WO2023248452A1 - 中空部材及び中空部材製造方法 - Google Patents

中空部材及び中空部材製造方法 Download PDF

Info

Publication number
WO2023248452A1
WO2023248452A1 PCT/JP2022/025223 JP2022025223W WO2023248452A1 WO 2023248452 A1 WO2023248452 A1 WO 2023248452A1 JP 2022025223 W JP2022025223 W JP 2022025223W WO 2023248452 A1 WO2023248452 A1 WO 2023248452A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow member
hardness
circumferential
vickers hardness
cross
Prior art date
Application number
PCT/JP2022/025223
Other languages
English (en)
French (fr)
Inventor
奈沙 島崎
領汰 松林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2022/025223 priority Critical patent/WO2023248452A1/ja
Publication of WO2023248452A1 publication Critical patent/WO2023248452A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies

Definitions

  • the present disclosure relates to a hollow member and a hollow member manufacturing method.
  • Patent Document 1 describes a method for manufacturing a steel pipe of different thickness from a hollow cylindrical raw pipe, in which the raw pipe is placed in a die and movement of the raw pipe in the longitudinal direction is restricted, a locking step of pushing a plug from one end side of the raw pipe to enlarge the outer shape of the one end side and locking it to the die; while releasing the restriction on the raw pipe, the locking of the raw pipe is maintained; an ironing process of expanding the inner shape of the raw pipe while maintaining its outer shape by further pushing the plug toward the other end of the raw pipe to form a thin wall part; Disclosed is a method for manufacturing a steel pipe with different thicknesses.
  • the vehicle body member has high deformation robustness against collision conditions. Robustness of deformation against collision conditions means that even if the collision conditions such as the collision angle change somewhat, the deformation mode of the vehicle body member does not change and stable deformation can be obtained.
  • the present disclosure has been made in view of the above circumstances, and includes a hollow member with enhanced robustness without reducing component performance during normal operation, and a hollow member manufacturing method for manufacturing this hollow member. For the purpose of providing.
  • the hollow member according to one aspect of the present disclosure is having a circumferential hardness difference in at least a portion of the longitudinal direction along the central axis;
  • the circumferential hardness difference portion is viewed in a cross section perpendicular to the central axis,
  • a wall thickness difference obtained by subtracting the minimum wall thickness from the maximum wall thickness in the circumferential direction of the cross section is 20% or less of the average value of the wall thickness over the entire circumference of the cross section,
  • a low strength range in which the Vickers hardness along the circumferential direction is equal to or less than the hardness threshold, where the average of the integral of Vickers hardness over the entire circumference of the cross section is set as the hardness threshold, and the Vickers hardness along the circumferential direction. is above the hardness threshold.
  • the relatively soft low strength range and the relatively hard high strength range in the circumferential direction are located within the same cross section of the hollow member. It is formed.
  • both the low-strength range and the high-strength range support external forces within the range of elastic deformation, so there is no deterioration in component performance.
  • the low strength range of the circumferential hardness difference portion actively deforms plastically and absorbs energy.
  • the hollow member bends and deforms so that the low strength range is on the concave side and the high strength range is on the convex side. In this way, the bending direction of the hollow member can be set based on the relative positional relationship between the low strength range and the high strength range, so robustness is high.
  • the ratio of the circumferential length of the low strength range to the total circumferential length of the cross section may be within a range of 20% to 80%.
  • the lower limit of the ratio is 20%, the circumferential hardness difference portion can be reliably plastically deformed and broken in the low strength range.
  • the upper limit of the ratio is 80%, it is possible to limit the bending direction of the hollow member within a predetermined range while limiting the low strength range from becoming excessively wide.
  • the total outer circumference length in the cross section is Lr (mm);
  • the Vickers hardness has a maximum value within the range of 0.3 x Lr (mm) to 0.7 x Lr (mm) in the circumferential direction based on the minimum hardness position where the Vickers hardness has the minimum value. There is a maximum hardness position.
  • the portion where the Vickers hardness is the minimum value and the portion where the Vickers hardness is the maximum value can be arranged substantially opposite to each other with the central axis of the hollow member in between. Therefore, the bending direction of the hollow member can be more easily controlled.
  • the wall thickness difference in the cross section is 0.10 mm or less; A difference obtained by subtracting the minimum value of the Vickers hardness from the maximum value of the Vickers hardness in the cross section is 15 HV or more.
  • the wall thickness along the circumferential direction in the cross section is made more uniform, and the difference in Vickers hardness is increased to 15 HV or more, so the low strength range is easily plastically deformed. The bending direction of the hollow member can be set more accurately.
  • the circumferential hardness difference portion may be formed only in a part of the longitudinal direction.
  • the hollow member can be broken with a smaller difference in Vickers hardness (for example, 10 HV) than in the form shown in FIG. 16(a).
  • the circumferential hardness difference portion may be formed over the entire length in the longitudinal direction.
  • the external force required to bend and deform the hollow member can be intentionally set high.
  • a hollow member manufacturing method includes: A method for manufacturing a hollow member from a hollow cylindrical raw pipe, the method comprising: a step of arranging the raw tube in a die; While enlarging the inner wall of the raw pipe by pushing a plug into the raw pipe, the flesh of the inner wall is sent out in the circumferential direction of the inner wall when viewed from a line of sight along the central axis of the raw pipe; Ironing process and; has.
  • the meat of the inner wall is sent out in the circumferential direction of the inner wall in the ironing process when viewed from the line of sight along the central axis of the raw pipe.
  • a high-strength range where the meat is concentrated and the Vickers hardness is increased, and a low-strength range where the meat flows out and the Vickers hardness is relatively low are formed on the inner wall after ironing.
  • both of these low-strength ranges and high-strength ranges support external forces within the range of elastic deformation, so there is no reduction in component performance. do not have.
  • the low strength range when subjected to an external force such as an impact force stronger than during normal operation, the low strength range actively deforms plastically to absorb energy. As a result, the hollow member bends and deforms so that the low strength range is on the concave side and the high strength range is on the convex side. Therefore, since the bending direction of the hollow member can be set based on the relative positional relationship between the low strength range and the high strength range, a hollow member with high robustness can be manufactured.
  • the plug has a tip that tapers toward the pushing direction, and a main body that is continuous with the rear end of the tip and has the maximum external dimension in a cross section perpendicular to the pushing direction;
  • a plane including a connection line between the tip and the main body is inclined with respect to a plane perpendicular to the central axis of the plug.
  • the plug has a tip that tapers toward the pushing direction, and a main body that is continuous with the rear end of the tip and has the maximum external dimension in a cross section perpendicular to the pushing direction; A connection line between the tip portion and the main body portion, a plurality of first connection points closest to the tip end surface of the plug in side view; a plurality of second connection points located between the first connection points when viewed from the front and located further from the tip surface than the first connection points when viewed from the side; including.
  • the timing at which each first connection point squeezes the inner wall of the raw pipe can be made earlier than the timing at which each second connection point passes through the inner wall of the raw pipe. That is, among the points on the connection line, the first connection points on the front end side in the pushing direction squeeze the inner wall early, but the second connection points on the rear end side in the pushing direction squeeze the inner wall later. Squeeze. As a result, the meat that was squeezed first moves along the circumferential direction and moves toward the area that is squeezed later.
  • FIG. 2 is a side view of a hollow member according to an embodiment of the present disclosure, showing the Vickers hardness distribution in the circumferential direction by gradation.
  • 2A and 2B are diagrams showing essential parts of the same hollow member, in which (a) is an enlarged view of part A in FIG. 1, and (b) is a BB cross-sectional view in (a). Note that the Vickers hardness distribution in the circumferential direction is shown by gradation. It is a graph showing an example of the Vickers hardness distribution of the hollow member, in which the horizontal axis shows the measurement position in the circumferential direction, and the vertical axis shows the Vickers hardness at each position.
  • FIG. 1 It is a side view which shows the case where a load is applied to the same hollow member, Comprising: (a) shows before application of load, (b) shows after application of load. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation. It is a figure which shows the head part of the plug used in the hollow member manufacturing method of the same embodiment, Comprising: (a) is a perspective view seen from the front end side, (b) is a perspective view seen from the rear end side. . It is a figure which shows the same head part, Comprising: (a) is a side view, (b) is a front view. FIG.
  • FIG. 3 is a cross-sectional view showing the first half of the method for manufacturing a hollow member using a plug having the same head portion in chronological order from (a) to (c).
  • (a) shows the raw pipe arrangement process
  • (b) shows the locking process
  • (c) shows the ironing process.
  • It is sectional drawing which showed the latter half part of the hollow member manufacturing method following FIG.7(c) in time series in order of (a) and (b).
  • (a) shows the start of the drawing process
  • (b) shows the completion.
  • FIG. 7 is a side view showing another modified example of the hollow member, in which (a) shows a case in which a circumferential distribution of Vickers hardness is applied over the entire length, and (b) shows a case in which a circumferential distribution of Vickers hardness is applied to a half of the longitudinal direction; The case where circumferential distribution is given is shown. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation. It is a figure which shows another modification of a hollow member, Comprising: It is a graph which shows Vickers hardness distribution of a hollow member.
  • FIG. 2 is a side view showing a first example of the present disclosure, in which hollow members T2, T4, and T5 are an example, and hollow members T1 and T3 are a comparative example. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation.
  • FIG. 2 is a side view showing a first example of the present disclosure, in which hollow members T2, T4, and T5 are an example, and hollow members T1 and T3 are a comparative example. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation.
  • FIG. 3 is a side view showing test conditions when applying an external force to hollow members T1 to T5, in which (a) shows Model A in which hollow members T1 to T5 are supported on a plane perpendicular to the central axis CL, and (b) shows Model B is shown in which hollow members T1 to T5 are supported by a plane that forms an inclination angle of 15 degrees with respect to the central axis CL.
  • 7 is a diagram showing a second example of the present disclosure, and is a graph showing the Vickers hardness distribution in the circumferential direction of a hollow member obtained by the hollow member manufacturing method using the plug having the head portion shown in FIG. 6.
  • FIG. 7 is a diagram showing a third example of the present disclosure, and is a side view when a Vickers hardness distribution is provided over the entire length.
  • (a) shows the state before the impact force is applied
  • (b) and (c) show the state after the impact force is applied.
  • (b) shows a case where the difference in Vickers hardness between the strong part and the weak part is 15 HV
  • (c) shows a case where the difference in Vickers hardness between the strong part and the weak part is 10 HV. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation.
  • FIG. 1 shows the state before the impact force is applied
  • (b) and (c) show the state after the impact force is applied.
  • (b) shows a case where the difference in Vickers hardness between the strong part and the weak part is 15 HV
  • (c) shows a case where the difference in Vickers hardness between the strong part and the weak part is 10 HV. Note that the Vickers hardness distribution in the circum
  • FIG. 6 is a diagram showing a fourth example of the present disclosure, and is a side view when a Vickers hardness distribution is provided at the center position in the longitudinal direction.
  • (a) shows the state before the impact force is applied
  • (b) and (c) show the state after the impact force is applied.
  • (b) shows a case where the difference in Vickers hardness between the strong part and the weak part is 10 HV
  • (c) shows a case where the difference in Vickers hardness between the strong part and the weak part is 5 HV. Note that the Vickers hardness distribution in the circumferential direction is shown by gradation.
  • FIG. 1 is a side view of a hollow member 10 according to the present embodiment, and shows the Vickers hardness distribution in the circumferential direction by gradation.
  • 2A and 2B are diagrams showing essential parts of the hollow member 10, in which (a) is an enlarged view of part A in FIG. 1, and (b) is a sectional view taken along line BB in (a).
  • FIG. 3 is a graph showing an example of the Vickers hardness distribution of the hollow member 10, in which the horizontal axis shows the measurement position in the circumferential direction, and the vertical axis shows the Vickers hardness at each position.
  • the hollow member 10 is a metal cylindrical body that has a linear center axis CL and is long along the center axis CL.
  • the hollow member 10 is a circular tube having a circular cross-sectional shape at each position along its entire length, and has the same outer diameter, inner diameter, and wall thickness at each position in the longitudinal direction.
  • the outer diameter D is 20 mm to 180 mm
  • the wall thickness t is 0.4 mm to 10 mm.
  • the wall thickness t is uniform in the circumferential direction
  • the wall thickness difference which is the difference between the maximum dimension and the minimum dimension, is 20% or less of the average value of the wall thickness in the circumferential direction in the same cross section. It is preferable, and more preferably 10% or less.
  • the wall thickness at the welded part tends to be more uneven than the surrounding area, so after removing this welded part, It is necessary to set the above-mentioned wall thickness t and wall thickness difference.
  • the above-mentioned wall thickness t and wall thickness difference in a cross section perpendicular to the center axis CL, the counterclockwise direction 10 It is preferable to set the above-mentioned wall thickness t and wall thickness difference for 80% of the range excluding both the ranges of 10° and 10° in the clockwise direction. The same applies to welds other than seam welds.
  • the hollow member 10 has a first region 11, a circumferential hardness difference portion 12, and a second region 13, which are arranged in order from the left side to the right side in the drawing along the central axis CL. . That is, in this embodiment, the circumferential hardness difference portion 12 is formed only in the central portion in the longitudinal direction.
  • the boundary between the first region portion 11 and the second region portion 13 is shown using a solid line. However, in reality, such boundaries often cannot be confirmed by visual inspection alone, but can be confirmed by measuring the Vickers hardness distribution at each part.
  • the Vickers hardness in the present disclosure is measured based on JIS Z 2244:2020 in a cross section perpendicular to the central axis CL.
  • the pushing load at the time of measurement was 1 kgf.
  • the indentation load may be set to 100 gf.
  • the measurement interval is 10° or less or 5 mm or less along the circumferential direction, as long as the interval between the indentations satisfies the standards specified in JIS Z 2244:2020.
  • the measurement is performed on two cross sections as follows.
  • a part of the hollow member 10 is cut out to obtain a cut section, and two cut surfaces on both sides of this cut section are to be measured.
  • the Vickers hardness is measured every 0° to 20° in the circumferential direction, and on the other cut surface, the Vickers hardness is measured every 10° to 20° in the circumferential direction.
  • the measurement position is basically the center of the plate thickness.
  • the circumferential center position between the central axis CL and the welded part is measured. It is preferable to measure the Vickers hardness for 80% of the range excluding both the 10° counterclockwise direction and the clockwise 10° range based on the straight line connecting the . In addition, in the case of a hollow member manufactured using a raw pipe without a welded part, the Vickers hardness is measured for 100% of the circumferential direction in a cross section perpendicular to the central axis CL.
  • the first region 11 has uniform outer diameter, inner diameter, wall thickness, and Vickers hardness at each position in the longitudinal direction and circumferential direction.
  • the wall thickness at each position in the longitudinal direction of the first region portion 11, the difference in wall thickness obtained by subtracting the minimum value from the maximum value of the wall thickness in the circumferential direction of the cross section perpendicular to the central axis CL is the same.
  • the thickness is 20% or less of the average wall thickness in the circumferential direction of the cross section.
  • the Vickers hardness has no hardness distribution in the circumferential direction and is uniform.
  • the average value of the Vickers hardness in the circumferential direction of the cross section perpendicular to the central axis CL is constant at each position in the longitudinal direction. Note that these descriptions regarding the wall thickness and Vickers hardness exclude a welded portion if the first region portion 11 includes the welded portion.
  • the first region portion 11 is a region that does not have a regular hardness distribution.
  • the material of the first region portion 11 is the same as that of the circumferential hardness difference portion 12.
  • the first region portion 11 is a region having higher deformation resistance than the circumferential hardness difference portion 12, and is a region where deformation is less likely to occur when a load along the axial direction is input.
  • the Vickers hardness and wall thickness in the first region portion 11 are not particularly limited as long as higher deformation resistance than in the circumferential hardness difference portion 12 can be obtained. Further, the Vickers hardness and wall thickness in the first region portion 11 may be uniform or non-uniform in the longitudinal direction.
  • the deformation resistance can be evaluated, for example, by the ease of deformation when a measurement target portion of the first region portion 11 is cut out and a load is input in the axial direction. Therefore, the ease of deformation is determined for each of the first region portion 11 and the circumferential hardness difference portion 12, and the two are compared, and the one that is relatively less deformable is evaluated as having a higher relative deformation resistance, The one that is relatively easy to deform can be evaluated as having low relative deformation resistance.
  • the maximum value of Vickers hardness is defined as HV1 max
  • the minimum value of Vickers hardness is defined as HV1 min .
  • the difference ⁇ HV1 obtained by subtracting HV1 min from HV1 max is, for example, less than 15 HV.
  • the difference ⁇ HV1 may be 10HV or less.
  • the maximum value of Vickers hardness is set as HV2 max
  • the minimum value of Vickers hardness is set as HV2 min
  • the difference obtained by subtracting HV2 min from HV2 max is ⁇ HV2. shall be.
  • ⁇ HV1 is smaller than ⁇ HV2.
  • the difference obtained by subtracting ⁇ HV1 from ⁇ HV2 may be preferably 3 HV or more, more preferably 5 HV or more, and most preferably 10 HV or more.
  • the wall thickness in the circumferential direction of the first region portion 11 may be the same as the wall thickness in the circumferential direction of the circumferential hardness difference portion 12, or the wall thickness in the circumferential direction of the circumferential hardness difference portion 12. It may be larger. Further, the thickness of the first region portion 11 in the circumferential direction may be uniform. Specifically, in the circumferential direction of the first region portion 11, if the maximum value of the wall thickness is T1 max and the minimum value of the wall thickness is T1 min , the difference obtained by subtracting T1 min from T1 max is 0. It may be .50 mm or less. On the other hand, the first region portion 11 may have different wall thicknesses in its longitudinal direction.
  • the cross-sectional shape (the shape of the cross-section perpendicular to the longitudinal direction) of the first region portion 11 is not particularly limited, and examples include circles such as a perfect circle and ellipse, and polygons such as a rectangle.
  • the polygon referred to here includes not only a strict polygon but also a shape in which portions corresponding to the corners of the polygon are arcuate.
  • the second region section 13 also has the same configuration as the first region section 11. That is, the second region portion 13 also has a uniform outer diameter, inner diameter, wall thickness, and Vickers hardness at each position in the longitudinal direction and circumferential direction.
  • the wall thickness at each position in the longitudinal direction of the second region portion 13, the difference in wall thickness obtained by subtracting the minimum value from the maximum value of the wall thickness in the circumferential direction of the cross section perpendicular to the central axis CL is the same.
  • the thickness is 20% or less of the average wall thickness in the circumferential direction of the cross section.
  • the Vickers hardness has no hardness distribution in the circumferential direction and is uniform.
  • the average value of the Vickers hardness in the circumferential direction of the cross section perpendicular to the central axis CL is constant at each position in the longitudinal direction. Note that these descriptions regarding wall thickness and Vickers hardness exclude welded portions when they are included.
  • the second region portion 13 is also a region that does not have a regular hardness distribution.
  • the material of the second region portion 13 is the same as that of the circumferential hardness difference portion 12.
  • the second region portion 13 is a region having higher rigidity than the circumferential stiffness difference portion 12, and is a region where deformation is less likely to occur when a load along the axial direction is input.
  • the Vickers hardness and wall thickness in the second region portion 13 are not particularly limited as long as higher deformation resistance than in the circumferential hardness difference portion 12 can be obtained. Further, the Vickers hardness and wall thickness in the second region portion 13 may be uniform or non-uniform in the longitudinal direction.
  • the deformation resistance can be evaluated, for example, by the ease of deformation when a measurement target portion of the second region portion 13 is cut out and a load is input in the axial direction. Therefore, the ease of deformation is determined for each of the second region portion 13 and the circumferential hardness difference portion 12, and the two are compared, and the one that is relatively less deformable is evaluated as having a higher relative deformation resistance, The one that is relatively easy to deform can be evaluated as having low relative deformation resistance.
  • the maximum value of Vickers hardness is set to HV3 max
  • the minimum value of Vickers hardness is set to HV3 min .
  • the difference ⁇ HV3 obtained by subtracting HV3 min from HV3 max is, for example, less than 15 HV.
  • the difference ⁇ HV3 may be 10HV or less.
  • ⁇ HV3 is smaller than ⁇ HV2.
  • the difference obtained by subtracting ⁇ HV3 from ⁇ HV2 may be preferably 3 HV or more, more preferably 5 HV or more, and most preferably 10 HV or more.
  • the wall thickness in the circumferential direction of the second region portion 13 may be the same as the wall thickness in the circumferential direction of the circumferential hardness difference portion 12, or the wall thickness in the circumferential direction of the circumferential hardness difference portion 12. It may be larger. Further, the thickness of the second region portion 13 in the circumferential direction may be uniform. In the circumferential direction of the second region portion 13, when the maximum thickness is T3 max and the minimum thickness is T3 min , the difference obtained by subtracting T3 min from T3 max is 0.50 mm or less. You can. On the other hand, the second region portion 13 may have different wall thicknesses in its longitudinal direction.
  • the cross-sectional shape (the shape of the cross-section perpendicular to the longitudinal direction) of the second region portion 13 is not particularly limited, and examples thereof include circles such as a perfect circle and ellipse, and polygons such as a rectangle.
  • the polygon referred to here includes not only a strict polygon but also a shape in which portions corresponding to the corners of the polygon are arcuate.
  • the circumferential hardness difference portion 12 may have the same outer diameter, inner diameter, and wall thickness as the first region portion 11 and the second region portion 13, but has a different Vickers hardness distribution.
  • the wall thickness of the circumferential hardness difference portion 12 is such that the difference in wall thickness obtained by subtracting the minimum value from the maximum value of the wall thickness in the circumferential direction of the cross section perpendicular to the central axis CL is the same at each position in the longitudinal direction.
  • the thickness is 20% or less (preferably 10% or less) of the average wall thickness around the entire circumference of the cross section.
  • the average value referred to here is not the average value of the maximum value and the minimum value, but is a value obtained by determining the wall thickness distribution along the entire circumference in the circumferential direction, and then integrating and averaging the wall thickness distribution.
  • the thickness difference is preferably 0.10 mm or less, and 0.05 mm or less. is more preferable, and most preferably 0.03 mm or less.
  • the circumferential hardness difference portion 12 has a hardness distribution along the circumferential direction at each position in the longitudinal direction.
  • FIG. 3 An example of the hardness distribution in the circumferential hardness difference portion 12 is shown in FIG.
  • the measurement position shown on the horizontal axis of FIG. 3 is based on the position P min where the minimum value was obtained when Vickers hardness was measured at each position along the circumferential direction in the cross section shown in FIG. 2(b). 0°) and is expressed using an angle ⁇ (0° ⁇ 360°) from this reference.
  • the measurement position can also be indicated using the total circumferential length Lr (mm) of the circumferential hardness difference portion 12.
  • the position P max can be expressed as 0.5 ⁇ Lr (mm).
  • FIG. 3 also shows the measurement positions using the total circumferential length Lr (mm).
  • the circumferential hardness difference portion 12 has a hardness distribution in which the Vickers hardness changes regularly in the circumferential direction.
  • the hardness difference ⁇ HV obtained by subtracting the minimum value HV min from the maximum value HV max of Vickers hardness is 15 HV or more.
  • the circumferential hardness difference portion 12 has a low strength range 12A and a high strength range 12B at each position in the longitudinal direction. is formed.
  • the low strength range 12A when the average of the integrals of Vickers hardness in the circumferential direction of a cross section perpendicular to the central axis CL is the hardness threshold HV av , the Vickers hardness is equal to the hardness threshold HV at each position in the circumferential direction. It is defined as a range that is less than or equal to av .
  • the high strength range 12B is defined as a range in which the Vickers hardness exceeds the hardness threshold HV av at each position in the circumferential direction.
  • the low-strength range 12A includes a portion where the Vickers hardness gradually increases starting from the measurement position P min where the Vickers hardness is the minimum value and continues to one end of the high-strength range 12B, and a high-strength
  • the range 12B includes a part connected to the other end of the range 12B and where the Vickers hardness gradually decreases and returns to the measurement position P min .
  • the Vickers hardness has a maximum value HV max at a measurement position P max approximately at the center along the circumferential direction. The Vickers hardness gradually decreases toward the left and right in the circumferential direction around this measurement position P max , and continues into the low strength range 12A.
  • the measurement position P min in the low intensity range 12A and the measurement position P max in the high intensity range 12B will be described in more detail below. If the total outer circumferential length of the circumferential hardness difference portion 12 is Lr (mm), and the position P min where the Vickers hardness has the minimum value in the low strength range 12A is taken as a reference, then 0.3 ⁇ Lr (mm) ⁇ The Vickers hardness has a maximum value within the high strength range 12B, which is in the range of 0.7 ⁇ Lr (mm) (more preferably in the range of 0.4 ⁇ Lr (mm) to 0.6 ⁇ Lr (mm)). There is said position P max . In this embodiment, as shown in FIG.
  • the position P min and the position P max face each other with the central axis CL in between. Therefore, in FIG. 3, the position P min is set at 0° (0xLr) or 360° (1.0xLr) as the measurement position, and the position P min is set at 180° (0.5xLr). The position P max is set.
  • the low strength range 12A and the high strength range 12B are connected at two points a and b where the Vickers hardness at both ends of the low strength range 12A and the Vickers hardness at both ends of the high strength range 12B are equal to each other.
  • the measurement positions are in the range of 0° (0 ⁇ Lr) to 108° (0.3 ⁇ Lr) and in the range of 252° (0.7 ⁇ Lr) to 360° (1.0 ⁇ Lr). is set in the low intensity range 12A.
  • the range of more than 108° (0.3 ⁇ Lr) and less than 252° (0.7 ⁇ Lr) is set as the high-strength range 12B.
  • the ratio of the peripheral length La (mm) of the low strength range 12A to the total peripheral length Lr (mm) is within the range of 20% to 80%, and 30% to It is preferable to set it to 70% because a more remarkable effect can be obtained. Therefore, the ratio of the peripheral length Lb (mm) of the high strength range 12B to the total outer peripheral length Lr (mm) is the value obtained by subtracting the ratio of the above-mentioned peripheral length La (mm) from 100%. Note that the above description regarding the wall thickness and Vickers hardness in the circumferential hardness difference portion 12 excludes welded portions when such portions are included.
  • FIG. 4 is a side view showing the case where the load F is applied to the hollow member 10, in which (a) shows the state before the load F is applied, and (b) shows the state after the load F is applied.
  • the hollow member 10 includes a first region portion 11, a circumferential hardness difference portion 12, and a second region portion 13 in this order along its longitudinal direction.
  • a load F is applied to the tip of the first region 11 of the hollow member 10 along the central axis CL. If the load F at this time is a value during normal operation, the hollow member 10 will receive the load without bending and deforming.
  • the circumferential hardness difference portion 12 has a relatively soft low strength range 12A and a relatively hard high strength range 12B in the circumferential direction, these low strength ranges are not suitable for loads during normal operation.
  • the hollow member 10 continues to maintain its function as a strength member while maintaining the linear shape shown in FIG. 4(a).
  • the circumferential hardness difference portion 12 is in a low strength range, as shown in FIG. 4(b). 12A is bent and deformed more preferentially than the high strength range 12B. At this time, in the circumferential hardness difference portion 12, the low strength range 12A, which has a relatively lower Vickers hardness than the high strength range 12B, is actively plastically deformed. As a result, the hollow member 10 is bent and deformed so that the low strength range 12A is on the concave side and the high strength range 12B is on the convex side, and energy is absorbed in the process of this plastic deformation.
  • the bending direction of the hollow member 10 can be set depending on the relative positional relationship between the low strength range 12A and the high strength range 12B. Therefore, the direction in which the load F is applied may be at some angle with respect to the central axis CL, the application position of the load F may be shifted somewhat with respect to the central axis CL, or the direction of the reaction force against the load F may vary somewhat. Even if the hollow member 10 is bent or deformed in the desired direction, the hollow member 10 can be bent and deformed in the desired direction. As a result, a stable bending deformation mode can be realized, which increases the robustness of deformation against collision conditions.
  • the wall thickness of a hollow member is uneven along the circumferential direction, when it is subjected to twisting as an external force, areas with thinner walls will flex significantly, but areas with thicker walls will hardly flex. Differences such as this occur between each part.
  • the ease of deformation is affected by the difference in wall thickness to the third power, so out-of-plane deformation tends to concentrate in areas where the wall thickness is thin.
  • the wall thickness of the circumferential hardness difference portion 12 is uniform along the circumferential direction, such a disadvantage can be avoided.
  • the hollow member 10 described above Although it is difficult to distinguish the hollow member 10 described above from its appearance alone, it can be confirmed by the following method. First, it is confirmed whether or not there is a circumferential hardness difference portion 12 having a hardness difference and a uniform wall thickness in the circumferential direction.
  • the "circumferential direction” refers to a direction along the outer periphery of the cylindrical shape in a cross section perpendicular to the longitudinal direction.
  • the term “hardness difference” refers to the distribution of Vickers hardness, which will be explained below. First, Vickers hardness is measured along the entire 360° circumferential direction. Then, as illustrated in FIG.
  • a graph is created in which the measurement position (circumferential angle ⁇ ) is plotted on the horizontal axis and the Vickers hardness is plotted on the vertical axis.
  • This graph may be created by approximating the plot data with a quadratic curve or a linear straight line.
  • the circumferential length La (mm) of the range that satisfies the aforementioned low intensity range 12A is determined.
  • the ratio of the circumferential length La (mm) to the total outer circumferential length Lr (mm) is determined, and if this ratio is within the range of 20% to 80%, it is defined as having a hardness difference.
  • the "hardness difference” is defined excluding welded parts (for example, joints of electric resistance welded pipes).
  • the difference ⁇ HV between the maximum value HV max of Vickers hardness and the minimum value HV min of Vickers hardness is set to be 15 HV or more, but may be 20 HV or more. , 30HV or more. If ⁇ HV is too small, the bending direction may not be determined and good robustness may not be obtained. On the other hand, an example of the upper limit of ⁇ HV is 120HV. Further, the values of HV max and HV min are not particularly limited, but as long as the above-mentioned ⁇ HV can be ensured between them, they may each be set to, for example, 80 HV or more, 150 HV or more, or 200 HV or more.
  • Vickers hardness may be converted into tensile strength (TS) based on JIS Handbook Steel I.
  • steel in the range of 100 HV to 400 HV, it can also be converted using the approximate formula TS [MPa] ⁇ 3.12 ⁇ HV+16.
  • TS max the maximum value of tensile strength
  • TS min the minimum value of tensile strength
  • the difference ( ⁇ TS) between TS max and TS min is, for example, 40 MPa or more, and may be 80 MPa or more.
  • ⁇ TS is, for example, 390 MPa or less.
  • TS max and TS min are not particularly limited, but as long as the above-mentioned ⁇ TS can be ensured between them, they may each be set to, for example, 270 MPa or more, 490 MPa or more, or 680 MPa or more.
  • the measurement position instead of defining the measurement position when showing the hardness distribution using the angle ⁇ with the position P min where the Vickers hardness is the minimum value (HV min ) as the reference (0°). , it may be defined using the total circumferential length Lr (mm) of the outer periphery of the circumferential hardness difference portion 12. In this case, the measurement position can be defined as x ⁇ Lr (0 ⁇ x ⁇ 1) with the position P min as a reference (0 mm). Specifically, by measuring the Vickers hardness all around the circumferential direction in the circumferential hardness difference portion 12, the Vickers hardness at each measurement position starting from P min (measurement position 0 mm) is determined. Seek change. For example, FIG.
  • FIG. 3 shows changes in Vickers hardness at each position of x ⁇ Lr (0 ⁇ x ⁇ 1), and there is one peak of Vickers hardness.
  • the position of the peak coincides with the position P max where the Vickers hardness reaches the maximum value HV max .
  • the peak of Vickers hardness exists at a position of 0.5 ⁇ Lr with respect to the measurement position P min .
  • the position of the peak of Vickers hardness may exist at a position smaller than 0.3 x Lr or at a measurement position larger than 0.7 x Lr.
  • the position of the peak of Vickers hardness exists at a position of 0.75 ⁇ Lr with P min as a reference.
  • the cross-sectional shape (the shape of the cross-section perpendicular to the longitudinal direction) of the circumferential hardness difference portion 12 is not particularly limited, and examples thereof include a perfect circle, a circle such as an ellipse, and a polygon such as a rectangle.
  • the polygon referred to here includes not only a strict polygon but also a shape in which portions corresponding to the corners of the polygon are arcuate.
  • FIG. 5 is a diagram showing the head portion 20H of the plug 20, in which (a) is a perspective view seen from the front end side, and (b) is a perspective view seen from the rear end side.
  • FIG. 6 is a diagram showing the head portion 20H, in which (a) is a side view and (b) is a front view. As shown in FIG. 7, the head portion 20H is coaxially fixed to the tip of the shaft portion 20S.
  • the head portion 20H shown in FIGS. 5 and 6 includes a tapered portion (tip portion) 20a having a tip surface 21 and a parallel portion (main body portion) 20b.
  • the parallel portion 20b usually has an outer dimension that is larger than the inner dimension of the base pipe, which will be described later, and smaller than the inner dimension of the first structure portion 40a of the die 40, which will be described later.
  • the raw pipe and the hollow member 10 have a circular cross section, the dimensions are indicated as “inner diameter dimension” and “outer diameter dimension”, but the raw pipe and the hollow member 10 of the present disclosure have only a circular cross section. Not limited to. Therefore, in this specification, dimensions that include a cross section other than a circular cross section, such as a rectangular cross section, are sometimes expressed as "inner dimensions” and "outer dimensions” as described above.
  • the head portion 20H has a length L in the longitudinal direction D A along the central axis CL from the tip end surface 21 to the taper start point t in a side view. Each position is different.
  • t2 be the taper start point where the length L is the shortest Lmin .
  • the direction D B connecting the taper start points t1 and t2 in side view does not intersect orthogonally with the longitudinal direction D A, but diagonally intersects with the longitudinal direction D A. ing.
  • the head portion 20H includes a tapered portion 20a that tapers toward the pushing direction, and a parallel portion 20b that is continuous with the rear end of the tapered portion 20a and has the maximum external dimension (outer diameter dimension) in a cross section perpendicular to the pushing direction. have.
  • the connection surface CS including the connection line between the tapered part 20a and the parallel part 20b is inclined with respect to the virtual plane VS perpendicular to the central axis CL of the head part 20H.
  • taper start points t1 and t2 are arranged opposite to each other on the connection line with the center axis CL in between.
  • the angle (acute angle) between the direction D B and the direction D A is, for example, 50° or less, and may be 45° or less.
  • the taper angle ⁇ at each taper start point t is the same at each position in the circumferential direction of the head portion 20H.
  • the head portion 20H having the above-described tapered shape in the plug 20 By using the head portion 20H having the above-described tapered shape in the plug 20, movement of the meat along the circumferential direction can be caused during ironing of the raw pipe. Specifically, the flesh of the inner wall of the raw tube, which corresponds to the taper start point t2, moves from the taper start point t2 toward the taper start point t1 along the circumferential direction of the inner wall of the raw tube. Therefore, in the inner wall of the raw pipe, the rate of thickness reduction is low around the taper start point t2, and a thin wall portion with low Vickers hardness is formed.
  • the wall thickness of the inner wall of the raw tube gathers from the surrounding area, so that the rate of thinning increases and a thin walled portion with high Vickers hardness is formed. Therefore, by ironing the raw pipe using the plug 20 having the head portion 20H, it is possible to form the circumferential hardness difference portion 12 having a hardness distribution in the circumferential direction in the hollow member 10 after manufacture. can.
  • the external dimensions of the parallel portion 20b are constant regardless of the position of the taper start point t. Therefore, as shown in FIG. 7, the distance between the outer circumferential surface of the parallel portion 20b and the inner circumferential surface of the die 40 is constant in the circumferential direction around the central axis CL. Therefore, the circumferential hardness difference portion 12 having a uniform thickness in the circumferential direction can be formed in the hollow member 10.
  • FIG. 7 is a cross-sectional view showing the first half of the hollow member manufacturing method using the plug 20 having the head portion 20H in chronological order from (a) to (c).
  • (a) shows the raw pipe arrangement process
  • (b) shows the locking process
  • (c) shows the ironing process
  • FIG. 8 is a cross-sectional view showing the latter half of the hollow member manufacturing method following FIG. 7(c) in chronological order in the order of (a) and (b).
  • FIG. 8 shows the start of the drawing process
  • (b) shows the completion.
  • the material pipe 30 used in this embodiment one having a tensile strength of 290 MPa or more is preferably used.
  • the material pipe 30 used has a tensile strength of 440 MPa or 980 MPa.
  • the material of the raw pipe 30 is not limited to steel, and may be other metals such as aluminum.
  • the raw pipe 30 is, for example, a hollow cylindrical metal pipe (including a steel pipe). It is particularly preferable that the raw pipe 30 is a round steel pipe.
  • the round steel pipe may be a seamless steel pipe, a UO pipe, a spiral pipe, or an electric resistance welded steel pipe.
  • the cross-sectional shape of the raw tube 30 perpendicular to the longitudinal direction may be circular, oval, rectangular, or the like.
  • the raw pipe 30 is first placed in the die 40, and further, the movement of the raw pipe 30 in the longitudinal direction is restricted by the stopper 50.
  • the die 40 includes a first structure portion 40a having an inner dimension (inner diameter) corresponding to the outer dimension of the raw tube 30.
  • inner dimensions corresponding to the outer dimensions of the raw pipe refer to inner dimensions obtained by adding a gap to the extent that the raw pipe can be inserted and removed to the outer dimensions of the raw pipe.
  • the die 40 has a larger inner dimension (inner diameter) than the outer dimension of the raw tube 30, and includes a second structure portion 40b for enlarging the outer shape of the one end 30x side of the raw tube 30.
  • the head portion 20H of the plug 20 is pushed in from the one end 30x side of the raw pipe 30 to enlarge the outer shape of the one end 30x side of the raw pipe 30 to form the expanded portion 30a.
  • the expanded portion 30a locks the raw tube 30 to the die 40.
  • the head portion 20H of the plug 20 has a distal end surface 21 smaller than the internal dimensions of the blank tube 30.
  • the enlarged portion 30a is formed by pushing the head portion 20H of the plug 20, but the processing at this time is tube expansion processing and not ironing processing. Therefore, in the enlarged portion 30a, the hardness distribution in the circumferential direction as shown in FIG. 3 hardly occurs.
  • the stopper 50 is removed from inside the die 40, and the restriction on movement of the raw pipe 30 in the longitudinal direction is released. Furthermore, while maintaining the locking of the raw pipe 30, the head portion 20H of the plug 20 is pushed from the one end 30x side of the raw pipe 30 toward the other end 30y side, and an ironing process is applied to expand the inner shape of the raw pipe 30. . Thereby, the thickness of the raw pipe 30 is reduced to form a thin wall portion 30b.
  • the thin portion 30b has a uniform wall thickness and a circumferential hardness distribution in the circumferential direction.
  • a portion of the raw pipe 30 that has not been ironed becomes an unprocessed portion 30c.
  • FIG. 8(a) is an intermediate body W1 obtained through the steps shown in FIGS. 7(a) to (c), and is a schematic cross-sectional view taken along the central axis CL.
  • This intermediate body W1 has a first region portion 11, a circumferential hardness difference portion 12, and a portion corresponding to the second region portion 13 along the longitudinal direction DL.
  • This intermediate body W1 may be used as the hollow member 10.
  • the enlarged portion 30a in the intermediate body W1 is shrunk by passing through a die (another die) 60 to return the outer dimensions of the enlarged portion 30a to the original size.
  • a drawing process may be further performed.
  • the die 60 has an inner dimension (inner diameter) corresponding to an outer dimension (outer diameter d1) of the raw pipe 30. Since this internal dimension is smaller than the outer diameter dimension of the enlarged portion 30a, when the intermediate body W1 is passed through the die 60, it is inserted without being caught in the second region portion 13 and the circumferential hardness difference portion 12. , the enlarged portion 30a is narrowed so that its outer shape is small.
  • the thick part obtained by contracting the original enlarged part 30a becomes the first region part 11
  • the thin part continuous to this first region part 11 and ironed becomes the circumferential hardness difference part 12
  • a thick portion that is continuous with this circumferential hardness difference portion 12 and has a wall thickness greater than that of the circumferential hardness difference portion 12 becomes a second region portion 13 .
  • the circumferential hardness difference portion 12 is thinner than the first region portion 11 and the second region portion 13 on both sides thereof, and therefore has the thinnest thickness in the hollow member 10.
  • a tapered portion is formed on the inner wall surface of the first region portion 11 at the connection end with the circumferential hardness difference portion 12 .
  • a tapered portion is formed on the inner wall surface of the second region portion 13 at the connection end with the circumferential hardness difference portion 12.
  • the material obtained in FIG. 8(b) may be regarded as the intermediate body W1, and by applying press working to this intermediate body W1, the cross-sectional shape perpendicular to the longitudinal direction may be processed into a shape other than circular.
  • a press forming process may be further performed in which the intermediate body W1 is press-formed so that the cross-sectional shape perpendicular to the longitudinal direction is rectangular.
  • a hollow member 10 having a rectangular cross-sectional shape at each position in the longitudinal direction can be manufactured.
  • the drawing process shown in FIG. 8(b) was performed following the ironing process shown in FIG. 7(c).
  • the parts corresponding to the first region part 11 and the second region part 13 are cut and removed from the intermediate body W1 shown in FIG.
  • a cutting process may be performed that leaves only the remaining part. In this case, it is possible to manufacture the hollow member 10 having a constant wall thickness and having a hardness difference distribution in the circumferential direction over the entire length.
  • the maximum value and minimum value of Vickers hardness were in a positional relationship opposite to each other with the central axis CL in between.
  • the maximum value of Vickers hardness is shifted from 180° (0.5 ⁇ Lr), for example, 270 A configuration at a position of 0.75 ⁇ Lr may also be adopted.
  • the hollow member 10 shown in FIG. 10(a) may be manufactured by performing the above-described cutting process.
  • This hollow member 10 is provided with a hardness difference distribution in the circumferential direction over its entire length.
  • only one of the first region portion 11 and the second region portion 13 may be cut.
  • FIG. 10(b) only the first region portion 11 is cut and removed, leaving the circumferential hardness difference portion 12 and the second region portion 13.
  • the Vickers hardness has a distribution in the longitudinal half, while the Vickers hardness in the circumferential direction is uniform in the remaining half.
  • the hollow member 10 of the above embodiment shown in FIG. 1 will be compared with the modified hollow member 10 shown in FIGS. 10(a) and 10(b).
  • the hollow member 10 shown in FIG. A region section 13 is provided.
  • the hardness difference between HV max and HV min in the circumferential hardness difference portion 12 is made smaller than that of the hollow member 10 shown in FIGS. 10(a) and 10(b). Good robustness can also be obtained.
  • the length of the circumferential hardness differential portion 12 relative to the entire length It is preferable that the ratio is 5% or more and 50% or less.
  • the length of the circumferential hardness difference portion 12 in the longitudinal direction of the hollow member 10 is preferably 10 mm or more.
  • the circumferential hardness difference portion 12 may have a plurality of peak positions P max in the circumferential direction.
  • the Vickers hardnesses at these two positions P max are the same.
  • the Vickers hardnesses at these two positions P min are also the same.
  • the Vickers hardness at the 0° position is the minimum value HV min .
  • the position P min becomes.
  • the Vickers hardness increases as it moves in the circumferential direction from the position P min , and the Vickers hardness reaches its maximum value HV max at the 90° position P max .
  • the Vickers hardness decreases as it moves in the circumferential direction from the 90° position P min , and the Vickers hardness reaches the minimum value HV min at the 180° position P min .
  • the Vickers hardness increases as it moves in the circumferential direction from the 180° position P min , and the Vickers hardness reaches its minimum value HV max at the 270° position P max .
  • the Vickers hardness decreases as it moves in the circumferential direction from the 270° position P max , and returns to the 360° position P min , that is, the measurement position 0°, where the Vickers hardness reaches the minimum value HV min .
  • the Vickers hardness thereof periodically increases and decreases multiple times along the circumferential direction.
  • weak parts with low Vickers hardness can be formed at two circumferential locations, so it is possible to intentionally increase the bending direction of the hollow member 10 in two predetermined directions. become.
  • the Vickers hardness may be increased or decreased in a curved or linear manner.
  • the circumferential distribution of Vickers hardness shown in FIG. 11 can be provided by the plug 20 having another head portion 120H shown in FIG. 12.
  • the head portion 120H shown in FIG. 12 includes a tapered portion (tip portion) 120a having a tip surface 121 and a parallel portion (main body portion) 120b.
  • the parallel portion 120b has an outer dimension that is larger than the inner dimension of the raw pipe and smaller than the inner dimension of the first structural portion 40a of the die 40.
  • connection line between the tapered part 120a and the parallel part 120b connects to a plurality of (two in this modified example) first connection points p1 closest to the tip surface 121 of the head part 120H in a side view, and to each of the first connection points p1 in a front view.
  • connection line when the connection line is viewed along the circumferential direction of the head portion 120H, it extends from the tip surface 121 as it progresses along the circumferential direction from the first of the two first connection points p1 closest to the tip surface 121. It moves away and reaches the first second connection point p2 located at the farthest position from the tip surface 121. Subsequently, as it moves along the circumferential direction from this first second connection point p2, it approaches the tip surface 121, and then reaches the second first connection point p1 located at the position closest to the tip surface 121. .
  • connection line may be employed in the head portion 120H, in which the connection line repeatedly moves toward and away from the tip surface 121 as it progresses along the circumferential direction.
  • the number of first connection points p1 and second connection points p2 is not limited to two each, but may be three or more.
  • the first connection points p1 on the front end side in the pushing direction squeeze the inner wall early, but the second connection points p2 on the rear end side in the pushing direction squeeze the inner wall later. Squeeze the inner wall.
  • the meat that was squeezed first moves along the circumferential direction and moves toward the area that is squeezed later.
  • the inner wall after ironing has two high strength ranges 12B where the meat is concentrated and the Vickers hardness is increased, and two low strength ranges where the meat flows out and the Vickers hardness is relatively low.
  • a range 12A is formed.
  • the circumferential distribution of Vickers hardness shown in FIG. 11 is formed.
  • hollow member 10 in the present disclosure is not particularly limited, examples thereof include automobile parts.
  • automobile parts include frame members such as cross members, suspension members, suspension arms, front side members, and rear side members, collision response parts such as perimeters and side impact bars, and drive system pipe parts such as drive shafts. .
  • Examples T2, T4, T5 and Comparative Examples T1, T3 shown in FIG. 13 were evaluated.
  • the steel pipes shown in FIG. 13 are all circular steel pipes having a center axis CL, and all have the same outer diameter.
  • Examples T2, 4, and 5 which have a circumferential distribution of Vickers hardness corresponding to the circumferential hardness difference portion 12, the Vickers hardness has the minimum value at the measurement position 0°, and the Vickers hardness reaches the minimum value at the measurement position 180°. is set to the maximum value. Note that the level of Vickers hardness is indicated by shading.
  • Comparative Examples T1 and T3 the Vickers hardness in the circumferential direction was set to a constant value.
  • Example T2 the entire length in the longitudinal direction is the circumferential hardness difference portion 12. That is, the Vickers hardness increases and decreases in the circumferential direction within a range of 245 to 277 HV.
  • the weak portion (low strength range 12A) where the Vickers hardness is the minimum value is set at the bottom of the page, and the strong portion (high strength range 12B) where the Vickers hardness is the maximum value is set at the top of the page.
  • the wall thickness is equal to 1.5 mm at each position of the entire length and circumference.
  • Example T4 like the hollow member 10 shown in FIG. 1, has a first region portion 11, a circumferential hardness difference portion 12, and a second region portion 13 that are arranged along the longitudinal direction.
  • the first region portion 11 and the second region portion 13 each have a constant Vickers hardness of 213 HV along the circumferential direction, and a constant wall thickness of 3.0 mm along the circumferential direction.
  • the circumferential hardness difference portion 12 the Vickers hardness increases and decreases in the circumferential direction in the range of 245 to 277 HV, and the wall thickness is constant at 1.5 mm along the circumferential direction.
  • the circumferential hardness difference portion 12 is provided at a central position in the longitudinal direction, and its length is 10% of the total length of the hollow member 10.
  • the weak portion (low strength range 12A) where the Vickers hardness is the minimum value is at the bottom of the page
  • the strong portion high strength range 12B where the Vickers hardness is the maximum value is at the bottom of the page. It is set upward.
  • Example T5 like the hollow member 10 shown in FIG. 1, has a first region portion 11, a circumferential hardness difference portion 12, and a second region portion 13 that are arranged along the longitudinal direction.
  • the first region portion 11 and the second region portion 13 each have a constant Vickers hardness of 277 HV along the circumferential direction, and a constant wall thickness of 1.5 mm along the circumferential direction.
  • the circumferential hardness difference portion 12 the Vickers hardness increases and decreases in the circumferential direction in the range of 245 to 277 HV, and the wall thickness is constant at 1.5 mm along the circumferential direction.
  • the circumferential hardness difference portion 12 is provided at a central position in the longitudinal direction, and its length is 10% of the total length of the hollow member 10.
  • the weak portion (low strength range 12A) where the Vickers hardness is the minimum value is at the bottom of the page
  • the strong portion high strength range 12B where the Vickers hardness is the maximum value is at the bottom of the page. It is set upward.
  • the entire length in the longitudinal direction is the first region portion 11. That is, the Vickers hardness is constant at 245 HV along the circumferential direction, and the wall thickness is also constant at 1.5 mm along the circumferential direction.
  • Comparative example T3 has three ranges lined up along its longitudinal direction. That is, at both end portions, the Vickers hardness is constant at 213 HV along the circumferential direction, and the wall thickness is also constant at 3.0 mm along the circumferential direction.
  • the central portion the Vickers hardness is constant at 245 HV along the circumferential direction, and the wall thickness is also constant at 1.5 mm along the circumferential direction. This central portion is provided at the central position in the longitudinal direction, and its length is 10% of the total length of the hollow member 10.
  • Model A has a fixed end that is not inclined with respect to the support surface (the central axis CL of the hollow member is perpendicular to the support surface).
  • Model B the central axis CL of the hollow member was a fixed end having an inclination of 15° with respect to the support surface.
  • OK A case where bending deformation occurred such that the lower side of the page was a concave side and the upper side of the page was a convex side was evaluated as OK.
  • cases where axial collapse occurred or folding in the direction of reaction force occurred were evaluated as NG. The results are shown in Table 1.
  • the hollow member 10 was manufactured by the manufacturing method shown in FIG. 7 using the plug 20 having the head portion 20H shown in FIG. 5 and the raw pipe (steel pipe) 30.
  • the Vickers hardness of the circumferential hardness difference portion 12 of the obtained hollow member 10 was measured under an indentation load of 1 kgf and at a pitch of 5 mm in the circumferential direction.
  • the difference obtained by subtracting HV min from HV max was about 25 HV or more.
  • the difference obtained by subtracting T min from T max was 0.1 mm or less. From the above, it was confirmed through actual measurements that the circumferential hardness difference portion 12 could be formed by the plug 20.
  • Example T6 shown in FIG. 16(a) was prepared as a model of the hollow member 10 in which the circumferential hardness difference portion 12 was formed over the entire length in the longitudinal direction.
  • the Vickers hardness was set to be the lowest in the lower part of the paper and the highest in the upper part of the paper over the entire length.
  • This embodiment T6 has the same configuration as the hollow member 10 shown in FIG. 10(a).
  • Example T7 shown in FIG. 17(a) was prepared as a model of the hollow member 10 in which the circumferential hardness difference portion 12 was formed only at the central position in the longitudinal direction.
  • the Vickers hardness was set to be the lowest in the lower part of the paper and the highest in the upper part of the paper.
  • This embodiment T7 has the same configuration as the hollow member 10 shown in FIG.
  • Example T6 and T7 the plate thickness and size and shape were the same.
  • the distribution of Vickers hardness was calculated by changing the difference (circumferential hardness difference) obtained by subtracting the minimum value from the maximum value of Vickers hardness. Then, based on these calculation results, the boundary value at which the bending deformation switches from an unstable state to a stable state was determined when the circumferential hardness difference was gradually increased. Note that, as in the first embodiment, Abaqus/Explicit was used as the analysis software.
  • Example T6 the bending deformation was unstable in Fig. 16(c) where the circumferential hardness difference was 22HV, but the bending deformation was stable in Fig. 16(b) where the circumferential hardness difference was 26HV. did. Therefore, it was found that Example T6 required a circumferential hardness difference of 26 HV.
  • Example T7 the bending deformation was unstable in FIG. 17(c) where the circumferential hardness difference was 10 HV, but the bending deformation was unstable in FIG. 17(b) where the circumferential hardness difference was 13 HV. has stabilized. Therefore, it was found that Example T7 required a circumferential hardness difference of 13 HV.
  • Center axis HV av hardness threshold Lr Total outer circumference length P min hardness minimum position P max hardness maximum position p1 1st connection point p2 2nd connection point VS Virtual plane (perpendicular to the center axis of the plug surface)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

この中空部材は、中心軸線に沿う長手方向の少なくとも一部に周方向硬さ差部を有する。そして、前記周方向硬さ差部を、前記中心軸線に直交する断面で見て、前記断面の周方向における肉厚の最大値から前記肉厚の最小値を差し引いた肉厚差が、前記断面の全周における前記肉厚の平均値の20%以下である。さらに、前記断面の全周におけるビッカース硬さの積分の平均を硬さ閾値として、前記周方向に沿ったビッカース硬さが前記硬さ閾値以下である低強度範囲と、前記周方向に沿ったビッカース硬さが前記硬さ閾値超である高強度範囲とを、前記断面が含む。

Description

中空部材及び中空部材製造方法
 本開示は、中空部材及び中空部材製造方法に関する。
 自動車の車体を構成する車体部材(中空部材)を、その長手方向に沿って肉厚が異なる差厚鋼管を用いて製造することが知られている。この種の差厚鋼管の製造方法の一例が、特許文献1に開示されている。この特許文献1には、中空筒状の素管より差厚鋼管を製造する方法であって、前記素管をダイス内に配置し、前記素管の長手方向への移動を規制した状態で、前記素管の一端側よりプラグを押し込んで前記一端側の外形を拡大させて前記ダイスに係止させる係止工程と;前記素管の前記規制を解く一方、前記素管の前記係止は維持したまま、前記プラグをさらに前記素管の他端側に向かって押し込むことで、前記素管の外形を維持したまま内形を拡げるしごき加工を加えて薄肉部を形成するしごき加工工程と;を有する差厚鋼管の製造方法が開示されている。
国際公開第2017/154481号
 一方、自動車の衝突安全性能試験では、衝突に対する安全性を、車体部材の変形程度等により評価している。車体部材は、衝突条件に対する変形のロバスト性が高いことが好ましい。衝突条件に対する変形のロバスト性とは、衝突角度などの衝突条件が多少変わったとしても、車体部材の変形モードが変わらず、安定した変形が得られることを言う。
 安定した変形モードを得るための従来構成として、例えば、車体部材(中空部材)の長手方向途中位置に緩い曲げを予め与えておく構成があった。しかし、この構成では、衝突に至らない通常運用時において捻り方向の外力を受けた場合に、車体部材が不安定な挙動をして部品性能を低下させる懸念があった。
 本開示は、上記実情に鑑みてなされたものであって、通常運用時における部品性能を低下させることなくロバスト性が高められた中空部材と、この中空部材を製造する中空部材製造方法と、の提供を目的とする。
 本開示は、上記事情に鑑みて以下の各態様を採用した。
 すなわち、
(1)本開示の一態様に係る中空部材は、
 中心軸線に沿う長手方向の少なくとも一部に周方向硬さ差部を有し;
 前記周方向硬さ差部を、前記中心軸線に直交する断面で見て、
  前記断面の周方向における肉厚の最大値から前記肉厚の最小値を差し引いた肉厚差が、前記断面の全周における前記肉厚の平均値の20%以下であり、
  前記断面の全周におけるビッカース硬さの積分の平均を硬さ閾値として、前記周方向に沿ったビッカース硬さが前記硬さ閾値以下である低強度範囲と、前記周方向に沿ったビッカース硬さが前記硬さ閾値超である高強度範囲とを、前記断面が含む。
 上記(1)に記載の態様によれば、周方向硬さ差部を備えることにより、周方向において相対的に柔らかい低強度範囲と相対的に硬い高強度範囲とが中空部材の同一断面内に形成される。そして、通常運用時には、これら低強度範囲及び高強度範の何れもが弾性変形の範囲内において外力を支えるので、部品性能を低下させることがない。一方、通常運用時よりも強い衝撃力などの外力を受けた場合には、周方向硬さ差部のうちの低強度範囲が積極的に塑性変形してエネルギー吸収を行う。その結果、中空部材は、低強度範囲が凹側でかつ高強度範囲が凸側となるように折れ変形する。このように低強度範囲と高強度範囲との相対的な位置関係により中空部材の折れ方向を設定できるので、ロバスト性が高い。
(2)上記(1)に記載の中空部材において、
 前記断面の全外周長に対して前記低強度範囲の周長が占める割合が、20%~80%の範囲内であってもよい。
 上記(2)の場合は、前記割合の下限値が20%であることにより、周方向硬さ差部を低強度範囲において確実に塑性変形させて折ることができる。一方、前記割合の上限値が80%であることにより、低強度範囲が過度に広くならないように限定して中空部材の折れ方向を所定範囲内に制限できる。
(3)上記(1)又は上記(2)に記載の中空部材において、以下の構成を採用してもよい:
 前記断面における全外周長がLr(mm)であり;
 前記ビッカース硬さが最小値となる硬さ最小位置を基準として、前記周方向の0.3×Lr(mm)~0.7×Lr(mm)の範囲内に、前記ビッカース硬さが最大値となる硬さ最大位置がある。
 上記(3)の場合は、ビッカース硬さが最小値となる部分と、ビッカース硬さが最大値となる部分とを、中空部材の中心軸線を間に挟んでほぼ対向配置できる。よって、中空部材の折れ方向がより制御しやすい。
(4)上記(1)~上記(3)の何れか1項に記載の中空部材において、以下の構成を採用してもよい:
 前記断面における前記肉厚差が0.10mm以下であり;
 前記断面における前記ビッカース硬さの最大値から前記ビッカース硬さの最小値を差し引いた差分が15HV以上である。
 上記(4)の場合は、前記断面における周方向に沿った肉厚をより均一とした上で、ビッカース硬さの差分を15HV以上に高めているので、低強度範囲を塑性変形しやすくして中空部材の折れ方向をより精度良く設定できる。
(5)上記(1)~上記(4)の何れか1項に記載の中空部材において、
 前記周方向硬さ差部が、前記長手方向の一部のみに形成されていてもよい。
 上記(5)の場合は、高強度範囲及び低強度範囲間のビッカース硬さの差分が
小さくても、確実に低強度範囲を塑性変形させて中空部材を折ることができる。一例を挙げると、後述する図17(a)の形態では、図16(a)の形態よりも小さいビッカース硬さの差分(例えば10HV)で中空部材を折ることが出来る。
(6)上記(1)~上記(4)の何れか1項に記載の中空部材において、
 前記周方向硬さ差部が、前記長手方向の全長に亘って形成されていてもよい。
 上記(6)の場合は、中空部材を折れ変形させるのに要する外力の設定を、意図的に高めにすることができる。
(7)本開示の一態様に係る中空部材製造方法は、
 中空筒状の素管より中空部材を製造する方法であって、
 前記素管をダイス内に配置する素管配置工程と;
 前記素管にプラグを押し込んで前記素管の内壁を拡形しながら、前記内壁の肉を、前記素管の中心軸線に沿った視線で見て、前記内壁の周方向に送り出すようにしごく、しごき加工工程と;
を有する。
 上記(7)に記載の態様によれば、素管の中心軸線に沿った視線で見たときに、しごき加工工程で内壁の肉が内壁の周方向に送り出される。その結果、しごき加工後の内壁に、肉が集中してビッカース硬さが高められた高強度範囲と、肉が流れ出てビッカース硬さが相対的に低くなった低強度範囲とが形成される。これら高強度範囲及び低強度範囲を有する中空部材によれば、通常運用時には、これら低強度範囲及び高強度範の何れもが弾性変形の範囲内において外力を支えるので、部品性能を低下させることがない。一方、通常運用時よりも強い衝撃力などの外力を受けた場合には、低強度範囲が積極的に塑性変形してエネルギー吸収を行う。その結果、中空部材は、低強度範囲が凹側でかつ高強度範囲が凸側となるように折れ変形する。よって、低強度範囲及び高強度範囲の相対的な位置関係により中空部材の折れ方向を設定できるので、ロバスト性が高い中空部材を製造することができる。
(8)上記(7)に記載の中空部材製造方法において、以下を採用してもよい:
 前記プラグが、押し込み方向に向かって先細りとなる先端部と、前記先端部の後端に連なってかつ前記押し込み方向に垂直な断面における外形寸法が最大である本体部とを有し;
 前記先端部及び前記本体部間の接続線を含む面が、前記プラグの中心軸線に直交する面に対して傾斜している。
 上記(8)の場合は、先端部及び本体部間の接続線を含む面が傾斜しているので、プラグの押し込み方向において、この接続線が素管の内壁をしごくタイミングを、素管の内壁に沿った周方向の各位置で異ならせることができる。すなわち、前記接続線上の各点のうちで、押し込み方向の先端側にある点は早めに内壁をしごくが、押し込み方向の後端側にある点は遅れて内壁をしごく。その結果、先にしごかれた肉は、周方向に沿って移動し、遅れてしごかれる範囲へと向かう。このようにして、しごき加工後の中空部材に、肉が集中してビッカース硬さが高められた高強度範囲と、肉が流れ出てビッカース硬さが相対的に低くなった低強度範囲とが形成される。
(9)上記(7)に記載の中空部材製造方法において、以下を採用してもよい:
 前記プラグが、押し込み方向に向かって先細りとなる先端部と、前記先端部の後端に連なってかつ前記押し込み方向に垂直な断面における外形寸法が最大である本体部とを有し;
 前記先端部及び前記本体部間の接続線が、
  側面視で前記プラグの先端面に最も近い複数の第1接続点と、
  正面視で前記各第1接続点間に位置してかつ、側面視で前記各第1接続点よりも前記先端面から離れた位置にある複数の第2接続点と、
を含む。
 上記(9)の場合は、プラグの押し込み方向において、各第1接続点が素管の内壁をしごくタイミングを、各第2接続点が素管の内壁を通過するタイミングよりも早めることができる。すなわち、前記接続線上の各点のうちで、押し込み方向の先端側にある各第1接続点は早めに内壁をしごくが、押し込み方向の後端側にある各第2接続点は遅れて内壁をしごく。その結果、先にしごかれた肉は、周方向に沿って移動し、遅れてしごかれる範囲へと向かう。このようにして、しごき加工後の中空部材に、肉が集中してビッカース硬さが高められた高強度範囲と、肉が流れ出てビッカース硬さが相対的に低くなった低強度範囲とが形成される。
(10)上記(7)~上記(9)の何れか1項に記載の中空部材製造方法において、
 前記素管配置工程よりも後でかつ前記しごき加工工程よりも前に、前記素管の端部に前記プラグを押し込んで前記端部の外形を拡大させた拡形部を前記ダイスに係止させる係止工程と;
 前記しごき加工工程の後に、前記拡形部を他のダイスに通して縮形させる絞り加工工程と;
をさらに有してもよい。
 上記(10)の場合は、外形寸法が長手方向に沿って一様でありながら長手方向の途中位置に周方向硬さ差部を有する中空部材を製造することができる。
(11)上記(10)に記載の中空部材製造方法において、
 前記絞り加工工程よりも後に、前記中心軸線に垂直な断面形状が矩形となるようにプレス成形するプレス加工工程をさらに有してもよい。
 上記(11)の場合は、矩形の外形を持つ中空部材を製造することができる。
(12)上記(7)~上記(9)の何れか1項に記載の中空部材製造方法において、
 前記絞り加工工程よりも後に、前記中心軸線に垂直な断面形状が矩形となるようにプレス成形するプレス加工工程をさらに有してもよい。
 上記(12)の場合は、矩形の外形を持つ中空部材を製造することができる。
 本開示によれば、通常運用時における部品性能を低下させることなくロバスト性が高められた中空部材と、この中空部材を製造する中空部材製造方法とを提供できる。
本開示の一実施形態に係る中空部材の側面図であり、周方向のビッカース硬さ分布をグラデーションにより示している。 同中空部材の要部を示す図であって、(a)が図1のA部拡大図であり、(b)が(a)のB-B断面図である。なお、周方向のビッカース硬さ分布をグラデーションにより示している。 同中空部材のビッカース硬さ分布の一例を示すグラフであって、横軸が周方向の測定位置を示し、縦軸が各位置でのビッカース硬さを示す。 同中空部材に荷重を印加する場合を示す側面図であって、(a)が荷重の印加前を示し、(b)が荷重の印加後を示す。なお、周方向のビッカース硬さ分布をグラデーションにより示している。 同実施形態の中空部材製造方法で用いるプラグのヘッド部を示す図であって、(a)がその先端側から見た斜視図であり、(b)がその後端側から見た斜視図である。 同ヘッド部を示す図であって、(a)が側面図であり、(b)が正面図である。 同ヘッド部を有するプラグを用いた中空部材製造方法の前半部分を(a)~(c)の順に時系列で示した断面図である。ここで、(a)が素管配置工程を示し、(b)が係止工程を示し、(c)がしごき加工工程を示す。 図7(c)に続く中空部材製造方法の後半部分を、(a),(b)の順に時系列で示した断面図である。ここで、(a)が絞り加工工程の開始時を示し、(b)が完了時を示す。 中空部材の変形例を説明する図であって、同中空部材のビッカース硬さ分布を示すグラフである。ここで、横軸が周方向の測定位置を示し、縦軸が各位置でのビッカース硬さを示す。 中空部材の他の変形例を示す側面図であって、(a)が全長に亘ってビッカース硬さの周方向分布を付与した場合を示し、(b)が長手方向の半分にビッカース硬さの周方向分布を付与した場合を示す。なお、周方向のビッカース硬さ分布をグラデーションにより示している。 中空部材の他の変形例を示す図であって、中空部材のビッカース硬さ分布を示すグラフである。横軸が周方向の測定位置を示し、縦軸が各位置でのビッカース硬さを示す。 図11の中空部材を製造する際に用いるプラグの正面図である。 本開示の第1実施例を示す側面図であって、中空部材T2,T4,T5が実施例であり、中空部材T1,T3が比較例である。なお、周方向のビッカース硬さ分布をグラデーションにより示している。 中空部材T1~T5に外力を加える際の試験条件を示す側面図であり、(a)が中空部材T1~T5をその中心軸線CLに直交する平面で支持したModel Aを示し、(b)が中空部材T1~T5をその中心軸線CLに対して15度の傾斜角度をなす平面で支持したModel Bを示す。 本開示の第2実施例を示す図であって、図6に示すヘッド部を有するプラグを用いた中空部材製造方法で得た中空部材の、周方向におけるビッカース硬さ分布を示すグラフである。ここで、横軸が周方向の測定位置を示し、縦軸が各位置でのビッカース硬さを示す。 本開示の第3実施例を示す図であって、全長に亘ってビッカース硬さ分布を設けた場合の側面図である。ここで、(a)が衝撃力を印加する前を示し、(b)及び(c)が衝撃力を印加した後を示す。そして、(b)が強部及び弱部間のビッカース硬さの差分が15HVの場合を示し、(c)が強部及び弱部間のビッカース硬さの差分が10HVの場合を示す。なお、周方向のビッカース硬さ分布をグラデーションにより示している。 本開示の第4実施例を示す図であって、長手方向の中央位置にビッカース硬さ分布を設けた場合の側面図である。ここで、(a)が衝撃力を印加する前を示し、(b)及び(c)が衝撃力を印加した後を示す。そして、(b)が強部及び弱部間のビッカース硬さの差分が10HVの場合を示し、(c)が強部及び弱部間のビッカース硬さの差分が5HVの場合を示す。なお、周方向のビッカース硬さ分布をグラデーションにより示している。
 本開示に係る中空部材及び中空部材製造方法の実施形態及び各変形例を、図面を参照しながら以下に説明する。なお、各図では、理解を容易にするため、各部の大きさ及び形状を適宜誇張している場合がある。また、各図において、便宜上、ハッチングまたは符号を省略する場合がある。さらに、中空部材の中心軸線に沿った方向を長手方向、中心軸線を中心として中空部材の内壁面あるいは外壁面の周回りに沿う方向を周方向と呼ぶ場合がある。また、「最大値と最小値の平均値」などの断りが特にない場合は、ビッカース硬さに関する各平均値は、断面の周方向における積分の平均を示す。
 まず、本実施形態の中空部材を、図1~図4に基づいて説明する。続いて、この中空部材を製造する際に素管をしごき加工するプラグのヘッド部を、図5及び図6に基づいて説明する。続いて、このプラグを用いて行う中空部材製造方法を、図7及び図8を用いて説明する。そして最後に、本実施形態の変形例を図9及び図10を用いて説明する。
<中空部材>
 図1は、本実施形態に係る中空部材10の側面図であり、周方向のビッカース硬さ分布をグラデーションにより示している。図2は、中空部材10の要部を示す図であって、(a)が図1のA部拡大図であり、(b)が(a)のB-B断面図である。図3は、中空部材10のビッカース硬さ分布の一例を示すグラフであって、横軸が周方向の測定位置を示し、縦軸が各位置でのビッカース硬さを示す。
 図1及び図2に示すように、中空部材10は、直線状の中心軸線CLを有してかつ、中心軸線CLに沿って長い金属製の筒状体である。中空部材10は、その全長の各位置における断面形状が円形をなす円管であり、長手方向各位置における外径寸法、内径寸法、肉厚が互いに同じになっている。具体的な寸法としては、外径Dとして20mm~180mm、肉厚tとして0.4mm~10mmを例示できる。ここで、肉厚tは、周方向において均一であり、その最大寸法と最小寸法との差である肉厚差が、同一断面における周方向の肉厚の平均値の20%以下であることが好ましく、さらには10%以下であることがより好ましい。
 ただし、平板を管状に加工した溶接管を素管として製造された中空部材10の場合は、溶接部において肉厚がその周囲よりも不均一になりやすいため、この溶接部を除いた上で、上記の肉厚t及び肉厚差を設定する必要がある。具体的には、シーム溶接部を有する中空部材の場合は、その中心軸線CLに垂直な断面において、中心軸線CLとシーム溶接部の幅方向中央位置とを結ぶ直線を基準として、左回り方向10°及び右回り方向10°の両範囲を除く80%の範囲について、上記の肉厚t及び肉厚差を設定することが好ましい。シーム溶接以外の溶接部についても同様である。また、当然ながら、溶接部を持たない素管を用いて製造された中空部材の場合は、断面における周方向の100%について、上記の肉厚t及び肉厚差を設定することが好ましい。
 中空部材10は、図1に示すように、中心軸線CLに沿って紙面左側より右に向かって順に並ぶ、第1領域部11と周方向硬さ差部12と第2領域部13とを有する。つまり、本実施形態では、周方向硬さ差部12が、長手方向の中央部のみに形成されている。なお、図1及び図2では、周方向硬さ差部12の位置を明示するために、実線を用いて第1領域部11及び第2領域部13との境界を示している。しかし、実際には、このような境界は目視のみでは確認できない場合が多く、各部におけるビッカース硬さ分布を測定することにより確認できる。
 本開示におけるビッカース硬さは、中心軸線CLに垂直な断面においてJIS Z 2244:2020に基づいて測定される。測定時の押込荷重は1kgfである。ただし、押込荷重が大きすぎることによって圧痕同士の間隔がJIS Z 2244:2020で規定される基準を満たせない場合は、押込荷重を100gfとしてもよい。また、測定間隔は、圧痕同士の間隔がJIS Z 2244:2020で規定される基準を満たす限りにおいて、周方向に沿って10°以下または5mm以下とする。ただし、圧痕同士の間隔がJIS Z 2244:2020で規定される基準を満たせない場合は、以下のように2断面で測定する。すなわち、まず、中空部材10の一部を切り出して切断部を得て、この切断部の両側にある2つの切断面を測定対象とする。これらのうちの一方の切断面では周方向において0°から20°毎にビッカース硬さを測定し、他方の切断面では周方向において10°から20°毎にビッカース硬さを測定する。測定位置は、基本的には板厚中央部である。
 また、溶接部を有する素管から製造された中空部材10については、上述した肉厚tの測定と同様に、その中心軸線CLに垂直な断面において、中心軸線CLと溶接部の周方向中央位置とを結ぶ直線を基準として、左回り方向10°及び右回り方向10°の両範囲を除く80%の範囲について、ビッカース硬さを測定することが好ましい。また、溶接部を持たない素管を用いて製造された中空部材の場合は、その中心軸線CLに垂直な断面において、周方向の100%について、ビッカース硬さを測定する。
 図1の説明に戻り、前記第1領域部11は、その長手方向及び周方向の各位置における外径、内径、肉厚、ビッカース硬さが均一である。
 これらのうち、肉厚については、第1領域部11の長手方向の各位置において、中心軸線CLに垂直な断面の周方向における肉厚の最大値から最小値を差し引いた肉厚差が、同断面の周方向における肉厚の平均値の20%以下になっている。また、ビッカース硬さについては、周方向における硬さ分布を有しておらず均一になっている。すなわち、第1領域部11では、その長手方向の各位置において、中心軸線CLに垂直な断面の周方向におけるビッカース硬さの平均値が一定となっている。なお、肉厚及びビッカース硬さに関するこれらの説明は、第1領域部11が溶接部を含む場合にはその部位を除いたものである。
 第1領域部11は、規則的な硬さ分布を持たない領域である。第1領域部11の材質は、周方向硬さ差部12の材質と同じである。第1領域部11は、周方向硬さ差部12よりも変形抵抗が高い領域であり、軸方向に沿った荷重が入力された際に変形が生じにくい領域となっている。第1領域部11におけるビッカース硬さおよび肉厚は、周方向硬さ差部12よりも高い変形抵抗が得られれば特に限定されない。また、第1領域部11におけるビッカース硬さおよび肉厚は、それぞれ、長手方向において均一であってもよく、不均一であってもよい。なお、変形抵抗は、例えば、第1領域部11のうちの測定対象箇所を切り出して軸方向に荷重を入力した際の変形し易さで評価できる。よって、第1領域部11及び周方向硬さ差部12のそれぞれについて変形のし易さを求めて両者を比較し、相対的に変形しにくい方を相対的な変形抵抗が高いと評価し、相対的に変形し易い方を相対的な変形抵抗が低いと評価することができる。
 第1領域部11の周方向において、ビッカース硬さの最大値をHV1maxとし、ビッカース硬さの最小値をHV1minとする。この場合、HV1maxからHV1minを差し引いた差分ΔHV1は、例えば15HV未満である。差分ΔHV1は、10HV以下であってもよい。
 また、後述する周方向硬さ差部12の周方向において、ビッカース硬さの最大値をHV2maxとし、ビッカース硬さの最小値をHV2minとし、そしてHV2maxからHV2minを差し引いた差分をΔHV2とする。この場合、ΔHV1は、ΔHV2よりも小さい。そして、ΔHV2からΔHV1を差し引いた差分を、好ましくは3HV以上、より好ましくは5HV以上、最も好ましくは10HV以上としてもよい。
 また、第1領域部11の周方向における肉厚は、周方向硬さ差部12の周方向における肉厚と同じであってもよく、あるいは周方向硬さ差部12の周方向における肉厚より大きくてもよい。また、第1領域部11の周方向における肉厚は、均一であってもよい。具体的には、第1領域部11の周方向において、肉厚の最大値をT1maxとし、肉厚の最小値をT1minとした場合に、T1maxからT1minを差し引いた差分は、0.50mm以下であってもよい。一方、第1領域部11は、その長手方向において、肉厚が異なっていてもよい。
 なお、第1領域部11の断面形状(長手方向に直交する断面の形状)は、特に限定されないが、真円、楕円等の円形、矩形等の多角形が挙げられる。ここで言う多角形には、厳密な多角形のみならず、多角形の角に相当する部位が円弧状をなす形状も含まれる。
 前記第2領域部13も、第1領域部11と同じ構成を有する。すなわち、第2領域部13も、その長手方向及び周方向の各位置における外径、内径、肉厚、ビッカース硬さが均一である。これらのうち、肉厚については、第2領域部13の長手方向の各位置において、中心軸線CLに垂直な断面の周方向における肉厚の最大値から最小値を差し引いた肉厚差が、同断面の周方向における肉厚の平均値の20%以下になっている。また、ビッカース硬さについては、周方向における硬さ分布を有しておらず均一になっている。すなわち、第2領域部13では、その長手方向の各位置において、中心軸線CLに垂直な断面の周方向におけるビッカース硬さの平均値が一定となっている。なお、肉厚及びビッカース硬さに関するこれらの説明は、溶接部を含む場合にはその部位を除いたものである。
 第2領域部13も、第1領域部11と同様に、規則的な硬さ分布を持たない領域である。また、第2領域部13の材質は、周方向硬さ差部12の材質と同じである。また、第2領域部13は、周方向硬さ差部12よりも剛性が高い領域であり、軸方向に沿った荷重が入力された際に変形が生じにくい領域となっている。第2領域部13におけるビッカース硬さおよび肉厚は、周方向硬さ差部12よりも高い変形抵抗が得られれば特に限定されない。また、第2領域部13におけるビッカース硬さおよび肉厚は、それぞれ、長手方向において均一であってもよく、不均一であってもよい。なお、変形抵抗は、例えば、第2領域部13のうちの測定対象箇所を切り出して軸方向に荷重を入力した際の変形し易さで評価できる。よって、第2領域部13及び周方向硬さ差部12のそれぞれについて変形のし易さを求めて両者を比較し、相対的に変形しにくい方を相対的な変形抵抗が高いと評価し、相対的に変形し易い方を相対的な変形抵抗が低いと評価することができる。
 また、第2領域部13の周方向において、ビッカース硬さの最大値をHV3maxとし、ビッカース硬さの最小値をHV3minとする。この場合、HV3maxからHV3minを差し引いた差分ΔHV3は、例えば15HV未満である。差分ΔHV3は10HV以下であってもよい。
 また、後述する周方向硬さ差部12との比較において、ΔHV3は、ΔHV2よりも小さい。そして、ΔHV2からΔHV3を差し引いた差分を、好ましくは3HV以上、より好ましくは5HV以上、最も好ましくは10HV以上としてもよい。
 また、第2領域部13の周方向における肉厚は、周方向硬さ差部12の周方向における肉厚と同じであってもよく、あるいは周方向硬さ差部12の周方向における肉厚より大きくてもよい。また、第2領域部13の周方向における肉厚は、均一であってもよい。第2領域部13の周方向において、肉厚の最大値をT3maxとし、肉厚の最小値をT3minとした場合に、T3maxからT3minを差し引いた差分は、0.50mm以下であってもよい。一方、第2領域部13は、その長手方向において、肉厚が異なっていてもよい。
 なお、第2領域部13の断面形状(長手方向に直交する断面の形状)は、特に限定されないが、真円、楕円等の円形、矩形等の多角形が挙げられる。ここで言う多角形には、厳密な多角形のみならず、多角形の角に相当する部位が円弧状をなす形状も含まれる。
 周方向硬さ差部12は、第1領域部11及び第2領域部13と比べて、外径、内径、肉厚については同じとしてよいものの、ビッカース硬さ分布は異なっている。すなわち、周方向硬さ差部12の肉厚は、その長手方向の各位置において、中心軸線CLに垂直な断面の周方向における肉厚の最大値から最小値を差し引いた肉厚差が、同断面の全周における肉厚の平均値の20%以下(好ましくは10%以下)になっている。なお、ここで言う平均値は、最大値と最小値の平均値ではなく、周方向の全周に沿って肉厚分布を求め、そしてその肉厚分布を積分して平均化した値である。
 中空部材10の外径が例えば20mm~180mmで平均肉厚が例えば0.4~10mmである場合には、前記肉厚差を、0.10mm以下とすることが好ましく、0.05mm以下とすることがより好ましく、さらには0.03mm以下とすることが最も好ましい。
 そして、周方向硬さ差部12のビッカース硬さについては、図1及び図2(a),(b)に示すように、紙面下方が相対的に柔らかい低強度部、紙面上方が相対的に硬い高強度部となっている。このように、周方向硬さ差部12では、その長手方向の各位置において、周方向に沿った硬さ分布を有している。
 周方向硬さ差部12における硬さ分布の一例を、図3に示す。図3の横軸に示す測定位置は、図2(b)に示す断面において、ビッカース硬さをその周方向に沿った各位置で測定した際に最小値が得られた位置Pminを基準(0°)とし、この基準からの角度θ(0°≦θ≦360°)を用いて表現している。後述するように、測定位置は、周方向硬さ差部12の全周長Lr(mm)を用いて示すこともできる。例えば、図3における位置Pminは0×Lr(mm)=0(mm)、位置Pmaxは0.5×Lr(mm)と表現できる。図3では、角度θを用いた測定位置に加えて、全周長Lr(mm)を用いた測定位置も併記している。
 図3に示すように、本実施形態の硬さ分布は、角度θ=0°(Pmin)でビッカース硬さが最小値(HVmin)であり、角度θの増加に伴ってビッカース硬さも増加し、そして角度θ=180°(Pmax)でビッカース硬さが最大値(HVmax)となっている。角度θが180°を超えて増加していくと、ビッカース硬さが減少していき、角度θ=360°(Pmin)で最小値(HVmin)に戻る。このように、周方向硬さ差部12は、その周方向においてビッカース硬さが規則的に変化する硬さ分布を有する。周方向硬さ差部12において、ビッカース硬さの最大値HVmaxから最小値HVminを差し引いた硬さ差ΔHVは、15HV以上である。
 上記硬さ分布を持つことにより、図2(a),(b)に示すように、周方向硬さ差部12には、その長手方向の各位置において、低強度範囲12A及び高強度範囲12Bが形成されている。
 低強度範囲12Aは、中心軸線CLに垂直な断面の周方向におけるビッカース硬さの積分の平均を硬さ閾値HVavとしたときに、そのビッカース硬さが周方向の各位置において硬さ閾値HVav以下である範囲として規定される。
 これに対し、高強度範囲12Bは、そのビッカース硬さが周方向の各位置において硬さ閾値HVav超である範囲として規定される。
 図3に示すように、低強度範囲12Aは、ビッカース硬さが最小値である測定位置Pminを起点としてビッカース硬さが徐々に高くなって高強度範囲12Bの一端に連なる部分と、高強度範囲12Bの他端に連なってかつビッカース硬さが徐々に低くなって測定位置Pminに戻る部分とを含む。
 また、高強度範囲12Bは、その周方向に沿った略中央の測定位置Pmaxで、ビッカース硬さが最大値HVmaxとなっている。そして、この測定位置Pmaxを中心として周方向左右に向かうにしたがって、ビッカース硬さが徐々に低くなり、そして低強度範囲12Aに連なっている。
 低強度範囲12Aにおける測定位置Pminと、高強度範囲12Bにおける測定位置Pmaxとについて、以下に、より具体的に説明する。
 周方向硬さ差部12の全外周長をLr(mm)とし、そして低強度範囲12Aにおいてビッカース硬さが最小値となる位置Pminを基準とした場合、0.3×Lr(mm)~0.7×Lr(mm)の範囲(より好ましくは0.4×Lr(mm)~0.6×Lr(mm)の範囲)である高強度範囲12B内に、ビッカース硬さが最大値となる前記位置Pmaxがある。本実施形態では、図2(b)に示すように、位置Pminと位置Pmaxが、中心軸線CLを間に挟んで対向する場合を例示している。そのため、図3においては、測定位置として0°(0×Lr)あるいは360°(1.0×Lr)の位置に位置Pminが設定され、そして180°(0.5×Lr)の位置に位置Pmaxが設定されている。
 図3に示すように、低強度範囲12A及び高強度範囲12Bは、低強度範囲12Aの両端におけるビッカース硬さと、高強度範囲12Bの両端におけるビッカース硬さとが互いに等しくなる2点a,bで繋がっている。本実施形態では、測定位置が0°(0×Lr)~108°(0.3×Lr)の範囲と、252°(0.7×Lr)~360°(1.0×Lr)の範囲とが、低強度範囲12Aに設定されている。そして、108°(0.3×Lr)超かつ252°(0.7×Lr)未満の範囲が、高強度範囲12Bに設定されている。
 図2(b)に示す断面において、全外周長Lr(mm)に対して低強度範囲12Aの周長La(mm)が占める割合は、20%~80%の範囲内であり、30%~70%にすることが、さらに顕著な効果が得られるので好ましい。よって、全外周長Lr(mm)に対して高強度範囲12Bの周長Lb(mm)が占める割合は、100%から上記周長La(mm)が占める割合を差し引いた値となる。
 なお、周方向硬さ差部12における肉厚及びビッカース硬さに関する上記説明は、溶接部を含む場合にはその部位を除く。
 上記構成を有する本実施形態の中空部材10によれば、通常運用時における部品性能を低下させることなくロバスト性が高めることができる。これについて、図4(a),(b)を用いて以下に説明する。なお、図4は、中空部材10に荷重Fを印加する場合を示す側面図であって、(a)が荷重Fの印加前を示し、(b)が荷重Fの印加後を示す。
 図4(a),(b)に示すように中空部材10は、その長手方向に沿って、第1領域部11、周方向硬さ差部12、第2領域部13をこの順に備える。そして、図4(a)に示すように、中空部材10の第1領域部11の先端部に、中心軸線CLに沿って荷重Fが印加したとする。この時の荷重Fが通常運用時の値であれば、中空部材10は、折れ変形することなく荷重を受け止める。ここで、周方向硬さ差部12は、その周方向において相対的に柔らかい低強度範囲12Aと相対的に硬い高強度範囲12Bとを有するものの、通常運用時の荷重に対してはこれら低強度範囲12A及び高強度範囲12Bの何れもが弾性変形の範囲内において外力を支えるので、部品性能を低下させることがない。よって、中空部材10は、図4(a)に示す直線形状を保ったまま、強度部材としての機能を維持し続ける。
 一方、図4(a)において加わる荷重Fが、通常運用時よりも強い衝撃力などである場合には、図4(b)に示すように、周方向硬さ差部12において、低強度範囲12Aが高強度範囲12Bよりも優先的に折れて変形する。この時、周方向硬さ差部12では、高強度範囲12Bよりもビッカース硬さが相対的に低い低強度範囲12Aが積極的に塑性変形する。その結果、中空部材10は、低強度範囲12Aが凹側でかつ高強度範囲12Bが凸側となるように折れ変形し、この塑性変形の過程でエネルギー吸収を行う。このように、低強度範囲12A及び高強度範囲12Bの相対的な位置関係により、中空部材10の折れ方向を設定できる。よって、荷重Fの印加方向が中心軸線CLに対して多少角度を有したり、荷重Fの印加位置が中心軸線CLに対して多少シフトしたり、あるいは荷重Fに対する反力の方向が多少変動したりしても、狙った方向に中空部材10を折れ変形させることができる。その結果、安定的な折れ変形モードを実現できるので、衝突条件に対する変形のロバスト性が高くなる。
 上述したように、衝突条件に対する変形のロバスト性を高めるために、従来では、中空部材に予め曲げを加えたりするなどの対策が考えられていた。しかしながら、これらの場合には、通常運用時の部品性能が低下したり、製造工程が増加したり、部品用途が限定されたりする不都合が生じる場合がある。
 これに対して、本実施形態の中空部材10によれば、曲げ等を設けないので安定した折れ変形モードを実現できる。また、この中空部材10は、その周方向硬さ差部12の肉厚が周方向に沿って均一であるため、通常運用時の部品剛性も周方向で均一であり、変形が一箇所に集中しにくいという利点がある。例えば、中空部材の肉厚が周方向に沿って不均一である場合は、外力として捻りを受けた際に、肉厚の薄い箇所では大きく撓むものの、肉厚が厚い箇所ではほとんど撓まないなどの差が、各部位間に生じてしまう。特に、面外変形を伴う場合は、その変形のしやすさについて、肉厚の差が3乗となって影響するため、肉厚の薄い箇所に面外変形が集中しやすい。一方、本実施形態の中空部材10は、周方向硬さ差部12の肉厚が周方向に沿って均一であるため、このような不都合を回避できる。
 以上説明の中空部材10は、外観のみでは判別が難しいが、以下の手法により確認することができる。
 まず、周方向において硬さ差分と均一な肉厚とを有する周方向硬さ差部12の有無を確認する。ここで、「周方向」とは、長手方向に直交する断面において、筒形状の外周に沿う方向を言う。また、「硬さ差分」とは、以下に説明するビッカース硬さの分布を言う。
 まず、周方向に沿ってビッカース硬さを全周360°に沿って測定する。そして、図3に例示したように、測定位置(周方向角度θ)を横軸にとるとともに、縦軸にビッカース硬さをとったグラフを作成する。このグラフは、プロットデータを二次曲線で近似して作成しもよいし、あるいは一次直線で近似して作成してもよい。作成したグラフにおいて、前述した低強度範囲12Aを満たす範囲の周長La(mm)を求める。最後に、周長La(mm)が全外周長Lr(mm)に対して占める割合を求め、この割合が20%~80%の範囲内である場合を、硬さ差分を有すると定義する。なお、「硬さ差分」は、溶接部(例えば電縫管の継目部)を除外して定義される。
 なお、周方向硬さ差部12の周方向において、ビッカース硬さの最大値HVmaxとビッカース硬さの最小値HVminとの差ΔHVは、15HV以上としたが、20HV以上であってもよく、30HV以上であってもよい。ΔHVが小さすぎると、折れ方向が定まらずに良好なロバスト性が得られない可能性がある。一方、ΔHVの上限としては、例えば120HVを例示できる。また、HVmax及びHVminの値は、特に限定されないが、これらの間に上述したΔHVが確保出来るのであれば、それぞれ、例えば80HV以上、または150HV以上、あるいは200HV以上としてもよい。
 なお、ビッカース硬さ(HV)は、JISハンドブック鉄鋼Iに基づいて、引張強さ(TS)に換算してもよい。また、鋼に関して、100HV以上400HV以下の範囲において、TS[MPa]≒3.12×HV+16の近似式で換算することもできる。
 この場合、周方向硬さ差部12の周方向において、引張強さの最大値をTSmaxとし、引張強さの最小値をTSminとする。TSmax及びTSminの差(ΔTS)は、例えば40MPa以上であり、80MPa以上であってもよい。一方、ΔTSは、例えば390MPa以下である。また、TSmax及びTSminの値は、特に限定されないが、これらの間に上述したΔTSが確保出来るのであれば、それぞれ、例えば270MPa以上、または490MPa以上、あるいは680MPa以上としてもよい。
 また、上述したように、硬さ分布を示す際の測定位置を、ビッカース硬さが最小値(HVmin)となる位置Pminを基準(0°)とする角度θを用いて定義する代わりに、周方向硬さ差部12の外周の全周長Lr(mm)を用いて定義してもよい。この場合、測定位置を、位置Pminを基準(0mm)として、x×Lr(0≦x≦1)で定義できる。
 具体的には、周方向硬さ差部12において、周方向に沿ってビッカース硬さを全周測定することで、Pminを始点(測定位置0mm)とする各測定位置でのビッカース硬さの変化を求める。例えば図3では、x×Lr(0≦x≦1)の各位置におけるビッカース硬さの変化を示しており、ビッカース硬さのピークが1つ存在している。この場合、ピークの位置が、ビッカース硬さが最大値HVmaxとなる位置Pmaxと一致する。また、ビッカース硬さのピークは、複数存在していてもよい。例えば、後述する図11では、ビッカース硬さのピークが2つ存在している。複数のピークが有る場合、図11に示すようにビッカース硬さが互いに同じであってもよいし、あるいは互いに異なっていてもよい。後者の場合、各ピークのうちで最もビッカース硬さが高い位置がPmaxとなる。
 図3では、測定位置Pminを基準として、ビッカース硬さのピークは、0.5×Lrの位置に存在している。対称性の観点からは、上述したように、ビッカース硬さのピークの位置を、0.3×Lr以上かつ0.7×Lr以下の位置に設定することが好ましい。一方、ビッカース硬さのピークの位置は、0.3×Lrよりも小さい位置、または、0.7×Lrよりも大きい測定位置に存在していていもよい。例えば、後述する図9では、Pminを基準として、ビッカース硬さのピークの位置は、0.75×Lrの位置に存在している。
 なお、周方向硬さ差部12の断面形状(長手方向に直交する断面の形状)は、特に限定されないが、真円、楕円等の円形、矩形等の多角形が挙げられる。ここで言う多角形には、厳密な多角形のみならず、多角形の角に相当する部位が円弧状をなす形状も含まれる。
<プラグ>
 続いて、以上説明の中空部材10を製造する際に素管をしごき加工するプラグ20を、以下に説明する。プラグ20は、図5及び図6に示すヘッド部20Hと、図7に示すシャフト部20Sとを有する。図5は、プラグ20のヘッド部20Hを示す図であって、(a)がその先端側から見た斜視図であり、(b)がその後端側から見た斜視図である。図6は、ヘッド部20Hを示す図であって、(a)が側面図であり、(b)が正面図である。このヘッド部20Hは、図7に示すように、シャフト部20Sの先端に、同軸に固定される
 図5及び図6に示すヘッド部20Hは、先端面21を有するテーパー部(先端部)20aと、平行部(本体部)20bとを備える。平行部20bは、通常、後述する素管の内形寸法よりも大きく、かつ、後述するダイス40の第1構造部40aの内形寸法よりも小さい外形寸法を有する。なお、本開示において、素管及び中空部材10が円形断面であればその寸法を「内径寸法」及び「外径寸法」で示すところであるが、本開示の素管及び中空部材10は円形断面のみに限られない。そのため、本明細書では、矩形断面等の円形断面以外も包含する寸法として、上述のように「内形寸法」及び「外形寸法」と表記する場合がある。
 図6(a)に示すように、ヘッド部20Hは、側面視において先端面21からテーパー開始点tまでの中心軸線CLに沿う長手方向Dにおける長さLが、ヘッド部20Hの周方向の各位置で互いに異なっている。長さLが最長Lmaxとなるテーパー開始点をt1とし、長さLが最短Lminとなるテーパー開始点をt2とする。ヘッド部20Hは、LmaxとLminとの間に差を設けることで、側面視においてテーパー開始点t1,t2間を結ぶ方向Dが、長手方向Dと直交せずに斜めに交差している。
 ヘッド部20Hは、押し込み方向に向かって先細りとなるテーパー部20aと、テーパー部20aの後端に連なってかつ押し込み方向に垂直な断面における外形寸法(外径寸法)が最大である平行部20bとを有している。そして、図6(a)に示す側面視において、テーパー部20a及び平行部20b間の接続線を含む接続面CSが、ヘッド部20Hの中心軸線CLに直交する仮想平面VSに対して傾斜している。また、図6(b)に示すように、前記接続線上に、テーパー開始点t1,t2が、中心軸線CLを間に挟んで対向配置されている。
 図6(a)に示す側面視において、方向D及び方向D間のなす角度(鋭角)は、例えば50°以下であり、45°以下であってもよい。なお、図6(a)に示す側面視では、各テーパー開始点tにおけるテーパー角度θは、ヘッド部20Hの周方向各位置において同一である。
 上述のテーパー形状を有するヘッド部20Hをプラグ20に用いることで、素管のしごき加工時に、周方向に沿った肉の移動を生じさせることができる。具体的に言うと、テーパー開始点t2に当たる素管内壁の肉が、テーパー開始点t2から素管内壁の周方向に沿ってテーパー開始点t1に向かうように移動する。そのため、素管内壁において、テーパー開始点t2の周囲では減肉率が低くなり、ビッカース硬さが低い薄肉部が形成される。一方、テーパー開始点t1の周囲では、素管内壁の肉が周囲から集まるため、減肉率が高くなり、ビッカース硬さが高い薄肉部が形成される。そのため、このヘッド部20Hを備えるプラグ20を用いて素管をしごき加工することにより、製造後の中空部材10に、周方向における硬さ分布を有する周方向硬さ差部12を形成することができる。一方で、平行部20bの外形寸法はテーパー開始点tの位置に依らず一定である。よって、図7に示すように、平行部20bの外周面とダイス40の内周面との間隔は、中心軸線CLを中心とする周方向において一定である。そのため、周方向における厚さが均一な周方向硬さ差部12を、中空部材10に形成できる。
<中空部材製造方法>
 続いて、上述したプラグ20を用いて、中空筒状の素管30より中空部材10を製造する中空部材製造方法を、図7及び図8を用いて説明する。図7は、ヘッド部20Hを有するプラグ20を用いた中空部材製造方法の前半部分を(a)~(c)の順に時系列で示した断面図である。ここで、(a)が素管配置工程を示し、(b)が係止工程を示し、(c)がしごき加工工程を示す。また、図8は、図7(c)に続く中空部材製造方法の後半部分を、(a),(b)の順に時系列で示した断面図である。ここで、(a)が絞り加工工程の開始時を示し、(b)が完了時を示す。
 本実施形態で用いられる素管30としては、引張強度が290MPa以上のものが好適に用いられる。例えば、素管30として、引張強度が440MPa又は980MPaのものが用いられる。また、素管30の材質は、鋼に限定されず、アルミニウム等の他の金属でもよい。素管30は、例えば中空筒状の金属管(鋼管を含む)である。素管30は丸形鋼管であることが特に好ましい。丸形鋼管としては、シームレス鋼管、UO管、スパイラル管、電縫鋼管の何れでも良い。また、素管30の長手方向に垂直な断面形状は、円形、楕円形、矩形等の何れであってもよい。
 図7(a)に示す素管配置工程では、まず、素管30をダイス40内に配置し、さらに、ストッパ50により素管30の長手方向への移動を規制する。ダイス40は、素管30の外形寸法に対応する内形寸法(内径)を有する第1構造部40aを備える。本開示において、「素管の外形寸法に対応する内形寸法」とは、素管の外形寸法に、素管の抜き差しが可能な程度の隙間を加えた内形寸法を言う。さらに、ダイス40は、素管30の外形寸法よりも大きな内形寸法(内径)を有し、素管30の一端30x側の外形を拡大させるための第2構造部40bを備える。
 次に、図7(b)に示す係止工程では、素管30の一端30x側よりプラグ20のヘッド部20Hを押し込んで、素管30の一端30x側の外形を拡大させて拡大部30aを形成し、この拡大部30aにより素管30をダイス40に係止させる。プラグ20のヘッド部20Hは、素管30の内形寸法よりも小さい先端面21を有する。拡大部30aの形成は、プラグ20のヘッド部20Hを押し込みによりなされるが、この時の加工は、拡管加工であってしごき加工ではない。そのため、拡大部30aにおいては、図3に示したような周方向の硬さ分布は殆ど生じない。
 次に、図7(c)に示すしごき加工工程では、ダイス40内からストッパ50を除去し、素管30の長手方向への移動の規制を解く。さらに、素管30の係止は維持したまま、プラグ20のヘッド部20Hを、素管30の一端30x側より他端30y側に向かって押し込み、素管30の内形を拡げるしごき加工を加える。これにより、素管30を減肉し、薄肉部30bを形成する。薄肉部30bは、周方向において、均一な肉厚と、周方向の硬さ分布とを有している。一方、素管30のしごき加工が加えられていない部分は、未加工部30cとなる。
 図8(a)は、図7(a)~(c)に示す工程を経て得られた中間体W1であり、その中心軸線CLを含む断面で見た概略断面図である。この中間体W1は、その長手方向DLに沿って、第1領域部11と、周方向硬さ差部12と、第2領域部13に対応する部位とを有する。この中間体W1をもって中空部材10としてもよい。
 あるいは、図8(a),(b)に示すように、中間体W1における拡大部30aを、ダイス(他のダイス)60を通すことにより縮形させて拡大部30aの外形寸法を元に戻す絞り加工工程をさらに行ってもよい。
 ダイス60は、素管30の外形寸法(外径d1)に対応する内形寸法(内径)を有する。この内形寸法は、拡大部30aの外径寸法よりも小さいため、ダイス60内に中間体W1を通した際、第2領域部13及び周方向硬さ差部12では引っ掛かることなく挿通するが、拡大部30aにおいてはその外形が小さくなるように絞られる。
 その結果、図8(b)に示すように、外形が長手方向の全長に沿って一様でかつ内形が部分的に拡形された中空部材10を得ることが出来る。ここで、元々の拡大部30aを縮形させた厚肉部分が第1領域部11となり、この第1領域部11に連なってかつしごき加工された薄肉部分が周方向硬さ差部12となり、そしてこの周方向硬さ差部12に連なってかつ肉厚が周方向硬さ差部12よりも厚い厚肉部分が第2領域部13となる。このように、周方向硬さ差部12は、その両隣にある第1領域部11及び第2領域部13よりも薄いので、中空部材10の中で最も肉厚が薄い。また、第1領域部11の、周方向硬さ差部12との接続端には、内壁面にテーパー部が形成されている。同様に、第2領域部13の、周方向硬さ差部12との接続端にも、内壁面にテーパー部が形成されている。これらテーパー部により、中空部材10の内壁面における内形寸法差が吸収されている。
 図8(b)で得られたものを中間体W1とみなし、そしてこの中間体W1にプレス加工を加えることで、長手方向に垂直な断面形状を円形以外の形に加工してもよい。例えば、中間体W1の長手方向に垂直な断面形状が矩形となるようにプレス成形するプレス加工工程をさらに行ってもよい。この場合は、断面形状が長手方向の各位置で矩形をなす中空部材10を製造できる。
<変形例>
 本開示は、上記実施形態のみに限定されるものではない。例えば、上記実施形態に代わって、以下に説明する各種変形例を採用してもよい。
 上記実施形態では、図7(c)のしごき加工工程に続いて図8(b)に示す絞り加工工程を行った。一方、この絞り加工工程の代わりに、図8(a)に示す中間体W1から、第1領域部11及び第2領域部13に対応する部分を切断して取り除き、周方向硬さ差部12のみを残す切断工程を行ってもよい。この場合、全長に亘って、肉厚一定でかつ周方向の硬さ差分布が付与された中空部材10を製造することができる。
 また、上記実施形態では、図3に示したように、ビッカース硬さの最大値及び最小値が、中心軸線CLを間に挟んで対向する位置関係となっていた。この構成に代わり、図9に示すように、ビッカース硬さが最小値となる測定位置0°を基準として、ビッカース硬さの最大値が、180°(0.5×Lr)からずれた例えば270°(0.75×Lr)の位置にある構成を採用してもよい。
 また、上記実施形態では、図1に示したように、周方向硬さ差部12が第1領域部11及び第2領域部13間に配置される構成を採用した。この構成に代わり、上述の切断工程を行うことにより、図10(a)に示す中空部材10を製造してもよい。この中空部材10では、その全長に亘って周方向の硬さ差分布が付与されている。
 あるいは、上述の切断工程において、第1領域部11及び第2領域部13の一方のみを切断してもよい。例えば図10(b)では、第1領域部11のみを切断して除去し、周方向硬さ差部12及び第2領域部13を残した構成となっている。この中空部材10では、その長手方向の半分ではビッカース硬さが分布を有する一方、残り半分では周方向のビッカース硬さが均一である。
 図1に示した上記実施形態の中空部材10と、変形例である図10(a),(b)に示す中空部材10とを比較する。
 図1に示した中空部材10は、上述した通り、その長手方向DLにおいて、周方向硬さ差部12と、周方向硬さ差部12の両端に配置された第1領域部11及び第2領域部13と、を備える。周方向の硬さ分布を有する周方向硬さ差部12の両端に、周方向の硬さが均一である第1領域部11及び第2領域部13が配置されることで、軸方向に沿った荷重が中空部材10に入力された際に、その全長のうち、周方向硬さ差部12に応力が集中しやすくなる。その結果、中空部材10をその長手方向のうちの周方向硬さ差部12の位置で確実に折れ変形させられるので、図10(a),(b)に示す中空部材10よりもさらにロバスト性が高い。
 また、図1に示した中空部材10は、例えば図10(a)に示す中空部材10に比べて、軸方向に荷重が入力された際に周方向硬さ差部12の弱部である低強度範囲12Aに応力が集中しやすいことから、周方向硬さ差部12におけるHVmax及びHVmin間の硬さ差を、図10(a),(b)に示す中空部材10より小さくしても、良好なロバスト性が得られる。
 図1に示した中空部材10のように、周方向硬さ差部12の両端に第1領域部11及び第2領域部13が配置される場合、全長に対する周方向硬さ差部12の長さの割合は、5%以上かつ50%以下とすることが好ましい。中空部材10の長手方向における周方向硬さ差部12の長さは、10mm以上であることが好ましい。周方向硬さ差部12の長さを調整することにより、良好なロバスト性を得やすくなる。
 上述したように、周方向硬さ差部12の周方向におけるピークの位置Pmaxが複数であってもよい。例えば図11の場合は、ビッカース硬さが最大値HVmaxであるピークの位置Pmaxが2つ存在している。そして、これら2つの位置Pmaxにおけるビッカース硬さは、互いに同じになっている。同様に、図11の場合は、ビッカース硬さが最小値HVminとなる位置Pminも2つ存在している。そして、これら2つの位置Pminにおけるビッカース硬さも、互いに同じになっている。
 図11に示す周方向の硬さ分布は、周方向硬さ差部12の測定位置0°から周方向に沿って見た場合、まず0°の位置は、ビッカース硬さが最小値HVminとなる位置Pminとなる。続いて、位置Pminから周方向に移動するにつれてビッカース硬さが高くなり、90°の位置Pmaxでビッカース硬さが最大値HVmaxとなる。続いて、90°の位置Pminから周方向に移動するにつれてビッカース硬さが低くなり、180°の位置Pminでビッカース硬さが最小値HVminとなる。続いて、180°の位置Pminから周方向に移動するにつれてビッカース硬さが高くなり、270°の位置Pmaxでビッカース硬さが最小値HVmaxとなる。そして最後に、270°の位置Pmaxから周方向に移動するにつれてビッカース硬さが低くなり、360°の位置Pmin、すなわち測定位置0°に戻ってビッカース硬さが最小値HVminとなる。
 このように、図11の場合の周方向硬さ差部12では、そのビッカース硬さが周方向に沿って複数回、周期的に増減する。このような周方向分布によれば、ビッカース硬さが低い弱部を周方向の2箇所に形成できるので、中空部材10の折れ方向を、予め定められた2方向に意図的に増やすことが可能になる。なお、ビッカース硬さの増減は、曲線的あるいは直線的に増減してもよい。
 図11に示すビッカース硬さの周方向分布は、図12に示す他のヘッド部120Hを有するプラグ20により付与することができる。
 図12に示すヘッド部120Hは、先端面121を有するテーパー部(先端部)120aと、平行部(本体部)120bとを備える。平行部120bは、素管の内形寸法よりも大きく、かつ、ダイス40の第1構造部40aの内形寸法よりも小さい外形寸法を有する。
 そして、テーパー部120a及び平行部120b間の接続線が、側面視でヘッド部120Hの先端面121に最も近い複数(本変形例では2つ)の第1接続点p1と、正面視で各第1接続点p1間に位置してかつ、側面視で各第1接続点p1よりも先端面121から離れた位置にある複数(本変形例では2つ)の第2接続点p2と、を含んでいる。
 すなわち、前記接続線をヘッド部120Hの周方向に沿って見た場合、先端面121に最も近い2つの第1接続点p1のうちの一つ目から周方向に沿って進むにつれて先端面121から離れていき、そして先端面121から最も離れた位置にある一つ目の第2接続点p2に至る。続いて、この一つ目の第2接続点p2から周方向に沿って進むにつれて先端面121に近付いていき、そして先端面121に最も近い位置にある二つ目の第1接続点p1に至る。続いて、この二つ目の第1接続点p1から周方向に沿って進むにつれて先端面121から離れていき、そして先端面121最も離れた位置にある二つ目の第2接続点p2に至る。そして最後に、二つ目の第2接続点p2から周方向に沿って進むにつれて先端面121に近付いていき、そして先端面121に最も近い位置にある一つ目の第1接続点p1に戻る。
 このように、前記接続線が、周方向に沿って進むにつれて先端面121に対し接近離間を繰り返すヘッド部120Hに採用してもよい。この場合、第1接続点p1及び第2接続点p2の数は、それぞれ2つずつに限らず、3つ以上ずつとしてもよい。
 図12に示すヘッド部120Hを有するプラグ20を用いて、図7(c)に示すしごき加工を行うと、テーパー部120aの表面に沿って、図12に矢印で示す方向に向かう肉の流れを形成できる。
 しごき加工時にこのような肉の流れが出来る理由を説明する。ヘッド部120Hは、上述した前記接続線を有しているため、ヘッド部120Hの押し込み方向において、各第1接続点p1が素管30の内壁をしごくタイミングを、各第2接続点p2が素管30の内壁をしごくタイミングよりも早めることができる。すなわち、前記接続線上の各点のうちで、押し込み方向の先端側にある各第1接続点p1は早めに内壁をしごくが、押し込み方向の後端側にある各第2接続点p2は遅れて内壁をしごく。その結果、先にしごかれた肉は、周方向に沿って移動し、遅れてしごかれる範囲に向かう。このようにして、しごき加工後の内壁に、肉が集中してビッカース硬さが高められた2つの高強度範囲12Bと、肉が流れ出てビッカース硬さが相対的に低くなった2つの低強度範囲12Aとが形成される。その結果、図11に示すビッカース硬さの周方向分布が形成される。
 本開示における中空部材10の用途は、特に限定されないが、例えば自動車部品が挙げられる。自動車部品としては、例えば、クロスメンバー、サスペンションメンバー、サスペンションアーム、フロントサイドメンバー、リアサイドメンバー等のフレーム部材、ペリメーター、サイドインパクトバー等の衝突対応部品、ドライブシャフト等の駆動系パイプ部品が挙げられる。
[第1実施例]
 各種の中空部材を想定して有限要素法(FEM)解析を行うことにより、衝突条件に対する変形のロバスト性を評価した。具体的には、図13に示す実施例T2,T4,T5と比較例T1,T3とを評価対象とした。
 図13に示す各鋼管は、何れも、中心軸線CLを有する円形鋼管であり、全て同一の外径寸法とした。また、周方向硬さ差部12に対応するビッカース硬さの周方向分布を有する実施例T2,4,5では、測定位置0°でビッカース硬さが最小値となり、測定位置180°でビッカース硬さが最大値となるように設定した。なお、ビッカース硬さの高さを濃淡により示している。一方、比較例T1,T3では、周方向のビッカース硬さを一定値とした。
 実施例T2は、その長手方向の全長が前記周方向硬さ差部12となっている。すなわち、ビッカース硬さが、245~277HVの範囲で周方向に増減している。そして、ビッカース硬さが最小値となる弱部(低強度範囲12A)が紙面下方でかつビッカース硬さが最大値となる強部(高強度範囲12B)が紙面上方に設定されている。なお、肉厚は、全長及び全周の各位置において等しく1.5mmになっている。
 実施例T4は、図1に示した中空部材10と同様に、その長手方向に沿って並ぶ、第1領域部11、周方向硬さ差部12、第2領域部13を有する。第1領域部11及び第2領域部13は、それぞれ、ビッカース硬さが周方向に沿って一定の213HVでかつ、肉厚も周方向に沿って一定の3.0mmとなっている。一方、周方向硬さ差部12は、ビッカース硬さが、245~277HVの範囲で周方向に増減し、肉厚は周方向に沿って一定の1.5mmとなっている。周方向硬さ差部12は長手方向の中央位置に設けられており、その長さは中空部材10の全長の10%である。そして、周方向硬さ差部12では、ビッカース硬さが最小値となる弱部(低強度範囲12A)が紙面下方でかつビッカース硬さが最大値となる強部(高強度範囲12B)が紙面上方に設定されている。
 実施例T5は、図1に示した中空部材10と同様に、その長手方向に沿って並ぶ、第1領域部11、周方向硬さ差部12、第2領域部13を有する。第1領域部11及び第2領域部13は、それぞれ、ビッカース硬さが周方向に沿って一定の277HVでかつ、肉厚も周方向に沿って一定の1.5mmとなっている。一方、周方向硬さ差部12は、ビッカース硬さが、245~277HVの範囲で周方向に増減し、肉厚は周方向に沿って一定の1.5mmとなっている。周方向硬さ差部12は長手方向の中央位置に設けられており、その長さは中空部材10の全長の10%である。そして、周方向硬さ差部12では、ビッカース硬さが最小値となる弱部(低強度範囲12A)が紙面下方でかつビッカース硬さが最大値となる強部(高強度範囲12B)が紙面上方に設定されている。
 比較例T1は、その長手方向の全長が第1領域部11となっている。すなわち、ビッカース硬さが周方向に沿って一定の245HVでかつ、肉厚も周方向に沿って一定の1.5mmとなっている。
 比較例T3は、その長手方向に沿って並ぶ3つの範囲を有する。すなわち、両端部分では、それぞれ、ビッカース硬さが周方向に沿って一定の213HVでかつ、肉厚も周方向に沿って一定の3.0mmとなっている。一方、中央部分では、ビッカース硬さが周方向に沿って一定の245HVでかつ、肉厚も周方向に沿って一定の1.5mmとなっている。この中央部分は長手方向の中央位置に設けられており、その長さは中空部材10の全長の10%である。
 解析ソフトとしてAbaqus/Explicitを用い、解析条件として、図14(a)、(b)に示すModel AおよびModel Bの条件を設定した。具体的に言うと、Model Aでは、支持面に対して傾きがない(中空部材の中心軸線CLが支持面に対して垂直である)固定端とした。一方、Model Bでは、中空部材の中心軸線CLが支持面に対して15°の傾きを有する固定端とした。
 そして、紙面下方が凹側で紙面上側が凸側となるように折れ変形が生じた場合をOKと評価した。一方、軸圧壊(axial collapse)が生じた場合、または、反力方向への折れ込みが生じた場合をNGと評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ビッカース硬さ分布を有する周方向硬さ差部12を備えた実施例T2,T4,T5では、Model AおよびModel Bの何れにおいても、弱部(低強度範囲12A)で折れ込みが生じることが確認された。すなわち、衝突条件に対する折れ変形のロバスト性が高いことが示唆された。これに対して、周方向硬さ差部12を備えない比較例T1,T3では、軸圧壊または反力方向への折れ込みが発生し、衝突条件に対する折れ変形のロバスト性が低いことが示唆された。
[第2実施例]
 図5に示したヘッド部20Hを有するプラグ20と、素管(鋼管)30とを用いて、図7に示した製造方法で中空部材10を製造した。得られた中空部材10の周方向硬さ差部12に対して、押込荷重1kgf、周方向に5mmピッチで、ビッカース硬さを測定した。θ=0°からθ=180°の範囲において、ビッカース硬さを最小二乗法で1次関数近似した結果を、図15に示す。図15に示すように、多少のバラツキが存在するものの、θ=0°からθ=180°に向かって、ビッカース硬さが単調増加することが確認された。また、HVmaxからHVminを差し引いた差分は、約25HV以上であった。なお、TmaxからTminを差し引いた差分は、0.1mm以下であった。
 以上より、プラグ20により周方向硬さ差部12を形成できることが、実測で確認された。
[第3実施例]
 周方向硬さ差部12が長手方向の全長に亘って形成されている中空部材10と、長手方向の途中位置のみに形成されている中空部材10とについて、折れ変形を生じさせるのに必要となる周方向のビッカース硬さ差を、数値計算で求めて比較した。
 すなわち、まず周方向硬さ差部12が長手方向の全長に亘って形成されている中空部材10のモデルとして、図16(a)に示す実施例T6を用意した。この実施例T6では、その全長において紙面下方部分のビッカース硬さが最も低く、そして紙面上方部分のビッカース硬さが最も高くなるように設定した。この実施例T6は、図10(a)に示した中空部材10と同一構成である。
 また、周方向硬さ差部12が長手方向の中央位置のみに形成されている中空部材10のモデルとして、図17(a)に示す実施例T7を用意した。この実施例T7では、その周方向硬さ差部12において、紙面下方部分のビッカース硬さが最も低く、そして紙面上方部分のビッカース硬さが最も高くなるように設定した。この実施例T7は、図1に示した中空部材10と同一構成である。
 実施例T6,T7では、板厚及び寸法形状を互いに同一とした。一方、ビッカース硬さの分布については、ビッカース硬さの最大値から最小値を差し引いた差分(周方向硬さ差)を幾つか変えて計算した。そして、それらの計算結果に基づき、周方向硬さ差を徐々に増していったときに、折れ変形が不安定状態から安定状態に切り替わる際の境界値を求めた。なお、解析ソフトとしては、第1実施例と同様に、Abaqus/Explicitを用いた。
 まず実施例T6では、周方向硬さ差が22HVである図16(c)では折れ変形が不安定であったものの、周方向硬さ差が26HVである図16(b)では折れ変形が安定した。よって、実施例T6では周方向硬さ差として26HVを要することが分かった。
 続いて、実施例T7では、周方向硬さ差が10HVである図17(c)では折れ変形が不安定であったものの、周方向硬さ差が13HVである図17(b)では折れ変形が安定した。よって、実施例T7では周方向硬さ差として13HVを要することが分かった。
 これら実施例T6,T7の結果より、周方向硬さ差部12が長手方向の中央位置のみに形成する方が、長手方向の全長に形成する場合よりも低い周方向硬さ差で安定した折れ変形が得られることが確認された。
 本開示によれば、通常運用時における部品性能を低下させることなくロバスト性が高められた中空部材と、この中空部材を製造する中空部材製造方法とを提供できる。よって、産業上の利用可能性は大である。
 10 中空部材
 12 周方向硬さ差部
 12A 低強度範囲
 12B 高強度範囲
 20 プラグ
 20a テーパー部(先端部)
 20b 平行部(本体部)
 30 素管
 40 ダイス
 CL 中心軸線
 HVav 硬さ閾値
 Lr 全外周長
 Pmin 硬さ最小位置
 Pmax 硬さ最大位置
 p1 第1接続点
 p2 第2接続点
 VS 仮想平面(プラグの中心軸線に直交する面)

Claims (12)

  1.  中心軸線に沿う長手方向の少なくとも一部に周方向硬さ差部を有し;
     前記周方向硬さ差部を、前記中心軸線に直交する断面で見て、
      前記断面の周方向における肉厚の最大値から前記肉厚の最小値を差し引いた肉厚差が、前記断面の全周における前記肉厚の平均値の20%以下であり、
      前記断面の全周におけるビッカース硬さの積分の平均を硬さ閾値として、前記周方向に沿ったビッカース硬さが前記硬さ閾値以下である低強度範囲と、前記周方向に沿ったビッカース硬さが前記硬さ閾値超である高強度範囲とを、前記断面が含む;
    ことを特徴とする中空部材。
  2.  前記断面の全外周長に対して前記低強度範囲の周長が占める割合が、20%~80%の範囲内である
    ことを特徴とする請求項1に記載の中空部材。
  3.  前記断面における全外周長がLr(mm)であり;
     前記ビッカース硬さが最小値となる硬さ最小位置を基準として、前記周方向の0.3×Lr(mm)~0.7×Lr(mm)の範囲内に、前記ビッカース硬さが最大値となる硬さ最大位置がある;
    ことを特徴とする請求項1又は2に記載の中空部材。
  4.  前記断面における前記肉厚差が0.10mm以下であり;
     前記断面における前記ビッカース硬さの最大値から前記ビッカース硬さの最小値を差し引いた差分が15HV以上である;
    ことを特徴とする請求項1又は2に記載の中空部材。
  5.  前記周方向硬さ差部が、前記長手方向の一部のみに形成されていることを特徴とする請求項1又は2に記載の中空部材。
  6.  前記周方向硬さ差部が、前記長手方向の全長に亘って形成されていることを特徴とする請求項1又は2に記載の中空部材。
  7.  中空筒状の素管より中空部材を製造する方法であって、
     前記素管をダイス内に配置する素管配置工程と;
     前記素管にプラグを押し込んで前記素管の内壁を拡形しながら、前記内壁の肉を、前記素管の中心軸線に沿った視線で見て、前記内壁の周方向に送り出すようにしごく、しごき加工工程と;
    を有することを特徴とする中空部材製造方法。
  8.  前記プラグが、押し込み方向に向かって先細りとなる先端部と、前記先端部の後端に連なってかつ前記押し込み方向に垂直な断面における外形寸法が最大である本体部とを有し;
     前記先端部及び前記本体部間の接続線を含む面が、前記プラグの中心軸線に直交する面に対して傾斜している;
    ことを特徴とする請求項7に記載の中空部材製造方法。
  9.  前記プラグが、押し込み方向に向かって先細りとなる先端部と、前記先端部の後端に連なってかつ前記押し込み方向に垂直な断面における外形寸法が最大である本体部とを有し;
     前記先端部及び前記本体部間の接続線が、
      側面視で前記プラグの先端面に最も近い複数の第1接続点と、
      正面視で前記各第1接続点間に位置してかつ、側面視で前記各第1接続点よりも前記先端面から離れた位置にある複数の第2接続点と、
    を含む;
    ことを特徴とする請求項7に記載の中空部材製造方法。
  10.  前記素管配置工程よりも後でかつ前記しごき加工工程よりも前に、前記素管の端部に前記プラグを押し込んで前記端部の外形を拡大させた拡形部を前記ダイスに係止させる係止工程と;
     前記しごき加工工程の後に、前記拡形部を他のダイスに通して縮形させる絞り加工工程と;
    をさらに有することを特徴とする請求項7~9の何れか1項に記載の中空部材製造方法。
  11.  前記絞り加工工程よりも後に、前記中心軸線に垂直な断面形状が矩形となるようにプレス成形するプレス加工工程をさらに有することを特徴とする請求項10に記載の中空部材製造方法。
  12.  前記絞り加工工程よりも後に、前記中心軸線に垂直な断面形状が矩形となるようにプレス成形するプレス加工工程をさらに有することを特徴とする請求項7~9の何れか1項に記載の中空部材製造方法。
PCT/JP2022/025223 2022-06-24 2022-06-24 中空部材及び中空部材製造方法 WO2023248452A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025223 WO2023248452A1 (ja) 2022-06-24 2022-06-24 中空部材及び中空部材製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025223 WO2023248452A1 (ja) 2022-06-24 2022-06-24 中空部材及び中空部材製造方法

Publications (1)

Publication Number Publication Date
WO2023248452A1 true WO2023248452A1 (ja) 2023-12-28

Family

ID=89379329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025223 WO2023248452A1 (ja) 2022-06-24 2022-06-24 中空部材及び中空部材製造方法

Country Status (1)

Country Link
WO (1) WO2023248452A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102959A (ja) * 2000-09-25 2002-04-09 Nisshin Steel Co Ltd 偏心拡径管端部をもつ金属管の製造方法
JP2006272350A (ja) * 2005-03-28 2006-10-12 Nisshin Steel Co Ltd 偏心拡径加工用ポンチ及び偏心拡径パイプの製造方法
JP2009131881A (ja) * 2007-11-30 2009-06-18 Asteer Co Ltd 偏芯拡管の製造方法
JP2009136897A (ja) * 2007-12-06 2009-06-25 Asteer Co Ltd 同芯拡管又は偏芯拡管の製造方法
WO2016104706A1 (ja) * 2014-12-26 2016-06-30 新日鐵住金株式会社 口広げ金属管の製造方法
WO2016133156A1 (ja) * 2015-02-18 2016-08-25 新日鐵住金株式会社 端部増肉金属管及びその製造方法
WO2017154481A1 (ja) * 2016-03-11 2017-09-14 新日鐵住金株式会社 差厚鋼管の製造方法および差厚鋼管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102959A (ja) * 2000-09-25 2002-04-09 Nisshin Steel Co Ltd 偏心拡径管端部をもつ金属管の製造方法
JP2006272350A (ja) * 2005-03-28 2006-10-12 Nisshin Steel Co Ltd 偏心拡径加工用ポンチ及び偏心拡径パイプの製造方法
JP2009131881A (ja) * 2007-11-30 2009-06-18 Asteer Co Ltd 偏芯拡管の製造方法
JP2009136897A (ja) * 2007-12-06 2009-06-25 Asteer Co Ltd 同芯拡管又は偏芯拡管の製造方法
WO2016104706A1 (ja) * 2014-12-26 2016-06-30 新日鐵住金株式会社 口広げ金属管の製造方法
WO2016133156A1 (ja) * 2015-02-18 2016-08-25 新日鐵住金株式会社 端部増肉金属管及びその製造方法
WO2017154481A1 (ja) * 2016-03-11 2017-09-14 新日鐵住金株式会社 差厚鋼管の製造方法および差厚鋼管

Similar Documents

Publication Publication Date Title
US9079553B2 (en) Scalable crush can for vehicle
TWI583579B (zh) Collision box and manufacturing method thereof
CN103459239B (zh) 金属制中空柱状部件
US10377200B2 (en) Coupling structure, coupling member having coupling structure, and method for manufacturing coupling member having coupling structure
JP2007503561A5 (ja)
JP2005046909A (ja) 柔軟に圧延された材料帯片から作られるシート金属要素
JP5325034B2 (ja) ホイールナットレンチ並びにその製造方法
KR101427020B1 (ko) 충돌 에너지 흡수 구조체
KR20130130846A (ko) 충격 흡수 부재
JP5179429B2 (ja) エネルギー吸収部材
JP6354927B2 (ja) 金属管、及び金属管を用いた車両用構造部材
WO2023248452A1 (ja) 中空部材及び中空部材製造方法
JP2013044407A (ja) 衝撃吸収部材
JP2012111356A (ja) エネルギー吸収構造体の製造方法及びエネルギー吸収構造体
JP5779875B2 (ja) トーションビームの製造方法
JP2009285668A (ja) 鋼製中空柱状部材
JP6721451B2 (ja) 部材の加工方法および部材の接合方法
US11833570B2 (en) Method for manufacturing shaped part
JP4998097B2 (ja) エネルギ吸収部材
JP6323415B2 (ja) ブランク形状決定方法
WO2024100714A1 (ja) 骨格部材
JP7376836B2 (ja) 自動車車体の構造部材
JP5632142B2 (ja) クラッシュボックス
JP4388461B2 (ja) 衝突特性に優れた自動車用強度部材及びこれを用いた自動車用構造部材
JP2020138228A (ja) アルミニウム合金部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948013

Country of ref document: EP

Kind code of ref document: A1