WO2023240681A1 - Matériau d'accélération du transfert de masse et de réduction de la dilatation pour électrode négative et utilisation - Google Patents
Matériau d'accélération du transfert de masse et de réduction de la dilatation pour électrode négative et utilisation Download PDFInfo
- Publication number
- WO2023240681A1 WO2023240681A1 PCT/CN2022/101806 CN2022101806W WO2023240681A1 WO 2023240681 A1 WO2023240681 A1 WO 2023240681A1 CN 2022101806 W CN2022101806 W CN 2022101806W WO 2023240681 A1 WO2023240681 A1 WO 2023240681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass transfer
- negative electrode
- lithium
- accelerating
- component
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 117
- 239000000463 material Substances 0.000 title claims abstract description 35
- 230000001133 acceleration Effects 0.000 title abstract 10
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 33
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 29
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 claims abstract description 27
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 20
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920001577 copolymer Polymers 0.000 claims abstract description 14
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 12
- 150000001336 alkenes Chemical class 0.000 claims abstract description 11
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000178 monomer Substances 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 22
- -1 crotonic acid ester Chemical class 0.000 claims description 19
- 239000007773 negative electrode material Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 8
- 239000006258 conductive agent Substances 0.000 claims description 7
- XSAOIFHNXYIRGG-UHFFFAOYSA-M lithium;prop-2-enoate Chemical compound [Li+].[O-]C(=O)C=C XSAOIFHNXYIRGG-UHFFFAOYSA-M 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000007334 copolymerization reaction Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 125000005396 acrylic acid ester group Chemical group 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- RLQOUIUVEQXDPW-UHFFFAOYSA-M lithium;2-methylprop-2-enoate Chemical compound [Li+].CC(=C)C([O-])=O RLQOUIUVEQXDPW-UHFFFAOYSA-M 0.000 claims description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 claims description 2
- 239000010405 anode material Substances 0.000 claims 2
- ZUZYGJXCRIAQNE-UHFFFAOYSA-M C(CC)(=O)O.C(C=C)(=O)O[Li] Chemical compound C(CC)(=O)O.C(C=C)(=O)O[Li] ZUZYGJXCRIAQNE-UHFFFAOYSA-M 0.000 claims 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 239000012634 fragment Substances 0.000 claims 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000007747 plating Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 15
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 15
- 239000006230 acetylene black Substances 0.000 description 13
- 229910021383 artificial graphite Inorganic materials 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 9
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 9
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 239000011888 foil Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- 239000013068 control sample Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical group C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- KNVWLKLAXCYRND-UHFFFAOYSA-L C(C=C)(=O)[O-].C(C=C)(=O)[O-].[Li+].[Li+] Chemical compound C(C=C)(=O)[O-].C(C=C)(=O)[O-].[Li+].[Li+] KNVWLKLAXCYRND-UHFFFAOYSA-L 0.000 description 1
- UYYAISMUWXBONU-UHFFFAOYSA-N C1(=CC=CC=C1)OC(CC)=O.[Li] Chemical compound C1(=CC=CC=C1)OC(CC)=O.[Li] UYYAISMUWXBONU-UHFFFAOYSA-N 0.000 description 1
- XINGDLRSYJSOGS-UHFFFAOYSA-N C=CC=C.CC(C)=C.C=CC1=CC=CC=C1 Chemical group C=CC=C.CC(C)=C.C=CC1=CC=CC=C1 XINGDLRSYJSOGS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAZAAZKNSOCPBF-UHFFFAOYSA-N [Li].C(C=C)(=O)O Chemical compound [Li].C(C=C)(=O)O QAZAAZKNSOCPBF-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- VZIBAPMSKYQDFH-UHFFFAOYSA-N buta-1,3-diene;2-methylprop-2-enoic acid;prop-2-enenitrile;styrene Chemical compound C=CC=C.C=CC#N.CC(=C)C(O)=O.C=CC1=CC=CC=C1 VZIBAPMSKYQDFH-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- QPMJENKZJUFOON-PLNGDYQASA-N ethyl (z)-3-chloro-2-cyano-4,4,4-trifluorobut-2-enoate Chemical compound CCOC(=O)C(\C#N)=C(/Cl)C(F)(F)F QPMJENKZJUFOON-PLNGDYQASA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the fields of electrochemical technology and electrochemical energy storage, and specifically relates to a material and application for accelerating mass transfer and improving expansion of a negative electrode.
- high compaction negative electrodes In order to extend the battery life of electronic devices, it is necessary to increase the energy density of battery cells.
- the development and application of negative electrodes with high compaction density (referred to as high compaction negative electrodes) can effectively increase the energy density and specific energy of the battery core; however, there are also some problems, such as: high cyclic expansion stress of the negative electrode material, The thickness of the pole piece increases rapidly, causing the thickness of the battery core to exceed the standard; the high-pressure compacted negative electrode has low porosity, large tortuosity, small net liquid volume, poor lithium ion transmission conditions, and large reaction polarization.
- the high-pressure compacted negative electrode active material has Charging capacity is often poor, and lithium precipitation side reactions are prone to occur, causing capacity attenuation and thickness expansion of the battery core. Therefore, high-energy electrochemical devices containing high-pressure anodes have average rate and cycle performance, and the cell thickness expansion rate is high. In particular, the capacity retention rate and thickness control of low-temperature cycles are not ideal.
- the purpose of the present invention is to overcome the shortcomings of the prior art and provide a material and application for accelerating mass transfer and improving expansion of the negative electrode;
- a material for accelerating mass transfer and improving expansion of the negative electrode which is characterized in that it includes at least one component of a mass transfer accelerating component I and a mass transfer accelerating component II;
- the accelerated mass transfer component I is a multi-component copolymer; the multi-component copolymer is formed by copolymerization of styrene, olefins and mass transfer functional monomers; wherein the molar ratio of styrene:olefin is ⁇ 3.0; the mass transfer functional monomer : The molar ratio of the sum of the amounts of styrene and olefins is 0.05-0.25; the mass transfer functional monomer is one or a combination of an enoate ester monomer and a lithium olefin monomer;
- the multi-component copolymer in this application can adopt random copolymerization, graft copolymerization or block copolymerization; its preparation method can adopt the existing preparation process, and only needs to meet its molar ratio.
- the accelerated mass transfer component II is a polymer, and the polymer is carboxymethylcellulose lithium, polyacrylic acid-carboxymethylcellulose lithium copolymer, polybutyric acid-carboxymethylcellulose lithium copolymer One or a combination of polymethacrylic acid-lithium carboxymethyl cellulose copolymer.
- binders such as styrene-butadiene rubber (containing carboxyl groups), although they have relatively strong interaction with current collectors and have good toughness, do not significantly promote the transmission of electrolyte. Especially when it is applied to a high-pressure anode, the rate and low-temperature performance are poor; another example is styrene-acrylate polymer, although it significantly promotes the transmission of electrolyte and has excellent low-temperature performance, but the adhesive force Poor, with poor deformation resistance, the pole piece is easy to swell, and the cycle expansion at room temperature and high temperature is large.
- the accelerated mass transfer component I contains both rigid segments and mass transfer functional segments.
- the rigid segment with the above-mentioned styrene:olefin molar ratio makes the accelerated mass transfer component I have sufficient stiffness and good toughness. , which can suppress the violent expansion of the volume of the negative active material;
- the mass transfer functional chain segment with the above content has a certain polarity and is well wetted with the electrolyte, which can accelerate the transmission of lithium ions and prevent the lithium evolution reaction. occurrence, improve the capacity retention rate and reduce the thickness expansion rate; in addition, when the accelerating mass transfer chain segment contains removable lithium, the rate and cycle performance of the battery core can be further improved.
- the polymerized monomer of olefin is butadiene, propylene, or butene.
- the mass transfer functional segment includes an oxygen-containing mass transfer polymer segment.
- the polymerized monomer of the oxygen-containing mass transfer polymer segment is one or a combination of acrylate monomers and lithium acrylate monomers, and the above components are used to improve electrolyte infiltration and ion transmission kinetics.
- the acrylic acid ester monomer is one or a combination of acrylate, crotonic acid ester, methacrylate or derivatives of the above monomers;
- the acrylic acid lithium monomer is lithium acrylate, butyl acrylate.
- Lithium enoate monomers contain free lithium, which is beneficial to lithium ion transport.
- the polymerized monomer of the oxygen-containing mass transfer polymer segment may also include substructural segments containing lone pairs of electrons, such as polyethylene glycol or polyethyleneimine.
- the medium particle size (D50) range of the accelerated mass transfer component I is 100-250 nm, ensuring that it has sufficient contact points with the negative active material and current collector.
- Accelerated mass transfer component II is carboxymethyl cellulose lithium, polyacrylic acid-carboxymethyl cellulose lithium copolymer, polybutyric acid-carboxymethyl cellulose lithium copolymer, polymethacrylic acid-carboxymethyl cellulose lithium copolymer One or a combination of copolymers.
- the accelerated mass transfer component II itself contains freely migrating lithium ions, which promotes the transport of lithium ions.
- This application also includes an application of the extremely accelerated mass transfer material, which is applied to negative electrode powder;
- the negative electrode powder includes a negative electrode active material and a binder including the accelerating mass transfer component I in the negative electrode accelerating mass transfer material;
- the negative electrode powder includes a negative electrode active material and a binder including the accelerated mass transfer component II in the negative electrode accelerated mass transfer material;
- the negative electrode powder includes a negative electrode active material, a binder including the mass transfer accelerating component I and the mass transfer accelerating component II in the negative electrode accelerating mass transfer material;
- the negative electrode powder includes a negative electrode active material, a binder including the mass transfer accelerating component I and the mass transfer accelerating component II in the negative electrode accelerating mass transfer material, and a conductive agent;
- the sum of the mass fractions of the accelerated mass transfer component I and the accelerated mass transfer component II in the negative electrode powder layer is 0.5-3.5%.
- the mass proportion of mass transfer accelerating component I in the negative electrode powder layer is 0.7-1.3%; the mass proportion of mass transfer accelerating mass transfer component II in the negative electrode powder layer is 0.5-1.0%.
- the negative active material may include, but is not limited to, graphite, silicon, silicon oxygen, prelithiated silicon oxygen, silicon carbon, and prelithiated silicon carbon. , tin, phosphorus, oxides, prelithiated oxides, sulfides, prelithiated sulfides and other materials.
- the negative active material must meet the processing requirements of high-pressure compacted pole pieces. The surface of the rolled pole pieces is flat and smooth, without wrinkles or overpressure, and the negative electrode material will not be broken.
- the conductive agent can include one or a combination of conductive carbon black and one-dimensional carbon nanomaterials.
- One-dimensional carbon nanomaterials include multi-walled carbon nanotubes, single-walled carbon nanotubes, carbon nanofibers, etc., which can form a long-range continuous conductive network, reduce ohmic voltage drop, and improve the voltage platform; or they can be used with high-capacity negative electrodes such as silicon and tin. , enhance the continuity of the conductive network.
- This application also includes a negative electrode, including a negative electrode current collector and the negative electrode powder.
- a negative electrode current collector can include but is not limited to copper foil, coated copper foil, carbon-coated copper foil, lithium-plated copper foil, alloy foil, perforated foil, Foam metal, etc.
- the rolling process involved in this application can be a single rolling process to reach the specified compaction density, or it can be two or more times of rolling to reach the specified compaction density. It is necessary to ensure that the pole pieces do not over-pressure.
- the application also includes an electrochemical device, including a positive electrode, the negative electrode, a porous separator, and an electrolyte.
- the electrochemical device of this application has no special limitations on the positive electrode piece of the positive electrode, as long as it meets the purpose of this application.
- the positive electrode piece includes a positive electrode powder layer.
- the positive electrode powder layer includes positive electrode active materials, and the positive electrode active materials include but are not limited to one or more of lithium-transition metal oxides, lithium-transition metal phosphates, lithium-fluorinated transition metal phosphates, etc.; among the above materials, A "transition metal” can be one transition metal element or two or more transition metal elements.
- the positive electrode powder layer may also include a positive electrode binder.
- the positive electrode binder includes but is not limited to one or more types of polyvinylidene fluoride, polyacrylic acid, lithium polyacrylate, and the like.
- the positive electrode powder layer may also include a conductive agent for the positive electrode.
- the conductive agent for the positive electrode includes but is not limited to one or more types of carbon black, carbon tube, graphene, and carbon fiber.
- the positive electrode sheet can also include a positive current collector.
- a positive current collector can be but is not limited to aluminum foil, coated aluminum foil, carbon-coated aluminum foil, Alloy foil, foam metal, etc.
- the electrochemical device of the present application may also include a porous separator that isolates the positive and negative electrodes and conducts the electrolyte.
- the electrochemical device of the present application has no special limitations on the separator, as long as it meets the purpose of the present application.
- the porous separator can be, but is not limited to, PE separator, PP separator, multi-layer composite separator (such as PP/PE/PP), rubber-coated separator, rubber-coated ceramic separator, aramid separator, non-woven separator, etc.
- the electrochemical device of this application also includes an electrolyte.
- the electrolyte can be in a liquid state, a semi-gel state, a gel state, etc. This application does not impose special restrictions on the electrolyte solution, as long as it meets the purpose of this application.
- the electrochemical device of this application also includes a collector ear and a packaging shell. This application does not impose special restrictions on this, as long as it meets the purpose of this application.
- the structure of the electrochemical device of the present application can be, but is not limited to, any of winding, lamination, etc.
- the type of electrochemical device is not limited and may be, but is not limited to, primary batteries, secondary batteries, supercapacitors, ion-supercapacitor hybrid devices, etc.
- the manufacturing process of the electrochemical device of this application is well known in the industry and is not particularly limited.
- the present application also includes an electronic device including the electrochemical device described above.
- electronic equipment may include but is not limited to laptop computers, wearable devices, mobile phones, game consoles, cameras, televisions, recording equipment, video equipment, lighting equipment, power tools, energy storage modules, automobiles , unmanned aircraft, etc.
- the accelerating mass transfer component I of the present application can simultaneously enhance the charge and discharge capacity and control the cyclic expansion of high temperature, medium temperature and low temperature.
- the main function of the accelerating mass transfer component II is to enhance the charging capacity and control the low temperature cyclic expansion; preferably, when accelerating mass transfer
- the mass material group contains both accelerated mass transfer components I and accelerated mass transfer components II, which can significantly improve the comprehensive performance of electrochemical devices such as cycle, rate, and low temperature.
- the accelerating mass transfer component I, accelerating mass transfer component II and one-dimensional carbon nanomaterials are simultaneously applied to the high-pressure anode to build an effective ion and electronic conductive network, further reducing the impedance of electrochemical reactions and mass transfer, and improving power. Learn to reduce the occurrence of side effects.
- Mass transfer accelerating component I if it only improves expansion at medium and low temperatures, may contain at least one of mass transfer accelerating component I and mass transfer accelerating component II. If you only need to improve the cycle capacity retention rate, it is enough to include at least one of the mass transfer accelerating component I and the mass transfer accelerating component II.
- This application also proposes a negative electrode, an electrochemical device and an electronic device including the negative electrode.
- the negative electrode includes a negative electrode accelerating mass transfer material. Each component is flexibly matched.
- the accelerating mass transfer material can improve material transmission efficiency and prevent lithium precipitation. Improve capacity retention.
- the technology of this application can significantly improve the low temperature, rate, cycle and other performance of high-energy electrochemical devices.
- Figure 1 is a schematic diagram of the principle.
- Figure 3 is a comparison chart of the thickness expansion rates after the 0°C cycle between the Example and the blank control group.
- Figure 4 is a comparison chart of the thickness expansion rates after the 45°C cycle between the embodiment and the blank control group.
- electrochemical devices used in the following examples are lithium ion secondary batteries, but the electrochemical devices involved in this application are not limited to lithium ion secondary batteries.
- the following three tests were performed on the blank control group and example samples.
- I 0 be the current corresponding to 0.1C
- I 1 be the current corresponding to 1C.
- Fresh batteries that have not been tested for electrical performance are placed in a constant temperature box at 25°C for more than 1 hour, discharged to 3V with a constant current of I 0 ; left to stand for 10 minutes; charged with a constant current of I 0 for 5 hours (the final instantaneous voltage is recorded as U 0 ), and then charge with a constant current I 1 for 1 s (the final instantaneous voltage is recorded as U 1 ).
- I 00 be the current corresponding to 0.1C
- I 01 be the current corresponding to 0.5C.
- Fresh batteries that have not been tested for electrical performance are placed in a constant temperature box at 0°C for more than 2 hours, discharged to 3V with a constant current of I 00 ; left to stand for 10 minutes; charged with a constant current of I 00 for 5 hours (the final instantaneous voltage is recorded as U 00 ), and then charge with constant current I 01 for 0.5s (the end instant voltage is recorded as U 01 ).
- Thickness expansion rate (T 1 /T 0 -1)*100%
- Thickness expansion rate (T 1 /T 0 -1)*100%
- Negative electrode production Mix artificial graphite, acetylene black, sodium carboxymethylcellulose, and styrene-butadiene rubber according to the mass ratio of 97.5:0.4:0.8:1.3, add deionized water to adjust the viscosity, and then apply and roll (compacted density 1.75 g/cm 3 ), shearing and other processes to complete the production of pole pieces.
- Positive electrode production Mix lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride at a mass ratio of 98:1:1, add NMP to adjust the viscosity, and complete the production of the electrode piece through processes such as coating, rolling, and shearing.
- Battery core production Use the above-mentioned negative electrode and positive electrode to make a wound battery core. After the battery core is chemically separated and sorted, the electrical performance test is performed.
- Example 1 except "mix artificial graphite, acetylene black, sodium carboxymethylcellulose, styrene-butadiene rubber, and styrene-butadiene-isobutylene ester in a mass ratio of 97.5:0.4:0.8:0.6:0.7". Same as the blank control group.
- Example 2 Except for “mixing artificial graphite, acetylene black, sodium carboxymethyl cellulose, and styrene-butadiene-isobutylene ester according to the mass ratio of 97.5:0.4:0.8:1.3", everything else is the same as the blank control group .
- Example 3 Except for “mixing artificial graphite, acetylene black, sodium carboxymethylcellulose, and styrene-butadiene-propylene ester according to the mass ratio of 97.5:0.4:0.8:1.3", everything else is the same as the blank control group .
- Example 4 Except for “mixing artificial graphite, acetylene black, sodium carboxymethyl cellulose, and styrene-propylene-isobutylene ester in a mass ratio of 97.5:0.4:0.8:1.3", everything else was the same as the blank control group.
- Example 5 Except for “mixing artificial graphite, acetylene black, sodium carboxymethylcellulose, and styrene-butadiene-lithium acrylate according to a mass ratio of 97.5:0.4:0.8:1.3", everything else is the same as the blank control group .
- Example 6 Except for “mixing artificial graphite, acetylene black, sodium carboxymethyl cellulose, styrene-butadiene-methacrylate-acrylonitrile according to the mass ratio of 97.5:0.4:0.8:1.3", all others were mixed with The blank control group was the same.
- Example 7 Except “mix artificial graphite, acetylene black, sodium carboxymethyl cellulose, styrene-butadiene-isobutylene (n-glycol) lithium diacrylate according to the mass ratio of 97.5:0.4:0.8:1.3" Except for this, everything else was the same as the blank control group.
- Example 8 Except for “mixing artificial graphite, acetylene black, sodium carboxymethylcellulose, polyacrylic acid-lithium carboxymethylcellulose, and styrene-butadiene rubber in a mass ratio of 97.5:0.4:0.3:0.5:1.3", other All were the same as the blank control group.
- Example 9 Except for “mixing artificial graphite, acetylene black, polyacrylic acid-lithium carboxymethylcellulose, and styrene-butadiene rubber in a mass ratio of 97.5:0.4:0.8:1.3", everything else was the same as the blank control group.
- Example 10 Except for “mixing artificial graphite, acetylene black, polyacrylic acid-lithium carboxymethylcellulose, and styrene-butadiene rubber in a mass ratio of 97.5:0.4:1.0:1.1", everything else was the same as the blank control group.
- Example 11 Except for “mixing artificial graphite, acetylene black, polyacrylic acid-lithium carboxymethyl cellulose, and styrene-butadiene-isobutylene ester according to the mass ratio of 97.5:0.4:0.8:1.3", the others were all with the blank The control group was the same.
- Example 12 In addition to “mixing artificial graphite, acetylene black, polyacrylic acid-lithium carboxymethyl cellulose, styrene-butadiene-isobutylene ester, and carbon fiber according to the mass ratio of 97.5:0.3:0.8:1.3:0.1", Others were the same as the blank control group.
- Example 2 53.0 131.1
- Example 3 53.1 131.4
- Example 4 53.2 131.0
- Example 5 52.8 129.4
- Example 6 53.1 131.8
- Example 7 52.6 128.9
- Example 8 53.7 138.3
- Example 9 53.1 130.8
- Example 10 53.3 130.5
- Example 11 52.0 122.7
- Example 12 51.5 121.0
- FIG. 1 is a schematic diagram of the principle; as shown in Figures 2 and 3, the blank control sample uses a traditional binder, which has the worst kinetics, the cycle capacity retention rate continues to decay, the thickness after cycles expands by more than 9%, and the dissection found that the battery core analyzed Lithium; the low-temperature cycle performance of sample A (Example 2), sample B (Example 9), and sample C (Example 11) is significantly better than the blank control sample, which shows that the accelerated mass transfer material group can effectively increase the lithium ion transfer rate , inhibiting the occurrence of lithium evolution and improving the low-temperature cycle performance of electrochemical devices containing the above-mentioned high-compact negative electrode.
- the low-temperature cycle performance of sample C is better than that of sample A and sample B.
- the accelerated mass transfer component I and the accelerated mass transfer component II have a synergistic effect, and their simultaneous application can further enhance the improvement effect.
- Figure 4 is a comparison chart of the thickness expansion rates after the 45°C cycle of the embodiment and the blank control group.
- the cyclic expansion rate of sample A and sample C is less than that of the blank control, and the thickness expansion rate of sample B is similar to that of the blank control. This shows that the accelerated mass transfer component I has the effect of improving high temperature cycle expansion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
La présente invention concerne un matériau d'accélération du transfert de masse et de réduction de la dilatation pour une électrode négative et son utilisation. Le matériau d'accélération du transfert de masse et de réduction de la dilatation pour une électrode négative comprend au moins l'un d'un constituant d'accélération de transfert de masse I et d'un constituant d'accélération de transfert de masse II, le constituant d'accélération de transfert de masse I étant un mélange de polymères, le mélange de polymères comprenant du styrène, une oléfine et des segments fonctionnels de transfert de masse, et le constituant d'accélération de transfert de masse II étant l'un parmi la carboxyméthylcellulose lithiée et un copolymère d'acide polyacrylique/(iso)buténoïque/carboxyméthylcellulose lithiée ou une combinaison de ceux-ci. Lesdits deux constituants peuvent améliorer la capacité de charge d'une électrode négative, supprimer le placage de lithium et réguler le taux de dilatation par cycle, ce qui permet d'améliorer les propriétés de cycle, de vitesse et à basse température d'un dispositif électrochimique à haute énergie. En outre, lorsque le matériau d'accélération du transfert de masse contient simultanément le constituant d'accélération de transfert de masse I ainsi que le constituant d'accélération de transfert de masse II, l'effet d'amélioration sur les propriétés globales du dispositif électrochimique est relativement remarquable.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210676435.2 | 2022-06-15 | ||
CN202210676435.2A CN115050960B (zh) | 2022-06-15 | 2022-06-15 | 负极加速传质和改善膨胀的物料及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240681A1 true WO2023240681A1 (fr) | 2023-12-21 |
Family
ID=83161306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/101806 WO2023240681A1 (fr) | 2022-06-15 | 2022-06-28 | Matériau d'accélération du transfert de masse et de réduction de la dilatation pour électrode négative et utilisation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115050960B (fr) |
WO (1) | WO2023240681A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116435517B (zh) * | 2023-06-12 | 2023-09-05 | 蔚来电池科技(安徽)有限公司 | 负极极片、二次电池及包括该二次电池的装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346328A (zh) * | 2013-07-16 | 2013-10-09 | 中国科学院青岛生物能源与过程研究所 | 一种耐高电位窗口锂离子二次电池粘合剂及其制备方法 |
CN105849943A (zh) * | 2014-01-29 | 2016-08-10 | 日本瑞翁株式会社 | 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池 |
CN107925058A (zh) * | 2016-03-29 | 2018-04-17 | 株式会社Lg化学 | 二次电池用负极、其制造方法及包含其的二次电池 |
CN113773510A (zh) * | 2021-09-07 | 2021-12-10 | 重庆理工大学 | 一种羧甲基纤维素锂接枝聚丙烯酸锂的生产方法 |
CN113851608A (zh) * | 2020-06-26 | 2021-12-28 | Sk新技术株式会社 | 用于锂二次电池的负极和包含其的锂二次电池 |
CN114335422A (zh) * | 2021-12-30 | 2022-04-12 | 珠海冠宇电池股份有限公司 | 一种负极片和包括该负极片的锂离子电池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110197894A (zh) * | 2018-02-26 | 2019-09-03 | 宁德新能源科技有限公司 | 负极极片和包括负极极片的锂离子电池 |
CN112751030A (zh) * | 2019-10-31 | 2021-05-04 | 苏州微木智能系统有限公司 | 一种负极极片及其锂离子电池 |
CN114583173B (zh) * | 2022-03-15 | 2024-06-11 | 湖北亿纬动力有限公司 | 一种负极浆料组合物和应用 |
-
2022
- 2022-06-15 CN CN202210676435.2A patent/CN115050960B/zh active Active
- 2022-06-28 WO PCT/CN2022/101806 patent/WO2023240681A1/fr unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346328A (zh) * | 2013-07-16 | 2013-10-09 | 中国科学院青岛生物能源与过程研究所 | 一种耐高电位窗口锂离子二次电池粘合剂及其制备方法 |
CN105849943A (zh) * | 2014-01-29 | 2016-08-10 | 日本瑞翁株式会社 | 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池 |
CN107925058A (zh) * | 2016-03-29 | 2018-04-17 | 株式会社Lg化学 | 二次电池用负极、其制造方法及包含其的二次电池 |
CN113851608A (zh) * | 2020-06-26 | 2021-12-28 | Sk新技术株式会社 | 用于锂二次电池的负极和包含其的锂二次电池 |
CN113773510A (zh) * | 2021-09-07 | 2021-12-10 | 重庆理工大学 | 一种羧甲基纤维素锂接枝聚丙烯酸锂的生产方法 |
CN114335422A (zh) * | 2021-12-30 | 2022-04-12 | 珠海冠宇电池股份有限公司 | 一种负极片和包括该负极片的锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
CN115050960A (zh) | 2022-09-13 |
CN115050960B (zh) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023174335A1 (fr) | Composition de bouillie d'électrode négative et son utilisation | |
CN111883771B (zh) | 一种锂离子电池正极材料、正极片及锂离子电池 | |
WO2022121863A1 (fr) | Plaque négative et batterie au lithium-ion comprenant une plaque négative | |
WO2021036955A1 (fr) | Pièce polaire négative, batterie rechargeable au lithium et dispositif ayant une batterie rechargeable au lithium | |
CN104916825A (zh) | 一种锂电池高电压改性负极材料的制备方法 | |
CN112151851B (zh) | 一种能够降低内部温升的叠片式锂离子电池用叠芯 | |
WO2020078359A1 (fr) | Plaque d'électrode négative et batterie | |
CN113066962B (zh) | 含硅负极片和高能量密度电池 | |
WO2021258900A1 (fr) | Feuille d'électrode positive et batterie | |
CN114665065A (zh) | 一种正极极片及其制备方法和应用 | |
KR102465691B1 (ko) | 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자 | |
WO2024193348A1 (fr) | Collecteur de courant d'électrode négative, feuille d'électrode négative et batterie comprenant une feuille d'électrode négative | |
CN115513418A (zh) | 硅基负极材料及其制备方法、二次电池 | |
WO2023240681A1 (fr) | Matériau d'accélération du transfert de masse et de réduction de la dilatation pour électrode négative et utilisation | |
CN115395116A (zh) | 一种钠离子电池正极极片及其制备方法、钠离子电池 | |
CN113130907A (zh) | 一种电池电芯及其制备方法和快充锂离子电池 | |
WO2021121222A1 (fr) | Batterie secondaire | |
WO2023143035A1 (fr) | Liant d'électrode négative et son procédé de préparation, feuille d'électrode négative et batterie | |
CN116053412A (zh) | 一种锂离子电池负极片 | |
CN115395018A (zh) | 复合补锂材料及其制备方法和应用 | |
KR20220137134A (ko) | 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자 | |
CN203013848U (zh) | 一种超级电池负极板 | |
CN112018380A (zh) | 一种高性能倍率型锂离子电池及其制备方法 | |
CN114899354B (zh) | 一种多层负极片、其制备方法及二次电池 | |
CN111697186A (zh) | 一种高能量密度锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946360 Country of ref document: EP Kind code of ref document: A1 |