WO2023246102A1 - 一种铪改性的高镍层状氧化物电极材料及其制备方法 - Google Patents

一种铪改性的高镍层状氧化物电极材料及其制备方法 Download PDF

Info

Publication number
WO2023246102A1
WO2023246102A1 PCT/CN2023/073918 CN2023073918W WO2023246102A1 WO 2023246102 A1 WO2023246102 A1 WO 2023246102A1 CN 2023073918 W CN2023073918 W CN 2023073918W WO 2023246102 A1 WO2023246102 A1 WO 2023246102A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
precursor
temperature
calcination
hafnium
Prior art date
Application number
PCT/CN2023/073918
Other languages
English (en)
French (fr)
Inventor
王波
王鲁元
蔡飞鹏
侯延进
楚晨潇
姜桂林
Original Assignee
山东省科学院能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院能源研究所 filed Critical 山东省科学院能源研究所
Priority to KR1020237019832A priority Critical patent/KR20240001108A/ko
Publication of WO2023246102A1 publication Critical patent/WO2023246102A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and specifically belongs to lithium battery cathode materials modified by metal doping methods.
  • lithium-ion batteries Due to the advantages of high energy density and long life, lithium-ion batteries have become one of the most important power batteries for electric vehicles. Despite this, currently commercialized electric vehicles face performance and economic challenges, such as limited cruising range, battery durability and high cost. Therefore, improving the energy density and cycle stability of lithium-ion power batteries and reducing their costs are prerequisites for realizing the practical use of electric vehicles.
  • lithium-ion battery cathode materials high-nickel layered oxides, such as lithium nickel cobalt manganate (LiNi x Co y Mn 1-xy O 2 , NCM, where, 0.6 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.4) And lithium nickel cobalt aluminate ( LiNi Promising cathode material for electric vehicle power batteries.
  • lithium nickel cobalt manganate LiNi x Co y Mn 1-xy O 2 , NCM, where, 0.6 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.4
  • lithium nickel cobalt aluminate LiNi Promising cathode material for electric vehicle power batteries.
  • the electrolyte penetrates into the particles along the microcracks and further erodes the primary particles inside, causing structural degradation, leading to capacity attenuation, and eventually evolving into catastrophic mechanical failure.
  • structural degradation triggers the release of oxygen from the matrix structure, which in some cases can trigger violent exothermic reactions that threaten battery safety.
  • Lithium inert material coating (such as metal oxides and fluorides) can isolate the active material from the organic electrolyte, thus effectively suppressing surface reactions and enhancing the cycle stability of the material.
  • Lithium conductive coatings such as Li 3 PO 4 , Li 2 O ⁇ 2B 2 O 3 , LiNbO 3, etc., can not only suppress surface side reactions, but will not reduce the rate performance of the material.
  • the rod-shaped primary particles extending in the radial direction can effectively disperse the internal stress caused by the H2-H3 phase transition, eliminate the accumulated strain on the grain boundaries, and effectively inhibit the spread of microcracks.
  • This strategy of regulating the internal microstructure of cathode particles by tailoring the orientation and arrangement of primary particles is an effective way to solve the cycle stability of high nickel layered oxides.
  • Another effective and simple method to stabilize high-nickel layered cathodes is to optimize the crystal structure and primary particles by introducing high-valent ions ( ⁇ 5 + ), such as Nb, Ta, Mo and W, etc. Shape.
  • high-valent ions ⁇ 5 +
  • Ta substitution can not only induce Ni ions to occupy Li sites in an orderly manner, making the crystal structure more stable in the deeply delithiated state, but also generate radially oriented primary particles to disperse internal strains at grain boundaries.
  • CN103620834 discloses an active material particle for lithium batteries.
  • the active material has good surface smoothness, can suppress the increase in internal resistance of the active material layer, improve cycle characteristics, and suppress the decomposition of the electrolyte.
  • the active material particles, the composition containing compound a and the composition containing fluoropolymer b are purified and heated.
  • CN109638233A discloses a composite electrode and lithium ion battery of a solid ion conductor and a lithium-rich manganese-based material.
  • the chemical formula of the lithium-rich manganese-based material is XLiMnO 3 ⁇ (1-X)LiMO 2 , where 0 ⁇ x ⁇ 1, M It is one or more of Mn, Ni, and Co.
  • the chemical formula of the solid ion conductor is Li 1+a [A b B 2-C (DO 4 ) 3 ] or Li 2+ ⁇ E ⁇ G 3+ ⁇ , the solid ion conductor has excellent ionic conductivity and can improve the lithium ion transmission rate of the electrode.
  • the solid ion conductor participates in the formation process of the solid electrolyte film on the surface of the lithium-rich manganese-based material, reducing the membrane resistance of the lithium-rich manganese-based cathode, thereby improving the rate characteristics and cycle of the lithium-rich manganese-based electrode. stability.
  • This application found that adding an appropriate amount of hafnium to the electrode material can change the microstructure inside the electrode particles and significantly improve the cycle stability of the electrode.
  • One embodiment of the present invention provides a modified high-nickel layered electrode material.
  • the particle size on the surface of the Hf-doped high-nickel layered electrode material is smaller, and the internal primary particles are short rod-shaped and arranged radially in a radial direction.
  • the capacity of the half-cell remains 96% after 100 cycles. According to the above, the capacity retention rate of the full battery after 1000 cycles is above 87%, preferably above 90%.
  • the preparation methods of high-nickel layered oxide cathode materials include blending method, precipitation method, solvent evaporation method and co-precipitation method.
  • the blending method is a method in which the precursor, solid phase Hf source and lithium source are mixed in a certain manner and proportion, and then heat treated to prepare the product.
  • the mixing methods of the blending method include the following two methods: (1) Coating the solid particles containing hafnium element on the surface of the precursor through solid phase fusion and other methods, and then mixing with the lithium source (or after heat treatment, and then mixed with the lithium source); (2) directly mix the precursor, solid-phase hafnium source (such as nano-hafnium oxide) and lithium source through ball milling, high-speed mixing, etc.;
  • the mixing method of the blending method is one of the mixing methods such as ball milling, high-speed mixing, solid phase fusion, and oscillation;
  • the solid-phase hafnium source of the blending method includes one or more of nanometer HfO 2 , Hf(NO 3 ) 4 , and Hf(SO 4 ) 2 , and its particle size is 1-10000nm, preferably 10-500nm.
  • the ratio of the electrode material precursor to the Li source is a certain molar ratio of 1:1.01-1.10;
  • the heat treatment is calcining in an oxidizing atmosphere;
  • the molecular formula of the electrode material precursor is Nix Co y M 1-xy (OH) 2 , where x is 0.6-1.0, preferably 0.8-0.95, y is 0-0.4, preferably 0.05-0.1;
  • Li source It is LiOH ⁇ H 2 O or LiOH;
  • the oxidation atmosphere is oxygen or air atmosphere;
  • the calcination includes two stages of low-temperature calcination and high-temperature calcination, the low-temperature calcination temperature is 450-550 °C, the calcination time is 4-6 h; the high-temperature calcination temperature The temperature is 650-800 °C, and the calcination time is 10-20 h.
  • the precipitation method is to first coat the surface of the precursor with nanometer Hf(OH) 4 to prepare the Hf-coated precursor material ( Nix Co y M 1-xy (OH) 2 @ Hf(OH) 4 ), and then mix it with Li
  • the sources are mixed and heat treated in an oxidizing atmosphere to obtain the Hf modified cathode material.
  • the precipitation method includes the following steps: (1) Prepare an aqueous solution of Hf; (2) Disperse the Ni x Co y M 1-xy (OH) 2 solid particles into the Hf aqueous solution prepared in step (1); (3) Add a precipitant, adjust the pH value, generate nano-Hf(OH) 2 and precipitate onto the surface of Ni x Co y M 1-xy (OH) 2 solid particles, and prepare a Hf(OH) 2- coated precursor material.
  • Ni x Co y M 1-xy (OH) 2 @ Hf(OH) 4 ; (4) Perform solid-liquid separation of the dispersion to obtain Hf-coated precursor particles; (5) Mix the obtained Nix Co y M 1-xy (OH) 2 @Hf(OH) 4 precursor material with the Li source and calcine.
  • the aqueous solution of Hf in step (1) is one of Hf(SO 4 ) 2 and HfCl 4 ; the molar concentration of the aqueous solution is prepared according to the amount of precursor processed, generally 0.01-1mol/L, preferably 0.1-0.5 mol/L.
  • step (2) the mass volume ratio of Ni x Co y M 1-xy (OH) 2 solid particles to Hf(SO 4 ) 2 aqueous solution is 1:10-100; Ni x Co y M 1-xy (OH) 2
  • the particle size range of solid particles is 5-20 um, and the preferred average particle size is 8-12 um.
  • the precipitating agent is one or more of NH 3 ⁇ H 2 O, NaOH, and KOH; the pH value used in the precipitation reaction is 6-9.
  • the solid-liquid separation method in step (4) is one or more of suction filtration, centrifugal separation, and plate and frame filtration;
  • the molar ratio of Ni x Co y M 1-xy (OH) 2 @HfO 2 precursor material to Li source is 1:1.01-1.10;
  • the calcination includes two stages: low-temperature calcination and high-temperature calcination, of which low-temperature calcination The temperature is 450-550 °C, and the calcination time is 4-6 h; the high-temperature calcination temperature is 650-800 °C, and the calcination time is 10-20 h.
  • the solvent evaporation method is to first divide the precursor into an organic solution containing Hf, and then stir and heat to evaporate the organic solvent.
  • the surface of the precursor particles is coated with the precursor containing Hf, and then mixed with the lithium source, and then heat treated.
  • the modified electrode material is obtained.
  • the solvent evaporation method includes the following steps: (1) Dissolve the organic Hf source in the organic solvent to prepare an organic solution containing Hf; (2) Disperse the precursor into the organic solution in step (1) and stir vigorously to obtain an organic dispersion of the precursor; (3) Heat and stir vigorously the dispersion obtained in step (2) until the organic solvent is completely evaporated; (4) Mix the dried precursor particles and lithium source in a certain proportion, and then heat-treat them in an oxidizing atmosphere to obtain a modified electrode material.
  • the organic Hf source in step (1) is hafnium n-butoxide, hafnium tert-butoxide, hafnium ethanol, hafnium isopropoxide (IV) isopropanol complex, hafnium ethanol acetone, tetrakis (ethylmethylamino) hafnium, One or more of tetrakis (methylethylamino) hafnium, preferably hafnium n-butoxide and hafnium ethanol; the organic solvent is one or more of ethanol, n-butanol, propanol, and acetone;
  • the precursor in step (2) is Nix Co y M 1-zy (OH) 2 , where x is 0.6-1.0, preferably 0.8-0.99; y is 0-0.4, preferably 0.05-0.1; 1-zy is 0-0.4, preferably 0.05-0.1; M is one or more of Al, Mn, B, Nb, Mo, W, and Ta.
  • the heating temperature in step (3) is 50-120 °C;
  • the molar ratio of the sum of Ni, Co, M, and Hf in the precursor of step (4) to Li in the lithium source is a certain value within 1:1.01-1.10;
  • the mixing method includes ball milling, high-speed mixing, solid A kind of phase fusion, vibration mixing, etc.;
  • the heat treatment includes low-temperature calcination and high-temperature calcination, the low-temperature calcination temperature is 450-550 °C, the calcination time is 4-6 h;
  • the high-temperature calcination temperature is 650-800 °C, the calcination time is 10- 20h.
  • the co-precipitation method is to mix the metal salt solution in the electrode material and form a precipitate under the action of the precipitant.
  • the doping elements are mixed with Ni, Co, Mn, etc. in the precursor at the atomic scale, and then mixed with lithium, Calcined to obtain modified electrode materials.
  • the co-precipitation method includes the following steps: (1) Prepare soluble metal salt solutions of Ni, Co, M, and Hf according to the required proportions, and mix the soluble metal salt solutions to obtain a mixed salt solution; (2) Pump the mixed salt solution, precipitant and complexing agent into the precipitation reactor respectively, adjust the pH value to a value within 10.5-12, preferably 10.8-11.2, and precipitate at 45-55°C 20-50h, generate hafnium-doped Ni x Co y M z Hf 1-xyz (OH) 2 precursor; (3) Mix the obtained hafnium-doped Ni x Co y M z Hf 1-xyz (OH) 2 precursor with a lithium source and perform heat treatment to obtain a hafnium-modified high-nickel layered electrode material.
  • M in step (1) is one or more of Al and Mn
  • the soluble metal salt solution is one or more of sulfate, nitrate, and chloride salt.
  • the precipitating agent is one of NaOH and KOH;
  • the complexing agent is one of ammonia, ammonium chloride, and ammonium nitrate; Ni x Co y M z Hf 1-xyz (OH) 2 , where x is 0.6-1.0, preferably 0.8-0.99, y is 0-0.4, preferably 0.05-0.1, z is 0-0.4, preferably 0.05-0.1.
  • the heat treatment in step (3) includes low-temperature calcination and high-temperature calcination.
  • the low-temperature calcination temperature is 450-550 °C and the calcination time is 4-6 h; the high-temperature calcination temperature is 650-800 °C and the calcination time is 10-20 h.
  • the present invention modifies the high-nickel layered electrode material by hafnium doping, regulates the microstructure inside the electrode active particles, and can significantly improve the cycle performance of the electrode material.
  • Figure 1 is the SEM image of 1 mol% Hf-doped LiNi 0.9 Co 0.08 Al 0.02 O 2 (NCA90);
  • Figure 2 is a schematic diagram of the modification principle.
  • the Hf-doped LiNi 0.891 Co 0.0792 Al 0.0198 Hf 0.01 O 2 (NCA90-Hf1, Figure 1b) has a smaller number of primary particles on the particle surface. The diameter is smaller, and the internal primary particles are "short rod-shaped", radially arranged, and arranged in the radial direction ( Figure 1d). This shows that Hf doping changes the internal microstructure of the NCA90 electrode, and this structure is conducive to dispersing the grain boundary stress caused by the H2-H3 phase transition and inhibiting micro-cracks and breakage of active material particles after long-term cycling.
  • Figure 2 illustrates the principle of hafnium doping to improve the cycling stability of high-nickel layered oxide cathode materials.
  • the crystal plane formation energy of the primary grains (003) is reduced through hafnium doping, making the primary grains appear "short rod-shaped" and arranged radially along the radial direction, thereby changing the microstructure inside the grains. Thanks to this special microstructure, after long-term cycling, the grain boundary stress on the surface of the primary particles is effectively suppressed, thus preventing the generation and diffusion of microcracks inside the secondary particles, and the cyclic stability of the material is significantly enhanced.
  • the mixed product was dried at 110°C for 4 hours and then sintered in a tube furnace under an oxygen atmosphere at temperatures of 500°C and 730°C for 6 and 12 hours, respectively.
  • the dried precursor particles were mixed with 4.716g of LiOH ⁇ H 2 O (battery grade, purity 99.5%), a certain amount of water was added as a dispersant, and then ball milled for 30 minutes.
  • the mixed product was dried at 110°C for 4 hours and then sintered in a tube furnace under oxygen atmosphere at temperatures of 500°C and 730°C for 6 and 12 hours respectively.
  • LiOH ⁇ H 2 O battery grade, purity 99.5%
  • the mixed product was dried at 110°C for 4 hours and then sintered in a tube furnace under oxygen atmosphere at 500°C and 730°C for 6 and 12 hours respectively.
  • buttons half cells Use the materials obtained in Examples 1-3 and Comparative Examples 1-6 as positive electrodes to assemble button-type half cells and soft-pack full cells for testing. Capacity retention after 100 cycles (button half cell) and 1000 cycles (soft case full cell).
  • the test conditions for button half cells are: using metal lithium sheet as the negative electrode, 2.7-4.3 V, 30 °C, 0.5 C charge, 1 C discharge; the test conditions for soft-pack full cells: 3.0-4.3 V, 30 °C, 0.8 C charging, 1 C discharging.
  • the test results are shown in Table 1.
  • the electrode after 100 cycles of the half-cell was charged to 4.3 V, then disassembled, and the electrode was cleaned with dimethyl carbonate (DMC) to remove the organic solvent.
  • DMC dimethyl carbonate
  • the cleaned electrode is dried, the positive active material ( ⁇ 8 mg) is scraped off the aluminum foil, placed into a stainless steel high-pressure crucible, and a certain amount (100 uL) of electrolyte is added. Then, the temperature was raised from room temperature to 250°C at a heating rate of 5°C/min, and the thermal runaway temperature and heat release of the positive electrode were tested.
  • Table 3 The results are shown in Table 3.

Abstract

一种铪改性的高镍层状氧化物电极材料及其制备方法,所述电极材料的化学式为:Li[Ni xCo yM 1-x-y] 1-zHf zO 2,其中Z为0.001-0.02, x为0.6-1.0, y为0-0.4;其中M为Al、Mn、B、Nb、Mo、W、Ta、Zr中的一种或多种。所述电极材料中加入适量的铪改变了电极颗粒内部的微结构,显著改善电极的循环稳定性。

Description

一种铪改性的高镍层状氧化物电极材料及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,具体来说属于采用金属掺杂方法改性的锂电池正极材料。
背景技术
由于具有高能量密度和长寿命的优势,锂离子电池已成为电动汽车的最重要的动力电池之一。尽管如此,目前已经商用的电动汽车依据面临性能和经济性的挑战,如续航里程有限、电池的耐久性和成本高等问题。因此改善锂离子动力电池的能量密度和循环稳定性,并降低其成本,是实现电动汽车实用化的先决条件。
目前,锂离子电池整体性能由其正极决定,因此,对于动力锂离子电池,大量的努力在于开发高容量的正极材料。在众多锂离子电池正极材料中,高镍层状氧化物,如镍钴锰酸锂(LiNi xCo yMn 1-x-yO 2,NCM,其中,0.6≤x<1,0<y≤0.4)和镍钴铝酸锂(LiNi xCo yAl 1-x-yO 2,NCA,其中,0.6≤x<1,0<y≤0.4),具有高理论比容量和较好的倍率性能,成为最有希望的电动汽车动力电池正极材料。特斯拉公司的Models 3,S和X型电动汽车,其动力电池采用NCA作为正极材料,单次充电可达400-550 公里。尽管如此,为获得与内燃机汽车竞争的能力,电动汽车单次充电的续航里程应超过600 公里,这给其动力电池提出了巨大的挑战,需要通过增加正极的能量密度来实现。NCM(或NCA)正极材料能量密度的提升,需要通过增加其Ni含量来实现。然而,当充电至4.3 V 时,高度脱嵌态的高镍NCM(或NCA)正极颗粒表面的不稳定的Ni 4+与电解液之间的副反应,导致有害的NiO型岩盐杂质的形成,导致结构退化的问题。此外,高镍层状正极(镍含量≥0.8时),由于H2-H3相变(在~4.15 V)引起的c轴方向上的突然的晶格收缩,而产生微裂纹,且其严重程度随着Ni含量的增加而增加。电解液沿微裂纹渗透进入颗粒内部,进一步侵蚀内部的一次颗粒,引起结构退化,导致容量衰减,并最终演化为灾难性的机械失效。此外,结构退化触发了氧气从基体结构中的释放,在一些情况下,可引发剧烈放热反应,从而威胁电池安全。
人们已经提出各种策略来应对高镍层状氧化物正极材料的固有问题。其中,原子掺杂和表面包覆是最有效的方法。通过掺杂物来取代过渡金属,可提高层状正极的结构完整性,从而改善电池的性能。锂惰性材料包覆(如金属氧化物和氟化物)可将活性材料与有机电解液隔绝,因此有效抑制了表面反应,增强了材料的循环稳定性,然而,可能会牺牲部分倍率性能。锂导电包覆,如Li 3PO 4、Li 2O·2B 2O 3、LiNbO 3等,不仅能够抑制表面副反应,同时不会降低材料的倍率性能。尽管如此,对于更高镍含量的(Ni含量>80%)高镍层状氧化物正极材料,以上改性策略的作用有限,需要一种更全面的方法,进一步增强循环稳定性。沿径向延伸的棒状一次颗粒,能够有效分散H2-H3相变所引起的内应力,消除晶界上的累积应变,有效抑制微裂纹的扩散。这种通过裁剪一次颗粒的取向和排布,而调控正极颗粒内部微结构的策略,是解决高镍层状氧化物循环稳定性的有效途径。另外一种稳定高镍层状正极(相对Ni含量≥0.9)的有效并且简便的方法是,通过引入高价离子(≥5 +),如Nb,Ta,Mo和W等,优化晶体结构和一次颗粒的形态。如,Ta取代不仅可以诱导Ni离子有序占据Li位,使晶体结构在深度脱锂态更加稳定,而且还产生径向定向的一次颗粒,分散晶界处的内部应变。最近的一些专利已经公开了正极材料的制备和改性方法。
CN103620834公开了一种锂电池用活性物质颗粒,该活性物质表面平滑性良好,能够抑制活性物质层的内部电阻增加,且提高循环特性,抑制电解液的分解。所述活性物质颗粒与包含化合物a的组合物及包含氟聚合物b的组合物洁纯,并进行加热。
CN109638233A公开了一种固态离子导体与富锂锰基材料复合电极及锂离子电池,所述富锂锰基材料的化学式为XLiMnO 3·(1-X)LiMO 2,其中0<x<1,M为Mn、Ni、Co中的一种或多种,所述固态离子导体的化学式为Li 1+a[A bB 2-C(DO 4) 3]或Li 2+αE βG 3+β,所述固态离子导体具有优良的离子导电性,可以提高电极的锂离子传输速率。在电池充放电过程中,固态离子导体参与到富锂锰基材料表面的固体电解质膜的形成过程,降低了富锂锰基正极的膜阻抗,从而改善了富锂锰基电极的倍率特性和循环稳定性。
技术问题
本申请发现在电极材料中加入适量的铪可以改变电极颗粒内部的微结构,显著改善电极的循环稳定性。
技术解决方案
本发明的一个实施方式,提供一种改性高镍层状电极材料,所述高镍层状电极材料的化学式为:Li[Ni xCo yM 1-x-y] 1-zHf zO 2,其中Z=0.0001-0.1,优选为0.001-0.02,更优选为0.002-0.015,进一步优选为0.002、0.003、0.004、0.005、0.008、0.01、0.012、0.015,x为0.6-1.0,优选为0.8-1.0,y为0-0.4,优选为0.05-0.1;其中M为Al、Mn、B、Nb、Mo、W、Ta、Zr中的一种或多种,优选为Al、Mn、Mo中的一种,进一步优选为Al。
Hf掺杂后的高镍层状电极材料表面的颗粒的粒径更小,内部的一次颗粒呈短棒形,并按照辐射状沿径向排布,半电池100次循环后的容量保持96%以上,全电池1000次循环后的容量保持率在87%以上,优选90%以上。
按照Hf的加入方式,高镍层状氧化物正极材料的制备方法包括共混法、沉淀法、溶剂挥发法和共沉淀法等。
共混法是将前驱体、固相Hf源和锂源,按照一定的方式和比例混合,再经热处理而制备得到产品的方法。
所述共混法的混合方式包括以下两种:(1)通过固相融合等方式,将含有铪元素的固相颗粒包覆在前驱体的表面,再与锂源混合(或经热处理后,再与锂源混合);(2)将前驱体、固相铪源(如纳米氧化铪)和锂源,通过球磨、高速混合等方式直接混合;
所述共混法的混合方式是球磨、高速混合、固相融合、振荡等混合方式中的一种;
所述共混法的固相铪源包括纳米HfO 2、Hf(NO 3) 4、Hf(SO 4) 2中的一种或者多种,其粒径为1-10000nm,优选为10-500nm,更优选为20-100nm;
所述电极材料前驱体与Li源的比例是1:1.01-1.10摩尔比的某一值;
所述热处理是在氧化气氛下进行煅烧;
其中所述电极材料前驱体的分子式是Ni xCo yM 1-x-y(OH) 2,其中x为0.6-1.0,优选为0.8-0.95,y为0-0.4,优选为0.05-0.1;Li源是LiOH·H 2O或者LiOH;氧化气氛是氧气或空气气氛下;所述煅烧包括低温煅烧和高温煅烧两个阶段,低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
沉淀法是首先在前驱体表面包覆纳米Hf(OH) 4,制备Hf包覆的前驱体材料(Ni xCo yM 1-x-y(OH) 2@ Hf(OH) 4),然后再与Li源混合,经氧化气氛下的热处理,获得Hf改性正极材料。
沉淀法包括以下步骤:
(1)配制Hf的水溶液;
(2)将Ni xCo yM 1-x-y(OH) 2固体颗粒分散到步骤(1)制备的Hf的水溶液中;
(3)加入沉淀剂,调节pH值,生成纳米Hf(OH) 2并沉淀到Ni xCo yM 1-x-y(OH) 2固体颗粒表面,制备得到Hf(OH) 2包覆的前驱体材料Ni xCo yM 1-x-y(OH) 2@ Hf(OH) 4
(4) 将分散液进行固液分离,得到Hf包覆的前驱体颗粒;
(5)将得到的Ni xCo yM 1-x-y(OH) 2@Hf(OH) 4前驱体材料与Li源混合,并进行煅烧。
步骤(1)中Hf的水溶液是Hf(SO 4) 2、HfCl 4中的一种;水溶液摩尔浓度根据所处理的前驱体的量而配制,一般为0.01-1mol/L,优选为0.1-0.5mol/L。
步骤(2)中Ni xCo yM 1-x-y(OH) 2固体颗粒与Hf(SO 4) 2水溶液的质量体积比为1:10-100;Ni xCo yM 1-x-y(OH) 2固体颗粒的粒径范围是5-20 um,优选的平均粒径8-12 um。
步骤(3)中沉淀剂为NH 3·H 2O、NaOH、KOH中的一种或多种;沉淀反应所采用的pH值为6-9。
步骤(4)中的固液分离方式是抽滤、离心分离、板框压滤中的一种或多种;
步骤(5)中Ni xCo yM 1-x-y(OH) 2@HfO 2前驱体材料与Li源的摩尔比是1:1.01-1.10;煅烧包括低温煅烧和高温煅烧两个阶段,其中低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
溶剂挥发法是首先将前驱体分到含Hf的有机溶液中,然后经搅拌,加热,挥发掉有机溶剂,在前驱体颗粒表面包覆上含有Hf前驱体,然后与锂源混合,再经热处理而得到改性的电极材料。
溶剂挥发法包括以下步骤:
(1)将有机Hf源溶解在有机溶剂中,制备含Hf的有机溶液;
(2)将前驱体分散到步骤(1)中的有机溶液中,并剧烈搅拌,得到前驱体的有机分散液;
(3)将步骤(2)获得的分散液在加热并剧烈搅拌,至有机溶剂完全挥发;
(4)将干燥后的前驱体颗粒与锂源按照一定的比例混合,然后在氧化气氛下,经热处理得到改性的电极材料。
步骤(1)中的有机Hf源是正丁醇铪、叔丁醇铪、乙醇铪、异丙醇铪(IV)异丙醇络合物、乙醇丙酮铪、四(乙基甲基氨基)铪、四(甲乙胺基)铪中的一种或多种,优选是正丁醇铪和乙醇铪;所述的有机溶剂是乙醇、正丁醇、丙醇、丙酮中的一种或者多种;
步骤(2)中的前驱体是Ni xCo yM 1-z-y(OH) 2,其中x为0.6-1.0,优选为0.8-0.99;y为0-0.4,优选为0.05-0.1;1-z-y为0-0.4,优选为0.05-0.1;M为Al、Mn、B、Nb、Mo、W、Ta中的一种或多种。
步骤(3)中的加热温度是50-120 ℃中;
步骤(4)的前驱体中的Ni、Co、M、Hf之和与锂源中Li的摩尔比是1:1.01-1.10内的某一值;所述的混合方式包括球磨、高速混合、固相融合、震荡混合等的一种;所述的热处理包括低温煅烧和高温煅烧,低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
共沉淀法是将电极材料中的金属盐溶液混合后,在沉淀剂的作用下形成沉淀物,将掺杂元素与前驱体中的Ni、Co、Mn等在原子尺度混合,然后经混锂、煅烧得到改性的电极材料。
共沉淀法包括以下步骤:
(1)按照需要的比例,制备Ni、Co、M、Hf的可溶性金属盐水溶液,将可溶性金属盐溶液混合,得到混合盐溶液;
(2)将混合盐溶液、沉淀剂和络合剂,分别泵入沉淀反应器中,调整pH值到10.5-12内的某一值,优选的是10.8-11.2,在45-55℃下沉淀20-50h,生成铪掺杂的Ni xCo yM zHf 1-x-y-z(OH) 2前驱体;
(3)将得到的铪掺杂的Ni xCo yM zHf 1-x-y-z(OH) 2前驱体与锂源混合,进行热处理,得到铪改性的高镍层状电极材料。
步骤(1)中所述M是Al、Mn中的一种或多种,可溶性金属盐溶液是硫酸盐、硝酸盐、氯盐中的一种或多种。
步骤(2)中沉淀剂是NaOH、KOH中的一种;络合剂是氨水、氯化铵、硝酸铵中的一种;Ni xCo yM zHf 1-x-y-z(OH) 2,其中x为0.6-1.0,优选为0.8-0.99,y为0-0.4,优选为0.05-0.1,z为0-0.4,优选为0.05-0.1。
步骤(3)中热处理包括低温煅烧和高温煅烧,低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
有益效果
本发明的有益技术效果:本发明通过铪掺杂改性高镍层状电极材料,调控电极活性颗粒内部的微结构,可显著改善电极材料的循环性能。
附图说明
图1是1 mol%的Hf掺杂LiNi 0.9Co 0.08Al 0.02O 2(NCA90)的SEM图像;
图2是改性原理示意图。
从图1可以看到,相对于未改性的NCA产品(图1a),Hf掺杂后的LiNi 0.891Co 0.0792Al 0.0198Hf 0.01O 2(NCA90-Hf1,图1b),颗粒表面一次颗粒的粒径更小,而内部的一次颗粒呈“短棒形”,呈辐射状,沿径向排布(图1d)。这说明Hf掺杂改变了NCA90电极内部微结构,而这种结构有利于分散H2-H3相变引起的晶界应力,抑制长周期循环后活性材料颗粒产生微裂纹和破碎。
图2说明了铪掺杂改善高镍层状氧化物正极材料循环稳定性的原理。通过铪掺杂而降低一次晶粒(003)的晶面生成能,使一次颗粒呈现“短棒形”,并沿径向,呈辐射状排布,从而改变了颗粒内部的微结构。得益于这种特殊的微结构,长周期循环后,一次颗粒表面的晶界应力被有效抑制,因而阻止了二次颗粒内部微裂纹的产生和扩散,材料的循环稳定性显著增强。此外,过量的锂与颗粒表面的残留的Hf反应生成Li 2HfO 3,并在一次和二次颗粒表面富集,从而降低锂残留的含量,并抑制了有机电解液的侵蚀和表面副反应,进一步增强了循环稳定性。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。
实施方式
实施例1(固相法)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)、4.716g的LiOH•H 2O(电池级,纯度99.5%)和0.23g的纳米HfO 2(50nm, 摩尔比Li:(Ni+Co+Al):Hf=1.02:0.99:0.01)混合,并加入一定量的水作为分散剂,然后球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃的温度下分别烧结6和12小时。
实施例2(沉淀法)
首先将0.30g的Hf(SO 4) 2溶于100g的水中,配制成一定浓度的Hf(SO 4) 2溶液,然后将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)分散在上述溶液中,并剧烈搅拌。搅拌条件下,将0.2 M的氨水缓慢滴加到上述溶液中,至pH=8.0。用500 mL的去离子水反复清洗上述固体颗粒3次,然后通过抽滤的方式进行固液分离,并在110 ℃下对分离后的固体干燥。将干燥后的前驱体颗粒与4.716g的LiOH•H 2O(电池级,纯度99.5%)混合,并加入一定量的水作为分散剂,然后球磨混合30分钟。混合后的产品在110 ℃下干燥4小时,然后在管式炉中,氧气气氛,500 ℃和730 ℃的温度下分别烧结6和12小时。
实施例3(溶剂挥发法)
将0.517g的正丁醇铪溶于100 mL的丁醇中,配制成一定浓度的正丁醇铪的有机溶液。将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)分散在上述溶液中,并剧烈搅拌,在80 ℃下加热上述溶液,至溶剂完全挥发。将干燥后的前驱体颗粒与4.716g的LiOH•H 2O(电池级,纯度99.5%)混合,并加入一定量的水作为分散剂,然后球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃的温度下分别烧结6和12小时。
对比例1(未改性)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.67g的LiOH•H 2O(电池级,纯度99.5%)混合(摩尔比Li:(Ni+Co+Al)=1.02:1),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110 ℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃下分别烧结6和12小时。
对比例2(沉淀法, 0.5mol%掺杂量)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.693g的LiOH•H 2O(电池级,纯度99.5%)和0.115g的纳米HfO 2混合(摩尔比Li:(Ni+Co+Al):Hf=1.02:0.995:0.05),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃的温度下分别烧结6和12小时。
对比例3(沉淀法,2 mol%掺杂量)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.764g的LiOH•H 2O(电池级,纯度99.5%)和0.46g的纳米HfO 2混合(摩尔比Li:(Ni+Co+Al):Hf=1.02:0.98:0.02),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃的温度下分别烧结6和12小时。
对比例4(1 mol%的B掺杂量)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.716g的LiOH•H 2O(电池级,纯度99.5%)和0.068g的硼酸混合(摩尔比Li:(Ni+Co+Al):B=1.02:0.99:0.01),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛下,500 ℃和730 ℃的温度下分别烧结6和12小时。
对比例5 (1 mol%的Zr掺杂量)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.716g的LiOH•H 2O(电池级,纯度99.5%)和0.140g的纳米ZrO 2(50 nm)混合(摩尔比Li:(Ni+Co+Al):Zr=1.02:0.99:0.01),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛,500 ℃和730 ℃的温度下分别烧结6和12小时。
对比例6(1 mol%的Mo掺杂量)
将10g 的Ni 0.9Co 0.08Al 0.02(OH) 2前驱体(D 50=12 μm)与4.716g的LiOH•H 2O(电池级,纯度99.5%)和0.158g的纳米MoO 3(50 nm)混合(Li:(Ni+Co+Al):Mo=1.02:0.99:0.01),并加入一定量的水作为分散剂,球磨混合30分钟。混合后的产品在110℃下干燥4小时,然后在管式炉中,氧气气氛,500 ℃和730 ℃的温度下分别烧结6和12小时。
对实施例1-3和对比例1-6得到的电极材料进行性能测试,以实施例1-3和对比例1-6获得的材料作为正极,分别组装扣式半电池和软包全电池测试100次(扣式半电池)和1000次(软包全电池)循环后的容量保持率。其中,扣式半电池的测试条件是:以金属锂片为负极,2.7-4.3 V,30 ℃,0.5 C充电,1 C放电;软包全电池的测试条件:3.0-4.3 V,30 ℃,0.8 C充电,1 C放电。测试结果如表1。
对比结果表明, Hf、B、Zr、和Mo元素掺杂,均能够显著增强NCA90材料的循环稳定性,其中Hf掺杂的效果更加明显。对于扣式半电池,1 mol%Hf掺杂的材料,100次循环后的容量保持率达到96.8%;软包全电池1000次循环后的容量保持率也达到了90.5%,显著高于未改性的产品85.4%和56.1%的结果。在高温和高截至电压下,高镍层状氧化物正极材料的结构稳定性减弱,并且与有机电解液的副反应增强,因此,电化学性能退化加剧。为对比说明Hf掺杂对高温(55 ℃)和高截止电压(4.4 V)下,电池循环稳定性的影响,以实施例1-3和对比例1-6所制备的活性材料为正极,金属锂为负极,组装成扣式半电池,分别在2.7-4.3 V, 55 ℃条件下和2.7-4.4 V, 30 ℃下,以0.5 C倍率充放电测试,测试了不同电极材料100次循环后的容量保持率,结果如表2所示。
进一步,为对比说明Hf改性对材料热稳定性的影响,将半电池100次循环后的电极充电至4.3 V,然后拆解,以碳酸二甲酯(DMC)清洗电极以除去有机溶剂。清洗后的电极经干燥,将正极活性材料(~8 mg)从铝箔上刮下,放入不锈钢高压坩埚中,并加入一定量(100 uL)的电解液。然后以5 ℃/min的升温速率从室温升到至250 ℃,测试正极的热失控温度和放热量,结果如表3所示。
对比结果表明,掺杂改性均能够提供热失控温度并降低放热量,NCA90-Hf1电极的放热量最低,热失控温度最高,因此,该电极具有最高的热稳定性。
以上实施例是本发明的举例性说明,而不是对本发明保护范围的限定。基于所描述的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他技术方案,都属于本发明保护的范围。

Claims (10)

  1. 一种铪改性的高镍层状氧化物电极材料,其特征在于化学式为:Li[Ni xCo yM 1-x-y] 1-zHf zO 2,其中Z为0.001-0.02, x为0.6-1.0, y为0-0.4;其中M为Al、Mn、B、Nb、Mo、W、Ta、Zr中的一种或多种。
  2. 如权利要求1所述的电极材料,其特征在于Z为0.002-0.01,x为0.8-1.0,y为0.05-0.1;其中M为Al、Mn、Mo中的一种。
  3. 如权利要求1所述的电极材料,其特征在于按照Hf的加入方式,高镍层状正极材料的制备方法包括共混法、沉淀法、溶剂挥发法和共沉淀法。
  4. 如权利要求3所述的电极材料,其特征在于共混法的混合方式包括以下两种:(1)通过固相融合方式,将含有固相铪源包覆在电池材料前驱体的表面,再与锂源混合;(2)将前驱体、固相铪源和锂源,通过球磨、固相融合或振荡方式直接混合。 
  5. 如权利要求4所述的电极材料,其特征在于所述共混法的固相铪源包括纳米HfO 2、Hf(NO 3) 4、Hf(SO 4) 2中的一种或者多种;所述电极材料前驱体与Li源的比例是1:1.01-1.10摩尔比的某一值;所述热处理是在氧化气氛下进行煅烧;其中所述电极材料前驱体的分子式是Ni xCo yM 1-x-y(OH) 2,其中x为0.6-1.0, y为0-0.4;Li源是LiOH·H 2O或者LiOH;所述煅烧包括低温煅烧和高温煅烧两个阶段,低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
  6.  如权利要求3所述的电极材料,其特征在于所述沉淀法是首先在前驱体表面包覆纳米Hf(OH) 4,制备Hf包覆的前驱体材料(Ni xCo yM 1-x-y(OH) 2@ Hf(OH) 4),然后再与Li源混合,经氧化气氛下的热处理,获得Hf改性正极材料。
  7. 如权利要求6所述的电极材料,其特征在于沉淀法包括以下步骤:
    (1)配制Hf的水溶液;
    (2)将Ni xCo yM 1-x-y(OH) 2固体颗粒分散到步骤(1)制备的Hf的水溶液中;
    (3)加入沉淀剂,调节pH值,生成纳米Hf(OH) 2并沉淀到Ni xCo yM 1-x-y(OH) 2固体颗粒表面,制备得到Hf(OH) 2包覆的前驱体材料Ni xCo yM 1-x-y(OH) 2@ Hf(OH) 4
    (4) 将分散液进行固液分离,得到Hf包覆的前驱体颗粒;
    (5)将得到的Ni xCo yM 1-x-y(OH) 2@Hf(OH) 4前驱体材料与Li源混合,并进行煅烧。
  8. 如权利要求7所述的电极材料,其特征在于:
    步骤(1)中Hf的水溶液是Hf(SO 4) 2、HfCl 4中的一种;水溶液摩尔浓度为0.01-1mol/L;
    步骤(2)中Ni xCo yM 1-x-y(OH) 2固体颗粒与Hf(SO 4) 2水溶液的质量体积比为1:10-100;Ni xCo yM 1-x-y(OH) 2固体颗粒的粒径范围是5-20 um;
    步骤(3)中沉淀剂为NH 3·H 2O、NaOH、KOH中的一种或多种;沉淀反应所采用的pH值为6-9;
    步骤(4)中的固液分离方式是抽滤、离心分离、板框压滤中的一种或多种;
    步骤(5)中Ni xCo yM 1-x-y(OH) 2@HfO 2前驱体材料与Li源的摩尔比是1:1.01-1.10;煅烧包括低温煅烧和高温煅烧两个阶段,其中低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
  9. 如权利要求3所述的电极材料,其特征在于共沉淀法包括以下步骤:
    (1)按照需要的比例,制备Ni、Co、M、Hf的可溶性金属盐水溶液,将可溶性金属盐溶液混合,得到混合盐溶液;
    (2)将混合盐溶液、沉淀剂和络合剂,分别泵入沉淀反应器中,调整pH值到10.5-12内的某一值,优选的是10.8-11.2,,在45-55℃下沉淀20-50h,生成铪掺杂的Ni xCo yM zHf 1-x-y-z(OH) 2前驱体;
    (3)将得到的铪掺杂的Ni xCo yM zHf 1-x-y-z(OH) 2前驱体与锂源混合,进行热处理,得到铪改性的高镍层状电极材料。
  10. 如权利要求9所述的电极材料,其特征在于步骤(1)中所述M是Al、Mn中的一种或多种,可溶性金属盐溶液是硫酸盐、硝酸盐、氯盐中的一种或多种;
    步骤(2)中沉淀剂是NaOH、KOH中的一种;络合剂是氨水、氯化铵、硝酸铵中的一种;Ni xCo yM zHf 1-x-y-z(OH) 2,其中x为0.6-1.0,y为0-0.4,z为0-0.4;
    步骤(3)中热处理包括低温煅烧和高温煅烧,低温煅烧温度为450-550 ℃,煅烧时间4-6 h;高温煅烧温度为650-800 ℃,煅烧时间10-20 h。
PCT/CN2023/073918 2022-06-20 2023-01-31 一种铪改性的高镍层状氧化物电极材料及其制备方法 WO2023246102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237019832A KR20240001108A (ko) 2022-06-20 2023-01-31 하프늄 개질된 고-니켈 층상 산화물 전극 재료 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210699749.4A CN115498147A (zh) 2022-06-20 2022-06-20 一种铪改性的高镍层状氧化物电极材料及其制备方法
CN202210699749.4 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023246102A1 true WO2023246102A1 (zh) 2023-12-28

Family

ID=84467038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073918 WO2023246102A1 (zh) 2022-06-20 2023-01-31 一种铪改性的高镍层状氧化物电极材料及其制备方法

Country Status (3)

Country Link
KR (1) KR20240001108A (zh)
CN (1) CN115498147A (zh)
WO (1) WO2023246102A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498147A (zh) * 2022-06-20 2022-12-20 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法
CN115986105B (zh) * 2023-01-04 2023-11-21 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法、二次电池、用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321920A (ja) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd 元素置換リチウムマンガン複合酸化物粒子状組成物とその製造方法とその二次電池への利用
CN105409039A (zh) * 2013-07-24 2016-03-16 住友金属矿山株式会社 非水电解质二次电池用正极活性物质及其制造方法,以及非水电解质二次电池
CN109461927A (zh) * 2017-12-21 2019-03-12 北京当升材料科技股份有限公司 一种高倍率复合镍钴锰多元正极材料及其制备方法
CN109755512A (zh) * 2018-12-25 2019-05-14 北京当升材料科技股份有限公司 一种高镍长寿命多元正极材料及其制备方法
WO2021154024A1 (ko) * 2020-01-29 2021-08-05 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN115498147A (zh) * 2022-06-20 2022-12-20 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321920A (ja) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd 元素置換リチウムマンガン複合酸化物粒子状組成物とその製造方法とその二次電池への利用
CN105409039A (zh) * 2013-07-24 2016-03-16 住友金属矿山株式会社 非水电解质二次电池用正极活性物质及其制造方法,以及非水电解质二次电池
CN109461927A (zh) * 2017-12-21 2019-03-12 北京当升材料科技股份有限公司 一种高倍率复合镍钴锰多元正极材料及其制备方法
CN109755512A (zh) * 2018-12-25 2019-05-14 北京当升材料科技股份有限公司 一种高镍长寿命多元正极材料及其制备方法
WO2021154024A1 (ko) * 2020-01-29 2021-08-05 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN115498147A (zh) * 2022-06-20 2022-12-20 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法

Also Published As

Publication number Publication date
KR20240001108A (ko) 2024-01-03
CN115498147A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN110474026B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
WO2023246102A1 (zh) 一种铪改性的高镍层状氧化物电极材料及其制备方法
WO2022207008A1 (zh) 单晶型多元正极材料及其制备方法与应用
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
WO2022007663A1 (zh) 一种锂离子电池正极活性材料及其制备方法
CN113903907B (zh) 一种钨包覆及掺杂的单晶富镍三元正极材料的制备方法
CN113130901B (zh) 一种钛掺杂高镍三元锂离子电池正极材料及其制备方法
CN112952085B (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
WO2023178900A1 (zh) 一种镍钴锰酸锂梯度正极材料及其制备方法
CN113809320A (zh) 一种四元多晶正极材料、其制备方法和用途
CN113299902A (zh) 一种浓度梯度镁掺杂富锂锰基氧化物正极材料的制备及其锂电池应用
CN111362318B (zh) 一种镍钴锰碳酸盐及其制备方法与应用
CN111769275A (zh) 掺杂型高电压钴酸锂正极材料及其制备方法
CN113582253B (zh) 一种四元正极材料及其制备方法和应用
CN112614988B (zh) 一种正极材料及其制备方法与用途
CN113903909A (zh) 一种钴纳米涂层改性的富镍低钴单晶多元正极材料及其制备方法
CN114784265B (zh) 一种改性高镍类单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
WO2023216453A1 (zh) 一种核壳梯度三元前驱体及其制备方法和应用
CN114300664B (zh) 一种表面包覆硒酸锂的富锂单晶正极材料及其制备方法和应用
CN115881913A (zh) 高镍正极材料、制备方法、正极片、电池和用电装置
CN115064678A (zh) 一种高镍低钴正极材料、其制备方法及应用
CN114864911A (zh) 一种改性高镍三元正极材料及其制备方法和应用
CN113410438A (zh) 一种均匀包覆金属氧化物到锂电池正极材料表面的制备方法
CN108336348B (zh) 一种氧化铝包覆锂离子电池正极材料的制备方法
CN115020699B (zh) 一种低钴或无钴正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825762

Country of ref document: EP

Kind code of ref document: A1