及び導電層444と、サブリード824とが一体化した積層体が作製されてもよい。この場合において、一体化領域は、リード822、導電層442、導電層444及びサブリード824の一部が一体化した領域を示す。
 上述されたとおり、集電体1102の溶接領域には、複数の貫通孔620が形成されている。同様に、集電体1104の溶接領域には、複数の貫通孔620が形成されている。溶接時には、上記の複数の貫通孔620の一部が、導電層442、導電層444及び/又は導電層642に含まれる金属により充填される。これにより、複数の貫通孔620の一部が消滅したり、複数の貫通孔620の一部の空隙の容積が減少したりする。同様に、溶接時には、複数の貫通孔620の一部が、支持層420に含まれる熱可塑性樹脂により充填される。これにより、複数の貫通孔620の一部が消滅したり、複数の貫通孔620の一部の空隙の容積が減少したりする。その結果、溶接時の条件及び/又は状況によっては、一体化領域に熱可塑性樹脂及び/又は空隙が残存することがある。
 なお、一体化領域が熱可塑性樹脂を含まなくてもよく、一体化領域が空隙を含まなくてもよい。例えば、溶接時の押圧の程度、及び/又は、溶接電流の大きさを調整することで、一体化領域に熱可塑性樹脂及び/又は空隙を含まない積層体が作製され得る。
 (一体化領域における樹脂含有率)
 一体化領域に存在する金属の体積に対する、一体化領域に存在する樹脂の体積の割合(一体化領域における樹脂含有率と称される場合がある。)は、0%であってもよく、0.1~50%であってもよい。上記の樹脂含有率は、0.1~50%であることが好ましく、1~30%であることがより好ましく、5~20%であることがさらに好ましい。
 リード822及び/又はサブリード824が金属により構成されており、リード822及び/又はサブリード824と、集電体1102の導電層442及び導電層444と、集電体1104の導電層442及び導電層444とが一体化した積層体が作製された場合、一体化領域における樹脂含有率は、一体化領域に存在する導電層442及び導電層444に由来する金属の体積に対する、一体化領域に存在する樹脂の体積の割合として導出され得る。導電層442、導電層444及び/又は導電層642に由来する金属の体積は、導電層442、導電層444及び/又は導電層642を主に構成する成分(主成分と称される場合がある。)と同一の種類の金属の体積であってよい。
 例えば、リード822及び/又はサブリード824の主成分と、集電体1102の導電層442及び導電層444の主成分、並びに、集電体1104の導電層442及び導電層444の主成分とが異なる場合、リード822及び/又はサブリード824に由来する金属と、導電層442及び/又は導電層444に由来する金属との境界は、例えば、一体化領域を、一体化された複数の集電体の積層方向(図11における上下方向である。)に略平行な面で切断して得られる断面を、走査電子顕微鏡(SEM)を用いて観察することにより決定される。リード822及び/又はサブリード824の主成分と、集電体1102の導電層442、導電層444及び導電層642の主成分、並びに、集電体1104の導電層442、導電層444及び導電層642の主成分とが異なる場合も同様である。
 例えば、リード822及び/又はサブリード824の主成分と、導電層442及び/又導電層444の主成分とが同一又は類似する場合、一体化領域の断面の観察から上記の境界の位置を決定することが比較的難しいことも考えられる。この場合、上記の境界の位置は、リード822及び/又はサブリード824に由来する金属と、導電層442及び/又は導電層444に由来する金属とが一体化されていない隣接領域におけるリード822及び/又はサブリード824と、導電層442及び/又は導電層444との境界の位置に基づいて推定されてもよい。
 上記の樹脂含有率は、5~50%であってもよい。上記の樹脂含有率は、5~30%であることが好ましく、5~20%であることがより好ましい。本実施形態によれば、軟化領域及び/又は溶接領域に貫通孔620が形成されている。そのため、軟化領域及び/又は溶接領域に貫通孔620形成されていない場合と比較して、上記の樹脂含有率が大きくなり得る。また、比較的大きな樹脂含有率は、軟化領域及び/又は溶接領域に貫通孔620が形成されていたことを示唆し得る。
 樹脂含有量が50%を超えると、溶接が不十分であり、溶接部の耐久性が低下する。また、樹脂含有量が50%を超えると、リード822と、サブリード824との間の導電性が低下し、抵抗が増加する。一方、一体化領域に適切な量の樹脂が含まれる場合、当該樹脂は一体化領域の強度担保に寄与し得る。また、この場合、一体化領域に十分な量の導電性材料が含まれることから、一体化領域の導電性が担保される。
 一体化領域に存在する金属のうち、導電層442、導電層444及び/又は導電層642に由来する金属の体積に対する、一体化領域に存在する樹脂のうち、支持層420に由来する熱可塑性樹脂の体積の割合が、5~50%であってもよい。上記の割合は、10~50%であってもよく、10~40%であってもよく、5~30%であってもよい。上述されたとおり、例えば、リード822及び/又はサブリード824の主成分と、集電体1102の導電層442及び導電層444の主成分、並びに、集電体1104の導電層442及び導電層444の主成分とが異なる場合、走査電子顕微鏡による観察により、一体化領域に存在する金属のうち、導電層442、導電層444及び/又は導電層642に由来する金属の体積が、比較的容易に決定され得る。
 上述されたとおり、一体化領域における樹脂含有率は、例えば、一体化領域を、一体化された複数の集電体の積層方向(図11における上下方向である。)に略平行な面で切断して得られる断面を、走査電子顕微鏡(SEM)を用いて観察することにより決定される。上記の断面(つまり、SEMの観察面である。)は、一体化領域を、一体化された複数の集電体の積層方向(図11における上下方向である。)に略平行であり、且つ、当該複数の集電体の延伸方向(図11における左右方向である。)に略垂直な面(図11において紙面を略垂直に貫通する面である。)で切断して得られる断面であってよい。
 上記の断面は、一体化領域の略中心を通る面であってよい。一体化領域の略中心は、例えば、一体化された複数の集電体の一方の側(例えば、第1平面422)の表面を目視により観察することにより決定される。上記の表面は、最上面に配された集電体の第1平面422の側の表面であってもよく、最下面に配された集電体の第2平面424の側の表面であってもよい。
 積層体の断面をSEMを用いて観察するために積層体の一体化領域を切断する段階において、一体化領域の外縁の凡その位置は、例えば、溶接跡を目視で確認することにより決定される。なお、一体化領域の外縁の正確な位置は、例えば、積層体の一体化領域が切断された後、当該断面をSEMで観察することにより決定される。
 一実施形態によれば、一体化領域の外縁の近傍のSEM画像の倍率が適切に調整されることにより、複数の導電層が一体化している領域と、複数の導電層が単に接触しているだけで一体化していない領域とが、目視により区別され得る。これにより一体化領域の外縁(端部と称される場合がある。)の位置が決定され得る。
 他の実施形態によれば、一体化領域の外縁の位置は、複数の集電体の積層方向における積層体の長さ(厚さと称される場合がある。)に基づいて決定される。例えば、一体化領域の端部の近傍においてその厚さが、一体化領域の中心近傍の厚さ(例えば、後述されるHuである。)の平均値の1.1倍となった位置が、一体化領域の端部として決定される。一体化領域の中心近傍の厚さは、例えば、一体化領域の中心近傍のSEM画像における3箇所の位置における厚さを平均することで決定される。複数の集電体がリード及びサブリードを用いて溶接されている場合、一体化領域の厚さは、リード及びサブリードの距離であってよい。
 一体化領域における樹脂含有率は、例えば、SEM画像中の金属の面積に対する、SEM画像中の熱可塑性樹脂の面積の割合として導出される。一体化領域における樹脂含有率は、単一の断面において観察位置の異なる複数のSEMのそれぞれを観察して得られる樹脂含有率の平均値として導出されてよい。例えば、まず、5枚のSEM画像のそれぞれに対応する5つの樹脂含有率が導出される。次に、5つの樹脂含有率の測定値のうち最大及び最小の測定値を除いた3つの測定値が平均される。これにより、一体化領域における樹脂含有率が決定される。複数のSEM画像のうちの1つは、一体化領域の略中心の画像であってよい。
 (一体化領域における空隙率)
 一体化領域における金属の体積に対する空隙の体積の割合(一体化領域における空隙率と称される場合がある。)は、0~10%であってよい。一体化領域における空隙率は、0~10%であることが好ましく、0.1~8%であることがより好ましく、0.1~5%であることがさらに好ましい。一体化領域における空隙率は10%を超えてもよいが、空隙率が大きくなると一体化領域の強度及び導電性が低下する。そのため、一体化領域における空隙率は10%以下であることが好ましい。
 本実施形態によれば、軟化領域及び/又は溶接領域に貫通孔620が形成されている。そのため、軟化領域及び/又は溶接領域に貫通孔620形成されていない場合と比較して、上記の空隙率が大きくなり得る。また、比較的大きな空隙率は、軟化領域及び/又は溶接領域に貫通孔620が形成されていたことを示唆し得る。
 一体化領域における空隙率は、例えば、一体化領域を、一体化された複数の集電体の積層方向(図11における上下方向である。)に略平行な面で切断して得られる断面を、走査電子顕微鏡(SEM)を用いて観察することにより決定される。一体化領域における空隙率は、例えば、一体化領域における樹脂含有率と同様の手順により決定される。
 上述されたとおり、上記の積層体は、積層構造体760の一部を構成する。図8に関連して説明されたとおり、積層構造体760は、第1の正極220と、第1のセパレータ230と、第1の負極240と、第2のセパレータ230と、第2の正極220と、第3のセパレータ230と、第2の負極240とが、この順に積層された構造を備える。
 本実施形態において、集電体1102及び集電体1104の積層体を含む正極接続部820は、集電体1102を含む正極220及び集電体1104を含む正極220の端部の近傍に配される。したがって、本実施形態によれば、2個の正極220が、これらの端部の近傍で一体化される。これにより、複数の集電体のそれぞれにタブが設けられ、複数の集電体のタブが配線により電気的に接続される場合と比較して、蓄電セル112の質量が減少する。その結果、質量エネルギー密度の大きな蓄電セル112が得られる。
 本実施形態においては、上述された熱可塑性樹脂の軟化処理又は押圧処理が実施される前に、リード822及びサブリード824を用いて、集電体1102及び集電体1104が補強される。これにより、溶接時に印加される圧力による導電層442及び/又は導電層444の破断が抑制される。
 集電体1102は、溶接対象、シート材料、第1シート材料又は第3シート材料の一例であってよい。集電体1104は、溶接対象、シート材料、第2シート材料又は第3シート材料の一例であってよい。集電体1102及び集電体1104の導電層442は、第1金属層の一例であってよい。集電体1102及び集電体1104の導電層444は、第2金属層の一例であってよい。集電体1102及び集電体1104の導電層642は、貫通孔の内壁に配される導電部材の一例であってよい。
 図12及び図13を用いて、集電体1102に配された複数の貫通孔620の一例が説明される。図12は、集電体1102の上面図の一例である。図13は、集電体1102の断面図の一例である。なお、集電体1104に配された複数の貫通孔620は、集電体1102に配された複数の貫通孔620と同様の特徴を有してよい。
 図12に示されるとおり、本実施形態において、複数の貫通孔620のそれぞれの直径d(例えば、円相当直径である。)は、15μm~150μmであってよい。直径dが15μm未満の場合、熱可塑性樹脂が貫通孔620の内部に流入しにくくなる。また、貫通孔620の体積が小さいので、溶接された積層体の体積膨張率が大きくなる。一方、直径dが150μmを超えると、集電体1102の強度が小さくなり、溶接時に集電体1102が破断しやすくなる。
 本実施形態において、隣接する2つの貫通孔620の間隔(ピッチと称される場合がある。)Pは、30μm~250μmであってよい。ピッチPが30μm未満の場合、集電体1102の強度が小さくなり、溶接時に集電体1102が破断しやすくなる。また、集電体1102の抵抗が大きくなる。一方、ピッチPが250μmを超えると、熱可塑性樹脂の移動量が大きくなり、溶接された積層体の体積膨張率が大きくなる。
 集電体1102の延伸方向の長さTLは、複数の貫通孔620が形成された領域(貫通孔帯と称される場合がある。)の長さHLより大きくてもよく、TL及びHLが略同一であってもよい。集電体1102の延伸方向に略垂直な方向(幅方向と称される場合がある。)の長さTWは、貫通孔帯の幅方向の長さHWより大きくてもよく、TW及びHWが略同一であってもよい。
 本実施形態において、上述された溶接領域は、貫通孔帯の内部に配される。上述された軟化領域の少なくとも一部は、貫通孔帯の内部に配される。例えば、上述された隣接領域は、貫通孔帯の内部に配される。上述された軟化領域は、貫通孔帯の内部に配されてもよい。
 軟化領域Rsの大きさは、溶接領域Rwの大きさに基づいて決定されてよい。軟化領域Rsの大きさは、例えば、支持層420の第1平面422又は第2平面424における溶接領域Rwの面積Swに対する、支持層420の第1平面422又は第2平面424における軟化領域Rsの面積Ssの割合が下記の数式(1)により示されるように決定される。これにより、軟化領域Rsの内部に存在する貫通孔620の体積が、溶接領域Rwの内部に存在する熱可塑性樹脂の体積と同様又はそれ以上になる。
 (数式1)
 Ss/Sw≧(1-εw+εout)/εout
 数式1において、εwは、溶接領域Rwにおける複数の貫通孔の空隙率を表す。εoutは、軟化領域Rsの溶接領域Rw以外の領域における複数の貫通孔の空隙率を表す。εw及びεoutは、軟化処理の温度における空隙率である。
 溶接領域Rwにおける複数の貫通孔の空隙率εwは、軟化処理の温度において10%以上であってよい。軟化処理の温度における空隙率εwは、20%以上であることが好ましく、30%以上であることがさらに好ましい。
 図13に示されるとおり、貫通孔620の内部には導電層642が形成される。そのため、貫通孔620の内部に形成された空間の直径dvは、貫通孔620の直径dよりも小さい。
 上述されたとおり、導電層642の厚さHdは、0μm~5μmであってよい。上記の導電層642の厚さHdは、0.1μm~3μmであることが好ましく、0.1μm~1μmであることがさらに好ましい。
 上述されたとおり、支持層420の厚さhrは、0.5μm~20μmであってよい。上記の支持層420の厚さhrは、1μm~10μmであることが好ましく、2μm~8μmであることがさらに好ましい。
 上述されたとおり、導電層442及び導電層444の厚さhmは、0.1μm~10μmであってよい。上記の導電層442及び導電層444の厚さhmは、0.1μm~5μmであることが好ましく、0.1μm~1μmであることがさらに好ましい。
 図14は、複数の正極220のそれぞれの正極集電体222の一部が一体化した積層構造体760を作製する手順の一例を示す。図11に関連して説明されたように、本実施形態によれば、まず、S1410において、複数の正極220を準備する。次に、S1420において、複数の正極220の正極集電体222の端部を積層する。S1430において、リード822及びサブリード824が積層された正極集電体222の端部を挟み込むように、リード822及びサブリード824を設置する。
 S1440において、積層された正極集電体222の軟化領域にエネルギーを印加して、正極集電体222の支持層420に含まれる熱可塑性樹脂を軟化させる。S1450において、積層された正極集電体222の溶接領域を押圧して、軟化した熱可塑性樹脂を正極集電体222の貫通孔620の内部に移動させる。S1450において、積層された正極集電体222の溶接領域に溶接電流を印加して、正極集電体222の導電層442及び導電層444を溶接する。
 図15は、図11に関連して説明された正極接続部820における集電体1102及び集電体1104の端部及び当該端部の近傍の断面の一例を概略的に示す。負極接続部840も、正極接続部820と同様の構成を有してよい。図15に示されるとおり、集電体1102及び集電体1104の端部の近傍には、一体化領域と、一体化領域に隣接する隣接領域と、隣接領域に隣接する周辺領域が配される。
 図15においては、説明を簡単にすることを目的として、集電体1102及び集電体1104の間に隙間が存在するように描画されている。しかしながら、現実には、集電体1102及び集電体1104が接していることに留意されたい。また、図15においては、説明を簡単にすることを目的として、集電体1102及び集電体1104に形成された貫通孔が描画されていない。さらに、図15に関連して説明される実施形態においては、説明を簡単にすることを目的として、2枚の集電体が積層されている場合を例として、正極接続部820の詳細が説明される。しかしながら、積層される集電体の枚数は2枚に限定されないことに留意されたい。
 図11に関連して説明された実施形態によれば、集電体1102及び集電体1104の端部及び当該端部の近傍の一部がリード822及びサブリード824に挟まれた状態で、溶接工程が実施される。そのため、一体化領域を含む溶接領域から押し出された熱可塑性樹脂が、隣接領域に流れ込む。その結果、隣接領域の一部が盛り上がった形状を有する。周辺領域において、集電体1102及び集電体1104は、溶接前と同様の形状を有する。本実施形態によれば、周辺領域の厚さの平均値Hpは、一体化領域の厚さの平均値Huよりも大きく、隣接領域の厚さの最大値Hmaxよりも小さくなる。上述されたとおり、一体化領域の厚さの平均値Huは、一体化領域の中心近傍における一体化領域の厚さの平均値であってよい。
 一体化領域の厚さの平均値は、3箇所の測定値を平均することにより決定される。周辺領域の厚さの平均値は、3箇所の測定値を平均することにより決定される。各領域の5箇所の厚さが測定され、最大値及び最小値を除いた3か所の測定値の平均値が、各領域の厚さの平均値として導出されてもよい。測定間隔は、上記の個数の測定値が得られるように適切に設定される。
 本実施形態において、一体化領域は、Luの長さを有する。一体化領域には、例えば、金属材料1522と、熱可塑性の樹脂材料1524及び空隙1526の少なくとも一方とが存在する。熱可塑性の樹脂材料1524は、金属材料1522の内部に配される。空隙1526は、金属材料1522の内部に配される。金属材料1522の内部には、1以上の樹脂材料1524が配されていてもよく、1以上の空隙1526が配されていてもよい。金属材料1522の内部には、複数の樹脂材料1524が分散して配されていてもよく、複数の空隙1526が分散して配されていてもよい。
 上述されたとおり、本実施形態において、集電体1102及び集電体1104の溶接領域には、集電体1102又は集電体1104を貫通する複数の貫通孔620が形成されている。熱可塑性の樹脂材料1524は、例えば、支持層420に含まれていた熱可塑性樹脂に由来する。空隙1526は、例えば、導電層442及び/又は導電層444に形成されていた貫通孔620に由来する。
 金属材料1522は、例えば、導電層442及び/又は導電層444に含まれる導電性材料(例えば、金属である。)と同一の種類の導電性材料を含む。導電層442及び/又は導電層444の主成分と同一の種類の導電性材料(例えば、金属である。)を含んでよい。金属材料1522は、導電層642に含まれる導電性材料(例えば、金属である。)と同一の種類の導電性材料を含んでもよい。金属材料1522は、導電層642の主成分と同一の種類の導電性材料(例えば、金属である。)を含んでもよい。金属材料1522は、リード822に含まれる導電性材料(例えば、金属である。)と同一の種類の導電性材料を含んでもよい。金属材料1522は、リード822の主成分と同一の種類の導電性材料(例えば、金属である。)を含んでもよい。
 本実施形態において、隣接領域は、例えば、一体化領域の端部からの距離が0以上La未満の領域である。上述されたとおり、溶接領域は、集電体の貫通孔帯の内部に配され、溶接工程において溶接領域から押し出された熱可塑性樹脂の一部が、隣接領域に配された貫通孔の内部に流れ込む。そのため、隣接領域には、貫通孔、一部が熱可塑性樹脂により充填された貫通孔、及び/又は、熱可塑性樹脂により完全に充填された貫通孔が存在し得る。
 本実施形態において、周辺領域は、例えば、一体化領域の端部からの距離がLa以上Lp以下の領域である。一体化領域の端部は、例えば、一体化領域を含む正極接続部820の断面をSEMで観察した場合に、その厚さが一体化領域の厚さの平均値Huの1.1倍となった位置である。一体化領域の厚さの平均値Huと比較して1.1倍の厚さを有する位置が複数存在する場合、一体化領域の端部は、当該複数の位置のうち、一体化領域の中心に最も近い位置であってよい。
 上述されたとおり、周辺領域は、溶接工程の前後で形状がほとんど変化していない領域である。本実施形態においては、溶接前の一体化領域に存在した熱可塑性樹脂の一部が、溶接時に隣接領域に移動する。そのため、(a)溶接後の一体化領域における樹脂含有率は、(b)溶接後の集電体1102又は集電体1104の周辺領域における樹脂含有率よりも小さい。(a)溶接後の一体化領域における樹脂含有率は、(b)溶接後の周辺領域における樹脂含有率の0.1~0.7倍であってよい。
 周辺領域における樹脂含有率としては、一体化領域の端部から5mm以上離れた位置における樹脂含有率が採用されることが好ましい。また、正極接続部820において積層された複数の集電体の間で、周辺領域における樹脂含有率が異なる場合、(a)溶接後の一体化領域における樹脂含有率と、(b)積層された複数の集電体のうち、周辺領域における樹脂含有率が最も大きな集電体の樹脂含有率とが比較されてよい。
 Laは、1mmであってもよく、5mmであってもよく、10mmであってもよい。Lpは、Laよりも大きな値であり、1mmであってもよく、5mmであってもよく、10mmであってもよい。
 本実施形態において、隣接領域の厚さの最大値Hmaxは、例えば、周辺領域の厚さの平均値Hpの1.5倍以下である。隣接領域の厚さの最大値Hmaxは、周辺領域の厚さの平均値Hpの1.3倍以下であることが好ましく、周辺領域の厚さの平均値Hpの1.1倍以下であることがより好ましい。
 他の実施形態において、一体化領域の端部からの距離が100μmの位置における厚さが、一体化領域の端部からの距離が1mmの位置における厚さの1.5倍以下であってよい。一体化領域の端部からの距離が100μmの位置における厚さは、一体化領域の端部からの距離が1mmの位置における厚さの1.3倍以下であってもよく、一体化領域の端部からの距離が1mmの位置における厚さの1.1倍以下であってもよい。
 本実施形態によれば、溶接前の一体化領域に存在した熱可塑性樹脂の一部が、溶接時に隣接領域に移動する。そのため、溶接工程の前後において、隣接領域の一部が周辺領域と比較して盛り上がる。一方の面の側における盛り上がり部分の高さHrは、Hpの25%以下であってもよく、15%以下であってもよく、5%以下であってもよい。Hpに対するHrの割合は、0.1~20%であってもよく、1~15%であることが好ましく、2~10%であることがさらに好ましい。
 Hpに対するHrの割合が0.1%未満の場合、支持層420の熱可塑性樹脂の軟化が不十分であり、溶接も不十分である可能性がある。一方、Hpに対するHrの割合が25%を超える場合、集電体の局所的な膨張により、溶接剥がれ、箔の破断、導電層の部分亀裂などの原因となる可能性がある。また、その結果、電池の性能が低下し得る。
 本実施形態によれば、軟化領域及び/又は溶接領域に貫通孔620が形成されている。そのため、軟化領域及び/又は溶接領域に貫通孔620形成されていない場合と比較して、Hpに対するHrの割合が小さくなる。これにより、溶接剥がれ、箔の破断、導電層の部分亀裂などが抑制され得る。また、その結果、電池の性能が向上し得る。なお、Hpに対するHrの割合が比較的小さいことは、軟化領域及び/又は溶接領域に貫通孔620が形成されていたことを示唆し得る。同様に、(a)溶接後の一体化領域における樹脂含有率は、(b)溶接後の周辺領域における樹脂含有率よりも小さいことは、軟化領域及び/又は溶接領域に貫通孔620が形成されていたことを示唆し得る。
 集電体1102は、第1電極又は第2電極に含まれる集電体の一例であってよい。集電体1104は、第1電極又は第2電極に含まれる集電体の一例であってよい。積層された複数の集電体は、複数のシート材料の一例であってよい。積層された複数の集電体のうち、周辺領域における樹脂含有率が最も大きな集電体は、第3シート材料の一例であってよい。溶接後の一体化領域における樹脂含有率は、第1割合の一例であってよい。溶接後の周辺領域における樹脂含有率は、第2割合の一例であってよい。
 以下、実施例を示し、本発明を具体的に説明する。なお、本発明は下記の実施例に制限されるものではない。
 (実施例1)
 下記の手順により、溶接対象となる集電体を作製した。また、5枚の集電体の一部を溶接して、積層体を作製した。
 (集電体の作製)
 まず、集電体の支持層として、ポリイミドフィルム(東レ・デュポン製、カプトン、厚さ5μm)準備した。次に、無電解めっきにより、ポリイミドフィルムの両面にニッケル層及び銅層を形成した。ニッケル層は、ポリイミドフィルム及び銅層の間に形成された。ニッケル層の厚さは、0.1μmであった。銅層の厚さは、1μmであった。
 次に、ポリイミドフィルムの一部に、複数の貫通孔が形成された貫通孔帯を形成した。各貫通孔の断面形状は円形であり、各貫通孔の平均直径は50μmであった。また、貫通孔のピッチは100μmであった。
 次に、無電解めっきにより、貫通孔の内壁に銅層を形成した。銅層の厚さは、1μmであった。銅層を形成された後の貫通孔の空間の平均直径は48μmであった。
 貫通孔帯と、貫通孔内の銅層とが形成されたポリイミドフィルムを切断して、5枚の集電体を作製した。各集電体が、37mm×32mmの長方形の集電部分と、10mm×10mmの正方形のタブ部分とを有するL字型の平面形状を有するように、上記のポリイミドフィルムを切断した。各集電体において、タブ部分の一辺が集電部分の長辺の一方と接するように、上記のポリイミドフィルムを切断した。各集電体において、タブ部分の他の一辺及び集電部分の短辺の一方が同一の直線上に配されるように、上記のポリイミドフィルムを切断した。上記のタブ部分の他の一辺は、集電部分の長辺の一方と接する辺に接する辺である。
 上述されたとおり、各集電体のタブ部分のTLは10mmであり、TWは10mmであった。各集電体のタブ部分には貫通孔帯が形成されており、各集電体のHLは7mmであり、HWは10mmであった。タブ部分の辺のうち集電部分に接する辺から、貫通孔帯までの距離は、1mmであった。タブ部分の辺のうち集電部分に接する辺の反対側の辺から、貫通孔帯までの距離は、2mmであった。
 (積層体の作製)
 5枚の集電体の貫通孔帯の位置が略一致するように、5枚の集電体を積層した。集電体の貫通孔帯の内部の3.0mm×5.0mmの領域を溶接領域として設定した。積層された5枚の集電体をNiメッキされたCu製のリードと、NiメッキされたCu製のサブリードとの間に挟んだ状態で、積層された5枚の集電体を溶接装置1120の作業領域に配置した。サブリードの厚さは70μmであり、サブリードの面積は、10mm×30mmであった。
 溶接装置1120として、ナグシステム株式会社製のリチウムイオン電池積層箔溶接装置を用いた。溶接装置1120の溶接ヘッド1130を溶接領域に接触させた後、加熱部1134に電力を供給して溶接領域を加熱した。その後、溶接部1136に電力を供給して溶接領域を溶接した。加熱及び溶接における電力の供給条件は、電流1.0~2.5kA、電圧1.5~2.5V、印加時間10~70msであった。
 (実施例2)
 集電体の積層数、サブリードの厚さ、貫通孔の直径、貫通孔のピッチ、支持層の両面に形成された導電層の片面当たりの厚さ、貫通孔の内面に形成された銅層の厚さを変えて、実施例1と同様の手順により、積層体を作製した。積層体の作製条件の詳細を表1に示す。
 (比較例1)
 実施例1と同様の手順により、5枚の集電体を準備した。精電舎電子工業株式会社製の高出力超音波金属接合機を用いた点と、溶接工程前の加熱工程を省略した点とを除き、実施例1と同様の手順により、5枚の集電体を溶接した。高出力超音波金属接合機による超音波溶接の条件は、電源600kW、接合周波数19.15kHz、加圧値623N、接合沈込0.1mm、接合時間0.5~1s、振幅80%、ソフトスタート100ms、パワー100W、速度300mm/s、冷却無し、周波数オフセット20Hzであった。また、電流値は、5~19A程度であった。
 (比較例2)
 ポリイミドフィルムに貫通孔を形成しなかった点を除き、実施例1と同様の手順により、積層体を作製した。積層体の作製条件の詳細を表1に示す。
 (比較例3)
 サブリードを用いなかった点を除き、実施例1と同様の手順により、積層体を作製した。積層体の作製条件の詳細を表1に示す。
 (比較例4)
 サブリードの厚さ、貫通孔の直径、貫通孔のピッチを変えて、実施例1と同様の手順により、積層体を作製した。積層体の作製条件の詳細を表1に示す。
 (比較例5)
 サブリードの厚さ、貫通孔の直径、貫通孔のピッチを変えて、実施例1と同様の手順により、積層体を作製した。積層体の作製条件の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 (評価)
 実施例1及び実施例2と、比較例1~比較例5のそれぞれについて、集電体の引張試験、積層体の溶接確認試験、及び、積層体の抵抗測定試験を実施した。各試験の結果を表2に示す。
 集電体の引張試験は、集電体400の破断に対する耐性の度合いに関連して説明されたサンプルの引張試験と同様の手順で実施した。引張強度が450MPa以上であるものを◎、360MPa以上であるものを〇、それ以外のものを×とした。
 積層体の溶接確認試験は、溶接後の積層体からリードをはがした後、溶接後の積層体から集電体を1枚ずつ剥がすのに必要な力をバネばかりで測定することで実施した。具体的には、下記の手順により、十分な強度で溶接できているか否かを確認した。
 まず、溶接後の積層体の一方の面に配されたリードをはがした。次に、積層体の他方の面を、略水平に配された平坦な面の上に接着剤で接着した。これにより、溶接後の積層体が、平坦な面にしっかりと固定された。次に、溶接後の積層体を構成するm枚(mは、2以上の整数である。)の集電体のうち、最上部に配される集電体の一方の端部の先端にバネばかりを取り付けた。引っ張り方向が略鉛直方向となるようにバネばかりを引っ張ることで、最上部に配される集電体を残りの集電体から剥がした。上記の手順を繰り返えし、集電体を1枚ずつ剥がした。1枚目の集電体の測定値と、n枚目(nは、2以上m以下の整数である。)の集電体の測定値との差が50%以上であった場合、不合格とした。上記の差が50%未満で会った場合、合格とした。表2において、合格を〇で示し、不合格を×で示す。
 抵抗値の測定試験は、積層体にリードが付いた状態で、当該積層体に含まれる複数の集電体のそれぞれの抵抗値を測定することで実施した。まず、溶接後の積層体のサンプルを、各集電体のタブ部分の全体が含まれるように、10mm×40mmの大きさにカットした。表1に示されるとおり、各実施例及び各比較例において、積層体は、5枚又は15枚の集電体を含む。そこで、下記の手順にしたがって、集電体ごとに抵抗値を測定した。サンプルに含まれる各集電体の抵抗値は、抵抗測定機を用いて測定した。一対の測定用電極の一方をリードに接触させ、一対の測定用電極の一方を測定対象となる集電体の導電層(金属箔である。)に接触させた。測定用電極に電圧を印加して、各集電体の抵抗値を測定した。
 次に、積層体を構成する複数の集電体のそれぞれの抵抗値の統計処理を実施した。具体的には、まず、複数の集電体のそれぞれの抵抗値の中央値を算出した。次に、上記の中央値を示した集電体以外の集電体(他の集電体と称される場合がある。)の抵抗値と、当該中央値とを比較した。上記の他の集電体の中に、当該集電体の抵抗値と上記の中央値との差が、当該中央値の50%よりも大きな集電体が含まれる場合、当該積層体の測定試験の結果を不合格とした。上記の他の集電体の中に、当該集電体の抵抗値と上記の中央値との差が、当該中央値の50%よりも大きな集電体が含まれない場合、当該積層体の測定試験の結果を合格とした。表2において、合格を〇で示し、不合格を×で示す。
Figure JPOXMLDOC01-appb-T000004
 (一体化領域の切断面)
 図16に、実施例1における積層体の一体化領域のSEM画像を示す。図16は、溶接領域の中心近傍における積層体のSEM画像を示す。図16に示されるとおり、積層体の一体化領域には、樹脂及び空隙が存在する。実施例1の積層体において、一体化領域における樹脂含有率は約10%であった。実施例1の積層体において、一体化領域における空隙率は約3~5%であった。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 本願明細書には、例えば、下記の事項が開示されている。
 (項目1)
 集電体を準備する段階と、
 上記集電体の少なくとも一方の面に、有機化合物を活物質として含む活物質層を形成する段階と、
 上記活物質層及び上記集電体を固着させる段階と、
 を有し、
 上記集電体は、
 導電性材料を含む導電層と、
 上記導電層を支持する支持層と、
 を備え、
 上記支持層の導電率は、上記導電層の導電率よりも小さく、
 上記支持層の密度は、上記導電層の密度よりも小さく、
 上記活物質層及び上記集電体を固着させる段階は、
 積層された上記活物質層及び上記集電体に圧力を印加する段階、
 を含み、
 上記圧力は、
 (i)上記活物質層及び上記集電体に圧力が印加される前後における上記集電体の電気抵抗の変化率が50%以内となるように、又は、
 (ii)上記活物質層及び上記集電体に圧力が印加される前後における上記集電体の電気抵抗の差の絶対値が1[Ω]未満となるように、
 設定又は調整される、
 電極を生産する方法。
 (項目2)
 集電体を準備する段階と、
 上記集電体の少なくとも一方の面に、有機化合物を活物質として含む活物質層を形成する段階と、
 上記活物質層及び上記集電体を固着させる段階と、
 を有し、
 上記集電体は、
 導電性材料を含む導電層と、
 上記導電層を支持する支持層と、
 を備え、
 上記支持層の導電率は、上記導電層の導電率よりも小さく、
 上記支持層の密度は、上記導電層の密度よりも小さく、
 上記活物質層及び上記集電体を固着させる段階は、
 積層された上記活物質層及び上記集電体に圧力を印加する段階、
 を含み、
 上記圧力は、(i)圧力が印加された後の上記集電体の上記導電層に電流を印加して測定された第2電圧の値から、(ii)圧力が印加される前の上記集電体の上記導電層に電流を印加して測定された第1電圧の値を引いた値が、100mV未満となるように設定又は調整される、
 電極を生産する方法。
 (項目3)
 集電体を準備する段階と、
 上記集電体の少なくとも一方の面に、有機化合物を活物質として含む活物質層を形成する段階と、
 上記活物質層及び上記集電体を固着させる段階と、
 を有し、
 上記集電体は、
 導電性材料を含む導電層と、
 上記導電層を支持する支持層と、
 を備え、
 上記支持層の導電率は、上記導電層の導電率よりも小さく、
 上記支持層の密度は、上記導電層の密度よりも小さく、
 上記活物質層及び上記集電体を固着させる段階は、
 積層された上記活物質層及び上記集電体に圧力を印加する段階、
 を含み、
 上記圧力は、
 圧力が印加された後の上記活物質層のポロシティが25~40%となるように、
 設定又は調整される、
 電極を生産する方法。
 (項目4)
 上記圧力を印加する段階は、
 ロールプレスを用いて、線圧が1.0kgf/cm~200kgf/cmとなるように、上記積層された上記活物質層及び上記集電体に圧力を印加する段階、
 を含む、
 項目1から項目3までの何れか一項に記載の方法。
 (項目5)
 上記支持層は、シート状の樹脂材料である、
 項目1から項目3までの何れか一項に記載の方法。
 (項目6)
 上記導電層は、層状又は箔状のアルミニウムを含み、
 上記層状又は箔状のアルミニウムの厚さは、0.05μm~5μmである、
 項目1から項目3までの何れか一項に記載の方法。
 (項目7)
 正極及び負極を準備する段階と、
 セパレータを準備する段階と、
 上記正極、上記セパレータ及び上記負極をこの順に積層する段階と、
 を有し、
 上記正極及び負極を準備する段階は、
 項目1から項目3までの何れか一項に記載の方法により、上記正極及び上記負極の少なくとも一方を作製する段階、
 を含む、
 電極構造体を生産する方法。
 (項目8)
 集電体と、
 上記集電体の少なくとも一方の面に配され、有機化合物を活物質として含む活物質層と、
 を備える電極であって、
 上記集電体は、
 導電性材料を含む導電層と、
 上記導電層を支持する支持層と、
 を備え、
 上記導電層の厚さは、0.05μm~5mであり、
 上記支持層の導電率は、上記導電層の導電率よりも小さく、
 上記支持層の密度は、上記導電層の密度よりも小さく、
 上記集電体の電気抵抗が0.01mΩ~1Ωである、
 電極。
 (項目9)
 上記活物質層のポロシティは、25~40%である、
 項目8に記載の電極。
 (項目10)
 上記導電層は、アルミニウム箔であり、
 上記支持層は、シート状の樹脂材料である、
 項目8又は項目9に記載の電極。
 (項目11)
 上記集電体は、複数の貫通孔が形成されており、
 上記複数の貫通孔のそれぞれの円相当径は、15μm~150μmである、
 項目8又は項目9に記載の電極。
 (項目12]
 上記集電体の一方の面の外形の面積に対する、上記集電体の上記一方の面における上記複数の貫通孔の面積の総和の割合は、30%以上である、
 項目11に記載の電極。
 (項目13)
 上記複数の貫通孔の少なくとも一部の内壁に配され、導電性材料を含む内部導電層をさらに備える、
 項目11に記載の電極。
 (項目14)
 上記内部導電層は、主成分の異なる3以上の層を有する、
 項目13に記載の積層体。
 (項目15)
 1以上の正極と、
 1以上の負極と、
 上記1以上の正極のそれぞれ、及び、上記1以上の負極のそれぞれの間に配される1以上のセパレータと、
 を備え、
 上記1以上の正極及び上記1以上の負極の少なくとも1つは、項目8又は項目9の何れか一項に記載の電極である、
 電極構造体。
 (項目16)
 上記セパレータは、高分子固体電解質を含む、
 項目15に記載の電極構造体。
 (項目17)
 項目15に記載の電極構造体と、
 上記電極構造体を収容する筐体と、
 を備える、電池。
 (項目18)
 上記1以上の正極を電気的に接続する正極接続部、及び、上記1以上の負極を電気的に接続する負極接続部の少なくとも一方、
 をさらに備え、
 上記正極接続部は、上記1以上の正極の一部を挟み込んで支持する正極支持部を有し、
 上記負極接続部は、上記1以上の負極の一部を挟み込んで支持する負極支持部を有する、
 項目17に記載の電池
 (項目19)
 項目17に記載の電池と、
 上記電池に蓄積された電気エネルギーを利用して推進力を発生させる推進力発生装置と、
 を備える、飛行体。
 100 飛行体、110 蓄電池、112 蓄電セル、120 電力制御回路、130 電動機、140 プロペラ、150 センサ、160 制御装置、212 正極ケース、214 負極ケース、216 封止剤、218 金属バネ、220 正極、222 正極集電体、224 正極活物質層、230 セパレータ、240 負極、242 負極集電体、244 負極活物質層、260 構造体、350 電解質、400 集電体、420 支持層、422 第1平面、424 第2平面、426 側面、442 導電層、444 導電層、500 集電体、522 貫通孔、546 導電性材料、600 集電体、620 貫通孔、622 内壁部、642 導電層、760 積層構造体、820 正極接続部、822 リード、824 サブリード、840 負極接続部、842 リード、844 サブリード、1102 集電体、1104 集電体、1120 溶接装置、1130 溶接ヘッド、1132 位置調節部、1134 加熱部、1136 溶接部、1140 加熱用電源、1150 溶接用電源、1160 コントローラ、1522 金属材料、1524 樹脂材料、1526 空隙

Claims (25)

  1.  積層された複数のシート材料を備え、
     前記複数のシート材料のそれぞれは、
     熱可塑性の樹脂材料を含む支持層と、
     前記支持層の両面に形成される第1金属層及び第2金属層と、
     を有し、
     前記複数のシート材料の一部において、前記複数のシート材料に含まれる複数の前記第1金属層及び複数の前記第2金属層が一体化している、
     積層体。
  2.  前記複数の第1金属層及び前記複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、前記一体化領域に含まれる樹脂の体積の割合は、5~50%である、
     請求項1に記載の積層体。
  3.  前記複数のシート材料は、
     前記複数のシート材料の一方の側の最も外側に配された第1シート材料、
     を有し、
     前記積層体は、
     前記第1シート材料を支持する導電性の第1支持部材、
     をさらに備え、
     前記第1支持部材の主成分と、前記複数の第1金属層の主成分及び前記複数の第2金属層の主成分とが異なり、
     前記一体化領域において、前記複数の第1金属層の主成分と同一の種類の金属の体積と、前記複数の第2金属層の主成分と同一の種類の金属の体積との合計に対する、前記熱可塑性の樹脂材料の体積の割合は、5~50%である、
     請求項2に記載の積層体。
  4.  前記複数の第1金属層及び前記複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、前記一体化領域に含まれる空隙の体積の割合は、10%以下である、
     請求項1に記載の積層体。
  5.  前記複数のシート材料は、
     前記複数のシート材料の一方の側の最も外側に配された第1シート材料と、
     前記複数のシート材料の他方の側の最も外側に配された第2シート材料と、
     を有し、
     前記積層体は、
     前記第1シート材料を支持する導電性の第1支持部材と、
     前記第2シート材料を支持する導電性又は非導電性の第2支持部材と、
     をさらに備える、
     請求項1から請求項4までの何れか一項に記載の積層体。
  6.  前記複数のシート材料のそれぞれは、前記複数の第1金属層及び前記複数の第2金属層が一体化している領域である一体化領域の近傍に、各シート材料を貫通する複数の貫通孔が形成された領域を有する、
     請求項1から請求項5までの何れか一項に記載の積層体。
  7.  前記複数の貫通孔の少なくとも一部の内壁に配される導電層をさらに備える、
     請求項6に記載の積層体。
  8.  前記導電層は、主成分の異なる3以上の層を有する、
     請求項7に記載の積層体。
  9.  前記複数の貫通孔の少なくとも一部の内部には、前記熱可塑性の樹脂材料が配される、
     請求項6から請求項8までの何れか一項に記載の積層体。
  10.  前記複数の貫通孔の円相当直径は、15μm~150μmであり、
     前記複数の貫通孔のうち隣接する2つの貫通孔の間隔は、30μm~250μmである、
     請求項6から請求項9までの何れか一項に記載の積層体。
  11.  前記複数のシート材料のそれぞれにおいて、
     (a)前記複数の第1金属層及び前記複数の第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、前記一体化領域に含まれる前記熱可塑性の樹脂材料の体積の割合である第1割合が、(b)前記複数のシート材料に含まれる第3シート材料の前記一体化領域の端部から5mm以上離れた位置における、金属の体積に対する熱可塑性の樹脂材料の体積の割合である第2割合よりも小さく、
     前記第3シート材料は、前記複数のシート材料のうち、前記第2割合が最も大きなシート材料である、
     請求項1から請求項10までの何れか一項に記載の積層体。
  12.  前記第1割合の値は、前記第2割合の値の0.1~0.7倍である、
     請求項11に記載の積層体。
  13.  第1電極及び第2電極と、
     第3電極及び第4電極と、
     第1セパレータ、第2セパレータ及び第3セパレータと、
     を備え、
     前記第1電極、前記第1セパレータ、前記第3電極、前記第2セパレータ、前記第2電極、前記第3セパレータ、及び、前記第4電極が、この順に積層されており、
     第1電極及び第2電極のそれぞれは、
     集電体と、
     前記集電体の少なくとも一方の面に配された活物質層と、
     を有し、
     前記集電体は、
     熱可塑性の樹脂材料を含む支持層と、
     前記支持層の両面に形成される第1金属層及び第2金属層と、
     を含み、
     前記第1電極及び前記第2電極の端部の近傍において、前記第1電極の前記第1金属層及び前記第2金属層、並びに、前記第2電極の前記第1金属層及び前記第2金属層が一体化している、
     電極構造体。
  14.  (a)前記第1金属層及び前記第2金属層が一体化している領域である一体化領域に含まれる金属の体積に対する、前記一体化領域に含まれる前記熱可塑性の樹脂材料の体積の割合である第1割合が、(b)前記第1電極又は前記第2電極に含まれる前記集電体の前記一体化領域の端部から5mm以上離れた位置における、金属の体積に対する熱可塑性の樹脂材料の体積の割合である第2割合よりも小さく、
     前記第2割合は、前記第1電極の前記集電体及び前記第2電極の前記集電体のうち前記割合が大きな集電体における前記割合である、
     請求項13に記載の電極構造体。
  15.  請求項14に記載の電極構造体と、
     前記電極構造体を収容する筐体と、
     を備える、電池。
  16.  請求項15に記載の電池と、
     前記電池に蓄積された電気エネルギーを利用して推進力を発生させる推進力発生装置と、
     を備える、飛行体。
  17.  熱可塑性の樹脂材料を含む支持層、並びに、前記支持層の両面に形成される第1金属層及び第2金属層とを備える溶接対象を準備する準備段階と、
     複数の前記溶接対象を積層する積層段階と、
     前記複数の溶接対象の一部に配された軟化領域にエネルギーを印加して、前記軟化領域の前記樹脂材料を軟化させる軟化段階と、
     前記軟化領域の少なくとも一部に配された溶接領域を押圧する押圧段階と、
     押圧された前記溶接領域に電流及び/又は電圧を印加して、前記複数の溶接対象の前記第1金属層及び前記第2金属層を溶接する溶接段階と、
     を有し、
     前記複数の溶接対象のそれぞれの前記第1金属層及び前記第2金属層は、電気的に接続されており、
     前記複数の溶接対象のそれぞれの前記軟化領域の少なくとも一部に、前記支持層、前記第1金属層及び前記第2金属層を貫通する複数の貫通孔が形成されている、
     積層体を生産する方法。
  18.  前記複数の貫通孔の少なくとも一部の内壁に、前記第1金属層及び前記第2金属層を電気的に接続する導電部材が配される、
     請求項17に記載の積層体を生産する方法。
  19.  前記導電部材は、複数の層を含み、
     前記複数の層のそれぞれは、互いに異なる材料により構成される、
     請求項18に記載の積層体を生産する方法。
  20.  前記複数の溶接対象のそれぞれの前記溶接領域に、前記支持層、前記第1金属層及び前記第2金属層を貫通する複数の貫通孔が形成されており、
     前記複数の溶接対象のそれぞれの前記軟化領域の前記溶接領域に隣接する領域に、前記第1金属層及び前記第2金属層を貫通する複数の貫通孔が形成されている、
     請求項17から請求項19までの何れか一項に記載の積層体を生産する方法。
  21.  前記押圧段階は、
     前記軟化した前記樹脂材料が前記少なくとも一部の貫通孔の内部に流入するように、前記積層された前記複数の溶接対象に圧力を印加する段階と、
     前記複数の溶接対象のそれぞれの前記第1金属層及び前記第2金属層を、溶接可能な距離まで近接させる段階と、
     を含む、
     請求項17から請求項20までの何れか一項に記載の積層体を生産する方法。
  22.  前記複数の貫通孔の少なくとも一部の内壁に、前記第1金属層及び前記第2金属層を電気的に接続する導電部材が配され、
     前記複数の溶接対象に圧力を印加する段階は、
     前記軟化した前記樹脂材料が、前記少なくとも一部の貫通孔の前記内壁に配された前記導電部材を破断して、前記少なくとも一部の貫通孔の内部に流入するように、前記積層された前記複数の溶接対象に圧力を印加する段階、
     を含む、
     請求項21に記載の積層体を生産する方法。
  23.  前記溶接段階は、前記押圧段階において押圧された前記溶接領域をさらに押圧しながら、前記溶接領域に電流及び/又は電圧を印加する段階を含む、
     請求項17から請求項22までの何れか一項に記載の積層体を生産する方法。
  24.  導電性の第1支持部材と、導電性又は非導電性の第2支持部材とを用いて、前記複数の溶接対象の前記軟化領域又は前記溶接領域を挟み込む支持段階、
     をさらに有し、
     前記支持段階は、前記軟化段階又は前記押圧段階の前に実施される、
     請求項17から請求項23までの何れか一項に記載の積層体を生産する方法。
  25.  第1電極及び第2電極を準備する段階と、
     第3電極及び第4電極を準備する段階と、
     第1セパレータ、第2セパレータ及び第3セパレータを準備する段階と、
     前記第1電極、前記第1セパレータ、前記第3電極、前記第2セパレータ、前記第2電極、前記第3セパレータ、及び、前記第4電極を、この順に積層する段階と、
     前記第1電極及び前記第2電極の一部を溶接する段階と、
     を有し、
     第1電極及び第2電極のそれぞれは、
     集電体と、
     前記集電体の少なくとも一方の面に配された活物質層と、
     を備え、
     前記集電体は、
     熱可塑性の樹脂材料を含む支持層と、
     前記支持層の両面に形成される第1金属層及び第2金属層と、
     を有し、
     前記第1金属層及び前記第2金属層は、電気的に接続されており、
     前記集電体の一部に配された軟化領域の少なくとも一部には、前記支持層、前記第1金属層及び前記第2金属層を貫通する複数の貫通孔が形成されており、
     前記第1電極及び前記第2電極の一部を溶接する段階は、
     前記第1電極の前記集電体、及び、前記第2電極の前記集電体を積層する段階と、
     前記集電体の前記軟化領域にエネルギーを印加して、前記軟化領域の前記樹脂材料を軟化させる軟化段階と、
     前記軟化領域の少なくとも一部に配された溶接領域を押圧する押圧段階と、
     押圧された前記溶接領域に電流及び/又は電圧を印加して、前記第1電極及び前記第2電極のそれぞれの前記集電体の前記第1金属層及び前記第2金属層を溶接する溶接段階と、
     を含む、
     電極構造体を生産する方法。
PCT/JP2023/022886 2022-06-21 2023-06-21 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法 WO2023249042A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099624 2022-06-21
JP2022099624A JP7399219B1 (ja) 2022-06-21 2022-06-21 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法

Publications (1)

Publication Number Publication Date
WO2023249042A1 true WO2023249042A1 (ja) 2023-12-28

Family

ID=89122244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022886 WO2023249042A1 (ja) 2022-06-21 2023-06-21 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法

Country Status (2)

Country Link
JP (1) JP7399219B1 (ja)
WO (1) WO2023249042A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274885A (ja) * 1991-03-01 1992-09-30 Hitachi Zosen Corp スポット溶接装置
JP2006305591A (ja) * 2005-04-27 2006-11-09 Nag System Co Ltd 溶接方法
CN108767262A (zh) * 2018-05-30 2018-11-06 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置
JP2020057584A (ja) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 集電体、極シート及び電気化学デバイス
WO2021125110A1 (ja) * 2019-12-19 2021-06-24 ソフトバンク株式会社 製造方法、プログラム、製造システム、積層集電体、及び電池
CN214254470U (zh) * 2020-12-18 2021-09-21 比亚迪股份有限公司 一种复合集流体、电池极片、电池和车辆
CN216054791U (zh) * 2021-08-23 2022-03-15 微宏动力系统(湖州)有限公司 复合箔材、电池极片及二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274885A (ja) * 1991-03-01 1992-09-30 Hitachi Zosen Corp スポット溶接装置
JP2006305591A (ja) * 2005-04-27 2006-11-09 Nag System Co Ltd 溶接方法
CN108767262A (zh) * 2018-05-30 2018-11-06 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置
JP2020057584A (ja) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 集電体、極シート及び電気化学デバイス
WO2021125110A1 (ja) * 2019-12-19 2021-06-24 ソフトバンク株式会社 製造方法、プログラム、製造システム、積層集電体、及び電池
CN214254470U (zh) * 2020-12-18 2021-09-21 比亚迪股份有限公司 一种复合集流体、电池极片、电池和车辆
CN216054791U (zh) * 2021-08-23 2022-03-15 微宏动力系统(湖州)有限公司 复合箔材、电池极片及二次电池

Also Published As

Publication number Publication date
JP7399219B1 (ja) 2023-12-15
JP2024000747A (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
JP6615961B2 (ja) 電気化学システムの新規セパレータ
KR101958579B1 (ko) 적층형 전지 및 그 제조 방법
JP5456954B2 (ja) 双極型二次電池のモジュール構造
JP4842633B2 (ja) 電池又はキャパシタ用リチウム金属箔の製造方法
JP5448964B2 (ja) 全固体型リチウムイオン二次電池
KR101689496B1 (ko) 비수 전해액계 이차 전지
KR20160134761A (ko) 시트 적층형 리튬 이온 2차 전지 및 시트 적층형 리튬 이온 2차 전지의 제조 방법
JPH10189050A (ja) リチウムイオン電池
JP2011204386A (ja) 双極型電池のシール構造
KR101664945B1 (ko) 전극 조립체의 제조방법 및 이를 이용하여 제조된 전극 조립체
JP5434397B2 (ja) 双極型電池用集電体
WO2015076099A1 (ja) 非水電解質二次電池用負極の製造方法
CN105103340A (zh) 非水电解质二次电池
JP2008251583A (ja) 蓄電デバイス
Kim et al. Fibrous skeleton‐framed, flexible high‐energy‐density quasi‐solid‐state lithium metal batteries
US9093228B2 (en) Method for producing electric storage device, and electric storage device
KR20150049601A (ko) 수계 바인더를 포함하는 전극을 구비한 전극 조립체 및 이를 포함하는 리튬 이차전지
JP2010199022A (ja) 二次電池用電極の製造方法、二次電池用電極および二次電池
JP7399219B1 (ja) 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法
JP2013084422A (ja) 電気デバイス用電極およびこの電極を用いた電気デバイス
JP2023523064A (ja) バイポーラ集電体、電気化学装置および電子装置
JP7399338B1 (ja) 積層体、電極構造体、電池、飛行体、積層体を生産する方法、及び、電極構造体を生産する方法
JP6254360B2 (ja) 蓄電デバイス
JP2017091929A (ja) 電池用セパレータ、前記セパレータを有する電池、前記セパレータの製造方法および前記電池の製造方法
JP2011258798A (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827225

Country of ref document: EP

Kind code of ref document: A1