WO2023238519A1 - 積層体、及び積層体の製造方法 - Google Patents

積層体、及び積層体の製造方法 Download PDF

Info

Publication number
WO2023238519A1
WO2023238519A1 PCT/JP2023/015587 JP2023015587W WO2023238519A1 WO 2023238519 A1 WO2023238519 A1 WO 2023238519A1 JP 2023015587 W JP2023015587 W JP 2023015587W WO 2023238519 A1 WO2023238519 A1 WO 2023238519A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
block copolymer
diene block
layer
hydrogenated conjugated
Prior art date
Application number
PCT/JP2023/015587
Other languages
English (en)
French (fr)
Inventor
裕太 松岡
敬 助川
敏和 保科
崇裕 辻
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023238519A1 publication Critical patent/WO2023238519A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Definitions

  • the present invention relates to a laminate and a method for manufacturing a laminate.
  • Patent Document 1 proposes a laminate consisting of a base mainly composed of polypropylene resin and thermoplastic resin, a seal layer, and an acrylic resin layer.
  • Patent Document 2 discloses a laminate of a base made of polypropylene resin and an acrylic resin layer, in which an adhesive layer containing a polypropylene resin as a non-solvent adhesive is provided on a base made of polypropylene resin. Proposed.
  • JP 2021-181232 Publication Japanese Patent Application Publication No. 2013-14027
  • Patent Document 2 has a problem in that there is still room for improvement in terms of adhesive strength.
  • the present invention aims to provide a laminate that does not use organic solvents, has a good appearance, and has high adhesive strength.
  • the present inventors have discovered that a layer having a specific structure is used to bond a layer mainly composed of polyolefin resin and a layer mainly composed of acrylic resin.
  • Organic solvent The present inventors have discovered that it is possible to form a laminate with a good appearance and high adhesive strength without using any of the above materials, and have completed the present invention. That is, the present invention is as follows.
  • Consists of an adhesive component mainly composed of polymers A laminate in which the hydrogenated conjugated diene block copolymer satisfies two or more of the following conditions (i) to (iv). ⁇ Condition (i)> The hydrogenated conjugated diene block copolymer has a polar group.
  • the conjugated diene block copolymer before hydrogenation of the hydrogenated conjugated diene block copolymer contains units (a) derived from 1,2-bonds and/or 3,4-bonds of the conjugated diene compound; Contains a unit (b) derived from a 1,4-bond, and when the total content of the conjugated diene monomer units is 100%, derived from the 1,2-bond and/or 3,4-bond The content of unit (a) is 50% or more.
  • the hydrogenated conjugated diene block copolymer has at least one of the polymer blocks (C).
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is 25% by mass or more and 80% by mass or less.
  • the hydrogenated conjugated diene block copolymer is satisfying the above-mentioned condition (i), the above-mentioned condition (iii), and the above-mentioned condition (iv); The laminate according to [1] above.
  • the hydrogenated conjugated diene block copolymer is satisfying the condition (ii), the condition (iii), and the condition (iv); The laminate according to [1] above.
  • the hydrogenated conjugated diene block copolymer is The above conditions (i) and the above conditions (ii) are satisfied, but the above conditions (iv) are not satisfied, Furthermore, the following condition (v) is satisfied, The laminate according to [1] above. ⁇ Condition (v)> The content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is less than 25% by mass.
  • the thickness of the layer (I) mainly composed of acrylic resin is 1.5 mm or less, The laminate according to any one of [1] to [7] above. [9] the hydrogenated conjugated diene block copolymer satisfies the condition (iv); The laminate according to any one of [1] to [3] and [5] to [8].
  • a laminate having the following: The amounts of the polyolefin resin and adhesive component are in a mass ratio of polyolefin resin/adhesive component 30/70 to 95/5,
  • the adhesive component is A polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer unit and a conjugated diene monomer
  • the conjugated diene block copolymer before hydrogenation of the hydrogenated conjugated diene block copolymer contains units (a) derived from 1,2-bonds and/or 3,4-bonds of the conjugated diene compound; Contains a unit (b) derived from a 1,4-bond, and derived from the 1,2-bond and/or 3,4-bond, when the total content of the conjugated diene monomer units is 100%.
  • the content of unit (a) is 50% or more.
  • the hydrogenated conjugated diene block copolymer has at least one of the polymer blocks (C).
  • the hydrogenated conjugated diene block copolymer is The above conditions (i) and the above conditions (ii) are satisfied, but the above conditions (iv) are not satisfied, The laminate according to [14] above, which further satisfies the condition (v).
  • the hydrogenated conjugated diene block copolymer satisfies the condition (i), and the hydrogenated conjugated diene block copolymer has a polar group
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and is not intended to limit the present invention to the following content.
  • the present invention can be implemented with appropriate modifications within the scope of its gist.
  • the laminate of this embodiment has the following two forms. They will be described as a laminate of the first embodiment and a laminate of the second embodiment, respectively.
  • the laminate of the first embodiment is A layer (I) mainly composed of acrylic resin (hereinafter sometimes referred to as layer (I)), A layer (II) mainly composed of polyolefin resin (hereinafter sometimes referred to as layer (II)), an adhesive layer (III) (hereinafter sometimes referred to as layer (III)) provided between the layer mainly composed of the acrylic resin and the layer mainly composed of the polyolefin resin; It is a laminate having the following.
  • the adhesive layer (III) is A polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer unit and a conjugated diene monomer
  • Consists of an adhesive component mainly composed of polymers The hydrogenated conjugated diene block copolymer satisfies two or more of the following conditions (i) to (iv).
  • the hydrogenated conjugated diene block copolymer has a polar group.
  • the conjugated diene block copolymer before hydrogenation of the hydrogenated conjugated diene block copolymer contains units (a) derived from 1,2-bonds and/or 3,4-bonds of the conjugated diene compound; Contains a unit (b) derived from a 1,4-bond, and when the total content of the conjugated diene monomer units is 100%, derived from the 1,2-bond and/or 3,4-bond The content of unit (a) is 50% or more.
  • the hydrogenated conjugated diene block copolymer has at least one of the polymer blocks (C).
  • ⁇ Condition (iv)> The content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is 25% by mass or more and 80% by mass or less.
  • the laminate of the second embodiment is A layer (I) mainly composed of acrylic resin, A layer (IV) containing a polyolefin resin and an adhesive component (hereinafter sometimes referred to as layer (IV)), It is a laminate having the following.
  • the adhesive component is A polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer unit and a conjugated diene monomer
  • the hydrogenated conjugated diene block copolymer satisfies two or more of the following conditions (i) to (iv).
  • the hydrogenated conjugated diene block copolymer has a polar group.
  • the conjugated diene block copolymer before hydrogenation of the hydrogenated conjugated diene block copolymer contains units (a) derived from 1,2-bonds and/or 3,4-bonds of a conjugated diene compound, Contains a unit (b) derived from a 1,4-bond, and derived from the 1,2-bond and/or 3,4-bond, when the total content of the conjugated diene monomer units is 100%.
  • the content of unit (a) is 50% or more.
  • the laminate of the first embodiment and the laminate of the second embodiment have a layer (I) mainly composed of an acrylic resin and a layer mainly composed of a polyolefin resin, and a layer (I) mainly composed of a polyolefin resin. They have in common that the main adhesive component is a block copolymer.
  • the laminate of the first embodiment has an independent adhesive layer (III).
  • the laminate of the second embodiment has a layer (IV) containing an adhesive component and a polyolefin resin.
  • the content of the acrylic resin in layer (I) is calculated as the entire mixed material.
  • the acrylic resin include commercially available products such as Acrypet (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical), and Delpet (manufactured by Asahi Kasei).
  • polypropylene resin examples include a propylene homopolymer and a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (hereinafter also referred to as "propylene resin").
  • the polypropylene resin is a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms
  • examples of the ⁇ -olefin in the copolymer include ethylene, 1-butene, isobutene, 1-pentene, and 1-hexene. , 4-methyl-1-pentene, 1-octene and the like.
  • These polyolefin resins can be synthesized by conventionally known methods. From the viewpoint of heat resistance (heat aging resistance) and moldability, polypropylene resin is preferable as the polyolefin resin.
  • the polyolefin resin used for layer (II) and layer (IV) has an MFR (melt flow rate) of usually 1.0 to 1000 g/10 minutes, preferably 5.0 to 100 g/10 minutes.
  • MFR melt flow rate
  • the moldability (fluidity) of layer (II) and layer (IV) tends to improve. It also tends to suppress deterioration of the appearance of molded products (occurrence of flow marks).
  • the polyolefin resins used in layer (II) and layer (IV) may be used alone or in combination of two or more.
  • the proportion of ⁇ -olefin is 30% by mass or more, preferably more than 30% by mass, more preferably 35% by mass or more, more preferably 40% by mass, based on 100% by mass of the entire olefin elastomer. % by mass or more.
  • the proportion of ⁇ -olefin is within the above range, the olefin elastomer has low rigidity, which tends to improve the impact resistance of the laminate of this embodiment.
  • the laminate of the first embodiment has an adhesive layer (III) made of an adhesive component between the layer (I) and layer (II) described above.
  • the laminate of the second embodiment has a layer (IV) containing the above-mentioned polyolefin resin and adhesive component.
  • the adhesive layer (III) is an independent layer made of an adhesive component mainly composed of a hydrogenated conjugated diene block copolymer, which will be described later.
  • "mainly composed of a hydrogenated conjugated diene block copolymer” means that the content of the hydrogenated conjugated diene block copolymer in the adhesive component is 50% by mass or more, and the appearance It may also contain other components within a range that does not impair adhesive strength.
  • the content of the hydrogenated conjugated diene block copolymer in the adhesive component is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass. Above, still more preferably 90% by mass or more, even more preferably 95% by mass or more.
  • layer (IV) contains the above-mentioned polyolefin resin and the adhesive component described below.
  • the content of the hydrogenated conjugated diene block copolymer in the adhesive component is the same as in the adhesive layer (III) described above.
  • the adhesive component includes a polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block mainly composed of conjugated diene monomer units, and a polymer block (A) mainly composed of vinyl aromatic monomer units. It has two or more polymer blocks selected from the group consisting of a combined block (B) and a polymer block (C) having a vinyl aromatic monomer unit and a conjugated diene monomer unit, and has a conjugated diene monomer unit. It consists of an adhesive component mainly composed of a hydrogenated conjugated diene block copolymer in which the unsaturated bonds of the units are hydrogenated.
  • the hydrogenated conjugated diene block copolymer satisfies two or more of the following conditions (i) to (iv).
  • the structures of the polymer block (A), polymer block (B), and polymer block (C) will be described later.
  • the hydrogenated conjugated diene block copolymer has a polar group.
  • the conjugated diene block copolymer before hydrogenation of the hydrogenated conjugated diene block copolymer has units derived from the 1,2-bonds and/or 3,4-bonds of the conjugated diene compound (hereinafter simply " (also referred to as “unit (a)”), a unit derived from a 1,4-bond (hereinafter also simply referred to as "unit (b)”), and the content of unit (a) is the same as that of the conjugated diene. When the content of monomer units is taken as 100%, it is 50% or more (amount of vinyl bonds).
  • the hydrogenated conjugated diene block copolymer has at least one of the polymer blocks (C).
  • the laminate of this embodiment exhibits high adhesive strength.
  • the sexual parameter (sp value) is high.
  • the hydrogenated conjugated diene block copolymer contained in the adhesive component must contain a polymer compatible with both resins. It is required to have a skeleton.
  • the hydrogenated conjugated diene block copolymer must meet the conditions (i) and/or (iii) from the viewpoint of solubility parameter (sp value). It is preferable that condition (iv) and/or condition (iv) be satisfied.
  • the hydrogenated conjugated diene block copolymer preferably satisfies condition (ii) and/or condition (iii) and/or condition (iv) in order to improve compatibility with the polyolefin resin.
  • the hydrogenated conjugated diene block copolymer has high compatibility with layer (I) and layer (II). In particular, it has excellent compatibility with polyolefin resins in terms of solubility parameters. Therefore, in both cases of a structure having an adhesive layer (III) which is a single layer of an adhesive component, and a structure having a layer (IV) containing a polyolefin resin and an adhesive component, the acrylic resin A laminate having high adhesive strength can be obtained without impairing the appearance of the layer (I) mainly composed of .
  • the adhesive component may contain adhesive components other than the hydrogenated conjugated diene block copolymer as long as the appearance and adhesive strength are not impaired.
  • the sp value of the hydrogenated conjugated diene block copolymer is improved. This improves the compatibility and reactivity between the acrylic resin in layer (I) and the hydrogenated conjugated diene block copolymer.
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is preferably 30 to 75% by mass, more preferably 35 to 70% by mass, and Preferably 40 to 70% by weight, even more preferably 45 to 70% by weight, even more preferably 50 to 70% by weight, particularly preferably 55 to 70% by weight.
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer can be controlled within the above numerical range by adjusting the amount of vinyl aromatic compound added and polymerization time in the polymerization process. can.
  • the hydrogenated conjugated diene block copolymer contains at least one vinyl aromatic monomer unit and a conjugated diene monomer unit. It is preferable to have a polymer block (C) having the following. As a result, the compatibility between the hydrogenated conjugated diene block copolymer and layer (I) and layer (II) is excellent, and the adhesive strength is improved.
  • the unit (a) (hereinafter sometimes referred to as a vinyl bond) has better compatibility with polyolefin resins than the unit (b). Therefore, when the hydrogenated conjugated diene block copolymer has a vinyl bond content of 50% or more, the compatibility with the polyolefin resin of layer (II) is improved, and the adhesive strength is improved.
  • the vinyl bond content of the hydrogenated conjugated diene block copolymer before hydrogenation is preferably 55% or more, more preferably 60% or more, even more preferably 65% or more, even more preferably 67% or more, Even more preferably, it is 70% or more.
  • the amount of vinyl bonds can be measured by the method described in the Examples below, and can be controlled within the above numerical range by using a vinyl bond amount adjusting agent (vinylating agent), as described later.
  • the hydrogenated conjugated diene block copolymer in the adhesive component unsaturated bonds derived from the conjugated diene compound are hydrogenated.
  • the conjugated diene monomer unit having excellent compatibility with the polyolefin resin in layer (II) By hydrogenating the conjugated diene monomer unit having excellent compatibility with the polyolefin resin in layer (II), the polymer block (B) and the polymer block ( The difference in sp value between C) and the polyolefin resin becomes smaller, and the compatibility between the hydrogenated conjugated diene block copolymer and layer (II) improves. Furthermore, since hydrogenation reduces the number of thermally unstable unsaturated bonds, heat aging resistance, weather resistance, and mold staining resistance (characteristics that prevent mold staining) tend to improve.
  • the hydrogenation rate is preferably 80% or more, more preferably 83% or more, and still more preferably 85% or more.
  • the hydrogenation rate of the hydrogenated conjugated diene block copolymer is preferably 90% or less.
  • the hydrogenation rate of the hydrogenated conjugated diene block copolymer can be measured using a nuclear magnetic resonance apparatus (NMR) or the like, and specifically can be measured by the method described in Examples. Further, the hydrogenation rate can be controlled within the above numerical range by, for example, adjusting the amount of hydrogen reacted during the hydrogenation reaction.
  • NMR nuclear magnetic resonance apparatus
  • the tan ⁇ peak temperature in the viscoelasticity measurement of the adhesive component is present at the usage environment temperature of the laminate of this embodiment, a laminate with excellent vibration damping properties and quietness tends to be obtained.
  • the hydrogenated conjugated diene block copolymer contained in the adhesive component satisfies the conditions (iii) and (iv), the tan ⁇ peak temperature of the hydrogenated conjugated diene block copolymer becomes 0° C. or higher. There is a tendency. Further, by satisfying the above condition (i), high adhesive strength is exhibited, which tends to contribute to improving vibration damping properties.
  • the decomposed product derived from the modifier used to bond the polar group to the hydrogenated conjugated diene block copolymer tends to volatilize during molding, causing mold contamination and deteriorating the working environment.
  • the amount of unreacted modifier is preferably small, and the amount of unreacted modifier is preferably 0.2% by mass or less, more preferably 0.15% by mass or less, based on the hydrogenated conjugated diene block copolymer after the modification step. It is more preferably 0.1% by mass or less, even more preferably 0.05% by mass or less.
  • the reaction rate between the hydrogenated conjugated diene block copolymer and the modifier described below is high.
  • the polar groups can be bonded to the hydrogenated conjugated diene block copolymer by using a polymerization initiator having each of the predetermined functional groups that become polar groups, which will be described later.
  • Preferred methods include a method of polymerizing a saturated monomer, a method of forming a functional group at a living terminal, and a method of performing an addition reaction with a modifier having a functional group.
  • the polar group include, but are not limited to, an acid anhydride group, an amino group, a dicarboxyl group, a carboxyl group, an epoxy group, and an oxetanyl group. From the viewpoint of the above-mentioned reaction rate, amino groups and epoxy groups are preferable, and from the viewpoint of easy setting to reduce the amount of unreacted modifier by controlling the amount added, amino groups are more preferable.
  • the hydrogenated conjugated diene block copolymer satisfies conditions (ii), (iii), and (iv)
  • the hydrogenated conjugated diene block copolymer is less likely to decompose; Since there is little volatilization, it tends to ensure excellent molding cycle performance and work environment.
  • the laminate of this embodiment When the laminate of this embodiment is used at a low temperature (0° C. or lower), it is preferable to use an adhesive component with high flexibility. Since the adhesive component has high flexibility, stress can be dispersed even at low temperatures, and the laminate of this embodiment tends to exhibit high impact resistance. From the above-mentioned viewpoint, if the hydrogenated conjugated diene block copolymer satisfies condition (i), condition (ii), and the following condition (v), acrylic resin and hydrogenated conjugated diene block copolymer The refractive index of the laminate tends to be close to that of the laminate of this embodiment, and the laminate of this embodiment tends to have high transparency, and a laminate with excellent impact resistance and adhesive strength at low temperatures tends to be obtained.
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is less than 25% by mass.
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer is preferably 20% by mass or less, more preferably 17% by mass or less, even more preferably It is 15% by mass or less, even more preferably 13% by mass or less.
  • the content of vinyl aromatic monomer units in the hydrogenated conjugated diene block copolymer can be controlled within the above numerical range by adjusting the amount of vinyl aromatic compound added and polymerization time in the polymerization process. can.
  • the polar group may be selected from the viewpoint of compatibility with the layer (I) mainly composed of the above-mentioned acrylic resin.
  • at least one selected from the group consisting of acid anhydride groups, amino groups, dicarboxyl groups, carboxyl groups, epoxy groups, and oxetanyl groups is preferable, and more preferably acid anhydride groups and amino groups. , a dicarboxyl group, and a carboxyl group.
  • the hydrogenated conjugated diene block copolymer has at least one polar group selected from the above group, the hydrogenated conjugated diene block copolymer has good affinity and/or reactivity with the acrylic resin. laminates with high adhesive strength tend to be obtained. Affinity refers to the ability to generate at least one intermolecular force selected from the group consisting of ionic interactions, hydrogen bonds, dipole interactions, and van der Waals forces between each component. Reactivity means that the polar groups of each component have covalent bonding properties. When polar groups react with each other, for example, when the OH of a carboxyl group is removed, the original polar group changes or disappears, but when this forms a covalent bond, the polar groups become "reactive".
  • the polar group that the hydrogenated conjugated diene block copolymer has is an amino group.
  • the amount of polar groups that the hydrogenated conjugated diene block copolymer has is not particularly limited, but from the viewpoint of compatibility with the layer (I) mainly composed of acrylic resin, the hydrogenated conjugated diene block copolymer It is preferably 0.01% by mass or more based on the entire polymer. The content is more preferably 0.05% by mass or more, and still more preferably 0.10% by mass or more.
  • the amount of polar groups contained in the hydrogenated conjugated diene block copolymer is preferably 20% by mass or less from the aforementioned viewpoints of mold contamination and work environment.
  • the amount of polar groups that the hydrogenated conjugated diene block copolymer has is determined by the reaction conditions with the compound to form these polar groups, such as compound addition, during the production process of the hydrogenated conjugated diene block copolymer. It can be controlled within the above numerical range by adjusting the amount, reaction temperature, reaction time, etc.
  • the decorative laminates have high adhesion not only at room temperature but also in a wide temperature range and in high-temperature, high-humidity environments. properties (heat cycle resistance, hot water resistance).
  • the adhesive component used in the layer (III) should have a polar group that is reactive with the acrylic resin described above. preferable.
  • the thickness of layer (I) is small, in order for the laminate of this embodiment to have sufficient heat cycle resistance and/or hot water resistance, only the vicinity of the interface between layer (I) and layer (III) is required.
  • the polar groups possessed by the hydrogenated conjugated diene copolymer are selected from the viewpoint of showing reactivity with the acrylic resin. An amino group is preferred.
  • the covalent bond between the acrylic resin of layer (I) and the hydrogenated conjugated diene block copolymer of layer (III) is increased, thereby improving the heat cycle resistance and hot water resistance of the laminate of this embodiment.
  • the hydrogenation rate of the hydrogenated conjugated diene block copolymer is preferably 90% or less, more preferably 88% or less, even more preferably 86% or less, even more preferably 85% or less.
  • the hydrogenated conjugated diene block copolymer it is preferable not to leave too many unsaturated bonds in the hydrogenated conjugated diene block copolymer from the viewpoint of preventing gelation and suppressing mold contamination. Furthermore, if the amount of unreacted modifier is reduced, mold contamination tends to be suppressed.
  • the lower limit of the hydrogenation rate of the hydrogenated conjugated diene block copolymer is determined by the aforementioned heat aging resistance, weather resistance, and the deterioration in appearance of the laminate of this embodiment due to crosslinking between the hydrogenated conjugated diene block copolymers. From the viewpoint of suppressing mold contamination, it is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more.
  • the hydrogenated conjugated diene copolymer has an amino group, and more preferably
  • the hydrogenation rate of the hydrogenated conjugated diene block copolymer having an amino group is 50% or more and 90% or less, more preferably 60% or more and 90% or less, and even more preferably 70% or more and 90% or less. It is still more preferably 70% or more and 88% or less, even more preferably 70% or more and 86% or less, particularly preferably 70% or more and 85% or less.
  • the thickness of the layer (I) is preferably 1.5 mm or less, more preferably 1.0 mm or less, even more preferably 0.7 mm or less, even more preferably 0.5 mm or less, even more preferably It is 0.3 mm or less.
  • the thickness of the layer (I) is thin, specifically 1.5 mm or less, from the viewpoint of productivity of the laminate of this embodiment, at least two layers (I) and (III) are in contact with each other.
  • the conjugated diene compound constituting the hydrogenated conjugated diene block copolymer used in the adhesive component is a diolefin having a pair of conjugated double bonds.
  • the hydrogenated conjugated diene block copolymer has two or more polymer blocks selected from the group consisting of the following polymer blocks (A) to (C).
  • B) Polymer block mainly composed of conjugated diene monomer units (polymer block (B))
  • C Polymer block having a vinyl aromatic monomer unit and a conjugated diene monomer unit (polymer block (C))
  • the polymer block (A) mainly composed of vinyl aromatic monomer units has a content of vinyl aromatic monomer units of 80% by mass or more.
  • the vinyl aromatic compound used to form the vinyl aromatic monomer unit include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, Examples include N,N-dimethyl-p-aminoethylstyrene and N,N-diethyl-p-aminoethylstyrene.
  • the polymer block (A) may be composed of one type of vinyl aromatic monomer unit, or may be composed of two or more types of vinyl aromatic monomer units. From the viewpoint of the strength of the laminate, the content of vinyl aromatic monomer units contained in the polymer block (A) shall be more than 95% by mass, preferably 100% by mass (other compounds may not be intentionally added). (not added to).
  • the polymer block (B) may be composed of one type of conjugated diene monomer unit, or may be composed of two or more types of conjugated diene monomer units.
  • the content of conjugated diene monomer units contained in the polymer block (B) shall be more than 95% by mass, preferably 100% by mass (other compounds may not be included as intended). (not added).
  • the hydrogenated conjugated diene block copolymer may contain vinyl aromatic monomer units other than vinyl aromatic monomer units and/or conjugated diene monomer units. It may contain a polymer block (D) consisting of a compound copolymerizable with a monomer unit and/or a conjugated diene monomer unit.
  • the molecular weight distribution of the hydrogenated conjugated diene block copolymer before modification can also be determined by GPC measurement, and the molecular weight distribution is determined by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw/Mn). ).
  • the molecular weight distribution of a single peak measured by GPC of the hydrogenated conjugated diene block copolymer is preferably 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0 or less. , even more preferably 2.5 or less.
  • the weight average molecular weight and molecular weight distribution of the hydrogenated conjugated diene block copolymer can be controlled within the above numerical range by adjusting polymerization conditions such as the amount of monomer added, timing of addition, polymerization temperature, and polymerization time.
  • an organic lithium compound containing N such as lithium piperidide
  • These polymerization initiators may be used alone or in combination of two or more.
  • n-butyllithium, sec-butyllithium, and lithium piperidide are preferred from the viewpoint of polymerization activity.
  • the amount of the organic alkali metal compound used as a polymerization initiator depends on the molecular weight of the target conjugated diene block copolymer, but is generally 0.01 to 1.5 phm (mass per 100 parts by mass of monomer). %), more preferably 0.02 to 0.3 phm, and even more preferably 0.05 to 0.2 phm.
  • the amount of vinyl bonds in the conjugated diene block copolymer can be controlled by using a compound such as a Lewis base, such as an ether or an amine, as a vinyl bond amount adjusting agent (hereinafter referred to as a vinylating agent). Furthermore, the amount of the vinylating agent used can be adjusted depending on the desired amount of vinyl bonding.
  • a compound such as a Lewis base, such as an ether or an amine
  • a vinyl bond amount adjusting agent hereinafter referred to as a vinylating agent
  • the amount of the vinylating agent used can be adjusted depending on the desired amount of vinyl bonding.
  • the vinylizing agent include, but are not limited to, ether compounds, tertiary amine compounds, and the like.
  • the ether compound include linear ether compounds and cyclic ether compounds.
  • the hydrogenated conjugated diene block copolymer has a polar group, that is, when the above condition (i) is satisfied, an acid anhydride group, an amino group, a dicarboxyl group, a carboxyl group, an epoxy group, and an oxetanyl group. It is preferable that at least one polar group selected from the group consisting of:
  • the method of introducing the polar group into the conjugated diene block copolymer is not particularly limited, and may be a method of introducing it with a polymerization initiator having each predetermined functional group that becomes the polar group, or a method of introducing each functional group into the conjugated diene block copolymer.
  • Examples include aliphatic carboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, trimesic acid, trimellitic acid, and aromatic carboxylic acids such as pyromellitic acid.
  • maleic anhydride In addition, maleic anhydride, itaconic anhydride, pyromellitic anhydride, cis-4-cyclohexane-1,2-dicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 5-(2 , 5-dioxytetrahydroxyfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, ⁇ -caprolactam, and the like.
  • a conjugated diene block copolymer is reacted with an organic alkali metal compound such as an organolithium compound (metallation reaction) to form an organic alkali.
  • organic alkali metal compound such as an organolithium compound (metallation reaction)
  • metal-added polymer is subjected to an addition reaction with a modifier having a functional group.
  • Other methods for introducing polar groups include, for example, a production method in which an atomic group having a functional group is directly grafted onto an unmodified conjugated diene block copolymer.
  • the graft addition method includes a method of reacting a radical initiator, a conjugated diene block copolymer, and the above modifier in a solution containing the radical initiator, a conjugated diene block copolymer, and the above modifier; Examples include a method in which a modifier is reacted under heating and melting; or a method in which a compound containing a conjugated diene block copolymer without a radical initiator and a compound containing the modifier is reacted under heating and melting.
  • radical initiators include, but are not limited to, 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, and 2,2-di(t-butylperoxy)cyclohexane.
  • di(2-t-butylperoxyisopropyl)benzene dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl- 2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 is preferred.
  • 2,5-dimethyl-2,5-di(t-butylperoxy)hexane and 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexane are more preferred.
  • Another method for introducing polar groups into a conjugated diene block copolymer is to introduce the polar group by reacting the primary modified conjugated diene block copolymer obtained by the above method with an atomic group having a functional group.
  • Examples include secondary degeneration.
  • combinations of polar groups include amino group and dicarboxyl group, acid anhydride group and amino group, hydroxyl group; isocyanate group and hydroxyl group, carboxyl group and amino group, acid anhydride group and hydroxyl group, silanol group and hydroxyl group, epoxy
  • combinations of amino group and dicarboxyl group, acid anhydride group and amino group, silanol group and hydroxyl group, dicarboxyl group and amino group, and epoxy group and carboxyl group are Preferably, combinations of an amino group and a dicarboxyl group, and a combination of an acid anhydride group and an amino group are preferred.
  • the method described above is mentioned as a method for bonding an epoxy group, an acid anhydride group, or a hydroxyl group to a conjugated diene block copolymer, and the modifier used is the aforementioned modifier or an epoxy group-containing polymerizable compound. etc.
  • the method of bonding an amino group to the conjugated diene block copolymer includes the above-mentioned method, and examples of the modifier include 1,3-dimethyl-2-imidazolidinone, 1,3- Diethyl-2-imidazolidinone, N,N'-dimethylpropyleneurea, 1,3-diethyl-2-imidazolidinone, 1,3-dipropyl-2-imidazolidinone, 1-methyl-3-ethyl-2 -Imidazolidinone, 1-methyl-3-propyl-2-imidazolidinone, 1-methyl-3-butyl-2-imidazolidinone, 1-methyl-3-(2-methoxyethyl)-2-imidazolidinone
  • modifiers examples include 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1-propyl-2-pyrrolidone, 1-butyl-2-pyrrolidone, -isopropyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-methoxymethyl-2-pyrrolidone, 1-methyl-2-piperidone, 1,4-dimethyl-2-piperidone, 1-ethyl-2- Examples include piperidone, 1-isopropyl-2-piperidone, 1-isopropyl-5,5-dimethyl-2-piperidone, and the like.
  • Examples of the method for bonding the primary modified conjugated diene polymer with amino groups bonded to the secondary modifier include the above-mentioned method, and examples of the modifier include maleic acid, oxalic acid, succinic acid, adipic acid, Aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbarylic acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, trimellitic acid Examples thereof include acids, aromatic carboxylic acids such as pyromellitic acid, and the like.
  • Co-injection molding in which melted individual resins are injected into the same mold with a time lag, etc.
  • extrusion lamination may be employed, in which a resin film constituting any one of the layers is pre-molded and the other layers are melt-extruded thereon.
  • a laminate can also be obtained by molding the resin films constituting each layer in advance and fusing these layers by applying heat.
  • a stretched laminate can also be obtained by obtaining a laminate using the above-described molding method and then stretching the laminate.
  • the stretched laminate may be heat-set or may be made into a product without heat-setting. If heat-setting is not performed, the stretched laminate has the property of shrinking when the stress is released by heating the stretched laminate afterwards, so it can be used as a shrink film. Furthermore, these can be subjected to secondary processing such as vacuum forming and pressure forming to form drawn containers and the like.
  • the adhesive layer (layer (III)) is provided on both of the adherends (layer (I), layer (II)) in advance, and then the adherend is attached to the adhesive layer (layer (III)). They may be laminated and bonded. In order to achieve strong adhesion, the laminate may be pressurized, and the pressure may be applied to the entire structure or only to the portion where the adhesive layer is provided.
  • the pressing method is not particularly limited, and the pressure is not particularly limited as long as the pressure does not significantly deform the adhesive layer.
  • the shape of the laminate is not limited, and may be any shape such as a flat shape such as a film, sheet, or plate, a pipe shape, a bag shape, or an irregular shape.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate (excluding those contained in component (A)); (meth)acrylic resins such as polymethyl methacrylate resins; styrene resins such as polystyrene; Examples include plastic resins and various thermoplastic elastomers.
  • the layer (I) and the layer (III) are It is preferable to stack them in a molten state and then cool them.
  • the molding method is not particularly limited, but for example, a co-extrusion method in which individual molten resins melted in an extruder are supplied to a multilayer die, and then laminated and molded in the die can be used to form a blown film, a T-die film, etc. Examples of molding methods include:
  • the hydrogenation rate of the hydrogenated conjugated diene copolymer was measured by proton nuclear magnetic resonance ( 1 H-NMR) using the hydrogenated conjugated diene copolymer.
  • the measurement conditions and measurement data processing method were the same as in (1) above.
  • the hydrogenation rate was determined by calculating the integral value of the signal originating from the residual double bond at 4.5 to 5.5 ppm and the signal originating from the hydrogenated conjugated diene, and then calculating the ratio thereof.
  • Styrene content was calculated using the integrated value of the total styrene aromatic signal from 6.2 to 7.5 ppm of the spectrum. The styrene content was also confirmed by calculating the content of vinyl aromatic monomer units for each polymer sampled at each step of the polymerization process of the conjugated diene block copolymer before hydrogenation.
  • the ratio of the hydrogenated conjugated diene block copolymer to the standard polystyrene in the measured chromatogram was measured using a silica column GPC [device: LC-10 (manufactured by Shimadzu Corporation), column: Zorbax (manufactured by DuPont)]
  • the ratio of the hydrogenated conjugated diene block copolymer to the standard polystyrene in the chromatogram was compared, and the amount adsorbed onto the silica column was determined from the difference between them, and this ratio was taken as the modification rate.
  • the modification rate was calculated by the following formula as the ratio (%) in which the terminal is an amino group with a specific structure.
  • a Total polymer area (%) measured with polystyrene gel (PLgel)
  • b Area (%) of low molecular weight internal standard PS measured with polystyrene gel (PLgel)
  • c Total polymer area (%) measured with a silica column (Zorbax)
  • d Area (%) of low molecular weight internal standard PS measured with a silica column (Zorbax)
  • Adhesiveness (adhesive strength)
  • the layer (II) mainly composed of polypropylene resin of the laminate or the layer (II) described later make a cut with a width of 1 cm in the layer (IV) containing polypropylene resin and adhesive component, perform a peel test on a length of 10 cm or more using a tensile tester, and calculate the adhesive strength (N/m) from the stress obtained. did. The higher the adhesive strength, the better the adhesiveness.
  • Examples 32 to 40 and Comparative Examples 13 to 15 were evaluated by a grid test in accordance with JIS K 5400. After the laminate described below was allowed to stand for 24 hours at a temperature of 25°C and a humidity of 50%, 100 1 mm square cuts were made on the layer (I) side, which is mainly made of acrylic resin, to reach the adhesive layer (III). I put one in. Cellophane tape (registered trademark, manufactured by Nichiban Co., Ltd., CT28) was pressed onto the cut with a finger from above to bring it into close contact with the layer (I) mainly composed of acrylic resin, and then peeled off.
  • Cellophane tape registered trademark, manufactured by Nichiban Co., Ltd., CT28
  • the survival rate was defined as 100% when the layer (I) mainly composed of acrylic resin did not peel off at all corners among 100 pieces, and the evaluation was made according to the following criteria. ⁇ : Residual rate 95% or more ⁇ : Residual rate 80% or more ⁇ : Residual rate more than 50% ⁇ : Residual rate 50% or less
  • the loss coefficient of the laminate at room temperature was calculated using the cantilever beam method and the half width method.
  • the vibration method was steady vibration using a non-contact electromagnetic vibrator.
  • the loss coefficients obtained were evaluated based on the following criteria. ⁇ : 0.020 or more ⁇ : less than 0.020
  • a hydrogenation catalyst used in the hydrogenation reaction of a hydrogenated conjugated diene copolymer was prepared by the following method. Pour 1 L of dried and purified cyclohexane into a reaction vessel purged with nitrogen, add 100 mmol of bis( ⁇ 5-cyclopentadienyl)titanium dichloride, and add an n-hexane solution containing 200 mmol of trimethylaluminum while stirring thoroughly. The mixture was reacted at room temperature for about 3 days to obtain a hydrogenation catalyst.
  • a hydrogenated conjugated diene block copolymer was prepared using a vinyl aromatic compound and a conjugated diene in the following manner.
  • the physical properties are shown in Tables 1 to 3.
  • A indicates a polymer block (A) mainly composed of vinyl aromatic monomer units
  • B indicates a polymer block mainly composed of conjugated diene monomer units
  • C represents a polymer block (C) having a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 70° C. for 30 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 15 parts by mass of styrene was added, and polymerization was carried out at 70° C. for 15 minutes.
  • methanol was added to stop the polymerization reaction, and a conjugated diene copolymer was obtained.
  • the hydrogenation catalyst prepared as described above was added to the obtained conjugated diene copolymer in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene copolymer, and the hydrogen pressure was 0.7 MPa.
  • the hydrogenation reaction was carried out at a temperature of 80° C. for about 1.5 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the hydrogenated conjugated diene block copolymer.
  • a hydrogenated conjugated diene block copolymer (1) was obtained.
  • the hydrogenated conjugated diene block copolymer (1) obtained as above had a styrene content of 30% by mass, a weight average molecular weight of 7.1 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogenation rate of It was 98%.
  • maleic anhydride-modified hydrogenated conjugated diene block copolymer (1)-M was obtained by supplying it to a twin-screw extruder and compounding at a temperature of 150 to 210°C.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (1)-M was titrated under the conditions described above. The modification rate was 1.1% by mass.
  • the terminal amine-modified hydrogenated conjugated diene block copolymer (2) obtained as above had a styrene content of 30% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 35%, and a modified
  • the hydrogenation rate was 80% (the number of modifying groups per polymer chain was 0.80), and the hydrogenation rate was 74%.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration 20% by mass) containing 45 parts by mass of styrene and 35 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • 0.5 mol of ethyl benzoate was added to 1 mol of n-butyllithium, and the mixture was reacted at 70° C. for 10 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 1.5 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the conjugated diene block copolymer.
  • a hydrogenated conjugated diene block copolymer (3) was obtained.
  • the hydrogenated conjugated diene block copolymer (3) obtained as above had a styrene content of 65% by mass, a weight average molecular weight of 19.0 ⁇ 10 4 , a vinyl bond content of 25%, and a hydrogenation rate of It was 98%.
  • maleic anhydride-modified hydrogenated conjugated diene block copolymer (3)-M was obtained by supplying the mixture to a twin-screw extruder at a temperature of 150 to 210°C and compounding.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (3)-M was titrated under the conditions described above. The modification rate was 0.5% by mass.
  • a cyclohexane solution (concentration 20% by mass) containing 5 parts by mass of styrene and 80 parts by mass of butadiene was added and polymerized at 60° C. for 45 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 7.5 parts by mass of styrene was added and polymerized at 60° C. for 15 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • a cyclohexane solution (concentration 20% by mass) containing 20 parts by mass of styrene and 65 parts by mass of butadiene was added and polymerized at 60° C. for 45 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 7.5 parts by mass of styrene was added and polymerized at 60° C. for 15 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as described above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenated conjugated diene block copolymer (7) obtained as described above had a styrene content of 45% by mass, a weight average molecular weight of 11.0 ⁇ 10 4 , a vinyl bond content of 71%, and a hydrogenation rate of It was 98%.
  • the hydrogenated conjugated diene block copolymer (8) obtained as described above had a styrene content of 15% by mass, a weight average molecular weight of 16.0 ⁇ 10 4 , a vinyl bond content of 70%, and a hydrogenation rate of It was 98%.
  • a cyclohexane solution (concentration 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 60° C. for 50 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 7.5 parts by mass of styrene was added and polymerized at 60° C. for 20 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C.
  • a cyclohexane solution (concentration 20% by mass) containing 85 parts by mass of butadiene was added and polymerized at 60° C. for 50 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 7.5 parts by mass of styrene was added and polymerized at 70° C. for 15 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C.
  • the hydrogenated conjugated diene block copolymer (10) obtained as described above had a styrene content of 15% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogenation rate of It was 98%.
  • the terminal amine-modified conjugated diene block copolymer (11) obtained as described above had a styrene content of 15% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 35%, and a modification rate of The hydrogenation rate was 80% by mass (the number of modifying groups per polymer chain was 0.80) and 75%.
  • ⁇ Preparation of hydrogenated conjugated diene block copolymer (12)> The same operation as for the hydrogenated conjugated diene block copolymer (3) was performed except that 0.90 mol of tetramethylethylenediamine (TMEDA) was added per 1 mol of n-butyllithium.
  • the obtained hydrogenated conjugated diene block copolymer (12) had a styrene content of 65% by mass, a weight average molecular weight of 19.1 ⁇ 10 4 , a vinyl bond amount of 54%, and a hydrogenation rate of 98%. .
  • a cyclohexane solution (concentration 20% by mass) containing 15 parts by mass of styrene and 35 parts by mass of butadiene was added and polymerized at 70° C. for 35 minutes.
  • 0.5 mol of ethyl benzoate was added to 1 mol of n-butyllithium, and the mixture was reacted at 70° C. for 10 minutes.
  • methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • TMEDA tetramethylethylenediamine
  • the hydrogenation catalyst prepared as described above was added to the obtained conjugated diene block copolymer in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene copolymer, and the hydrogen pressure was 0.7 MPa.
  • the hydrogenation reaction was carried out at a temperature of 80° C. for about 1.5 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the hydrogenated conjugated diene block copolymer. Added.
  • the hydrogenated conjugated diene block copolymer obtained as above had a styrene content of 30% by mass, a weight average molecular weight of 7.1 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogenation rate of 98%. there were.
  • maleic anhydride, and peroxide Perhexa 25B, manufactured by NOF Corporation
  • the temperature throughout the length of the extruder was set at 150°C.
  • a maleic anhydride-modified hydrogenated conjugated diene block copolymer (14-M) was obtained by supplying the mixture to a twin-screw extruder at ⁇ 210°C and compounding.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (14-M) was titrated under the conditions described above. The modification rate was 1.1% by mass.
  • the terminal amine-modified conjugated diene block copolymer (15) obtained as described above had a styrene content of 65% by mass, a weight average molecular weight of 18.9 ⁇ 10 4 , a vinyl bond content of 26%, and a modification rate of The hydrogenation rate was 80% by mass (the number of modifying groups per polymer chain was 0.80) and 82%.
  • a hydrogenated conjugated diene block copolymer (16) was obtained by performing the same operation as for the hydrogenated conjugated diene block copolymer (1) except that the hydrogenation reaction time was 0.75 hours. After mixing the hydrogenated conjugated diene block copolymer (16) obtained as described above with maleic anhydride and peroxide (Perhexa 25B, manufactured by NOF Corporation), the temperature throughout the length of the extruder was A maleic anhydride-modified hydrogenated conjugated diene block copolymer (16)-M was obtained by supplying it to a twin-screw extruder and compounding at a temperature of 150 to 210°C.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (16)-M was titrated under the conditions described above. The modification rate was 0.5% by mass.
  • the terminal maleic anhydride-modified conjugated diene block copolymer (16)-M obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , and a vinyl bond content of 36%. , the hydrogenation rate was 45%.
  • a hydrogenated conjugated diene block copolymer (17) was obtained by performing the same operation as for the hydrogenated conjugated diene block copolymer (1) except that the hydrogenation reaction time was 1 hour. After mixing the hydrogenated conjugated diene block copolymer (17) obtained as above with maleic anhydride and peroxide (Perhexa 25B, manufactured by NOF Corporation), the temperature throughout the length of the extruder was A maleic anhydride-modified hydrogenated conjugated diene block copolymer (17)-M was obtained by supplying it to a twin-screw extruder and compounding at a temperature of 150 to 210°C.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (17)-M was titrated under the conditions described above. The modification rate was 0.8% by mass.
  • the terminal amine-modified conjugated diene block copolymer (17)-M obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogen The addition rate was 88%.
  • a hydrogenated conjugated diene block copolymer (18) was obtained by performing the same operation as for the hydrogenated conjugated diene block copolymer (3) except that the hydrogenation reaction time was 1 hour. After mixing the hydrogenated conjugated diene block copolymer (18) obtained as described above with maleic anhydride and peroxide (Perhexa 25B, manufactured by NOF Corporation), the temperature throughout the length of the extruder was A maleic anhydride-modified hydrogenated conjugated diene block copolymer (18)-M was obtained by supplying the mixture to a twin-screw extruder at a temperature of 150 to 210°C and compounding.
  • the obtained maleic anhydride-modified hydrogenated conjugated diene block copolymer (18)-M was titrated under the conditions described above. The modification rate was 0.8% by mass.
  • the terminal amine-modified conjugated diene block copolymer (18)-M obtained as described above has a styrene content of 65% by mass, a weight average molecular weight of 18.9 ⁇ 10 4 , a vinyl bond content of 26%, and a hydrogen The addition rate was 82%.
  • the terminal amine-modified conjugated diene block copolymer (19) obtained as described above had a styrene content of 30% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 70%, and a modification rate of The hydrogenation rate was 80% by mass (the number of modifying groups per polymer chain was 0.80) and 88%.
  • a cyclohexane solution (concentration 20% by mass) containing 20 parts by mass of styrene and 60 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as "DMI") was added to 1 mol of n-butyllithium, and the mixture was reacted at 70°C for 15 minutes. . Thereafter, methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 1.0 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the hydrogenated conjugated diene block copolymer.
  • a hydrogenated conjugated diene block copolymer (20) was obtained.
  • the hydrogenated conjugated diene block copolymer (20) obtained as described above had a styrene content of 20% by mass, a weight average molecular weight of 15.0 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogenation rate of It was 85%.
  • a cyclohexane solution (concentration 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 15 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as "DMI”) was added to 1 mol of n-butyllithium, and the mixture was reacted at 70°C for 15 minutes. . Thereafter, methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as described above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 1.0 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the hydrogenated conjugated diene block copolymer.
  • a hydrogenated conjugated diene block copolymer (21) was obtained.
  • the hydrogenated conjugated diene block copolymer (21) obtained as above had a styrene content of 20% by mass, a weight average molecular weight of 15.0 ⁇ 10 4 , a vinyl bond content of 55%, and a hydrogenation rate of It was 84%.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 70° C. for 40 minutes.
  • a cyclohexane solution (concentration 20% by mass) containing 15 parts by mass of styrene was added and polymerized at 70° C. for 15 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as "DMI”) was added to 1 mol of n-butyllithium, and the mixture was reacted at 70°C for 15 minutes. . Thereafter, methanol was added to stop the polymerization reaction.
  • the hydrogenation catalyst prepared as above was added to the conjugated diene block copolymer obtained as above in an amount of 70 ppm based on Ti per 100 parts by mass of the conjugated diene block copolymer.
  • the hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 1.2 hours.
  • 0.25 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by mass of the hydrogenated conjugated diene block copolymer.
  • a hydrogenated conjugated diene block copolymer (22) was obtained.
  • the hydrogenated conjugated diene block copolymer (22) obtained as described above had a styrene content of 30% by mass, a weight average molecular weight of 7.0 ⁇ 10 4 , a vinyl bond content of 35%, and a hydrogenation rate of It was 94%.
  • the mixture was supplied to a twin-screw extruder with the temperature set over the entire length of the extruder at 150 to 220°C, and the resulting strands were cooled and cut into pellets to obtain pellets of a polypropylene resin composition. .
  • the laminate of the present invention is capable of achieving both sufficient adhesive strength and appearance, and has industrial applicability as decorative molded bodies for vehicle components, electronic devices such as televisions, containers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

アクリル系樹脂を主体とする層(I)と、ポリオレフィン樹脂を主体とする層(II)と、前記アクリル系樹脂を主体とする層と前記ポリオレフィン樹脂を主体する層との間に設けられた接着層(III)とを有し、前記接着層(III)が、 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなり、 前記水添共役ジエン系ブロック共重合体が、所定の要件を満たす、積層体。

Description

積層体、及び積層体の製造方法
 本発明は、積層体、及び積層体の製造方法に関する。
 従来から、意匠性、透明性、及び加飾性に優れた成形体として、成形性や低コスト性の観点からポリプロピレン樹脂等のポリオレフィン系樹脂からなる基体と外観に優れたアクリル系樹脂層とを有する積層体が提案されている。
 例えば、特許文献1には、ポリプロピレン系樹脂及び熱可塑性樹脂を主成分とする基体と、シール層、アクリル系樹脂層とからなる積層体が提案されている。
 一方において、ポリオレフィン系樹脂とアクリル系樹脂は、溶解性パラメーターの観点等で接着しにくいという問題点を有している。かかる問題点に対して、接着剤としてアクリル系接着剤やウレタン系接着剤等の溶剤系接着剤を使用した積層体が提案されている。
 しかしながら、VOC(揮発性有機化合物)削減の観点から、有機溶剤を使用しない積層体の成形方法技術への要求が高まっている。
 例えば、特許文献2には、ポリプロピレン樹脂からなる基体上に非溶剤系の接着剤としてポリプロピレン系樹脂を含有する接着層を設けた、前記ポリプロピレン樹脂からなる基体とアクリル系樹脂層との積層体が提案されている。
特開2021-181232号公報 特開2013―14027号公報
 しかしながら、特許文献2に開示されている積層体は、未だ接着強度の観点で改善すべき余地がある、という問題点を有している。
 そこで本発明においては、有機溶剤を使用せず、外観が良好で、かつ、接着強度が高い積層体を提供することを目的とする。
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を行った結果、ポリオレフィン樹脂を主体とする層とアクリル樹脂を主体とする層とを接着するために、特定の構造を有する水添共役ジエン系ブロック共重合体を主体とする接着剤層を設けるか、接着剤成分となる水添共役ジエン系ブロック共重合体をポリオレフィン樹脂を主体とする層に配合することにより、有機溶剤を使用せず、外観が良好で、かつ接着強度が高い積層体を形成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 アクリル系樹脂を主体とする層(I)と、
 ポリオレフィン樹脂を主体とする層(II)と、
 前記アクリル系樹脂を主体とする層と前記ポリオレフィン樹脂を主体する層との間に設けられた接着層(III)と、
を、有する積層体であって、
 前記接着層(III)が、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなり、
 前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす、積層体。
<条件(i)>
 前記水添共役ジエン系ブロック共重合体が極性基を有する。
<条件(ii)>
 前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
<条件(iii)>
 前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
<条件(iv)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
〔2〕
 前記水添共役ジエン系ブロック共重合体が、
 前記条件(i)、前記条件(iii)、及び前記条件(iv)を満たす、
 前記〔1〕に記載の積層体。
〔3〕
 前記水添共役ジエン系ブロック共重合体が、
 前記条件(ii)、前記条件(iii)、及び前記条件(iv)を満たす、
 前記〔1〕に記載の積層体。
〔4〕
 前記水添共役ジエン系ブロック共重合体が、
 前記条件(i)、及び前記条件(ii)を満たし、前記条件(iv)を満たさず、
さらに下記条件(v)を満たす、
 前記〔1〕に記載の積層体。
<条件(v)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%未満である。
〔5〕
 前記水添共役ジエン系ブロック共重合体が前記条件(i)を満たし、前記水添共役ジエン系ブロック共重合体が有する極性基が、
 酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる、少なくとも1種である、
 前記〔1〕乃至〔4〕のいずれか一に記載の積層体。
〔6〕
 前記水添共役ジエン系ブロック共重合体が有する極性基がアミノ基である、
 前記〔5〕に記載の積層体。
〔7〕
 前記水添共役ジエン系ブロック共重合体の水添率が90%以下である、
 前記〔1〕乃至〔6〕のいずれか一に記載の積層体。
〔8〕
 前記アクリル系樹脂を主体とする層(I)の厚みが1.5mm以下である、
 前記〔1〕乃至〔7〕のいずれか一に記載の積層体。
〔9〕
 前記水添共役ジエン系ブロック共重合体が前記条件(iv)を満たす、
 前記〔1〕乃至〔3〕、〔5〕乃至〔8〕のいずれか一に記載の積層体。
〔10〕
 前記〔1〕に記載の積層体の製造方法であって、
 前記アクリル系樹脂を主体とする層(I)と、前記接着層(III)が接触するように積層する工程と、
 前記接着層(III)と、前記ポリオレフィン樹脂を主体とする層(II)が接触するように、前記ポリオレフィン樹脂を主体とする層(II)を積層する工程と、
を、有する、
 積層体の製造方法。
〔11〕
 前記アクリル系樹脂を主体とする層(I)の厚みが1.5mm以下である、
 前記〔10〕に記載の積層体の製造方法。
〔12〕
 前記アクリル系樹脂を主体とする層(I)と前記接着層(III)を積層する工程において、
 前記アクリル系樹脂を主体とする層(I)、及び前記接着層(III)を、溶融状態で積層する、
 前記〔10〕又は〔11〕に記載の積層体の製造方法。
〔13〕
 前記ポリオレフィン樹脂を主体とする層(II)を積層する工程において、
 前記アクリル系樹脂を主体とする層(I)と前記接着層(III)とを有する積層体を金型に装着し、
 ポリオレフィン樹脂を溶融状態で前記金型に流し入れる、
 前記〔10〕乃至〔12〕のいずれか一に記載の積層体の製造方法。
〔14〕
 アクリル系樹脂を主体とする層(I)と、
 ポリオレフィン樹脂及び接着剤成分を含む層(IV)と、
を、有する積層体であって、
 前記ポリオレフィン樹脂と接着剤成分の量が、質量比で、ポリオレフィン樹脂/接着剤成分=30/70~95/5であり、
 前記接着剤成分が、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位を有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分であり、
 前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす、積層体。
<条件(i)>
 前記水添共役ジエン系ブロック共重合体が極性基を有する。
<条件(ii)>
 前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
<条件(iii)>
 前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
<条件(iv)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
〔15〕
前記水添共役ジエン系ブロック共重合体が、前記条件(i)、前記条件(iii)、及び前記条件(iv)を満たす、前記〔14〕に記載の積層体。
〔16〕
 前記水添共役ジエン系ブロック共重合体が、前記条件(ii)、前記条件(iii)、及び前記条件(iv)を満たす、前記〔14〕に記載の積層体。
〔17〕
 前記水添共役ジエン系ブロック共重合体が、
 前記条件(i)、及び前記条件(ii)を満たし、前記条件(iv)を満たさず、
さらに前記条件(v)を満たす、前記〔14〕に記載の積層体。
<条件(v)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%未満である。
〔18〕
 前記水添共役ジエン系ブロック共重合体が前記条件(i)を満たし、前記水添共役ジエン系ブロック共重合体が有する極性基が、
 酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる、少なくとも1種である、前記〔14〕又は〔15〕に記載の積層体。
 本発明によれば、有機溶剤を使用せず、外観が良好で、接着強度が高い積層体を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。
 なお、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
〔積層体〕
 本実施形態の積層体は、下記の二つの形態を有している。それぞれ、第一の実施形態の積層体、第二の実施形態の積層体と記載する。
 第一の実施形態の積層体は、
 アクリル系樹脂を主体とする層(I)(以下、層(I)と記載する場合がある。)と、
 ポリオレフィン樹脂を主体とする層(II)(以下、層(II)と記載する場合がある。)と、
 前記アクリル系樹脂を主体とする層と前記ポリオレフィン樹脂を主体する層との間に設けられた接着層(III)(以下、層(III)と記載する場合がある。)と、
を、有する積層体である。
 前記接着層(III)が、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなり、
 前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす。
<条件(i)>
 前記水添共役ジエン系ブロック共重合体が極性基を有する。
<条件(ii)>
 前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
<条件(iii)>
 前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
<条件(iv)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
 第一の実施形態の積層体は、接着剤成分よりなる接着層(III)を単独層として有することで、衝撃時の応力を柔軟性が高い水添共役ジエン系ブロック共重合体により分散させることができ、積層体全体として高い耐衝撃性を発現する。
 第二の実施形態の積層体は、
 アクリル系樹脂を主体とする層(I)と、
 ポリオレフィン樹脂及び接着剤成分を含む層(IV)(以下、層(IV)と記載する場合がある。)と、
を、有する積層体である。
 前記ポリオレフィン樹脂と接着剤成分の量が、質量比で、ポリオレフィン樹脂/接着剤成分=30/70~95/5である。
 前記接着剤成分が、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位を有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分であり、
 前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす。
<条件(i)>
 前記水添共役ジエン系ブロック共重合体が極性基を有する。
<条件(ii)>
 前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
<条件(iii)>
 前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
<条件(iv)>
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
 第二の実施形態の積層体は、アクリル系樹脂を主体とする層(I)と、ポリオレフィン樹脂及び接着剤成分を含む層(IV)を有する。
 層(IV)は、上述した第一の実施形態の積層体を構成するポリオレフィン樹脂を主体とする層(II)に接着剤成分が含まれた形態である。
 第二の実施形態の積層体によれば、アクリル系樹脂を主体とする層(I)への接着剤成分の混入が抑制され、外観が良好となる。
 第一の実施形態の積層体と、第二の実施形態の積層体とは、アクリル系樹脂を主体とする層(I)及びポリオレフィン樹脂を主体とする層を有する点、特定の水添共役ジエン系ブロック共重合体を接着剤成分の主成分とする点で共通している。
 第一の実施形態の積層体は、独立の接着層(III)を有している。
 一方において、第二の実施形態の積層体は、接着剤成分とポリオレフィン樹脂とを含む層(IV)を有している。
 第一の実施形態の積層体は、耐衝撃性に優れる一方で、積層体の成形時に接着層(III)の水添共役ジエン系ブロック共重合体が、アクリル系樹脂を主体とする層(I)と僅かに溶融することで、第二の実施形態の積層体に比べて外観が劣る傾向にある。そのため、耐衝撃性を求める用途であるか、外観の良さを必要とするか用途に応じて態様を選択することが好ましい。
(層(I))
 第一及び第二の実施形態の積層体は、アクリル系樹脂を主体とする層(I)を有している。
 アクリル系樹脂を主体とすることにより、外観に優れた積層体が得られる。
 ここで「アクリル系樹脂を主体とする」とは、層(I)全体100質量%中、アクリル系樹脂が30質量%以上であることを言い、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。
 アクリル系樹脂としては、以下に限定されないが、例えば、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート、メチルメタクリレート-ブチルメタクリレート共重合体、メチルメタクリレート-スチレン共重合体等のアクリル系樹脂が挙げられる。さらには、アクリル系樹脂としては、上述したアクリル系樹脂と熱可塑性ポリウレタン樹脂との混合樹脂、上述したアクリル系樹脂とアクリルゴムとの混合樹脂等を用いることができる。
 アクリル系樹脂を主体とする層(I)には、アクリル系樹脂以外の成分として、必要に応じて、一般の添加剤、例えば安定剤、滑剤、加工助剤、耐衝撃助剤、充填剤、着色剤、艶消剤、紫外線吸収剤等を含むことができる。かかる場合、層(I)中のアクリル系樹脂の含有量は、混合材料全体として換算する。
 前記アクリル系樹脂としては、例えば、市販品として、アクリペット(三菱レイヨン社製)、スミペックス(住友化学社製)、デルペット(旭化成社製)等が挙げられる。
(層(II))
 第一の実施形態の積層体は、ポリオレフィン樹脂を主体とする層(II)を有する。
 ポリオレフィン樹脂を主体とする層(II)は、後述する水添共役ジエン系ブロック共重合体以外のポリオレフィン樹脂を主体とする。
 ここで、「ポリオレフィン樹脂を主体とする」とは、層(II)全体100質量%中ポリオレフィン樹脂が30質量%以上であることを言い、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。
 第一の実施形態の積層体の層(II)は、後述する接着剤成分を含有しないものとする。
(層(IV))
 第二の実施形態の積層体は、ポリオレフィン樹脂及び接着剤成分を含む層(IV)を有する。
 層(IV)は、後述する水添共役ジエン系ブロック共重合体以外のポリオレフィン樹脂と後述する接着剤成分を含有する。層(IV)中、ポリオレフィン樹脂と接着剤成分の量は、質量比で、ポリオレフィン樹脂/接着剤成分=30/70~95/5である。
 層(II)と、層(IV)とでは、ポリオレフィン樹脂の好ましい形態は共通している。
<ポリオレフィン樹脂>
 前記層(II)、層(IV)に用いるポリオレフィン樹脂としては、以下に限定されないが、例えば、ポリエチレン樹脂、ポリプロピレン樹脂が挙げられる。
 ポリエチレン樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレンと炭素数3~8のα-オレフィンとの共重合体等が挙げられる。ポリエチレン樹脂がエチレンと炭素数3~8のα-オレフィンとの共重合体の場合、共重合体中のα-オレフィンとしては、例えば、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等が挙げられる。
 ポリプロピレン樹脂としては、例えば、チーグラー・ナッタ型触媒を用いて合成されるプロピレン単独重合体、及びランダムあるいはブロックのプロピレンとα-オレフィンとの共重合体が挙げられる。プロピレンとα-オレフィンの共重合体の場合、α-オレフィンの割合は、ポリプロピレン樹脂100質量%に対して、30質量%以下が好ましく、より好ましくは35質量%以下である。
 ポリプロピレン樹脂としては、具体的には、プロピレン単独重合体、及びプロピレンと炭素数2~8のα-オレフィンとの共重合体が挙げられる(以下、「プロピレン系樹脂」ともいう。)。ポリプロピレン樹脂がプロピレンと炭素数2~8のα-オレフィンとの共重合体の場合、共重合体中のα-オレフィンとしては、例えば、エチレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等が挙げられる。
 これらのポリオレフィン樹脂は、従来公知の方法で合成することができる。
 耐熱性(耐熱老化性)及び成形性の観点で、ポリオレフィン樹脂としては、ポリプロピレン樹脂が好ましい。
 層(II)、層(IV)に用いるポリオレフィン樹脂は、MFR(メルトフローレート)が、通常1.0~1000g/10分であり、好ましくは5.0~100g/10分である。ポリオレフィン樹脂のMFRが1.0g/10分以上であることにより、層(II)及び層(IV)の成形加工性(流動性)が向上する傾向にある。また成形品の外観悪化(フローマークの発生)を抑制できる傾向にある。
 層(II)、層(IV)に用いるポリオレフィン樹脂は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、層の耐衝撃性向上、硬度、及び流動性を調整する観点で、層(II)及び層(IV)は、オレフィン系エラストマーを含んでもよい。オレフィン系エラストマーとは、例えば、上述したポリオレフィン樹脂として挙げたエチレン及び/又はプロピレンと、炭素数3~8のα-オレフィンとの共重合体であり、α-オレフィンの割合が前述の好ましい割合以上のものである。具体的には、α-オレフィンの割合はオレフィン系エラストマー全体100質量%に対して、30質量%以上であり、好ましくは30質量%超であり、さらに好ましくは35質量%以上、より好ましくは40質量%以上である。α-オレフィンの割合が上記範囲内にあることでオレフィン系エラストマーが低剛性となり、本実施形態の積層体の耐衝撃性を向上できる傾向にある。
(接着層(III))
 第一の実施形態の積層体は、上述した層(I)と層(II)との間に、接着剤成分よりなる接着層(III)を有する。
(ポリオレフィン樹脂及び接着剤成分を含む層(IV))
 第二の実施形態の積層体は、上述したポリオレフィン樹脂及び接着剤成分を含む層(IV)を有する。
 第一の実施形態の積層体においては、接着層(III)は、後述する水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなる独立層である。
 ここで「水添共役ジエン系ブロック共重合体を主体とする」とは、接着剤成分中の前記水添共役ジエン系ブロック共重合体の含有量が50質量%以上であることを言い、外観及び接着強度を損なわない範囲で他成分を含んでいてもよい。前述の接着強度及び外観の観点で、接着剤成分中の水添共役ジエン系ブロック共重合体の含有量は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらにより好ましくは90質量%以上、よりさらに好ましくは95質量%以上である。
 第二の実施形態の積層体においては、層(IV)は、前述のポリオレフィン樹脂と後述する接着剤成分とを含有する。
 ポリオレフィン樹脂と接着剤成分との質量比は、ポリオレフィン樹脂/接着剤成分=30/70~95/5であり、好ましくは35/65~95/5であり、より好ましくは40/60~95/5であり、さらに好ましくは45/55~95/5であり、さらにより好ましくは50/50~95/5であり、よりさらに好ましくは60/40~90/10である。
 なお、接着剤成分中の水添共役ジエン系ブロック共重合体の含有量は、上述した接着層(III)の場合と同様である。
<接着剤成分>
 第一の実施形態、第二の実施形態のいずれにおいても、接着剤成分は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及びビニル芳香族単量体単位と共役ジエン単量体単位を有する重合体ブロック(C)からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなる。前記水添共役ジエン系ブロック共重合体は、下記条件(i)~(iv)のうち、2つ以上を満たす。
 重合体ブロック(A)、重合体ブロック(B)、重合体ブロック(C)の構成については、後述する。
 条件(i):
 前記水添共役ジエン系ブロック共重合体が極性基を有する。
 条件(ii):
 前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(以下、単に「単位(a)」ともいう。)、1,4-結合に由来する単位(以下、単に「単位(b)」ともいう。)を含み、かつ、単位(a)の含有量が、前記共役ジエン単量体単位の含有量を100%とした場合、50%以上(ビニル結合量)である。
 条件(iii):
 前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
 条件(iv):
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
 接着剤成分がアクリル系樹脂及びポリオレフィン樹脂と高い相容性を有することにより、本実施形態の積層体は、高い接着強度が発現する。単純には両樹脂と溶解性パラメーター(sp値)が近い水添共役ジエン系ブロック共重合体を接着剤成分中に含有させればよいと考えられるが、アクリル系樹脂はポリオレフィン樹脂に比べて溶解性パラメーター(sp値)が高い。溶解性パラメーターの異なる樹脂を主体とする層(I)と層(II)を接着させるためには、接着剤成分に含まれる水添共役ジエン系ブロック共重合体には両樹脂に相容するポリマー骨格を有することが求められる。
 アクリル系樹脂との相容性向上を図るためには、前記水添共役ジエン系ブロック共重合体は、溶解性パラメーター(sp値)の観点で、前記条件(i)及び/又は条件(iii)及び/又は条件(iv)を満たすことが好ましい。
 前記水添共役ジエン系ブロック共重合体は、ポリオレフィン樹脂との相容性向上を図るために、条件(ii)及び/又は条件(iii)及び/又は条件(iv)を満たすことが好ましい。
 従って、前記水添共役ジエン系ブロック共重合体が、前記条件(i)~(iv)のうち、2つ以上を満たすことにより、層(I)、層(II)と高い相容性を有し、特に、溶解性パラメーターの観点でポリオレフィン樹脂との相容性に優れるものとなる。
 よって、接着剤成分の単独層である接着層(III)を有する構成とする場合、及び、ポリオレフィン樹脂と接着剤成分を含む層(IV)を有する構成とする場合のいずれにおいても、アクリル系樹脂を主体とする層(I)の外観を損なうことなく、高い接着強度を有する積層体が得られる。
 接着剤成分には、外観及び接着強度を損なわない範囲で、水添共役ジエン系ブロック共重合体以外の他の接着剤成分が含まれてもよい。
 前記条件(i)のように、接着剤成分に用いる水添共役ジエン系ブロック共重合体が極性基を有することにより、水添共役ジエン系ブロック共重合体のsp値が向上する。これにより、層(I)中のアクリル系樹脂と、水添共役ジエン系ブロック共重合体の相容性及び反応性が向上する。
 ビニル芳香族化合物は、共役ジエン化合物よりもsp値が高いことが知られている。故に、前記条件(iv)のように、前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下であることにより、水添共役ジエン系ブロック共重合体は、層(I)、層(II)とのそれぞれの相容性が優れたものとなる。
 水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上であることにより、水添共役ジエン系ブロック共重合体のsp値が十分に高くなるため、アクリル系樹脂を主体とする層(I)との相容性が高くなり、十分な接着強度が得られる。
 前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が80質量%以下であることにより、sp値が高くなり過ぎることを抑制でき、ポリオレフィン樹脂を主体とする層(II)との相容性が高くなり、十分な接着強度が得られる。
 前記条件(iv)において、水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量は、好ましくは30~75質量%であり、より好ましくは35~70質量%、さらに好ましくは40~70質量%、さらにより好ましくは45~70質量%、よりさらに好ましくは50~70質量%、特に好ましくは55~70質量%である。
 水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量は、重合工程におけるビニル芳香族化合物の添加量、重合時間を調製することにより、上記数値範囲に制御することができる。
 また、十分な接着強度を得る観点で、上記条件(iii)のように、前記水添共役ジエン系ブロック共重合体は、少なくとも一つの、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する重合体ブロック(C)を有することが好ましい。これにより、前記水添共役ジエン系ブロック共重合体と、層(I)及び層(II)とのそれぞれの相容性が優れたものとなり、接着強度が向上する。
 また、前記単位(a)(以下、ビニル結合と記載する場合がある)は、前記単位(b)に比べてポリオレフィン樹脂との相容性に優れることが知られている。よって、前記水添共役ジエン系ブロック共重合体は、ビニル結合量が50%以上であることにより、層(II)のポリオレフィン樹脂との相容性が向上し、接着強度が向上する。
 前記水添共役ジエン系ブロック共重合体の水添前におけるビニル結合量は、好ましくは55%以上であり、より好ましくは60%以上、さらに好ましくは65%以上、さらにより好ましくは67%以上、よりさらに好ましくは70%以上である。
 ビニル結合量は、後述する実施例に記載する方法により測定でき、後述するように、ビニル結合量調整剤(ビニル化剤)の使用により、上記数値範囲に制御することができる。
 また、接着剤成分中の水添共役ジエン系ブロック共重合体は、共役ジエン化合物由来の不飽和結合が水素添加されている。
 層(II)中のポリオレフィン樹脂との相容性に優れる共役ジエン単量体単位が水素添加されることで、前記水添共役ジエン系ブロック重合体の重合体ブロック(B)及び重合体ブロック(C)の、ポリオレフィン樹脂とのsp値差がより小さくなり、水添共役ジエン系ブロック共重合体と層(II)との相容性が向上する。
 さらに、水添により、熱的に不安定な不飽和結合が少なくなるため、耐熱老化性、耐候性及び金型汚染性(金型汚染を防止する特性)が向上する傾向にある。
 上述した観点で、水素添加率(水添率)は、80%以上が好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。
 また、後述するように、本実施形態の積層体の耐ヒートサイクル性及び耐熱水性の観点からは、前記水添共役ジエン系ブロック共重合体の水素添加率は90%以下が好ましい。かかる場合については、後述する。
 水添共役ジエン系ブロック共重合体の水素添加率は、核磁気共鳴装置(NMR)等を用いて測定することができ、具体的には実施例に記載の方法で測定することができる。
 また、水素添加率は、例えば、水素添加反応時に反応させる水素量を調整することによって上記数値範囲に制御することができる。
 接着剤成分の粘弾性測定におけるtanδピーク温度が、本実施形態の積層体の使用環境温度に存在することで制振性及び静音性に優れた積層体が得られる傾向にある。接着剤成分に含まれる水添共役ジエン系ブロック共重合体が、前記条件(iii)及び条件(iv)を満たすことにより水添共役ジエン系ブロック共重合体のtanδピーク温度が0℃以上となる傾向にある。また、前記条件(i)を満たすことで高い接着強度を発現し、これが制振性向上にも寄与する傾向にある。
 上述した観点から、水添共役ジエン系ブロック共重合体が、前記条件(i)、条件(iii)、及び条件(iv)を満たすことで、常温での制振性、接着強度、及び耐衝撃性に優れ、かつ良好な外観を有する積層体を得られる傾向にある。
 接着剤成分に用いる水添共役ジエン系ブロック共重合体が、前記条件(i)を満たす場合、極性基を水添共役ジエン系ブロック共重合体に結合させる際に用いた変性剤由来の分解物が成形時に揮発し、金型汚染を招来したり作業環境を悪化させたりする傾向にある。
 水添共役ジエン系ブロック共重合体が前記条件(i)を満たす場合において、変性剤由来の分解物を抑制し、成形サイクル性及び作業環境性を良くする観点で、未反応の変性剤の量が少ないことが好ましく、未反応の変性剤の量は、変性工程後の水添共役ジエン系ブロック共重合体に対し、0.2質量%以下が好ましく、より好ましくは0.15質量%以下、さらに好ましくは0.1質量%以下、さらにより好ましくは0.05質量%以下である。同様に、金型汚染を抑制する観点で、水添共役ジエン系ブロック共重合体と後述する変性剤の反応率が高いことが好ましい。
 極性基を水添共役ジエン系ブロック共重合体に結合させる方法としては、後述する極性基となる所定の各官能基を有する重合開始剤を用いることによって導入する方法や、各官能基を有する不飽和単量体を重合させる方法や、リビング末端に官能基を形成させる方法や、官能基を有する変性剤を付加反応する方法が好ましい方法として挙げられる。
 極性基としては、以下に限定されないが、例えば、酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基が挙げられる。前述の反応率の観点で、アミノ基、エポキシ基が好ましく、添加量制御により未反応の変性剤の量を少なくなるように設定しやすい観点で、アミノ基がより好ましい。
 これに対し、水添共役ジエン系ブロック共重合体が、条件(ii)、条件(iii)、及び条件(iv)を満たす場合、水添共役ジエン系ブロック共重合体の分解が起こりにくく、分解物の揮発が少ないため、優れた成形サイクル性及び作業環境性を担保できる傾向にある。
 本実施形態の積層体の使用温度が低温(0℃以下)の場合、柔軟性の高い接着剤成分を用いることが好ましい。接着剤成分が高い柔軟性を有することで、低温下でも応力を分散させることができ、本実施形態の積層体において高い耐衝撃性を発現する傾向にある。
 上述した観点で、水添共役ジエン系ブロック共重合体が、条件(i)、条件(ii)、及び下記条件(v)を満たすことで、アクリル系樹脂と水添共役ジエン系ブロック共重合体との屈折率が近くなりやすく、本実施形態の積層体において透明性を高くしやすい傾向にあり、かつ低温での耐衝撃性、接着強度に優れた積層体が得られる傾向にある。
 条件(v):水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%未満である。
 前記条件(v)において、水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量は、好ましくは20質量%以下であり、より好ましくは17質量%以下、さらに好ましくは15質量%以下、さらにより好ましくは13質量%以下である。
 水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量は、重合工程におけるビニル芳香族化合物の添加量、重合時間を調製することにより、上記数値範囲に制御することができる。
 接着剤成分に用いる水添共役ジエン系ブロック共重合体が前記条件(i)を満たす場合、極性基としては、前述のアクリル系樹脂を主体とする層(I)との相容性の観点で、上述したように、酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる少なくとも1種が好ましく、より好ましくは、酸無水物基、アミノ基、ジカルボキシル基、及びカルボキシル基からなる群より選ばれる少なくとも1種である。
 水添共役ジエン系ブロック共重合体が上述の群から選ばれる少なくとも1種の極性基を有することで、水添共役ジエン系ブロック共重合体がアクリル系樹脂との親和性及び/又は反応性を有し、接着強度の高い積層体が得られる傾向にある。親和性とは、各成分間でイオン間相互作用、水素結合、双極子相互作用、ファンデルワールス力からなる群より選ばれる少なくとも一つの分子間力を生じ得ることを指す。反応性とは、各成分の極性基同士が共有結合性を持つことを意味する。極性基同士が反応するとき、例えば、カルボキシル基のOHが脱離すると、元の極性基が変化したり無くなったりするが、これによって共有結合が形成する場合には、極性基同士が「反応性」を示すという定義に含まれる。
 接着性の観点では親和性及び反応性を有することが好ましく、反応性の観点で水添共役ジエン系ブロック共重合体が有する極性基はアミノ基であることが好ましい。
 水添共役ジエン系ブロック共重合体が有する、極性基の量は、特に限定されないが、アクリル系樹脂を主体とする層(I)との相容性の観点から、水添共役ジエン系ブロック共重合体全体に対して、好ましくは0.01質量%以上である。より好ましくは0.05質量%以上であり、さらに好ましくは0.10質量%以上である。
 水添共役ジエン系ブロック共重合体が有する極性基の量は、前述の金型汚染性及び作業環境性の観点で20質量%以下が好ましい。
 水添共役ジエン系ブロック共重合体が有する、極性基の量は、水添共役ジエン系ブロック共重合体の製造工程中、これらの極性基を形成するための化合物との反応条件、例えば化合物添加量、反応温度、反応時間等を調整することにより、上記数値範囲に制御できる。
 近年、自動車内装及び外装等の材料として加飾性の積層体を用いる場合には、前記加飾性の積層体においては、常温のみならず幅広い温度領域や、高温高湿度環境下においても高い接着性(耐ヒートサイクル性、耐熱水性)が求められる傾向にある。
 前記耐ヒートサイクル性や、耐熱水性を十分なものとするためには、前記層(III)に用いる接着剤成分が、前述のアクリル系樹脂と反応性を有する極性基を有していることが好ましい。
 層(I)の厚みが薄い場合であって、本実施形態の積層体が十分な耐ヒートサイクル性及び/又は耐熱水性を有するためには、層(I)と層(III)の界面近傍だけでなく、外層近傍においても、水添共役ジエン系ブロック共重合体とアクリル系樹脂との高い相容性が求められるが、外層付近において、水添共役ジエン系ブロック共重合体とアクリル系樹脂とが相容すると、外観を損ない、かつ層(II)との接着性が低下する傾向にある。
 このような問題点に鑑みて、十分な耐ヒートサイクル性及び/又は耐熱水性を得る観点で、水添共役ジエン系共重合体が有する極性基としては、アクリル樹脂との反応性を示す観点からアミノ基が好ましい。
 また、前記層(I)のアクリル樹脂と、層(III)の水添共役ジエン系ブロック共重合体の共有結合を増加させ、本実施形態の積層体の耐ヒートサイクル性及び耐熱水性を向上させる観点で、水添共役ジエン系ブロック共重合体の水素添加率は90%以下が好ましく、より好ましくは88%以下、さらに好ましくは86%以下、よりさらに好ましくは85%以下である。
 一般的に、アクリル樹脂は、重合時の副反応によりラジカル反応性を有する不飽和結合を有しており、水添共役ジエン系ブロック共重合体の水素添加率が90%以下である場合に、水添共役ジエン系ブロック共重合体中に水添されずに残っている共役ジエン由来の不飽和結合と前記アクリル樹脂の不飽和結合とが、積層体製造時にラジカル反応し、共有結合することで、本実施形態の積層体は耐ヒートサイクル性及び耐熱水性が向上する傾向にある。
 一方、水添共役ジエン系ブロック共重合体中の不飽和結合を残し過ぎないことが、ゲル化を防いで金型汚染を抑制する観点では好ましい。
 また、未反応の変性剤が少なくなるようにすると、金型汚染を抑制できる傾向にある。
 水添共役ジエン系ブロック共重合体の水素添加率の下限は、前述の耐熱老化性、耐候性、及び水添共役ジエン系ブロック共重合体同士の架橋による本実施形態の積層体の外観低下、金型汚染性を抑制する観点で、50%以上が好ましく、より好ましくは60%以上、さらに好ましくは70%以上である。一般的に、副反応によって生じる前記アクリル樹脂の不飽和結合量に比べて水素添加率が50%以上の水添共役ジエン系ブロック共重合体の不飽和結合量は多いことが知られており、水添共役ジエン系ブロック共重合体の水素添加率が50%以上90%以下であることにより、上述した本実施形態の積層体の耐ヒートサイクル性、耐熱水性、耐熱老化性、耐候性、及び外観、耐金型汚染性を満足できる傾向にある。
 すなわち、耐ヒートサイクル性、耐熱水性、耐候性、耐候性、外観、及び金型汚染性の観点で、水添共役ジエン系共重合体がアミノ基を有していることが好ましく、さらに好ましくはアミノ基を有した水添共役ジエン系ブロック共重合体の水素添加率が50%以上90%以下であり、より好ましくは60%以上90%以下であり、さらに好ましくは70%以上90%以下であり、さらにより好ましくは70%以上88%以下であり、よりさらに好ましくは70%以上86%以下であり、特に好ましくは70%以上85%以下である。
 また、自動車内装及び外装等の材料として用いる加飾性の積層体には、省燃費性の観点で軽量化が求められており、加飾層であるアクリル系樹脂を主体とする層(I)は薄肉化が要求される傾向にある。
 上述の観点から、前記層(I)の厚みは、1.5mm以下が好ましく、より好ましくは1.0mm以下、さらに好ましくは0.7mm以下、さらにより好ましくは0.5mm以下、よりさらに好ましくは0.3mm以下である。
 前記層(I)の厚みが薄い場合、具体的には1.5mm以下である場合、本実施形態の積層体の生産性の観点から、層(I)及び層(III)が接触した少なくとも2層の積層体を製造し、続いて層(II)に積層して本実施形態の積層体を得ることが好ましい。層(I)及び層(III)を含む少なくとも2層の積層体の取り扱い性の観点から、層(III)に用いる水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量は、25質量%以上が好ましく、より好ましくは27質量%以上、さらに好ましくは30質量%以上、さらにより好ましくは33質量%以上である。
 水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上であることにより、層(III)のベタつきを抑制でき、層(I)及び層(III)を含む少なくとも2層の積層体の巻取り及び/又は繰り出し性が良好なものとなり、優れた取り扱い性が得られる傾向にある。
 水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量の上限としては、層(II)との相容性の観点で、80質量%以下が好ましく、より好ましくは75質量%以下、さらに好ましくは70質量%以下、さらにより好ましくは65質量%以下、よりさらに好ましくは60質量%以下、特に好ましくは55質量%以下である。
[水添共役ジエン系ブロック共重合体の詳細な構成]
 接着剤成分に用いる水添共役ジエン系ブロック共重合体を構成する共役ジエン化合物は、1対の共役二重結合を有するジオレフィンである。
 水添共役ジエン系ブロック共重合体は、下記(A)~(C)の重合体ブロックからなる群より選ばれる2以上の重合体ブロックを有する。
 (A)ビニル芳香族単量体単位を主体とする重合体ブロック(重合体ブロック(A))
 (B)共役ジエン単量体単位を主体とする重合体ブロック(重合体ブロック(B))
 (C)ビニル芳香族単量体単位と共役ジエン単量体単位を有する重合体ブロック(重合体ブロック(C))
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)は、ビニル芳香族単量体単位の含有量が80質量%以上であるものとする。
 ビニル芳香族単量体単位を形成するために用いるビニル芳香族化合物としては、以下に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が挙げられる。
 これらの中でも、入手性及び生産性の観点から、好ましくはスチレン、α-メチルスチレン、4-メチルスチレンであり、より好ましくはスチレンである。
 重合体ブロック(A)は、1種のビニル芳香族単量体単位により構成されていてもよいし、2種以上のビニル芳香族単量体単位により構成されていてもよい。
 積層体の強度の観点から、重合体ブロック(A)に含まれるビニル芳香族単量体単位の含有量は、95質量%超であるものとし、好ましくは100質量%(他の化合物は意図的に添加されていない)である。
 共役ジエン単量体単位を主体とする重合体ブロック(B)は、共役ジエン単量体単位の含有量が80質量%以上であるものとする。
 共役ジエン単量体単位を形成するために用いる共役ジエン化合物は、1対の共役二重結合を有するジオレフィンである。ジオレフィンとしては、以下に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及びファルネセンが挙げられる。
 これらの中でも、入手性及び生産性の観点から、好ましくは、1,3-ブタジエン及びイソプレンが挙げられる。
 重合体ブロック(B)は、1種の共役ジエン単量体単位で構成されていてもよいし、2種以上の共役ジエン単量体単位から構成されていてもよい。
 積層体の耐衝撃性の観点から、重合体ブロック(B)に含まれる共役ジエン単量体単位の含有量は、95質量%超であるものとし、好ましくは100質量%(他の化合物は意図的に添加されていない)である。
 また、積層体の外観及び/又は接着強度を損なわない範囲で、水添共役ジエン系ブロック共重合体は、ビニル芳香族単量体単位及び/又は共役ジエン単量体単位以外の、ビニル芳香族単量体単位及び/又は共役ジエン単量体単位と共重合可能な化合物からなる重合体ブロック(D)を含んでいてもよい。
 前記共役ジエン単量体単位とビニル芳香族単量体単位とを有する重合体ブロック(C)に含まれるビニル芳香族単量体単位及び共役ジエン単量体単位を形成するために用いるビニル芳香族化合物、及び共役ジエン化合物は、重合体ブロック(A)、及び重合体ブロック(B)に用いることができる化合物であればよい。
 重合体ブロック(C)におけるビニル芳香族単量体単位の分布状態に関しては特に限定は無く、重合体ブロック(C)中のビニル芳香族単量体単位が均一に分布していても、又はテーパー状に分布していてもよい。また、ビニル芳香族単量体単位が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個存在していてもよく、ビニル芳香族単量体単位の含有量が異なるセグメントが複数個存在していてもよい。
 重合体ブロック(C)は、前述の相容性の観点から、ビニル芳香族単量体単位/共役ジエン単量体単位が、質量比で5/95~95/5であるものとし、好ましくは10/90~90/10、より好ましくは15/85~85/15である。
 これにより、重合体ブロック(C)は、前記重合体ブロック(A)及び重合体ブロック(B)と明確に区別できる。
 接着剤成分に用いる水添共役ジエン系ブロック共重合体においては、共役ジエン化合物及びビニル芳香族化合物と共重合可能な他の化合物を用いることもできる。
 水添共役ジエン系ブロック共重合体の構造は特に限定されないが、例えば、下記式で表されるような構造を有するものが挙げられる。
 なお、下記式において、極性基の記載は省略した。
 (b-c)、c-(b-c)、b-(c-b)、(b-c)-X、(c-b)-X、[(b-c)nm-X、[(c-b)nm-X、[c-(b-c)nm-X、[b-(c-b)nm-X、[(b-c)n-b]m-X、[(c-b)n-c]m-X、
 (a-b)、b-(a-b)、a-(b-a)、(a-b)m-X、(b-a)m-X、[(a-b)m-X、[(b-a)m-X、[b-(a-b)m-X、[a-(b-a)m-X、[(a-b)-a]m-X、[(b-a)-b]m-X、
 (a-c)、c-(a-c)、a-(c-a)、(a-c)m-X、(c-a)m-X、[(a-c)m-X、[(c-a)m-X、[c-(a-c)m-X、[a-(c-a)m-X、[(a-c)-a]m-X、[(c-a)-c]m-X、
 c-(b-a)、c-(a-b)
 c-(a-b-a)、c-(b-a-b)
 a-c-(b-a)、a-c-(a-b)
 a-c-(b-a)-b、[(a-b-c)m-X、
 [a-(b-c)m-X、[(a-b)-c]m-X、
 [(a-b-a)-c]m-X、
 [(b-a-b)-c]m-X、[(c-b-a)m-X、
 [c-(b-a)n]m-X、[c-(a-b-a)m-X、[c-(b-a-b)m-X
 a-(b-c)、a-(c-b)
 a-(c-b-c)、a-(b-c-b)
 c-a-(b-c)、c-a-(c-b)
 c-a-(b-c)-b、[(c-b-a)m-X、
 [c-(b-a)m-X、[(c-b)-a]m-X、
 [(c-b-c)-a]m-X、
 [(b-c-b)-a]m-X、[(a-b-c)m-X、
 [a-(b-c)m-X、[a-(c-b-c)m-X、[a-(b-c-b)m-X
 b-(a-c)、b-(c-a)
 b-(c-a-c)、b-(a-c-a)
 c-b-(a-c)、c-b-(c-a)
 c-b-(a-c)-a、[(c-a-b)m-X、
 [c-(a-b)m-X、[(c-a)-b]m-X、
 [(c-a-c)-b]m-X、
 [(b-c-b)-b]m-X、[(b-a-c)m-X、
 [b-(a-c)m-X、[b-(c-a-c)m-X、[b-(a-c-a)m-X
 なお、上記各一般式において、aは前記重合体ブロック(A)、bは前記重合体ブロック(B)、cは前記重合体ブロック(C)を示す。
 nは1以上の整数であり、好ましくは1~5の整数である。
 mは2以上の整数であり、好ましくは2~11の整数である。
 Xはカップリング剤の残基又は多官能開始剤の残基を示す。
 水添共役ジエン系ブロック共重合体は、基本的な構造が、特に、a-b、a-b-a、a-b-a-bの構造式で表される重合体であることが好ましい。
 接着剤成分に用いる水添共役ジエン系ブロック共重合体の重量平均分子量(Mw)(以下、「Mw」ともいう。)は、本実施形態の積層体の、機械強度、耐衝撃性、耐摩耗性、相容性、成形性の観点から、3.5万~60万が好ましく、4.0万~40万がより好ましく、4.5万~30万がさらに好ましい。
 水添共役ジエン系ブロック共重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)による測定で得られるクロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)に基づいて求めた重量平均分子量(Mw)である。
 変性前の水添共役ジエン系ブロック共重合体の分子量分布も、同様にGPCによる測定から求めることができ、分子量分布は重量平均分子量(Mw)と数平均分子量(Mn)の比率(Mw/Mn)である。
 水添共役ジエン系ブロック共重合体のGPCで測定される単一ピークの分子量分布は、5.0以下であることが好ましく、より好ましくは4.0以下、さらに好ましくは3.0以下であり、さらにより好ましくは2.5以下である。
 水添共役ジエン系ブロック共重合体の重量平均分子量、分子量分布は、モノマー添加量、添加のタイミング、重合温度、重合時間等の重合条件を調整することにより、上記数値範囲に制御できる。
[水添共役ジエン系ブロック共重合体の製造方法]
 本実施形態の積層体の接着剤成分に用いる水添共役ジエン系ブロック共重合体は、以下に限定されないが、例えば、有機溶媒中で、有機アルカリ金属化合物を重合開始剤として、共役ジエン化合物及びビニル芳香族化合物を用いて重合を行い、ブロック共重合体を得た後、水添反応を行い、必要に応じて変性反応を行うことにより製造することができる。
 水素化反応及び変性反応は、この順序に限らず逆であってもよい。
 重合の態様としては、バッチ重合であっても連続重合であってもよく、これらの組み合わせであってもよい。
 重合温度は、一般に0~180℃であり、20~160℃が好ましく、30~150℃がより好ましい。
 重合時間は目的とする共役ジエン系ブロック共重合体によって異なるが、通常は48時間以内であり、0.1~10時間が好ましい。分子量分布が狭く、高い強度を有する共役ジエン系重合体を得る観点からは、0.5~5時間がより好ましい。
 重合系の雰囲気は、窒素及び溶媒を液相に維持するために十分な圧力の範囲であればよく、特に限定されるものではない。
 重合系内に、重合開始剤及びリビングポリマーを不活性化させるような不純物、例えば、水、酸素、炭酸ガス等が存在しないことが好ましい。
 有機溶媒としては、以下に限定されないが、例えば、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類;シクロヘキサン、シクロへプタン、メチルシクロペンタン等の脂環式炭化水素類;ベンゼン、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素が挙げられる。
 重合開始剤である有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。
 有機リチウム化合物としては、有機モノリチウム化合物、有機ジリチウム化合物、有機ポリリチウム化合物が挙げられる。
 有機リチウム化合物としては、以下に限定されないが、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、ヘキサメチレンジリチウム、ブタジエニルリチウム、イソプロペニルジリチウム、及びリチウムピペリジド等が挙げられる。
 リチウムピペリジドのように、Nを含む有機リチウム化合物を重合開始剤とする場合、NHxにおいて、X=0である原子団を有するアミノ基変性共役ジエン系ブロック共重合体が得られる。
 これらの重合開始剤は1種のみを単独で使用してもよく、2種以上を併用してもよい。これらの中でも、重合活性の観点からn-ブチルリチウム、sec-ブチルリチウム、リチウムピペリジドが好ましい。
 重合開始剤である有機アルカリ金属化合物の使用量は、目的とする共役ジエン系ブロック共重合体の分子量によるが、一般的には0.01~1.5phm(単量体100質量部当たりに対する質量部)の範囲であることが好ましく、0.02~0.3phmの範囲であることがより好ましく、0.05~0.2phmの範囲であることがさらに好ましい。
 共役ジエン系ブロック共重合体のビニル結合量は、ルイス塩基、例えばエーテル、アミン等の化合物を、ビニル結合量調整剤(以下、ビニル化剤と表記)として使用することにより制御することができる。
 また、目的とするビニル結合量に応じて、ビニル化剤の使用量を調整することができる。
 ビニル化剤としては、以下に限定されないが、例えば、エーテル化合物、第3級アミン系化合物等が挙げられる。
 エーテル化合物としては、直鎖状エーテル化合物及び環状エーテル化合物等が挙げられる。
 直鎖状エーテル化合物としては、以下に限定されないが、例えば、ジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールのジアルキルエーテル化合物類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールのジアルキルエーテル化合物類が挙げられる。
 また、環状エーテル化合物としては、以下に限定されないが、例えば、テトラヒドロフラン、ジオキサン、2,5-ジメチルオキソラン、2,2,5,5-テトラメチルオキソラン、2,2-ビス(2-オキソラニル)プロパン、フルフリルアルコールのアルキルエーテル等が挙げられる。 
 第3級アミン系化合物としては、以下に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、N-エチルピペリジン、N-メチルピロリジン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,2-ジピペリジノエタン、トリメチルアミノエチルピペラジン、N,N,N’,N”,N”-ペンタメチルエチレントリアミン、N,N’-ジオクチル-p-フェニレンジアミン、ピリジン、テトラメチルプロパンジアミン、ビス[2-(N,N-ジメチルアミノ)エチル]エーテル等が挙げられる。
 これらは、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 第3級アミン系化合物としては、アミンを2個有する化合物が好ましい。さらに、それらの中でも、分子内で対称性を示す構造を有するものがより好ましく、N,N,N’,N’-テトラメチルエチレンジアミンやビス[2-(N,N-ジメチルアミノ)エチル]エーテルや1,2-ジピペリジノエタンがさらに好ましい。
 共役ジエン系ブロック共重合体の製造工程においては、上述したビニル化剤、有機リチウム化合物、及びアルカリ金属アルコキシドの共存下、共役ジエン化合物及びビニル芳香族化合物を用いて重合を行うことができる。
 ここで、アルカリ金属アルコキシドとは、一般式MOR(式中、Mはアルカリ金属、Rはアルキル基である)で表される化合物である。
 アルカリ金属アルコキシドを重合工程で併存させることにより、ビニル結合量、分子量分布、重合速度、ブロック率等を制御する効果が得られる。
 アルカリ金属アルコキシドのアルカリ金属としては、高いビニル結合量、狭い分子量分布、高い重合速度、及び高いブロック率の観点から、ナトリウム又はカリウムであることが好ましい。
 アルカリ金属アルコキシドとしては、以下に限定されないが、例えば、炭素数2~12のアルキル基を有するナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシドが挙げられ、好ましくは、炭素数3~6のアルキル基を有するナトリウムアルコキシドやカリウムアルコキシドであり、より好ましくは、ナトリウム-t-ブトキシド、ナトリウム-t-ペントキシド、カリウム-t-ブトキシド、カリウム-t-ペントキシドが挙げられる。
 これらの中でも、ナトリウムアルコキシドであるナトリウム-t-ブトキシド、ナトリウム-t-ペントキシドがさらに好ましい。
 共役ジエン系ブロック共重合体の共役ジエン単量体単位由来の不飽和結合の水素化の方法は特に限定されないが、例えば、上記重合工程で得られた共役ジエン系ブロック共重合体に対し、水素化触媒の存在下に、水素を供給し、水素添加することにより、共役ジエン単量体単位の二重結合残基が水素添加された、水添共役ジエン系ブロック共重合体を得ることができる。
 水素添加率(水添率)は、例えば、水素添加時の触媒量を調整することによって制御することができ、水素添加速度は、例えば、水素添加時の触媒量、水素フィード量、圧力及び温度等を調整することによって制御することができる。
 水添反応工程は、水添前のブロック共重合体の生成反応停止後のタイミングで実施することが好ましい。
 水添共役ジエン系ブロック共重合体が極性基を有している場合、すなわち前記条件(i)を満たす場合、酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基が結合していることが好ましい。
 前記極性基の共役ジエン系ブロック共重合体への導入方法は、特に限定されるものでなく、前記極性基となる所定の各官能基を有する重合開始剤によって導入する方法や、各官能基を有する不飽和単量体を重合させる方法;リビング末端に官能基を形成もしくは含有する変性剤を付加反応する方法;等が挙げられる。
 前記「変性剤」としては、以下に限定されないが、例えば、マレイン酸、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、カルバリル酸、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等の脂肪族カルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメシン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸等が挙げられる。また、無水マレイン酸、無水イタコン酸、無水ピロメリット酸、シス-4-シクロヘキサン-1,2-ジカルボン酸無水物、1,2,4,5-ベンゼンテトラカルボン酸二無水物、5-(2,5-ジオキシテトラヒドロキシフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ε―カプロラクタム等が挙げられる。
 極性基の共役ジエン系ブロック共重合体への他の導入方法としては、例えば、共役ジエン系ブロック共重合体に、有機リチウム化合物等の有機アルカリ金属化合物を反応(メタレーション反応)させ、有機アルカリ金属が付加した重合体に官能基を有する変性剤を付加反応させる方法等が挙げられる。
 また、極性基の他の導入方法としては、例えば、未変性の共役ジエン系ブロック共重合体に、官能基を有する原子団を直接グラフト付加する製造方法が挙げられる。
 グラフト付加の方法としては、ラジカル開始剤と共役ジエン系ブロック共重合体、及び前記変性剤を含んだ溶液中でこれらを反応させる方法;あるいはラジカル開始剤と共役ジエン系ブロック共重合体、及び前記変性剤を加熱溶融下で反応させる方法;あるいはラジカル開始剤を含まずに共役ジエン系ブロック共重合体、及び前記変性剤を含有する化合物を加熱溶融下で反応させる方法等が挙げられる。
 反応させる方法としては、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いて、各成分を溶融混練する方法が挙げられる。好ましくは、コストと生産安定性の観点から、単軸あるいは二軸あるいは多軸スクリュー押出機を用いる方法が挙げられ、より好ましくは二軸スクリュー押出機を用いる方法が挙げられる。
 反応工程の際には、ドライブレンドして一括投入してもよく、原料ごとに別フィードであってもよく、また、同一原料を段階的に添加していってもよい。
 スクリューの回転数は、変性剤を均一に付加させる観点から、50~400rpmであることが好ましく、より好ましくは、100~350rpmであり、せん断による樹脂の劣化を防止し、かつ均一付加を行う観点から、好ましくは、150~300rpmである。
 混練温度は、共役ジエン系ブロック共重合体が溶融する温度かつラジカル開始剤からラジカルが発生する温度とする観点から、100℃~350℃が好ましい。付加量の制御や熱による樹脂の劣化を抑制する観点から、より好ましくは120℃~300℃であり、さらに好ましくは150℃~250℃である。
 ラジカル活性種の酸素による失活を抑制するため、窒素などの不活性ガス下で溶融混練を行うことが好ましい。
 ラジカル開始剤としては、以下に限定されないが、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート類が挙げられる。好ましくは、混練温度域に1分半減期温度を持つものであり、より好ましくは1分半減期温度が150℃~250℃にあるものである。このようなラジカル開始剤としては、以下に限定されないが、例えば、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル―2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ―(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾネート、n-ブチル-4,4-ジ-(t-ブチルパーオキシ)バレレート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド、p-メタンハイドロパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、ジイソプロピルベンゼンハイドロパーオキシド、1,1,3,3-テトラメチルブチルハイドロパーオキシドが挙げられる。
 特に、共役ジエン系ブロック共重合体との相容性の観点から、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3が好ましい。特に、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンと2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシンがより好ましい。
 また、共役ジエン系ブロック共重合体への極性基の他の導入方法としては、前述の方法で得られた一次変性共役ジエン系ブロック共重合体と官能基を有する原子団を反応させて導入する二次変性等が挙げられる。
 極性基の組み合わせとしては、例えば、アミノ基とジカルボキシル基、酸無水物基とアミノ基、水酸基;イソシアネート基と水酸基、カルボキシル基とアミノ基、酸無水物基と水酸基、シラノール基と水酸基、エポキシ基とカルボキシル基が挙げられるが、反応性の観点から、アミノ基とジカルボキシル基、酸無水物基とアミノ基、シラノール基と水酸基、ジカルボキシル基とアミノ基、エポキシ基とカルボキシル基の組み合わせが好ましく、より好ましくはアミノ基とジカルボキシル基、酸無水物基とアミノ基の組み合わせである。
 一次変性として、共役ジエン系ブロック共重合体にエポキシ基、酸無水物基、水酸基を結合させる方法としては、前述の方法が挙げられ、変性剤としては前述の変性剤、エポキシ基含有重合性化合物等が挙げられる。
 一次変性として、共役ジエン系ブロック共重合体にシラノール基を結合させる方法としては、前述の方法が挙げられ、変性剤としては、ビス-(3-トリエトキシシリルプロピル)-テトラスルファン、ビス-(3-トリエトキシシリルプロピル)-ジスルファン、エトキシシロキサンオリゴマー、エポキシ基含有重合性化合物、前述のエポキシ基含有重合性化合物で挙げたアルコキシシラン基を持つ化合物の加水分解物等が挙げられる。
 一次変性として、共役ジエン系ブロック共重合体にアミノ基を結合させる方法は、前述の方法が挙げられ、変性剤としては、例えば、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,3-ジエチル-2-イミダゾリジノン、1,3-ジプロピル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-プロピル-2-イミダゾリジノン、1-メチル-3-ブチル-2-イミダゾリジノン、1-メチル-3-(2-メトキシエチル)-2-イミダゾリジノン、1-メチル-3-(2-エトキシエチル)-2-イミダゾリジノン、1,3-ジ-(2-エトキシエチル)-2-イミダゾリジノン、1,3-ジメチルエチレンチオウレア、N,N’-ジエチルプロピレンウレア、N-メチル-N’-エチルプロピレンウレア等が挙げられる。
 また、変性剤としては、例えば、1-メチル-2-ピロリドン、1-シクロヘキシル-2-ピロリドン、1-エチル-2-ピロリドン、1-プロピル-2-ピロリドン、1-ブチル-2-ピロリドン、1-イソプロピル-2-ピロリドン、1,5-ジメチル-2-ピロリドン、1-メトキシメチル-2-ピロリドン、1-メチル-2-ピペリドン、1,4-ジメチル-2-ピペリドン、1-エチル-2-ピペリドン、1-イソプロピル-2-ピペリドン、1-イソプロピル-5,5-ジメチル-2-ピペリドン等が挙げられる。
 アミノ基を結合させた一次変性共役ジエン系重合体と、二次変性剤を結合させる方法としては、前述の方法が挙げられ、変性剤としては、マレイン酸、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、カルバリル酸、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等の脂肪族カルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメシン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸等が挙げられる。
 また、無水マレイン酸、無水イタコン酸、無水ピロメリット酸、シス-4-シクロヘキサン-1,2-ジカルボン酸無水物、1,2,4,5-ベンゼンテトラカルボン酸二無水物、5-(2,5-ジオキシテトラヒドロキシフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等が挙げられる。
 得られる極性基を含有する共役ジエン系ブロック共重合体の形状に関しては、特に制限はないが、例えば、ペレット状、シート状、ストランド状、チップ状等が挙げられる。また、溶融混練後、直接成形品とすることもできる。
〔積層体の製造方法〕
 本実施形態の積層体は、上述した各層及び成分を含む2層又は3層以上に積層された積層体であり公知の方法を広く採用して製造することが可能である。
 積層体を製造する方法は限定されず、従来公知の種々の手法を採用することができる。
 本実施形態の積層体は接着性が良好であるため、有機溶剤を用いたドライラミネーション等を行わなくとも、以下のような成形方法によって良好な接着性を有する積層体とすることができる。
 成形方法としては、例えば、押出機で溶融させた個々の溶融樹脂を多層ダイスに供給し、ダイスの中で積層して成形する共押出法によって、インフレーションフィルム、T-ダイフィルム、シート、パイプ等とする方法や、溶融した個々の樹脂を同一金型内にタイムラグを付けてインジェクションする、共インジェクション成形等が挙げられる。
 また、各層のうちのいずれか1層を構成する樹脂フィルムを予め成形しておき、これに他の層を溶融押出する押出ラミネート成形も採用することができる。
 さらに、予め各層を構成する樹脂フィルムを成形しておき、これら各層に熱をかけて融着することで積層体とすることもできる。
 上記のような成形法にて積層体を得た後、これを延伸することで延伸積層体とすることもできる。
 延伸積層体は、熱固定を行ってもよいし、熱固定をせずに製品としてもよい。熱固定を行わない場合は、その後に延伸積層体を加熱することによって応力が開放されて収縮する性質をもつため、シュリンクフィルムとして用いることができる。さらには、これらを真空成形、圧空成形等の二次加工を経て、絞り成形容器等とすることもできる。
 また、積層体が接着層(III)を有する場合、あらかじめ、被着体の双方(層(I)、層(II))に接着層(層(III))を設けたのち、被着体を積層させて接着を行ってもよい。接着を強固に行うために、積層体を加圧してもよく、加圧は全体を行っても、接着層を設けた部分のみに圧力をかけてもよい。加圧方法は特に制限されず、また、圧力も、接着層が著しく変形しない程度の圧力であれば特に制限されない。
 積層体の形状は限定されず、フィルムやシート、板状等の平面状や、パイプ状、袋状、不定形状等いずれの形状であってもよい。
 本実施形態の積層体は、アクリル系樹脂を主体とする層(I)、ポリオレフィン樹脂を主体とする層(II)、接着層(III)、ポリオレフィン樹脂及び接着剤成分を含む層(IV)以外の層(以下、他の層という場合がある。)を有していてもよい。
 他の層を構成する材料は限定されず、樹脂層のみならず金属層であってもよい。
 積層体を構成する他の樹脂層の材料は限定されず、例えば、ポリオレフィン樹脂(層(II)に含まれるものを除く);ポリフェニレンエーテル系樹脂;ナイロン6、ナイロン66、ナイロン11等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂(成分(A)に含まれるものを除く);ポリメチルメタクリレート系樹脂等の(メタ)アクリル系樹脂;ポリスチレン等のスチレン系樹脂;等の熱可塑性樹脂や各種熱可塑性エラストマー等が挙げられる。
 また、本発明の効果を妨げない範囲で、積層体の各層には、種々の添加剤等を配合することができる。
 添加剤としては、各種の熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、老化防止剤、造核剤、可塑剤、衝撃改良剤、相容化剤、消泡剤、増粘剤、架橋剤、界面活性剤、滑剤、離型剤、ブロッキング防止剤、加工助剤、帯電防止剤、難燃剤、難燃助剤、充填材、着色剤等が挙げられる。これら添加剤は、1種類のみを用いても、2種類以上を任意の組合せと比率で併用してもよい。
 熱安定剤及び酸化防止剤としては、例えば、ヒンダードフェノール類、リン化合物、ヒンダードアミン、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物等が挙げられる。
 難燃剤は、ハロゲン系難燃剤と非ハロゲン系難燃剤に大別されるが、非ハロゲン系難燃剤が環境面で好ましい。非ハロゲン系難燃剤としては、リン系難燃剤、水和金属化合物(水酸化アルミニウム、水酸化マグネシウム)難燃剤、窒素含有化合物(メラミン系、グアニジン系)難燃剤及び無機系化合物(硼酸塩、モリブデン化合物)難燃剤等が挙げられる。
 充填材は、有機充填材と無機充填材に大別される。有機充填材としては、澱粉、セルロース微粒子、木粉、おから、モミ殻、フスマ等の天然由来のポリマーやこれらの変性品等が挙げられる。また、無機充填材としては、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウイスカー、セラミックウイスカー、チタン酸カリウム、窒化ホウ素、グラファイト、炭素繊維等が挙げられる。
 さらに、本実施形態の積層体が、接着剤成分とポリオレフィン樹脂を含む層(IV)を有する構成である場合、ポリオレフィン樹脂と接着剤成分を含む樹脂組成物は、上述の各成分を所定の割合で混合することにより得ることができる。
 混合の方法については、原料成分が均一に分散すれば特に制限はない。すなわち、上述の各原料成分等を同時に又は任意の順序で混合することにより、各成分が均一に分散した樹脂組成物を得ることができる。より均一な混合、分散のためには、所定量の上記原料成分を溶融混合することが好ましく、例えば、樹脂組成物の各原料成分等を任意の順序で混合してから加熱したり、全原料成分等を順次溶融させながら混合してもよいし、目的とする成形体を製造する際の成形時に各原料を適宜配合(ドライブレンド)して溶融混合してもよい。
 混合方法や混合条件は、各原料成分等が均一に混合されれば特に制限はないが、生産性の観点からは、例えば、タンブラーブレンダー、Vブレンダー、リボンブレンダー、ヘンシェルミキサー等を用いて原料を混合し、単軸押出機や二軸押出機のような連続混練機及びミルロール、バンバリーミキサー、加圧ニーダー等のバッチ式混練機で溶融混練する方法が好ましい。これらの方法で樹脂組成物を製造する際の製造条件は限定されず、周知の条件で適宜設定することができる。溶融混合時の温度は、各原料成分の少なくとも一つが溶融状態となる温度であればよいが、通常は用いる全成分が溶融する温度が選択され、一般には150~250℃で行うことができる。
(積層体の製造方法の好ましい形態)
 本実施形態の積層体の製造方法は、特に、以下の方法が好ましい。
 すなわち、アクリル系樹脂を主体とする層(I)と、ポリオレフィン樹脂を主体とする層(II)と、前記層(I)と前記層(II)との間に設けられた接着層(III)とを有する積層体を製造する方法において、前記層(I)と前記層(III)が接触するように積層し、少なくとも2層の積層体を得る工程と、前記少なくとも2層の積層体の前記層(III)と、前記層(II)が接触するように層(II)を積層する工程を含む製造方法であることが好ましい。
 かかる製造方法は、層(I)が厚み1.5mm以下の薄層である場合に、好適な方法である。
 また外観に優れ、耐ヒートサイクル性及び/又は耐熱水性に優れる積層体を得る観点から、前記層(I)と前記層(III)を積層する工程において、層(I)及び層(III)を溶融状態下で積層し、冷却することで積層することが好ましい。
 成形方法としては、特に限定されないが、例えば、押出機で溶融させた個々の溶融樹脂を多層ダイスに供給し、ダイスの中で積層して成形する共押出法によって、インフレーションフィルム、T-ダイフィルム等とする成形方法が挙げられる。
 また生産性の観点で、積層体の前記層(I)と前記層(III)が接触している少なくとも2層の積層体を得、さらに前記積層体に前記層(II)を積層する工程においては、前記少なくとも2層の積層体を金型に装着し、前記層(II)を構成するポリオレフィン樹脂を溶融下で前記金型に流し入れ、冷却することで積層して、目的とする本実施形態の積層体を得る工程を行ってもよい。
 以下、具体的な実施例及び比較例を挙げて、本実施形態を詳細に説明するが、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
 実施例及び比較例における、接着剤成分に用いた水添共役ジエン系ブロック共重合体の構造、及び物性の測定方法、積層体の評価方法を以下に示す。
〔水添共役ジエン系ブロック共重合体の構造、物性、及び積層体の評価〕
 水添共役ジエン系重合体の構造、及び物性の測定方法を以下に示す。
((1)水添共役ジエン系ブロック共重合体の、ビニル結合量)
 水添共役ジエン系ブロック共重合体の、共役ジエン単量体単位の合計100mоl%に対する、ビニル結合量は、水添共役ジエン系ブロック共重合体を用いて、プロトン核磁気共鳴(H-NMR)により測定した。
 測定機器はECS400(JEOL製)、溶媒は重水素化クロロホルムを用い、サンプル濃度は50mg/mLとし、観測周波数は400MHzとし、化学シフト基準にテトラメチルシランを用い、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°、及び測定温度26℃で測定を行った。
 ビニル結合量は、1,4-結合及び1,2-結合に帰属されるシグナルの積分値から各結合様式の1Hあたりの積分値を算出した後、1,4-結合と1,2-結合との比率から算出した。
((2)水添共役ジエン系ブロック共重合体の共役ジエン単量体単位の不飽和結合の水素添加率)
 水添共役ジエン系共重合体の水素添加率は、水添共役ジエン系共重合体を用いて、プロトン核磁気共鳴(H-NMR)により測定した。
 測定条件及び測定データの処理方法は、上記(1)と同様とした。
 水素添加率は、4.5~5.5ppmの残存二重結合に由来するシグナル及び水素化された共役ジエンに由来するシグナルの積分値を算出し、その比率を算出した。
((3)水添共役ジエン系ブロック共重合体中の、ビニル芳香族単量体単位の含有量(以下、「スチレン含有量」とも表記する。))
 ビニル芳香族単量体単位の含有量は、水添共役ジエン系ブロック共重合体を用いて、プロトン核磁気共鳴(H-NMR)法により測定した。
 測定機器はECS400(JEOL製)、溶媒に重水素化クロロホルムを用い、サンプル濃度は50mg/mL、観測周波数は400MHz、化学シフト基準にテトラメチルシランを用い、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°、及び測定温度26℃で行った。
 スチレン含有量は、スペクトルの6.2~7.5ppmにおける総スチレン芳香族シグナルの積算値を用いて算出した。
 また、水素添加化前の共役ジエン系ブロック共重合体の重合過程のステップ毎にサンプリングしたポリマー毎にビニル芳香族単量体単位の含有量を算出することでもスチレン含有量を確認した。
((4)水添共役ジエン系ブロック共重合体の重量平均分子量)
 水添共役ジエン系ブロック共重合体の重量平均分子量を、GPC〔装置:HLC8220(東ソー製)、カラム:TSKgelSUPER-HZM-N(4.6mm×30cm)〕で測定した。
 溶媒にはテトラヒドロフランを用いて行った。
 重量平均分子量は、クロマトグラムのピークの分子量から、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた。
 なお、クロマトグラム中にピークが複数有る場合の分子量は、各ピークの分子量と各ピークの組成比(クロマトグラムのそれぞれのピークの面積比より求める)から重量平均分子量を求めた。
((5)アミノ基変性の水添共役ジエン系ブロック共重合体の変性率)
 シリカゲルを充填材としたGPCカラムに、変性した成分が吸着する特性を応用し、水添共役ジエン系ブロック共重合体と低分子量内部標準ポリスチレン(PS)を含む試料溶液について、上記(5)で測定したクロマトグラム中の標準ポリスチレンに対する水添共役ジエン系ブロック共重合体の割合と、シリカ系カラムGPC〔装置:LC-10(島津製作所製)、カラム:Zorbax(デュポン社製)〕で測定したクロマトグラム中の標準ポリスチレンに対する水添共役ジエン系ブロック共重合体の割合を比較し、それらの差分よりシリカカラムへの吸着量を測定し、この割合を変性率とした。
 変性率は、末端が特定構造のアミノ基である比率(%)として、下記式により算出した。
Figure JPOXMLDOC01-appb-M000001
 
  a:ポリスチレン系ゲル(PLgel)で測定した全重合体の面積(%)
  b:ポリスチレン系ゲル(PLgel)で測定した低分子量内部標準PSの面積(%)
  c:シリカ系カラム(Zorbax)で測定した全重合体の面積(%)
  d:シリカ系カラム(Zorbax)で測定した低分子量内部標準PSの面積(%)
((6)無水マレイン酸変性の水添共役ジエン系ブロック共重合体の変性率)
 無水マレイン酸変性の水添共役ジエン系ブロック共重合体をトルエンに溶解し、ファクターが1±0.05であるナトリウムメトキシドのメタノール溶液で滴定し、算出した。
 積層体の特性の評価について以下に示す。
((7)接着性(接着強度))
 実施例1~31、比較例1~12は、後述する積層体を温度25℃、湿度50%下で24時間静置した後、積層体のポリプロピレン樹脂を主体とする層(II)又は後述するポリプロピレン樹脂及び接着剤成分を含む層(IV)に幅1cmの切り込みを入れ、引張試験機を用いて長さ10cm以上引き剥がし試験を行い、得られた応力から接着強度(N/m)を算出した。接着強度が高い程、接着性に優れることを意味する。
 実施例32~40、比較例13~15は、JIS K 5400に準拠し、碁盤目試験で評価した。後述する積層体を温度25℃、湿度50%下で24時間静置した後、アクリル系樹脂を主体とする層(I)側に、接着層(III)まで到達する1mm角の切り込みを100個入れた。前記切り込み上にセロハンテープ(登録商標、ニチバン社製、CT28)を指で上から押し付けるようにして、アクリル系樹脂を主体とする層(I)へ密着させた後にはく離した。100個の内、全ての角でアクリル系樹脂を主体とする層(I)がはく離していないことを残存率100%とし、以下の基準で評価した。
 ◎:残存率95%以上
 ○:残存率80%以上
 △:残存率50%超
 ×:残存率50%以下
((8)耐衝撃性)
 積層体(100mm×100mm)を、23℃(常温)又は-30℃下で24時間以上保持した後、前記積層体の4辺2cmを固定し、質量1.04kgの鋼球を高さ1.0m及び0.5mより前記積層体に自由落下させ、以下に示した基準で評価した。
 ○:鋼球が貫通せず、割れた破片が飛散しない。
 △:鋼球は貫通するが、割れた破片が飛散しない。
 ×:鋼球が貫通し、割れた破片が飛散する。
((9)制振性)
 JIS K 7391に準拠し、積層体の常温下での損失係数算出を片持ち梁法及び半値幅法で行った。
 加振方法は非接触電磁加振器を用いて定常加振した。
 得られた損失係数から以下の基準で評価した。
 ○:0.020以上
 ×:0.020未満
((10)外観)
 積層体のアクリル系樹脂を主体とする層(I)を目視にて観察し、以下に示した基準で外観を評価した。
 ◎:白濁がない。
 ○:僅かに白濁している。
 △:僅かに気泡が存在している(白濁がない又は僅かに白濁している)。
 ×:白濁している及び/又は多量に気泡が存在している。
((11)金型汚染性)
 後述する積層体の作製において、連続20回作製時の金型を目視で観察し、以下に示した基準で外観を評価した。
 ○:金型汚染がない。
 △:僅かに金型汚染がある。
 ×:金型汚染がある。
((12)耐ヒートサイクル性)
 後述する積層体を、-40℃/15分、80℃/15分を1サイクルとして100サイクルのヒートサイクル試験を行い、室温に戻した。以降は、前記(7)と同様の手順で、JIS K 5400に準拠し、碁盤目試験で、接着性(接着強度)を評価した。前記(7)で得られた残存率と、前記ヒートサイクル試験後の碁盤目試験で得られた残存率を比較し、ヒートサイクル試験後の接着強度の低下率を以下の基準で評価した。
 ◎:5%以下
 ○:15%以下
 △:30%未満
 ×:30%以上
((13)耐熱水性)
 後述する積層体を40℃の熱水に24時間浸漬し、その後、取り出して水分を拭き取った。
 以降は、前記(7)と同様の手順で、JIS K 5400に準拠し、碁盤目試験で、接着性(接着強度)を評価した。前記(7)で得られた残存率と、前記熱水浸漬後の碁盤目試験で得られた残存率と比較し、熱水浸漬後の接着強度の低下率を以下の基準で評価した。
 ◎:5%以下
 ○:15%以下
 △:30%未満
 ×:30%以上
((14)繰り出し性)
 後述する実施例32~40、比較例13~35における、アクリル系樹脂を主体とする層(I)と、ポリオレフィン樹脂を主体とする層(III)からなる2層フィルムにおいて、後述する多層Tダイ押出機を用いて共押出成形し、巻き取った後、その繰り出し性について以下の基準で評価した。
 ○:繰り出し可能
 ×:繰り出し不可能
〔水添共役ジエン系ブロック共重合体〕
(変性剤)
 水添共役ジエン系ブロック共重合体の製造用の変性剤としては、下記の化合物を用いた。
 無水マレイン酸(扶桑化学工業(株)製)
 1,3-ジメチル-2-イミダゾリジノン(全て東京化成工業(株)製)
(水添触媒の調製)
 水添共役ジエン系共重合体の水添反応に用いる水添触媒を、下記の方法で調製した。
 窒素置換した反応容器に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100ミリモルを添加し、十分に攪拌しながらトリメチルアルミニウム200ミリモルを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ、水添触媒を得た。
(水添共役ジエン系ブロック共重合体の製造)
 ビニル芳香族化合物と共役ジエンを用い、水添共役ジエン系ブロック共重合体を、下記のようにして調製した。
 物性を表1~表3に示す。
 なお、表1~表3の「構造」中、Aはビニル芳香族単量体単位を主体とする重合体ブロック(A)を示し、Bは共役ジエン単量体単位を主体とする重合体ブロック(B)を示し、Cはビニル芳香族単量体単位及び共役ジエン単量体単位とを有する重合体ブロック(C)を示す。
<水添共役ジエン系ブロック共重合体(1)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.14質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.25mоl添加し、70℃で15分間重合した。
 次に、ブタジエン70質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で30分間重合した。
 次に、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で15分間重合した。
 その後、メタノールを添加し、重合反応を停止し、共役ジエン系共重合体を得た。
 次に、得られた共役ジエン系共重合体に、上記のようにして調製した水添触媒を、共役ジエン系共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(1)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(1)は、スチレン含有量30質量%、重量平均分子量7.1×10、ビニル結合量は35%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(1)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(1)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(1)-Mを、前述の条件で滴定を行った。変性率は1.1質量%であった。
<水添共役ジエン系ブロック共重合体(2)>
 メタノールを添加する前に1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させ、反応終了後にメタノールを添加すること以外は、水添共役ジエン系ブロック共重合体(1)と同様の操作を行った。
 上記のようにして得られた末端アミン変性水添共役ジエン系ブロック共重合体(2)は、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は35%、変性率は80%(1重合鎖あたりの変性基の数は0.80個)、水素添加率は74%であった。
<水添共役ジエン系ブロック共重合体(3)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン20質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.041質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.16mоl添加し、70℃で15分間重合した。
 次に、スチレン45質量部、ブタジエン35質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、安息香酸エチルをn―ブチルリチウム1molに対して0.5mol添加し、70℃で10分間反応させた。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(3)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(3)は、スチレン含有量65質量%、重量平均分子量19.0×10、ビニル結合量は25%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(3)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(3)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(3)-Mを、前述の条件で滴定を行った。変性率は0.5質量%であった。
<水添共役ジエン系ブロック共重合体(4)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン6.0質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.073質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.5mоl添加し、70℃で15分間重合した。
 次に、スチレン8.0質量部、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン6.0質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で15分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(4)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(4)は、スチレン含有量20質量%、重量平均分子量14.0×10、ビニル結合量は45%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(4)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(4)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(4)-Mを、前述の条件で滴定を行った。変性率は0.8質量%であった。
<水添共役ジエン系ブロック共重合体(5)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.062質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して1.5mоl添加し、60℃で15分間重合した。
 次に、スチレン5質量部、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で45分間重合した。
 次に、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で15分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(5)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(5)は、スチレン含有量20質量%、重量平均分子量15.0×10、ビニル結合量は71%、水素添加率は98%であった。
<水添共役ジエン系ブロック共重合体(6)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.062質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して1.5mоl添加し、60℃で15分間重合した。
 次に、スチレン20質量部、ブタジエン65質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で45分間重合した。
 次に、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で15分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(6)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(6)は、スチレン含有量35質量%、重量平均分子量15.0×10、ビニル結合量は70%、水素添加率は98%であった。
<水添共役ジエン系ブロック共重合体(7)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン22.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.079質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して1.5mоl添加し、60℃で20分間重合した。
 次に、ブタジエン55質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で35分間重合した。
 次に、スチレン22.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で20分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(7)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(7)は、スチレン含有量45質量%、重量平均分子量11.0×10、ビニル結合量は71%、水素添加率は98%であった。
<水添共役ジエン系ブロック共重合体(8)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.066質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して1.5mоl添加し、60℃で15分間重合した。
 次に、ブタジエン85質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で60分間重合した。
 次に、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で15分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(8)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(8)は、スチレン含有量15質量%、重量平均分子量16.0×10、ビニル結合量は70%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(8)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(8)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(8)-Mを、前述の条件で滴定を行った。変性率は0.8質量%であった。
<水添共役ジエン系ブロック共重合体(9)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.066質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して1.5mоl添加し、60℃で20分間重合した。
 次に、ブタジエン70質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で50分間重合した。
 次に、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で20分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加した。
 上記のようにして得られた水添共役ジエン系ブロック共重合体は、スチレン含有量30質量%、重量平均分子量16.1×10、ビニル結合量は70%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(9)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(9)-Mを、前述の条件で滴定を行い、変性率は0.7質量%であった。
<水添共役ジエン系ブロック共重合体(10)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.15質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.27mоl添加し、70℃で15分間重合した。
 次に、ブタジエン85質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて60℃で50分間重合した。
 次に、スチレン7.5質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で15分間重合した。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(10)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(10)は、スチレン含有量15質量%、重量平均分子量7.0×10、ビニル結合量は35%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(10)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(10)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(10)-Mを、前述の条件で滴定を行った。変性率は1.2質量%であった。
<水添共役ジエン系ブロック共重合体(11)の作製>
 メタノールを添加する前に1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させ、反応終了後にメタノールを添加すること以外は、水添共役ジエン系ブロック共重合体(10)と同様の操作を行った。
 上記のようにして得られた末端アミン変性共役ジエン系ブロック共重合体(11)は、スチレン含有量15質量%、重量平均分子量7.0×10、ビニル結合量は35%、変性率は80質量%(1重合鎖あたりの変性基の数は0.80個)、水素添加率は75%であった。
<水添共役ジエン系ブロック共重合体(12)の作製>
 テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.90mоl添加すること以外は、水添共役ジエン系ブロック共重合体(3)と同様の操作を行った。得られた水添共役ジエン系ブロック共重合体(12)は、スチレン含有量65質量%、重量平均分子量19.1×10、ビニル結合量は54%、水素添加率は98%であった。
<水添共役ジエン系ブロック共重合体(13)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン50質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.041質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.90mоl添加し、70℃で30分間重合した。
 次に、スチレン15質量部、ブタジエン35質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で35分間重合した。
 次に、安息香酸エチルをn―ブチルリチウム1molに対して0.5mol添加し、70℃で10分間反応させた。その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(13)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(13)は、スチレン含有量65質量%、重量平均分子量19.0×10、ビニル結合量は55%、水素添加率は98%であった。
<水添共役ジエン系ブロック共重合体(14)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン37.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.14質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.25mоl添加し、70℃で35分間重合した。
 次に、ブタジエン25質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で20分間重合した。
 次に、スチレン37.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で35分間重合した。
 その後、メタノールを添加し、重合反応を停止し、共役ジエン系ブロック共重合体を得た。
 次に、得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.5時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加した。
 上記のようにして得られた水添共役ジエン系ブロック共重合体は、スチレン含有量30質量%、重量平均分子量7.1×10、ビニル結合量は35%、水素添加率は98%であった。
 上記のようにして得られた水添共役ジエン系ブロック共重合体と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(14-M)を得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(14-M)を、前述の条件で滴定を行った。変性率は1.1質量%であった。
<水添共役ジエン系ブロック共重合体(15)の作製>
 メタノールを添加する前に1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させ、反応終了後にメタノールを添加すること以外は、水添共役ジエン系ブロック共重合体(3)と同様の操作を行った。
 上記のようにして得られた末端アミン変性共役ジエン系ブロック共重合体(15)は、スチレン含有量65質量%、重量平均分子量18.9×10、ビニル結合量は26%、変性率は80質量%(1重合鎖あたりの変性基の数は0.80個)、水素添加率は82%であった。
<水添共役ジエン系ブロック共重合体(16)の作製>
 水素添加反応時間を0.75時間とすること以外は水添共役ジエン系ブロック共重合体(1)と同様の操作を行い、水添共役ジエンブロック共重合体(16)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(16)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(16)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(16)-Mを、前述の条件で滴定を行った。変性率は0.5質量%であった。
 上記のようにして得られた末端無水マレイン酸変性共役ジエン系ブロック共重合体(16)-Mは、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は36%、水素添加率は45%であった。
<水添共役ジエン系ブロック共重合体(17)の作製>
 水素添加反応時間を1時間とすること以外は、水添共役ジエン系ブロック共重合体(1)と同様の操作を行い、水添共役ジエンブロック共重合体(17)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(17)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(17)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(17)-Mを、前述の条件で滴定を行った。変性率は0.8質量%であった。
 上記のようにして得られた末端アミン変性共役ジエン系ブロック共重合体(17)-Mは、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は35%、水素添加率は88%であった。
<水添共役ジエン系ブロック共重合体(18)の作製>
 水素添加反応時間を1時間とすること以外は、水添共役ジエン系ブロック共重合体(3)と同様の操作を行い、水添共役ジエンブロック共重合体(18)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(18)と無水マレイン酸、パーオキサイド(パーヘキサ25B、日油株式会社製)を混合した後、押出機の長さ全域の温度設定を150~210℃として二軸押出機に供給し、コンパウンドすることで、無水マレイン酸変性水添共役ジエン系ブロック共重合体(18)-Mを得た。
 得られた無水マレイン酸変性水添変性共役ジエン系ブロック共重合体(18)-Mを、前述の条件で滴定を行った。変性率は0.8質量%であった。
 上記のようにして得られた末端アミン変性共役ジエン系ブロック共重合体(18)-Mは、スチレン含有量65質量%、重量平均分子量18.9×10、ビニル結合量は26%、水素添加率は82%であった。
<水添共役ジエン系ブロック共重合体(19)の作製>
 メタノールを添加する前に1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させ、反応終了後にメタノールを添加し、無水マレイン酸変性工程を行わないこと以外は、水添共役ジエン系ブロック共重合体(9)と同様の操作を行った。
 上記のようにして得られた末端アミン変性共役ジエン系ブロック共重合体(19)は、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は70%、変性率は80質量%(1重合鎖あたりの変性基の数は0.80個)、水素添加率は88%であった。
<水添共役ジエン系ブロック共重合体(20)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、ブタジエン20質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.068質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.30mоl添加し、70℃で15分間重合した。
 次に、スチレン20質量部、ブタジエン60質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。
 その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(20)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(20)は、スチレン含有量20質量%、重量平均分子量15.0×10、ビニル結合量は35%、水素添加率は85%であった。
<水添共役ジエン系ブロック共重合体(21)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.068質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.68mоl添加し、70℃で15分間重合した。
 次に、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で15分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。
 その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(21)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(21)は、スチレン含有量20質量%、重量平均分子量15.0×10、ビニル結合量は55%、水素添加率は84%であった。
<水添共役ジエン系ブロック共重合体(22)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.14質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.23mоl添加し、70℃で15分間重合した。
 次に、ブタジエン70質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で40分間重合した。
 次に、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で15分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。
 その後、メタノールを添加し、重合反応を停止した。
 次に、上記のようにして得られた共役ジエン系ブロック共重合体に、上記のようにして調製した水添触媒を、共役ジエン系ブロック共重合体100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約1.2時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、水添共役ジエン系ブロック共重合体100質量部に対して0.25質量部添加し、水添共役ジエン系ブロック共重合体(22)を得た。
 上記のようにして得られた水添共役ジエン系ブロック共重合体(22)は、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は35%、水素添加率は94%であった。
<水添共役ジエン系ブロック共重合体(23)の作製>
 水素添加反応時間を1.2時間とすること以外は水添共役ジエン系ブロック共重合体(22)と同様の操作を行った。上記のようにして得られた水添共役ジエン系ブロック共重合体(23)は、スチレン含有量30質量%、重量平均分子量7.0×10、ビニル結合量は35%、水素添加率は65%であった。
(ポリプロピレン樹脂組成物の製造)
 共役ジエン系共重合体(1)~(23)、及び(1)-M、(3)-M、(4)-M、(8)-M、(9)-M、(10)-M、(16)-M、(17)-M、(18)-Mを、ポリプロピレン樹脂(PL500A、サンアロマー社製)と混合し、混合物を得た(ポリプロピレン/共役ジエン系共重合体=80/20)。その後、前記混合物を押出機の長さ全域の温度設定を150~220℃として二軸押出機に供給し、得られたストランドを冷却後、ペレット状にカッティングしポリプロピレン樹脂組成物のペレットを得た。
〔積層体の製造(実施例1~40、比較例1~15))〕
(積層体の製造(実施例1~18、比較例1~6)
 層(I)、層(II)、層(III)の3層構造の積層体を製造した。まず、前記各水添共役ジエン系ブロック共重合体を200℃でプレス成形し、水添共役ジエン系ブロック共重合体シート(厚み:0.5mm)を作製した。
 次に、アクリル系樹脂(デルペット80N 旭化成社製)から成る厚さ2mm平板とポリプロピレン樹脂(PL500A サンアロマー社製)から成る厚さ2mmの平板の間に前記水添共役ジエン系ブロック共重合体シートを積層し、前記平板と同形状の金型(厚み4.5mm)中で加熱圧着(200℃)を行い、積層体を作製した。
(積層体の製造(実施例19~31、比較例7~12))
 層(I)と、接着剤成分がポリオレフィン樹脂と接着剤成分を含有する層(IV)の2層構造の積層体を製造した。まず、アクリル系樹脂から成る厚さ2mmの平板を射出成形機の金型に取り付け、シリンダー温度200℃とし前記ポリプロピレン樹脂組成物を注入することで積層体を作製した。
(積層体の製造(実施例32~40、比較例13~15))
 層(I)、層(III)が接触した2層フィルム(層(I)約30μm、層(III)10μm)を、多層Tダイ押出機を用いて押出温度(層(I):230℃、層(III):200℃)、ダイス温度(230℃)の条件で共押出成形し、作製した。
 次に、前記2層フィルムを射出成型機の金型(平板、温度50℃)に取り付け、シリンダー温度200℃とし前記ポリプロピレン樹脂を注入することで層(II)を積層させ積層体を作製した。
〔実施例1~18〕、〔比較例1~6〕
 接着剤成分を単独層(層(III))として、層(I):アクリル系樹脂、層(II):ポリプロピレン樹脂から成る3層の積層体を作製し、この積層体の特性を評価した。
〔実施例19~31〕、〔比較例7~12〕
 接着剤成分をポリプロピレン樹脂と混合したポリプロピレン樹脂組成物層(層(IV))とアクリル系樹脂層(層(I))から成る2層の積層体を作製し、この積層体の特性を評価した。
〔実施例32~40〕、〔比較例13~15〕
 接着剤成分を単独層(層(III))として、層(I):アクリル系樹脂が30μm、層(II):ポリプロピレン樹脂から成る3層の積層体を作製し、この積層体の特性を評価した。
 水添共役ジエン系ブロック共重合体(1)~(23)の構造、及び物性を下記表1~表3に示す。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 3層の積層体の特性の評価を下記表4、表5に示す。
 水添共役ジエン系共重合体(8)、(10)を用いた比較例3、4は、層(I)と層(II)が接着せず、積層体が得られなかった。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 接着剤成分をポリプロピレン樹脂と混合したポリプロピレン樹脂組成物層(層(IV))とアクリル系樹脂層(層(I))から成る2層の積層体の評価結果を下記の表6、表7に示す。
 水添共役ジエン系共重合体(8)、(10)を用いた比較例9、10は層(I)と層(IV)が接着せず、積層体が得られなかった。
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
 接着剤成分を単独層(層(III))とし、層(I):アクリル系樹脂、層(II):ポリプロピレン樹脂から成る3層の積層体の評価結果を下記表8、表9に示す。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 実施例1~40及び比較例1~15より、本発明の積層体は、接着強度、外観に優れていることが明らかとなった。
 本出願は、2022年6月7日に日本国特許庁へ出願された日本特許出願(特願2022-092456)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の積層体は、十分な接着強度と外観を両立可能であり、車両用部材、テレビ等の電子機器、容器等の加飾成形体として産業上の利用可能性を有している。

Claims (18)

  1.  アクリル系樹脂を主体とする層(I)と、
     ポリオレフィン樹脂を主体とする層(II)と、
     前記アクリル系樹脂を主体とする層と前記ポリオレフィン樹脂を主体する層との間に設けられた接着層(III)と、
    を、有する積層体であって、
     前記接着層(III)が、
     ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分よりなり、
     前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす、積層体。
    <条件(i)>
     前記水添共役ジエン系ブロック共重合体が極性基を有する。
    <条件(ii)>
     前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
    <条件(iii)>
     前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
    <条件(iv)>
     前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
  2.  前記水添共役ジエン系ブロック共重合体が、
     前記条件(i)、前記条件(iii)、及び前記条件(iv)を満たす、
     請求項1に記載の積層体。
  3.  前記水添共役ジエン系ブロック共重合体が、
     前記条件(ii)、前記条件(iii)、及び前記条件(iv)を満たす、
     請求項1に記載の積層体。
  4.  前記水添共役ジエン系ブロック共重合体が、
     前記条件(i)、及び前記条件(ii)を満たし、前記条件(iv)を満たさず、
    さらに下記条件(v)を満たす、
     請求項1に記載の積層体。
    <条件(v)>
     前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%未満である。
  5.  前記水添共役ジエン系ブロック共重合体が前記条件(i)を満たし、前記水添共役ジエン系ブロック共重合体が有する極性基が、
     酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる、少なくとも1種である、
     請求項1に記載の積層体。
  6.  前記水添共役ジエン系ブロック共重合体が有する極性基がアミノ基である、
     請求項5に記載の積層体。
  7.  前記水添共役ジエン系ブロック共重合体の水添率が90%以下である、
     請求項6に記載の積層体。
  8.  前記アクリル系樹脂を主体とする層(I)の厚みが1.5mm以下である、
     請求項1又は7に記載の積層体。
  9.  前記水添共役ジエン系ブロック共重合体が前記条件(iv)を満たす、
     請求項7に記載の積層体。
  10.  請求項1に記載の積層体の製造方法であって、
     前記アクリル系樹脂を主体とする層(I)と、前記接着層(III)が接触するように積層する工程と、
     前記接着層(III)と、前記ポリオレフィン樹脂を主体とする層(II)が接触するように、前記ポリオレフィン樹脂を主体とする層(II)を積層する工程と、
    を、有する、
     積層体の製造方法。
  11.  前記アクリル系樹脂を主体とする層(I)の厚みが1.5mm以下である、
     請求項10に記載の積層体の製造方法。
  12.  前記アクリル系樹脂を主体とする層(I)と前記接着層(III)を積層する工程において、
     前記アクリル系樹脂を主体とする層(I)、及び前記接着層(III)を、溶融状態で積層する、
     請求項10に記載の積層体の製造方法。
  13.  前記ポリオレフィン樹脂を主体とする層(II)を積層する工程において、
     前記アクリル系樹脂を主体とする層(I)と前記接着層(III)とを有する積層体を金型に装着し、
     ポリオレフィン樹脂を溶融状態で前記金型に流し入れる、
     請求項10に記載の積層体の製造方法。
  14.  アクリル系樹脂を主体とする層(I)と、
     ポリオレフィン樹脂及び接着剤成分を含む層(IV)と、
    を、有する積層体であって、
     前記ポリオレフィン樹脂と接着剤成分の量が、質量比で、ポリオレフィン樹脂/接着剤成分=30/70~95/5であり、
     前記接着剤成分が、
     ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位を有する重合体ブロック(C)、からなる群より選ばれる2以上の重合体ブロックを有し、共役ジエン単量体単位の不飽和結合が水素添加された、水添共役ジエン系ブロック共重合体を主体とする接着剤成分であり、
     前記水添共役ジエン系ブロック共重合体が、下記の条件(i)~(iv)のうち、2つ以上を満たす、積層体。
    <条件(i)>
     前記水添共役ジエン系ブロック共重合体が極性基を有する。
    <条件(ii)>
     前記水添共役ジエン系ブロック共重合体の水添前における共役ジエン系ブロック共重合体が、共役ジエン化合物の1,2-結合及び/又は3,4-結合に由来する単位(a)と、1,4-結合に由来する単位(b)を含み、前記共役ジエン単量体単位の総含有量を100%とした場合に、前記1,2-結合及び/又は3,4-結合に由来する単位(a)含有量が50%以上である。
    <条件(iii)>
     前記水添共役ジエン系ブロック共重合体が、少なくとも一つの前記重合体ブロック(C)を有する。
    <条件(iv)>
     前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%以上80質量%以下である。
  15.  前記水添共役ジエン系ブロック共重合体が、前記条件(i)、前記条件(iii)、及び前記条件(iv)を満たす、
     請求項14に記載の積層体。
  16.  前記水添共役ジエン系ブロック共重合体が、前記条件(ii)、前記条件(iii)、及び前記条件(iv)を満たす、
     請求項14に記載の積層体。
  17.  前記水添共役ジエン系ブロック共重合体が、
     前記条件(i)、及び前記条件(ii)を満たし、前記条件(iv)を満たさず、
    さらに前記条件(v)を満たす、
     請求項14に記載の積層体。
    <条件(v)>
     前記水添共役ジエン系ブロック共重合体中のビニル芳香族単量体単位の含有量が25質量%未満である。
  18.  前記水添共役ジエン系ブロック共重合体が前記条件(i)を満たし、前記水添共役ジエン系ブロック共重合体が有する極性基が、
     酸無水物基、アミノ基、ジカルボキシル基、カルボキシル基、エポキシ基、及びオキセタニル基からなる群より選ばれる、少なくとも1種である、
     請求項14に記載の積層体。
PCT/JP2023/015587 2022-06-07 2023-04-19 積層体、及び積層体の製造方法 WO2023238519A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022092456 2022-06-07
JP2022-092456 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023238519A1 true WO2023238519A1 (ja) 2023-12-14

Family

ID=89118052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015587 WO2023238519A1 (ja) 2022-06-07 2023-04-19 積層体、及び積層体の製造方法

Country Status (1)

Country Link
WO (1) WO2023238519A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216810A (ja) * 1997-11-14 1999-08-10 Mitsubishi Chemical Corp 積層体およびその製造方法
JP2012059732A (ja) * 2010-09-03 2012-03-22 Denki Kagaku Kogyo Kk 太陽電池モジュール用裏面保護シート
JP2014008694A (ja) * 2012-06-29 2014-01-20 Mitsui Chemicals Inc 積層体、および該積層体を含む成形体
WO2017200014A1 (ja) * 2016-05-18 2017-11-23 株式会社クラレ 積層体
WO2019198827A1 (ja) * 2018-04-13 2019-10-17 株式会社クラレ 多層フィルムおよびそれを備える成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216810A (ja) * 1997-11-14 1999-08-10 Mitsubishi Chemical Corp 積層体およびその製造方法
JP2012059732A (ja) * 2010-09-03 2012-03-22 Denki Kagaku Kogyo Kk 太陽電池モジュール用裏面保護シート
JP2014008694A (ja) * 2012-06-29 2014-01-20 Mitsui Chemicals Inc 積層体、および該積層体を含む成形体
WO2017200014A1 (ja) * 2016-05-18 2017-11-23 株式会社クラレ 積層体
WO2019198827A1 (ja) * 2018-04-13 2019-10-17 株式会社クラレ 多層フィルムおよびそれを備える成形体

Similar Documents

Publication Publication Date Title
JP3949110B2 (ja) 水添共重合体
EP2610305B1 (en) Thermoplastic polymer composition and molded article
JP5428856B2 (ja) 熱可塑性重合体組成物
US9644093B2 (en) Thermoplastic polymer composition, shoes and outer soles
WO2001085818A1 (fr) Copolymere bloc et composition contenant ce copolymere
KR20150135300A (ko) 적층체, 보호 필름 및 적층체의 제조 방법
KR20150126420A (ko) 폴리올레핀계 수지 조성물 및 성형체
TWI308156B (en) Novel tetrablock copolymer and compositions containing same
JP7064909B2 (ja) 熱可塑性樹脂組成物及び成形品
JP7439308B2 (ja) 樹脂組成物及び成形体
WO2023238519A1 (ja) 積層体、及び積層体の製造方法
JP7539800B2 (ja) 樹脂組成物
JP5562004B2 (ja) 変性ブロック共重合体及びその組成物
JP5637765B2 (ja) 変性水添ブロック共重合体組成物及びこれを用いた成形体
JP2021181561A (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体組成物、多層体、多層体の製造方法、及び成形体
JP2011094074A (ja) 発泡体用変性ブロック共重合体及びその組成物
JP6992396B2 (ja) ホットメルト接着剤樹脂組成物、ガラス又は有機ガラス用接着剤、及び積層体
JP2004189916A (ja) ガスバリア性を有する熱可塑性重合体組成物
JP5235094B2 (ja) 変性ブロック共重合体及びその組成物
WO2022163786A1 (ja) 樹脂組成物及び成形体
JP4443186B2 (ja) 多層フィルム・シート
JP2019073650A (ja) ホットメルト接着剤用樹脂組成物、ガラス又は有機ガラス用接着剤、及び積層体
JP5543805B2 (ja) 水性インク印刷性に優れた樹脂組成物
TWI788847B (zh) 改質共軛二烯系聚合物、改質共軛二烯系聚合物組合物、多層體、多層體之製造方法、及成形體
JP5294417B2 (ja) 熱収縮性積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819506

Country of ref document: EP

Kind code of ref document: A1