WO2023236539A1 - 一种封装胶膜及其应用 - Google Patents

一种封装胶膜及其应用 Download PDF

Info

Publication number
WO2023236539A1
WO2023236539A1 PCT/CN2023/072426 CN2023072426W WO2023236539A1 WO 2023236539 A1 WO2023236539 A1 WO 2023236539A1 CN 2023072426 W CN2023072426 W CN 2023072426W WO 2023236539 A1 WO2023236539 A1 WO 2023236539A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
layer
light conversion
content
film
Prior art date
Application number
PCT/CN2023/072426
Other languages
English (en)
French (fr)
Inventor
王龙
魏梦娟
桑燕
侯宏兵
周光大
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Publication of WO2023236539A1 publication Critical patent/WO2023236539A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This application is based on the Chinese application with Chinese application number 202210627915.
  • the present invention relates to the field of photovoltaics, and specifically to an encapsulating adhesive film and its application.
  • Ultraviolet light is an electromagnetic wave with a wavelength of 400nm-10nm. Although the proportion of ultraviolet light in sunlight is less than 10%, ultraviolet light has a short wavelength and high energy. If exposed to it for a long time, it will cause great harm to the human body. It will also cause great damage to many materials, especially organic materials, greatly reducing material performance and shortening the service life of materials. If the UV cut-off effect of the encapsulation film is insufficient and the UV transmittance is high, the reliability of the photovoltaic module will be insufficient. For example, the backsheet of the photovoltaic module will turn yellow, become brittle and crack. However, adding a high content of UV absorbers will affect the transmittance in the visible light band, affect the photoelectric conversion efficiency of the components, and cause the color of the film to turn yellow.
  • HJT heterojunction
  • CN114058271A discloses a kind of adhesive film with different UV absorption bands and a preparation method thereof.
  • the formula of the invention contains both a UV absorption auxiliary agent and a UV light conversion agent, which can selectively block the UV light band and block the band that is harmful to the battery cells. Preserving the damage-free band to pass through increases the power of the cell assembly.
  • UV absorbers and UV light converters are mixed together and dispersed in the same layer. The two may interfere with and react with each other, affecting product performance and reliability.
  • the invention provides an encapsulation film, which includes an ultraviolet light absorption layer and an ultraviolet light conversion layer; the ultraviolet light absorption layer includes a matrix resin and an ultraviolet light absorber; and the ultraviolet light conversion layer includes a matrix resin and a UV light absorber.
  • UV light converter The content of the ultraviolet light absorber in the ultraviolet light absorption layer is 0.1g/m 2 ⁇ 10g/m 2 ; the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.1g/m 2 ⁇ 10g/m 2 .
  • the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 5 to 10 g/m 2 ; the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.1 to 2 g/m 2 .
  • the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 5 to 10 g/m 2 ; the content of the ultraviolet light absorber in the ultraviolet light absorption layer is 0.1 to 2 g/m 2 .
  • the ultraviolet light absorbers include ethyl 2-cyano-3,3-diphenyl acrylate, ethylhexyl p-methoxycinnamate, isooctyl p-methoxycinnamate, and 4-methoxycinnamate.
  • the ultraviolet light conversion agent is selected from one or more of organic fluorescent pigments, Eu 3+ doped rare earth oxides, and quantum dots;
  • the organic fluorescent pigment is selected from ⁇ -diketones and pyridine derivatives A mixed rare earth complex;
  • the Eu 3+ doped rare earth oxide is selected from Y 2 Mo 6 -Eu 3+ , Y 2 O 2 S-Eu 3+ , Gd 2 O 3 -Eu 3+ /Bi 3+ , One or more of YVO 4 -Eu 3+ ;
  • the quantum dots are selected from Si quantum dots, GaAs quantum dots, CdS quantum dots, CdSe quantum dots, CdTe quantum dots, ZnS quantum dots, ZnSe quantum dots, ZnTe quantum dots One or more of the points.
  • the light transmittance of the packaging film in the ultraviolet band with a wavelength of 280 to 380 nm does not exceed 20%; the packaging film has a visible light wavelength of 400 to 1100 nm.
  • the light transmittance of the band is not less than 85%.
  • the present invention also provides an electronic device, including an encapsulating adhesive film, the encapsulating adhesive film is the encapsulating adhesive film described in the first aspect; the electronic device is selected from the group consisting of photovoltaic components, electroluminescence Any one of devices and plasma display devices; further, the photovoltaic component is a HJT battery component.
  • the photovoltaic module includes glass, a first encapsulating film layer, a cell array, a second encapsulating film layer and a cover plate, and the first encapsulating film layer is the encapsulating film described in the first aspect;
  • the ultraviolet light absorption layer is provided on the cell array side of the photovoltaic component, and the ultraviolet light conversion layer is provided on the glass side of the photovoltaic component;
  • the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 5 to 10g/m 2 ;
  • the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.1 to 2g/m 2 .
  • the photovoltaic module includes glass, a first encapsulating film layer, a cell array, a second encapsulating film layer and a cover plate, and the second encapsulating film layer is the encapsulating film described in the first aspect;
  • the ultraviolet light conversion layer is provided on the cell array side of the photovoltaic component, and the ultraviolet light absorbing layer is provided on the cover plate side of the photovoltaic component;
  • the ultraviolet light absorbing agent content of the ultraviolet light absorbing layer is 5 ⁇ 10g/m 2 ;
  • the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.1 ⁇ 2g/m 2 .
  • the present invention also provides a laminated glass, including at least two glass layers and an encapsulating adhesive film disposed between adjacent glass layers.
  • the encapsulating adhesive film is the first aspect of the invention.
  • the present invention at least has the following beneficial effects:
  • the ultraviolet absorber in the ultraviolet absorption layer can absorb ultraviolet light of 200-400nm.
  • the light conversion agent in the ultraviolet light conversion layer ensures high transmittance of the encapsulation film and absorbs ultraviolet light that cannot be directly absorbed by the photovoltaic module. Converting light into photovoltaic arrays
  • the visible light used by the device can convert 280-380nm ultraviolet light into visible light. It has the advantages of high light conversion efficiency, stable physical and chemical properties, and is not easy to fail under light. It can be reasonably matched according to the corresponding wavelength bands of different UV absorbers and UV light conversion agents to achieve the desired effect.
  • the ultraviolet light absorber and the ultraviolet light conversion agent are dispersed in different layers respectively.
  • the ultraviolet light absorption layer and the ultraviolet light conversion layer interfere with each other and work synergistically to achieve high ultraviolet cutoff and high visible light transmission, which is beneficial to improving the photoelectric conversion efficiency of solar cells. It plays a promoting role, and can also delay the aging of the packaging film and reduce the use of UV absorbers. It has very high economic value and good commercial application prospects.
  • Figure 1 shows a cross-sectional view of an encapsulating adhesive film provided according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of an encapsulating adhesive film according to another embodiment of the present invention.
  • Figure 3 shows a cross-sectional view of a photovoltaic module according to another embodiment of the present invention.
  • Figure 4 shows a cross-sectional view of laminated glass according to another embodiment of the present invention.
  • 01 is glass
  • 02 is the first adhesive film layer
  • 03 is the battery sheet
  • 04 is the second adhesive film layer
  • 05 is the cover plate
  • 06 is the first glass
  • 07 is the package.
  • 08 is the second glass
  • 11 is the ultraviolet light conversion layer
  • 12 is the ultraviolet light absorption layer
  • 13 is the adhesive layer.
  • the invention provides an encapsulation film, which includes an ultraviolet light absorption layer and an ultraviolet light conversion layer; the ultraviolet light absorption layer includes a matrix resin and an ultraviolet light absorber; and the ultraviolet light conversion layer includes a matrix resin and a UV light absorber.
  • UV light converter UV absorbers and UV converters are dispersed in different layers respectively, and they interfere with each other and work synergistically to achieve high UV cutoff and high visible light transmission. It can be reasonably matched according to the corresponding wavelength bands of different UV absorbers and UV light conversion agents to achieve the desired effect.
  • the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.1g/m 3 to 10g/m 3 , for example, it can be 0.1g/m 3 or 0.5g/m 3 , 1g/m 3 , 1.5g/m 3 , 2g/m 3 , 2.5g/m 3 , 3g/m 3 , 3.5g/m 3 , 4g/m 3 , 4.5g/m 3 , 5g/m 3 , 5.5g/m 3 , 6g/m 3 , 6.5g/m 3 , 7g/m 3 , 7.5g/m 3 , 8g/m 3 , 8.5g/m 3 , 9g/m 3 , 9.5g/m 3 , 10g/m 3 .
  • the content of UV absorber is lower than 0.1g/m 2 , the blocking effect of UV light is not enough and the UV transmittance is high; when the content of UV absorber is higher than 10g/m 2 , too high UV absorber will Affects the visible light transmittance of the film, and the film is prone to yellowing.
  • the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.1g/m 2 to 10g/m 2 .
  • it can be 0.1g/m 2 , 0.5g/m 2 , 1g/m 2 , 1.5g/m 2 , 2g/m 2 , 2.5g/m 2 , 3g/m 2 , 3.5g/m 2 , 4g/ m 2 , 4.5g/m 2 , 5g/m 2 , 5.5g/m 2 , 6g/m 2 , 6.5g/m 2 , 7g/m 2 , 7.5g/m 2 , 8g/m 2 , 8.5g/ m 2 , 9g/m 2 , 9.5g/m 3 , 10g/m 2 .
  • the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 5 to 10 g/m 2 ; the content of the ultraviolet light absorber in the ultraviolet light absorption layer is 0.1 to 2 g/m 2 .
  • the ultraviolet light first passes through the ultraviolet light conversion layer and then passes through the ultraviolet light absorbing layer. If there are too many ultraviolet light absorbers, on the one hand, the preparation of the encapsulating adhesive film will be improved. cost; on the other hand, excessive UV absorbers will cause the film to appear yellow and reduce the light transmittance.
  • the content of the ultraviolet light absorber in the ultraviolet light absorption layer is 5 to 10 g/m 2 ; the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.1 to 2 g/m 2 .
  • the thickness ratio of the ultraviolet light absorption layer and the ultraviolet light conversion layer is 1:10 to 10:1.
  • Appropriate thickness distribution can ensure that the UV absorption layer and the UV light conversion layer work well together, which can not only effectively cut off UV light, but also ensure high light transmittance.
  • the thickness difference between the UV absorption layer and the UV light conversion layer is too large, neither of them can meet this requirement well, which ultimately affects product reliability.
  • the thickness difference between the UV absorption layer and the UV light conversion layer is too large, also increases the difficulty of production control.
  • the ultraviolet light absorber includes ethyl 2-cyano-3,3-diphenyl acrylate, ethylhexyl p-methoxycinnamate, isopropyl p-methoxycinnamate Octyl ester, 4-methoxybenzylidenemalonate dimethyl ester, N-(2-ethoxyphenyl)-N'-(4-ethylphenyl)-oxamide, 2-( 2'-Hydroxy-5'-tert-octylphenyl)benzotriazole, 2-(2'-hydroxy-3'tert-butyl-5'-methylphenyl)-5-chloro-benzotriazole , 2-(4,6-, 3,5-di-tert-butyl-4-hydroxybenzoic acid n-hexadecyl ester, 2-(4,6-diphenyl-1,3,5-triazine-2) -At least one of
  • the light conversion agent has the function of converting ultraviolet wavelength bands into longer wavelength bands of visible light. It absorbs ultraviolet light through its own chromophoric group, causing an energy level transition of ⁇ electrons in the molecule, and emitting a longer light wave to achieve the purpose of light conversion. At the same time, the light-converting material molecules absorb ultraviolet light through relay transmission and are excited. Update Long-band wavelength, thereby effectively improving the power generation efficiency of the battery and increasing revenue.
  • the ultraviolet light conversion agent is selected from organic fluorescent pigments, Eu3+ doped rare earth oxides, and quantum dots.
  • the Eu 3+ doped rare earth oxide is selected from Y 2 Mo 6 -Eu 3+ , Y 2 O 2 S-Eu 3+ , Gd 2 O 3 -Eu 3+ /Bi 3+ , YVO 4 -Eu 3+, one or more.
  • the average size of the quantum dots is less than 10 nm, and the standard deviation of the size is greater than 10% of the average size and less than 30% of the average size;
  • the surface of the quantum dots is modified by a surface modifier. property, one end of the surface modifier is chemically reacted or physically coupled with the quantum dots, and the other end is compatible with the matrix resin;
  • the quantum dots are selected from single quantum dots of group IV-A elements, from group IV-A elements. Alloy quantum dots composed of elemental elements, compound quantum dots composed of any element of group III-A and any element of group V-A, compound quantum dots composed of any element of group II-B and any element of group VI-A A compound composed of elements quantum dots.
  • the quantum dots are selected from one or more of Si quantum dots, GaAs quantum dots, CdS quantum dots, CdSe quantum dots, CdTe quantum dots, ZnS quantum dots, ZnSe quantum dots, and ZnTe quantum dots.
  • the size of the semiconductor quantum dot must be in a quantum confinement state, that is, less than 10 nm. Based on the maximum utilization of the spectrum in the 300-500nm interval, that is, the broadest absorption band, the standard deviation of the size distribution of the quantum dots is less than 30% of the average size and greater than 10% of the average size. The standard deviation is too small, indicating that the size of the quantum dots is too concentrated, resulting in a narrow absorption band.
  • the emission spectrum of the semiconductor quantum dots in the range of 500-1100 nm can be adjusted by the type and size of the quantum dots.
  • the quantum dots in order to make the semiconductor quantum dots have better compatibility with the matrix resin, can be surface modified.
  • the organic fluorescent pigment is selected from a mixed rare earth complex of ⁇ -diketone and pyridine derivatives.
  • the matrix resin is any one or more blends of ethylene-vinyl acetate copolymer, ethylene- ⁇ olefin copolymer, ethylene-methyl methacrylate copolymer or polyvinyl butyral. things. Preferred are ethylene-vinyl acetate copolymers, ethylene- ⁇ olefin copolymers, or blends thereof, or blends of multiple different ethylene-vinyl acetate copolymers or multiple different ethylene- ⁇ olefin copolymers. Blend; in the ethylene-vinyl acetate copolymer, the content of vinyl acetate is 15 to 35 wt%.
  • the ⁇ olefin is one of the following: 1-pentene, 1-hexene, 4-methyl-1-hexene, 1-octene, 1-decene, 1-decene Diene, 4-ethyl-1-hexene, 5-methyl-1-heptene.
  • the molar content of ⁇ -olefin in the ethylene- ⁇ -olefin copolymer is 10% to 50%.
  • the matrix resin needs to meet the following conditions: 1.
  • the initial melting temperature measured with a differential scanning calorimeter (DSC) is lower than 80°C; 2.
  • the MFR measured with a melt index meter is between 2.5 and 40g/min, preferably 3 ⁇ 30g/min.
  • auxiliary agents such as initiators, silane coupling agents, co-crosslinking agents, and light stabilizers can also be added to the ultraviolet light absorption layer and ultraviolet light conversion layer of the encapsulation film.
  • the mass percentage of the initiator is 0-3wt%, for example, the mass percentage of the initiator It is 0, 1wt%, 1.5wt%, 2wt%, 2.5wt% or 3wt%, etc.
  • the initiator is selected from tert-butyl peroxyisopropyl carbonate, 2,5-dimethyl-2,5-(di-tert-butylperoxy)hexane, tert-butyl peroxycarbonate-2-ethyl Hexyl ester, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-amylperoxy)-3,3,5-trimethyl cyclohexane, 1,1-bis(tert-amylperoxy)cyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane, 2,2-bis(tert-butylperoxy)butan alkane, tert-amyl peroxide 2-ethylhexyl carbonate, 2,5-dimethyl 2,5-dimethyl 2,5-dimethyl 2,5-bis(benzoylperoxy)-hexane , ter
  • the mass percentage of the silane coupling agent is 0.05-1wt%, for example, the mass percentage of the silane coupling agent is 0.05wt%, 0.06wt%, 0.07wt%, 0.08wt%, 0.09wt% , 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt% or 1wt%, etc.
  • the silane coupling agent is selected from vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriperoxytert-butylsilane, vinyltriacetoxysilane, vinyltris( ⁇ -methoxy Ethoxy)silane, ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethylsilane, 3-aminopropyl Any one or more types of trimethylsilane.
  • the mass percentage of the co-crosslinking agent is 0.2-2wt%, for example, the mass percentage of the co-crosslinking agent is 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt% , 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt % or 2wt% etc.
  • the co-crosslinking agent is selected from the group consisting of triallyl isocyanurate, triallyl cyanurate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, and pentaerythritol triacrylate.
  • Ester tris(2-hydroxyethyl)isocyanurate triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, ethoxylated glycerol triacrylate, propoxylated glycerin Triacrylate, pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetraacrylate, trimethylolpropane tetraacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane tetramethacrylate, propoxylated pentaerythritol Tetraacrylate, 2,4,6-tris(2-propenyloxy)-1,3,5-triazine, tricyclodecane dimethanol diacrylate, propoxyneopentyl glycol diacrylate, ethyl Oxidized bisphenol A diacrylate, ethoxyl
  • the mass percentage of the light stabilizer is 0.05-0.5wt%, for example, the mass percentage of the light stabilizer is 0.05wt%, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt% or 0.5wt% etc.
  • the light stabilizer is a light stabilizer conventionally used for encapsulating adhesive films, and can be one or more of the following in any proportion: Bis-2,2,6,6-tetramethylpiperate sebacate Iridinol ester, 2,4-dichloro-6-(4-morpholinyl)-1,3,5-triazine, bis-1-decyloxy-2,2,6,6-tetramethyl Piperidin-4-ol sebacate, polymer of succinic acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinol, N,N'-bis(2,2 ,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine and 2,4-dichloro-6-(1,1,3,3-tetramethylbutyl)amino- Polymers of 1,3,5-triazine, N,N'-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine and 2,4-
  • the encapsulation film may also contain an adhesive layer or a functional layer, and the functional layer may be an anti-corrosion layer, an anti-PID layer, a water-blocking layer, etc.
  • the adhesive layer or functional layer can be located on either side of the UV light conversion layer and the UV light absorbing layer or in the middle of the two layers.
  • the light transmittance of the packaging film in the ultraviolet band with a wavelength of 280 to 380 nm does not exceed 20%.
  • the transmittance of the visible light band with a wavelength of 400 to 1100 nm is not less than 85%.
  • the preparation method of the encapsulating adhesive film described in this application includes the following steps: mix the raw materials of each layer according to the proportion, extrude them separately in respective extruders with set temperatures, distribute through the distributor, shape the die, and emboss the roller, The encapsulating adhesive film is obtained.
  • the preparation method of the encapsulation film described in this application includes the following steps of composite molding: mix the raw materials of each layer according to the proportion, and extrude each layer separately in an extruder into a single-layer film with a set thickness.
  • the predetermined structure is laminated at one time, compounded and roller embossed on a compounding roller to obtain the encapsulating film.
  • the present invention also provides an electronic device, including an encapsulating adhesive film, the encapsulating adhesive film is the encapsulating adhesive film described in the first aspect; the electronic device is selected from the group consisting of photovoltaic components, electroluminescence devices and plasma display devices.
  • the photovoltaic component is a HJT cell component.
  • HJT cells are sensitive to ultraviolet light. After UV aging, the power attenuation is large, and the packaging film needs to have better UV cutoff ability.
  • the packaging film described in this application is used in HJT battery components, which can solve the impact of ultraviolet light on HJT cells. , to avoid power reduction due to UV aging.
  • the photovoltaic module includes glass 01, a first encapsulating film layer 02, a cell array 03, a second encapsulating film layer 04 and a cover plate 05.
  • the glass is in the direction in which sunlight is incident, and the cover plate can be made of glass or polymer material.
  • the first encapsulation film layer 02 is the encapsulation film described in the first aspect; the ultraviolet light absorption layer 12 is provided on the cell array side of the photovoltaic module, and the ultraviolet light conversion layer 11 is provided on the On the glass side of the photovoltaic module; the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer 11 is 5 to 10 g/m 2 ; the content of the ultraviolet light absorber in the ultraviolet light absorption layer 12 is 0.1 to 2 g/m 2 .
  • Sunlight first passes through the UV light conversion layer of the encapsulation film to convert the UV light into visible light, and then uses the UV absorption layer to absorb the remaining UV light. While ensuring the UV cut-off effect, it also improves the transmittance of visible light.
  • the photovoltaic module includes glass 01, a first encapsulating film layer 02, a cell array 03, a second encapsulating film layer 04 and a cover plate 05.
  • the glass is in the direction in which sunlight is incident, and the cover plate can be made of glass or polymer material.
  • the second encapsulating film layer 04 is the encapsulating film described in the first aspect; the ultraviolet light conversion layer 11 is provided on the cell array side of the photovoltaic module, and the ultraviolet light absorbing layer 12 is provided on the The cover side of the photovoltaic module; the content of the ultraviolet light absorber in the ultraviolet light absorption layer 12 is 5 to 10 g/m 2 ; the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer 11 is 0.1 to 2 g/m 2 .
  • the sunlight that passes through the encapsulating film first passes through the UV absorption layer, absorbing most of the UV light; then the UV light conversion layer is used to convert the UV light into visible light, which greatly improves the UV cutoff ability of the film.
  • the present invention also provides a laminated glass as shown in Figure 4, including at least two glass layers, namely a first glass 06 and a second glass layer 06. Glass 8, and an encapsulating adhesive film layer 07 disposed between adjacent glass layers, and the encapsulating adhesive film 07 is the encapsulating adhesive film described in the first aspect.
  • the UV cut-off effect of laminated glass is insufficient, which can cause harm to people; it can also damage the functional layer materials in laminated glass with special functions, such as the PDLC film in privacy glass.
  • Laminated glass in automobiles, construction and other fields also requires interlayer films with good UV cut-off effects.
  • the existing solution is mainly to add UV absorbers to cut off UV light through the transparent film. For products with high cut-off requirements, the requirements cannot be met or a high proportion of UV absorbers needs to be added, affecting other properties of the film.
  • Embodiment 1 provides an encapsulation film as shown in Figure 1, including two layers.
  • the encapsulation film includes an ultraviolet light absorption layer 12 and an ultraviolet light conversion layer 11;
  • the ultraviolet light absorption layer 12 includes a matrix resin EVA and Ultraviolet light absorber 2-(2'-hydroxy-3'tert-butyl-5'-methylphenyl)-5-chloro-benzotriazole; the ultraviolet light absorption in the ultraviolet light absorbing layer 12
  • the content of the UV light conversion agent is 5g/m 2 ;
  • the UV light conversion layer 11 includes a matrix resin EVA and a UV light conversion agent Y 2 Mo 6 -Eu 3+ , and the content of the UV light conversion agent in the UV light conversion layer 11 is 4g /m 2 .
  • Example 2 The only difference between Example 2 and Example 1 is that: the content of the UV absorber in the UV absorbing layer is 5g/m 2 ; the content of the UV absorbing agent in the UV absorbing layer is 0.1 g/ m2 .
  • Example 3 The only difference between Example 3 and Example 1 is that: the content of the UV absorber in the UV absorbing layer is 10g/m 2 ; the content of the UV absorbing agent in the UV absorbing layer is 2g /m 2 .
  • Example 4 The only difference between Example 4 and Example 1 is that: the content of the UV absorber in the UV absorbing layer is 10g/m 2 ; the content of the UV absorbing agent in the UV absorbing layer is 0.1 g/ m2 .
  • Example 5 The only difference between Example 5 and Example 1 is that: the content of the UV absorber in the UV absorbing layer is 5g/m 2 ; the content of the UV absorbing agent in the UV absorbing layer is 2g /m 2 .
  • Embodiment 6 The only difference between Embodiment 6 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 6g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 1g /m 2 .
  • Embodiment 7 The only difference between Embodiment 7 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 2g/m 2 ; the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 5g/m 2 .
  • Embodiment 8 The only difference between Embodiment 8 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.1g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 5g/ m2 .
  • Embodiment 9 The only difference between Embodiment 9 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 2g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 10g /m 2 .
  • Embodiment 10 The only difference between Embodiment 10 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.1g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 10g/ m2 .
  • Embodiment 11 The only difference between Embodiment 11 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 1g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 6g /m 2 .
  • Embodiment 12 The only difference between Embodiment 12 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.1g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 0.1g/m 2 .
  • Embodiment 13 The only difference between Embodiment 13 and Embodiment 1 is that: the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 10g/m 2 ; the content of the ultraviolet light absorbing agent in the ultraviolet light absorbing layer is 10g /m 2 .
  • Example 14 The only difference between Example 14 and Example 1 is that the ultraviolet light absorber is ethylhexyl p-methoxycinnamate.
  • Example 15 The only difference between Example 15 and Example 1 is that the ultraviolet light absorber is 4-methoxybenzylidenemalonate dimethyl ester.
  • Example 16 The only difference between Example 16 and Example 1 is that the ultraviolet light absorber is N-(2-ethoxyphenyl)-N'-(4-ethylphenyl)-oxamide.
  • Example 17 The only difference between Example 17 and Example 1 is that the ultraviolet light absorber is ethyl 2-cyano-3,3-diphenyl acrylate.
  • Example 18 The only difference between Example 18 and Example 1 is that the ultraviolet light conversion agent is a mixed rare earth complex of ⁇ -diketone and pyridine derivatives.
  • Example 19 The only difference between Example 19 and Example 1 is that the ultraviolet light conversion agent is GaAs quantum dots.
  • Example 20 contains 0.5 parts of a cross-linking agent (dicumyl peroxide) and 0.5 parts of an auxiliary cross-linking agent (triallyl isocyanurate). part, heat stabilizer (tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]pentaerythritol ester) 0.1 part, light stabilizer (poly ⁇ [6-[(1,1, 3,3-Tetramethylbutyl)amino]]-1,3,5-triazine-2,4-[(2,2,6,6,-Tetramethyl-piperidinyl)imino]- 1,6-hexadiylene [(2,2,6,6-tetramethyl-4-piperidinyl)imino] ⁇ ) 0.1 part.
  • the ultraviolet light conversion layer also contains 0.5 parts of a cross-linking agent (dicumyl peroxide), 0.5 parts of an auxiliary cross-linking agent (triallyl isocyanurate), and a thermal stabilizer (tetra[ ⁇ -(3 , 5-di-tert-butyl-4-hydroxyphenyl)propionate] pentaerythritol ester) 0.1 part, light stabilizer (poly ⁇ [6-[(1,1,3,3-tetramethylbutyl)amino] ]-1,3,5-triazine-2,4-[(2,2,6,6,-tetramethyl-piperidinyl)imino]-1,6-hexadiylene[(2,2 ,6,6-tetramethyl-4-piperidinyl)imino] ⁇ )0.1 part.
  • a cross-linking agent dicumyl peroxide
  • an auxiliary cross-linking agent triallyl isocyanurate
  • a thermal stabilizer te
  • Example 21 The only difference between Example 21 and Example 1 is that the matrix resin is ethylene-1-octene copolymer.
  • Example 22 The only difference between Example 22 and Example 1 is that the matrix resin is an ethylene-methyl methacrylate copolymer.
  • Embodiment 23 The only difference between Embodiment 23 and Embodiment 1 is that the encapsulating adhesive film has three layers, namely an ultraviolet light absorption layer, an ultraviolet light conversion layer and an ultraviolet light absorption layer.
  • Embodiment 24 has three layers, namely an ultraviolet light conversion layer, an ultraviolet light absorption layer and an ultraviolet light conversion layer.
  • Embodiment 25 has three layers, namely an ultraviolet light absorbing layer 12, an adhesive layer 13 and an ultraviolet light conversion layer 11.
  • the adhesive layer 13 Does not contain UV additives.
  • Comparative Example 1 The only difference between Comparative Example 1 and Example 1 is that the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 0.01g/m 3 .
  • Comparative Example 2 The only difference between Comparative Example 2 and Example 1 is that the content of the ultraviolet light absorber in the ultraviolet light absorbing layer is 12g/m 3 .
  • Comparative Example 3 The only difference between Comparative Example 3 and Example 1 is that the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 0.01g/m 3 .
  • Comparative Example 4 The only difference between Comparative Example 4 and Example 1 is that the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is 12g/m 3 .
  • the packaging film is a single-layer film, and the packaging film includes a matrix resin EVA and a UV absorber 2-cyano-3,3-diphenyl acrylic acid.
  • Ethyl ester and UV light conversion agent Y 2 Mo 6 -Eu 3+ the content of the UV light absorber is 5g/m 3 ; the content of the UV light conversion agent is 4g/m 3 .
  • Ultraviolet aging performance The surface temperature of the sample is 60 ⁇ 5°C, irradiation in two bands of UVA and UVB, and the irradiation dose is 60KWh/m 2 .
  • Characterization method The yellowing index ( ⁇ YI) is analyzed according to GB2409-80 "Plastic Yellowing Index Test Method". In the first method, the light first passes through the ultraviolet light absorption layer and then to the ultraviolet light conversion layer. In the second method, the light first passes through the ultraviolet light conversion layer and then to the ultraviolet light absorption layer.
  • Light transmittance and haze The test is measured according to GB/T 2410-2008. Use a UV-visible spectrophotometer to measure the light transmittance of the film in the ultraviolet band with a wavelength of 280 ⁇ 380nm and the visible light band with a wavelength of 400 ⁇ 1100nm. and haze.
  • the light first passes through the ultraviolet light absorption layer and then to the ultraviolet light conversion layer.
  • the light first passes through the ultraviolet light conversion layer and then to the ultraviolet light absorption layer.
  • the front layer adhesive film uses the adhesive films of Examples 7 to 11, Examples 12 to 22, Examples 24 to 25 and Comparative Examples 1 to 5, where Examples 7 to 11, Examples 12 to 22 and
  • the UV absorbing layer of the adhesive film of Comparative Examples 1 to 5 is arranged on the cell array side of the photovoltaic module, and the UV light conversion layer is arranged on the glass side of the photovoltaic module.
  • the cells are all HJT cells from manufacturer A.
  • the back layer of film is all made of F806PS film.
  • B series photovoltaic modules the back layer adhesive film uses the encapsulation adhesive film described in Examples 1 to 6, Examples 12 to 23, Example 25 and Comparative Examples 1 to 5.
  • Examples 1 to 6, Examples 12 to 22 and Comparative Examples The ultraviolet light conversion layer of the encapsulating adhesive film described in ratios 1 to 5 is provided on the cell array side of the photovoltaic module, and the ultraviolet light absorbing layer is provided on the cover plate side of the photovoltaic module.
  • the cells are all made of A The manufacturer's HJT batteries use F406PS film as the front film.
  • Photovoltaic modules complete the aging test in accordance with the IEC61730 standard sequence. Calculate the power attenuation before and after replacement.
  • the light transmittance of the packaging film described in the examples in the ultraviolet band with a wavelength of 280 to 380 nm does not exceed 20%.
  • the light transmittance of the packaging film in the visible light band with a wavelength of 400 to 1100 nm is not less than 85%.
  • Comparative Example 1 the content of the UV absorber in the UV light absorption layer is less than 0.1g/m 3
  • Comparative Example 3 the content of the UV light absorber in the UV light conversion layer measured by Method 1 and Method 2
  • the content of the ultraviolet light conversion agent is less than 0.1g/m 3
  • the light transmittance in the ultraviolet band with a wavelength of 280 to 380 nm exceeds 20%.
  • Comparative Example 2 measured by method two the ultraviolet light in the ultraviolet light absorbing layer The absorbent content is higher than 10g/m 3 ) and the transmittance in the visible light band with a wavelength of 400 to 1100 nm is lower than 85%.
  • the haze of Comparative Example 4 (the content of the ultraviolet light conversion agent in the ultraviolet light conversion layer is higher than 10g/m 3 ) measured by methods one and two in the visible light band with a wavelength of 400 to 700 nm is as high as More than 24%, the yellowing index of Comparative Example 5 (the same layer contains both a UV absorber and a UV converter) is significantly higher than that of the Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供了一种封装胶膜,至少为两层,所述封装胶膜包括紫外光吸收层和紫外光转换层;所述紫外光吸收层包括基体树脂和紫外光吸收剂;所述紫外光转换层包括基体树脂和紫外光转换剂。所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2~10g/m2;所述紫外光转换层中紫外光转换剂的含量为0.1g/m2~10g/m2。紫外吸收层中的紫外吸收剂,可以吸收200~400nm的紫外光,紫外光转换层中的光转换剂,可以将280~380nm的紫外光转成成可见光。本发明封装胶膜包括多层复合结构,紫外光吸收剂和紫外光转换剂分别分散于不同层中,互不干扰,协同作用,实现高紫外截止和高可见光透过。可以根据不同紫外吸收剂和紫外光转换剂的相应波段,合理搭配,达到所需效果。

Description

一种封装胶膜及其应用
本申请以中国申请号为202210627915.X,申请日为2022.06.06的中国申请为基础,并主张其优先权,该中国申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及光伏领域,具体而言,涉及一种封装胶膜及其应用。
背景技术
紫外光是波长为400nm-10nm的电磁波,虽然在太阳光中紫外光的比重不到10%,但是紫外线波长短,能量高,长时间照射,会对人体造成很大的伤害。对很多材料,尤其是有机材料,也会造成很大的迫害,大大降低材料性能,缩短材料使用寿命。如果封装胶膜紫外截止效果不足,紫外线透过率偏高,导致光伏组件可靠性不足,比如光伏组件背板发黄、变脆开裂。但添加高含量紫外吸收剂,会影响可见光波段的透光率,影响组件光电转换效率,胶膜颜色发黄等。
光伏作为清洁能源的主力军,近年来越来越受重视。随着行业的发展,各项技术不断取得突破,光电转换效率越来越高,度电成本不断下降,前景一片大好。目前的单晶PERC电池转换效率已接近理论接线24%,未来提高空间有限。而异质结(HJT)电池的效率已突破26%,再加上低光致衰减,低温系数等优点,HJT电池被认为是电池片的发展的新方向。但是HJT电池对紫外光敏感,紫外老化后功率衰减大,需要封装胶膜有更好的紫外截止能力。此外,汽车、建筑等领域的夹胶玻璃,也需要中间膜有良好的紫外截止效果。现有的解决方案主要是加入紫外吸收剂,截止紫外光透过胶膜。对于截止要求高的产品,无法满足要求或者需要添加高比例的紫外吸收剂,影响胶膜的其他性能。
CN114058271A公开了一种不同UV吸收波段的胶膜及其制备方法,该发明配方中同时含有UV吸收助剂和UV光转换剂,可以选择性阻隔UV光波段,阻隔对电池片有损害的波段,保留无损害的波段穿过,提高了电池片组件的功率。但是,紫外吸收剂和紫外光转换剂混合在一起,分散在同一层中。两者可能会互相干扰,互相反应,影响产品性能和可靠性。
因此需要一种封装胶膜,同时实现紫外高截止和可见光高透过,同时保证高可靠性。
发明内容
本发明提供一种封装胶膜,所述封装胶膜包括紫外光吸收层和紫外光转换层;所述紫外光吸收层包括基体树脂和紫外光吸收剂;所述紫外光转换层包括基体树脂和紫外光转换剂。所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2~10g/m2;所述紫外光转换层中紫外光转换剂的含量为0.1g/m2~10g/m2
进一步地,所述紫外光吸收层的紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层中紫外光转换剂的含量为0.1~2g/m2
进一步地,所述紫外光转换层中紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层的紫外光吸收剂的含量为0.1~2g/m2
进一步地,所述紫外光吸收剂包括2-氰基-3,3-二苯基丙烯酸乙酯、对甲氧基肉桂酸乙基己酯、对甲氧基肉桂酸异辛酯、4-甲氧基苯亚甲基丙二酸二甲酯、N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺、2-(2'-羟基-5'-叔辛基苯基)苯并三唑、2-(2'-羟基-3'叔丁基-5'-甲基苯基)-5-氯-苯并三唑、2-(4,6-、3,5-二叔丁基-4-羟基苯甲酸正十六酯、2-(4,6-二苯基-1,3,5-三嗪-2)-5-正己烷氧基苯酚、2-(2'-羟基-5'-甲基苯基)苯并三唑、聚硅氧烷中的至少一种。
进一步地,所述紫外光转换剂选自有机荧光颜料、Eu3+掺杂稀土氧化物、量子点中的一种或者多种;所述有机荧光颜料选自β-二酮与吡啶类衍生物的混合稀土配合物;所述Eu3+掺杂稀土氧化物选自Y2Mo6-Eu3+、Y2O2S-Eu3+、Gd2O3-Eu3+/Bi3+、YVO4-Eu3+中的一种或者多种;所述量子点选自Si量子点、GaAs量子点、CdS量子点、CdSe量子点、CdTe量子点、ZnS量子点、ZnSe量子点、ZnTe量子点中的一种或者多种。
进一步地,根据GB/T 2410-2008透光率测试标准,所述封装胶膜在波长280~380nm的紫外波段的透光率不超过20%;所述封装胶膜在波长400~1100nm的可见光波段的透光率不低于85%。
根据本发明的另一方面,本发明还提供一种电子器件,包括封装胶膜,所述封装胶膜为第一方面所述的封装胶膜;所述电子器件选自光伏组件、场致发光器件、等离子显示器件中的任意一种;进一步地,所述光伏组件为HJT电池组件。
进一步地,所述光伏组件包括玻璃、第一封装胶膜层、电池片阵列、第二封装胶膜层和盖板,所述第一封装胶膜层为第一方面所述的封装胶膜;所述紫外光吸收层设置于所述光伏组件的电池片阵列侧,所述紫外光转换层设置于所述光伏组件的玻璃侧;所述紫外光转换层中紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层的紫外光吸收剂的含量为0.1~2g/m2
进一步地,所述光伏组件包括玻璃、第一封装胶膜层、电池片阵列、第二封装胶膜层和盖板,所述第二封装胶膜层为第一方面所述的封装胶膜;所述紫外光转换层设置于所述光伏组件的电池片阵列侧,所述紫外光吸收层设置于所述光伏组件的盖板侧;所述紫外光吸收层的紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层中紫外光转换剂的含量为0.1~2g/m2
根据本发明的第三方面,本发明还提供一种夹胶玻璃,包括至少两个玻璃层和设置在相邻所述玻璃层之间的封装胶膜,所述封装胶膜为第一方面所述的封装胶膜。
应用本发明的技术方案,相对于现有技术,本发明至少具有以下有益效果:
(1)紫外吸收层中的紫外吸收剂,可以吸收200-400nm的紫外光,紫外光转换层中的光转换剂,确保封装胶膜高透光率的基础上将光伏组件不可直接吸收的紫外光转换成可供光伏组 件利用的可见光,可以将280-380nm的紫外光转成成可见光,具有光转换效率高,物理化学性质稳定和光照下不易失效等优点。可以根据不同紫外吸收剂和紫外光转换剂的相应波段,合理搭配,达到所需效果。
紫外光吸收剂和紫外光转换剂分别分散于不同层中,紫外光吸收层和紫外光转换层互补干扰,协同作用,实现高紫外截止和高可见光透过,对提高太阳能电池片的光电转换效率起到了促进作用,同时还可以延缓封装胶膜的自身老化,降低紫外吸收剂的使用,具有非常高的经济价值和良好的商业应用前景。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种实施例提供的封装胶膜的剖面图。
图2示出了根据本发明的另一种实施例提供的封装胶膜的剖面图。
图3示出了根据本发明的另一种实施例提供的光伏组件的剖面图。
图4示出了根据本发明的另一种实施例提供的夹胶玻璃的剖面图。
其中,上述附图包括以下附图标记:01为玻璃;02为第一胶膜层;03为电池片;04为第二胶膜层;05为盖板;06为第一玻璃;07为封装胶膜层;08为第二玻璃;11为紫外光转换层;12为紫外光吸收层;13为粘结层。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内有一般技能的人士所理解的通常意义。
本发明提供一种封装胶膜,所述封装胶膜包括紫外光吸收层和紫外光转换层;所述紫外光吸收层包括基体树脂和紫外光吸收剂;所述紫外光转换层包括基体树脂和紫外光转换剂。紫外光吸收剂和紫外光转换剂分别分散于不同层中,互补干扰,协同作用,实现高紫外截止和高可见光透过。可以根据不同紫外吸收剂和紫外光转换剂的相应波段,合理搭配,达到所需效果。
在本申请典型的实施方式中,所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m3~10g/m3,例如可以是0.1g/m3,0.5g/m3,1g/m3,1.5g/m3,2g/m3,2.5g/m3,3g/m3,3.5g/m3,4g/m3,4.5g/m3,5g/m3,5.5g/m3,6g/m3,6.5g/m3,7g/m3,7.5g/m3,8g/m3,8.5g/m3,9g/m3,9.5g/m3,10g/m3。但不限于以上所列举的数值或选择,上述数值或选择范围内其他未列举的数值或选择同样适用。当紫外光吸收剂的含量低于0.1g/m2,对紫外光的阻隔效果不够,紫外光透过率偏高;当紫外吸收剂含量高于10g/m2,过高的紫外吸收剂会影响胶膜可见光透过率,且胶膜易发黄。所述紫外光转换层中紫外光转换剂的含量为0.1g/m2~10g/m2。例如可以是0.1g/m2,0.5g/m2,1g/m2,1.5g/m2,2g/m2,2.5g/m2,3g/m2,3.5g/m2,4g/m2,4.5g/m2,5g/m2,5.5g/m2,6g/m2,6.5g/m2,7g/m2,7.5g/m2,8g/m2,8.5g/m2,9g/m2,9.5g/m3,10g/m2。但不限于以上所列举的数值或选择,上述数值或选择范围内其他未列举的数值或选择同样适用。当紫外光转换剂的含量低于0.1g/m3,胶膜对紫外线的转换效率不高,一方面可见光透过率增益效果差,另一方面,大部分的紫外线穿透胶膜胶膜,对紫外光的阻隔效果差。当紫外光转换剂的含量高于10g/m3,过高的紫外光转换剂会使胶膜透光率降低,雾度增加。
在本申请典型的实施方式中,所述紫外光转换层中紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层的紫外光吸收剂的含量为0.1~2g/m2。在所述封装胶膜用于光伏组件的前层胶膜时,紫外光先经过紫外光转换层,再经过紫外光吸收层,如果紫外光吸收剂太多,一方面提高了封装胶膜的制备成本;另一方面过量的紫外光吸收剂会导致胶膜外观发黄,透光率降低。
在本申请典型的实施方式中,所述紫外光吸收层的紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层中紫外光转换剂的含量为0.1~2g/m2。在所述封装胶膜用于光伏组件的后层胶膜时,光线先经过紫外光吸收层吸收大部分紫外光,未被吸收的部分再经过紫外光转换层转换为可见光,此时,如果紫外光转换剂使用太多,一方面提高了封装胶膜的制备成本,另一方面过量的紫外光转换剂会导致胶膜的透光率降低,雾度升高。
在本申请典型的实施方式中,所述紫外光吸收层和所述紫外光转换层的厚度比为1:10~10:1。合适的厚度分布,可以保证紫外吸收层和紫外光转换层很好地发挥协同作用,既能有效截止紫外光,又能保证高透光率。反之,如果紫外吸收层和紫外光转换层的厚度差异太大,都不能很好的满足这一要求,最终影响产品可靠性,另一方面如果紫外吸收层和紫外光转换层的厚度差异太大,也增加了生产控制难度。
在本申请典型的实施方式中,所述紫外光吸收剂包括2-氰基-3,3-二苯基丙烯酸乙酯、对甲氧基肉桂酸乙基己酯、对甲氧基肉桂酸异辛酯、4-甲氧基苯亚甲基丙二酸二甲酯、N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺、2-(2'-羟基-5'-叔辛基苯基)苯并三唑、2-(2'-羟基-3'叔丁基-5'-甲基苯基)-5-氯-苯并三唑、2-(4,6-、3,5-二叔丁基-4-羟基苯甲酸正十六酯、2-(4,6-二苯基-1,3,5-三嗪-2)-5-正己烷氧基苯酚、2-(2'-羟基-5'-甲基苯基)苯并三唑、聚硅氧烷中的至少一种。
在本申请典型的实施方式中,所述光转换剂具有将紫外波段转化成更长波段的可见光的功能。其通过自身发色基团吸收紫外光,引起分子内π电子的能级跃迁,发射出较长的光波达到光转换的目的,同时转光物质分子内部通过接力传递的方式,吸收紫外光从而激发出更 长波段的波长,从而有效提高电池的发电效率,增加收益。所述紫外光转换剂选自有机荧光颜料、Eu3+掺杂稀土氧化物、量子点。
在本申请典型的实施方式中,所述Eu3+掺杂稀土氧化物选自Y2Mo6-Eu3+、Y2O2S-Eu3+、Gd2O3-Eu3+/Bi3+、YVO4-Eu3+中的一种或者多种。
在本申请典型的实施方式中,所述的量子点的平均尺寸小于10nm,尺寸的标准差大于平均尺寸的10%且小于平均尺寸的30%;所述量子点通过表面改性剂进行表面改性,所述的表面改性剂一端与量子点进行化学反应或物理偶联,另外一端和基体树脂相容;所述量子点选自Ⅳ-A族元素单质量子点、由Ⅳ-A族元素的单质组成的合金量子点、由Ⅲ-A族任意一种元素和Ⅴ-A族任意一种元素组成的化合物量子点、由Ⅱ-B族任意一种元素和Ⅵ-A族任意一种元素组成的化合物量子点。所述量子点选自Si量子点、GaAs量子点、CdS量子点、CdSe量子点、CdTe量子点、ZnS量子点、ZnSe量子点、ZnTe量子点中的一种或者多种。所述的半导体量子点的尺寸必须处于量子限域状态,即小于10nm。基于对300-500nm区间光谱的最大利用,即最宽的吸收谱带,所述的量子点的尺寸分布的标准偏差小于平均尺寸的30%且大于平均尺寸的10%。标准偏差太小,说明量子点的尺寸过于集中,则造成较窄的吸收谱带。标准偏差过大,说明量子点的尺寸过于分散,则造成每一特定波长的吸收系数降低。所述的半导体量子点的发射光谱在500-1100nm区间可以由量子点的种类和尺寸调节。
在本申请典型的实施方式中,为了使半导体量子点能够与基体树脂有较好的相容性,可以对量子点进行表面改性。所采用的改性剂为一端可以和量子点起化学反应或物理偶联的基团,如CH2=CH、SH、OH、NH2,一端是与基体树脂相容性好的基团,具体视基体树脂的种类而定,如基体树脂为极性的乙烯-醋酸乙烯共聚物时,可以为COOH、COOCH3等;若基体树脂为非极性的乙烯-α烯烃共聚物时,可以为CH3、Ph等。
在本申请典型的实施方式中,所述有机荧光颜料选自β-二酮与吡啶类衍生物的混合稀土配合物。
进一步地,所述的基体树脂为乙烯-醋酸乙烯酯共聚物、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物或聚乙烯醇缩丁醛中的任意一种或多种共混物。优选为乙烯-醋酸乙烯共聚物、乙烯-α烯烃共聚物,或者它们之间的共混物,或者多种不同乙烯-醋酸乙烯共聚物的共混物或者多种不同乙烯-α烯烃共聚物的共混物;所述乙烯-醋酸乙烯酯共聚物中,醋酸乙烯酯的含量为15~35wt%。所述的乙烯-α烯烃共聚物,α烯烃为下列之一:1-戊烯、1-己烯、4-甲基-1-己烯、1-辛烯、1-癸烯、1-十二烯、4-乙基-1-己烯、5-甲基-1-庚烯。所述的乙烯-α烯烃共聚物中α烯烃的摩尔含量为10%~50%。所述的基体树脂需满足以下条件:1,用差示扫描量热仪(DSC)测得初始熔融温度低于80℃;2,用熔融指数仪测得MFR在2.5~40g/min,优选为3~30g/min。
在本申请典型的实施方式中,所述封装胶膜的紫外光吸收层和紫外光转换层还可以加入引发剂、硅烷偶联剂、助交联剂、光稳定剂等助剂。
在本申请典型的实施方式中,引发剂的质量百分比为0-3wt%,例如引发剂的质量百分比 为0、1wt%、1.5wt%、2wt%、2.5wt%或3wt%等。所述引发剂选自叔丁基过氧化碳酸异丙酯、2,5-二甲基-2,5-(双叔丁过氧基)己烷、叔丁基过氧化碳酸-2-乙基己酯、1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)环己烷、1,1-双(叔丁基过氧)环己烷、2,2-双(叔丁基过氧)丁烷、过氧化2-乙基己基碳酸叔戊酯、2,5-二甲基2,5-二甲基2,5-二甲基2,5-双(苯甲酰过氧)-己烷、过氧化碳酸叔戊酯、过氧化3,3,5三甲基己酸叔丁酯、偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮异丁氰基甲酰胺中的任意一种或多种。
在本申请典型的实施方式中,硅烷偶联剂的质量百分比为0.05-1wt%,例如硅烷偶联剂的质量百分比为0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%、0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1wt%等。所述硅烷偶联剂选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三过氧化叔丁基硅烷、乙烯基三乙酰氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-氨丙基三乙氧基硅烷、γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲基硅烷、3-氨丙基三甲基硅烷中的任意一种或多种。
在本申请典型的实施方式中,助交联剂的质量百分比为0.2-2wt%,例如助交联剂的质量百分比为0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%或2wt%等。所述助交联剂选自三烯丙基异氰尿酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、季戊四醇三丙烯酸酯、三(2-羟乙基)异氰脲酸三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、丙氧化三羟甲基丙烷三丙烯酸酯、乙氧化甘油三丙烯酸酯、丙氧化甘油三丙烯酸酯、季戊四醇四丙烯酸酯、乙氧化季戊四醇四丙烯酸酯、三羟甲基丙烷四丙烯酸酯、双三羟甲基丙烷四丙烯酸酯、双三羟甲基丙烷四甲基丙烯酸酯、丙氧化季戊四醇四丙烯酸酯、2,4,6-三(2-丙烯基氧基)-1,3,5-三嗪、三环葵烷二甲醇二丙烯酸酯、丙氧化新戊二醇二丙烯酸酯、乙氧化双酚A二丙烯酸酯、乙氧化双酚A二甲基丙烯酸酯、2-丁基-2-乙基-1,3-丙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯中的任意一种或多种。
在本申请典型的实施方式中,光稳定剂的质量百分比为0.05~0.5wt%,例如光稳定剂的质量百分比为0.05wt%、0.1wt%、0.2wt%、0.3wt%、0.4wt%或0.5wt%等。所述光稳定剂为常规用于封装胶膜的光稳定剂,可为下列中的一种或多种按照任意配比组成:癸二酸双-2,2,6,6-四甲基哌啶醇酯、2,4-二氯-6-(4-吗啉基)-1,3,5-三嗪、双-1-癸烷氧基-2,2,6,6-四甲基哌啶-4-醇癸二酸酯、丁二酸和4-羟基-2,2,6,6-四甲基-1-哌啶醇的聚合物、N,N’-双(2,2,6,6-四甲基-4-哌啶基)-1,6-己二胺和2,4-二氯-6-(1,1,3,3-四甲基丁基)氨基-1,3,5-三嗪的聚合物、N,N’-双(2,2,6,6-四甲基-4-哌啶基)-1,6-己二胺和2,4-二氯-6-(4-吗啉基)-1,3,5-三嗪的聚合物、N,N’-双(1,2,2,6,6-五甲基-4-哌啶基)-1,6-己二胺和吗啉-2,4,6-三氯-1,3,5-三嗪的聚合物、双(1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯/甲基-1,2,2,6,6-五甲基-4-哌啶基癸二酸酯复配物或丁二酸与(4-羟基-2,2,6,6-四甲基-1-哌啶醇)的聚合物。优选为癸二酸双-2,2,6,6-四甲基哌啶醇酯或2,4-二氯-6-(4-吗啉基)-1,3,5-三嗪。
在本申请优选地实施方式中,所述封装胶膜还可以含有粘结层或功能层,所述功能层可以为抗腐蚀层、抗PID层、阻水层等。粘结层或功能层可以位于紫外光转换层和紫外光吸收层的任一侧或两层中间。
在本申请典型的实施方式中,根据GB/T 2410-2008透光率测试标准,所述封装胶膜在波长280~380nm的紫外波段的透光率不超过20%,所述封装胶膜在波长400~1100nm的可见光波段的透光率不低于85%。
本申请所述封装胶膜的制备方法包括如下步骤:按配比将各层原料混合,在设定好温度的各自挤出机分别挤出,经分配器分配,模头定型,辊筒压花,得到所述封装胶膜。
本申请所述封装胶膜的制备方法包括如下步骤复合成型:按配比将各层原料混合,将各层分别在挤出机中单独挤出成设定厚度的单层膜,各层膜按照设定结构一次层叠,在复合辊上进行复合及辊筒压花,得到所述封装胶膜。
根据本发明的另一方面,本发明还提供一种电子器件,包括封装胶膜,所述封装胶膜为第一方面所述的封装胶膜;所述电子器件选自光伏组件、场致发光器件、等离子显示器件中的任意一种。
在本申请优选的实施方式中,所述光伏组件为HJT电池组件。HJT电池对紫外光敏感,紫外老化后功率衰减大,需要封装胶膜有更好的紫外截止能力,本申请所述的封装胶膜用于HJT电池组件,可以解决紫外光对HJT电池片的影响,避免由于紫外老化后功率降低。
在本申请优选的实施方式中,如图3所示,所述光伏组件包括玻璃01、第一封装胶膜层02、电池片阵列03、第二封装胶膜层04和盖板05,所述玻璃为太阳光入射方向,所述盖板可以为玻璃或高分子材料。所述第一封装胶膜层02为第一方面所述的封装胶膜;所述紫外光吸收层12设置于所述光伏组件的电池片阵列侧,所述紫外光转换层11设置于所述光伏组件的玻璃侧;所述紫外光转换层11中紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层12的紫外光吸收剂的含量为0.1~2g/m2。太阳光先经过封装胶膜的紫外光光转换层,将紫外光转换成可见光,再利用紫外吸收层将剩余的紫外光吸收。保证紫外截止效果的同时,提高了可见光的透过率。
在本申请优选的实施方式中,如图3所示,所述光伏组件包括玻璃01、第一封装胶膜层02、电池片阵列03、第二封装胶膜层04和盖板05,所述玻璃为太阳光入射方向,所述盖板可以为玻璃或高分子材料。所述第二封装胶膜层04为第一方面所述的封装胶膜;所述紫外光转换层11设置于所述光伏组件的电池片阵列侧,所述紫外光吸收层12设置于所述光伏组件的盖板侧;所述紫外光吸收层12的紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层11中紫外光转换剂的含量为0.1~2g/m2。太阳光先经过封装胶膜的太阳光先经过紫外吸收层,吸收掉大部分的紫外紫外光;再利用紫外光转换层将紫外光转换层可见光,大大提高了胶膜的紫外截止能力。
本发明还提供一种如图4所示的夹胶玻璃,包括至少两个玻璃层,即第一玻璃06和第二 玻璃8,以及设置在相邻所述玻璃层之间的封装胶膜层07,所述封装胶膜07为第一方面所述的封装胶膜。在汽车、建筑等领域,夹胶玻璃的紫外截止效果不足,会对人造成伤害;会破坏含有特殊功能的夹胶玻璃中的功能层材料,比如隐私玻璃中的PDLC膜片。汽车、建筑等领域的夹胶玻璃,也需要中间膜有良好的紫外截止效果。现有的解决方案主要是加入紫外吸收剂,截止紫外光透光胶膜。对于截止要求高的产品,无法满足要求或者需要添加高比例的紫外吸收剂,影响胶膜的其他性能。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
实施例1提供一种如图1所示的封装胶膜,包括两层,所述封装胶膜包括紫外光吸收层12和紫外光转换层11;所述紫外光吸收层12包括基体树脂EVA和紫外光吸收剂2-(2'-羟基-3'叔丁基-5'-甲基苯基)-5-氯-苯并三唑、;所述紫外光吸收层12中所述紫外光吸收剂的含量为5g/m2;所述紫外光转换层11包括基体树脂EVA和紫外光转换剂Y2Mo6-Eu3+,所述紫外光转换层11中紫外光转换剂的含量为4g/m2
实施例2
实施例2与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为5g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2
实施例3
实施例3与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为2g/m2
实施例4
实施例4与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2
实施例5
实施例5与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为5g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为2g/m2
实施例6
实施例6与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为6g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为1g/m2
实施例7
实施例7与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为 2g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为5g/m2
实施例8
实施例8与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为5g/m2
实施例9
实施例9与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为2g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2
实施例10
实施例10与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2
实施例11
实施例11与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为1g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为6g/m2
实施例12
实施例12与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2
实施例13
实施例13与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为10g/m2
实施例14
实施例14与实施例1的区别仅在于:所述紫外光吸收剂为对甲氧基肉桂酸乙基己酯。
实施例15
实施例15与实施例1的区别仅在于:所述紫外光吸收剂为4-甲氧基苯亚甲基丙二酸二甲酯。
实施例16
实施例16与实施例1的区别仅在于:所述紫外光吸收剂为N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺。
实施例17
实施例17与实施例1的区别仅在于:所述紫外光吸收剂为2-氰基-3,3-二苯基丙烯酸乙酯。
实施例18
实施例18与实施例1的区别仅在于:所述紫外光转换剂为β-二酮与吡啶类衍生物的混合稀土配合物。
实施例19
实施例19与实施例1的区别仅在于:所述紫外光转换剂为GaAs量子点。
实施例20
实施例20与实施例1的区别仅在于:所述紫外光吸收层还含有交联剂(过氧化二异丙苯)0.5份,助交联剂(三烯丙基异氰尿酸酯)0.5份,热稳定剂(四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)0.1份,光稳定剂(聚{[6-[(1,1,3,3-四甲基丁基)氨基]]-1,3,5-三嗪-2,4-[(2,2,6,6,-四甲基-哌啶基)亚氨基]-1,6-己二撑[(2,2,6,6-四甲基-4-哌啶基)亚氨基]})0.1份。所述紫外光转换层还含有交联剂(过氧化二异丙苯)0.5份,助交联剂(三烯丙基异氰尿酸酯)0.5份,热稳定剂(四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)0.1份,光稳定剂(聚{[6-[(1,1,3,3-四甲基丁基)氨基]]-1,3,5-三嗪-2,4-[(2,2,6,6,-四甲基-哌啶基)亚氨基]-1,6-己二撑[(2,2,6,6-四甲基-4-哌啶基)亚氨基]})0.1份。
实施例21
实施例21与实施例1的区别仅在于:所述基体树脂为乙烯-1-辛烯共聚物。
实施例22
实施例22与实施例1的区别仅在于:所述基体树脂为乙烯-甲基丙烯酸甲酯共聚物。
实施例23
实施例23与实施例1的区别仅在于:所述封装胶膜为三层,依次为紫外光吸收层、紫外光转换层和紫外光吸收层。
实施例24
实施例24与实施例1的区别仅在于:所述封装胶膜为三层,依次为紫外光转换层、紫外光吸收层和紫外光转换层。
实施例25
实施例25与实施例1的区别仅在于:如图2所示,所述封装胶膜为三层,依次为紫外光吸收层12、粘结层13和紫外光转换层11,其中粘结层13不含紫外助剂。
比较例1
比较例1与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为0.01g/m3
比较例2
比较例2与实施例1的区别仅在于:所述紫外光吸收层中所述紫外光吸收剂的含量为12g/m3
比较例3
比较例3与实施例1的区别仅在于:所述紫外光转换层中所述紫外光转换剂的含量为0.01g/m3
比较例4
比较例4与实施例1的区别仅在于:所述紫外光转换层中所述紫外光转换剂的含量为12g/m3
比较例5
比较例5与实施例1的区别仅在于:所述封装胶膜为单层胶膜,所述封装胶膜包括基体树脂EVA、紫外光吸收剂2-氰基-3,3-二苯基丙烯酸乙酯和紫外光转换剂Y2Mo6-Eu3+;所述紫外光吸收剂的含量为5g/m3;所述紫外光转换剂的含量为4g/m3
性能测试
通过上述实施例和对比例制备的封装胶膜,经过下述测试方法评价其性能。
1、紫外老化性能:试样表面温度60±5℃,UVA和UVB两种波段辐照,辐照剂量60KWh/m2。表征方法:黄变指数(ΔYI)按GB2409-80《塑料黄变指数试验方法》进行分析。其中方法一,光线先经过紫外光吸收层再到紫外光转换层,方法二,光线先通过紫外光转换层再到紫外光吸收层。
2、透光率和雾度:测试依据GB/T 2410-2008进行测定,用紫外-可见分光光度计测定胶膜在波长280~380nm的紫外波段和波长400~1100nm的可见光波段的透光率和雾度。其中方法一,光线先经过紫外光吸收层再到紫外光转换层,方法二,光线先通过紫外光转换层再到紫外光吸收层。
3、光伏组件制备:
A系列光伏组件:前层胶膜使用实施例7~11、实施例12~22、实施例24~25和对比例1~5的胶膜,其中实施例7~11、实施例12~22和对比例1~5的胶膜的紫外光吸收层设置于所述光伏组件的电池片阵列侧,所述紫外光转换层设置于所述光伏组件的玻璃侧,电池片均采用A厂家的HJT电池,后层胶膜使用均采用F806PS胶膜。
B系列光伏组件:后层胶膜使用实施例1~6、实施例12~23、实施例25和对比例1~5所述封装胶膜,实施例1~6、实施例12~22和对比例1~5所述封装胶膜的所述紫外光转换层设置于所述光伏组件的电池片阵列侧,所述紫外光吸收层设置于所述光伏组件的盖板侧,电池片均采用A厂家的HJT电池,前层胶膜使用均采用F406PS胶膜。
光伏组件参照IEC61730标准序列完成老化测试。计算老换前后的功率衰减。
表1

表2
由本申请的实施例和对比例数据可以看出,根据GB/T 2410-2008透光率测试标准,实施例所述封装胶膜在波长280~380nm的紫外波段的透光率不超过20%,所述封装胶膜在波长400~1100nm的可见光波段的透光率不低于85%。而方法一和方法二测得的对比例1(所述紫外光吸收层中所述紫外光吸收剂的含量低于0.1g/m3)和对比例3(所述紫外光转换层中所述紫外光转换剂的含量低于0.1g/m3)在波长280~380nm的紫外波段的透光率超过20%,方法二测得的对比例2(所述紫外光吸收层中所述紫外光吸收剂的含量高于10g/m3)在波长400~1100nm的可见光波段的透光率低于85%。方法一和方法二测得的对比例4(所述紫外光转换层中所述紫外光转换剂的含量高于10g/m3)在波长400~700nm的可见光波段的雾度高达 24%以上,对比例(同一层同时含有紫外光吸收剂和紫外光转换剂)5的黄变指数明显高于实施例。
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。

Claims (11)

  1. 一种封装胶膜,至少为两层,其特征在于:所述封装胶膜包括紫外光吸收层和紫外光转换层;所述紫外光吸收层包括基体树脂和紫外光吸收剂;所述紫外光转换层包括基体树脂和紫外光转换剂;所述紫外光吸收层中所述紫外光吸收剂的含量为0.1g/m2~10g/m2;所述紫外光转换层中所述紫外光转换剂的含量为0.1g/m2~10g/m2
  2. 根据权利要求1所述的封装胶膜,其特征在于:所述紫外光吸收层的所述紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层中所述紫外光转换剂的含量为0.1~2g/m2
  3. 根据权利要求1所述的封装胶膜,其特征在于:所述紫外光转换层中所述紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层中所述紫外光吸收剂的含量为0.1~2g/m2
  4. 根据权利要求1所述的封装胶膜,其特征在于:所述紫外光吸收剂包括2-氰基-3,3-二苯基丙烯酸乙酯、对甲氧基肉桂酸乙基己酯、对甲氧基肉桂酸异辛酯、4-甲氧基苯亚甲基丙二酸二甲酯、N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺、2-(2'-羟基-5'-叔辛基苯基)苯并三唑、2-(2'-羟基-3'叔丁基-5'-甲基苯基)-5-氯-苯并三唑、2-(4,6-、3,5-二叔丁基-4-羟基苯甲酸正十六酯、2-(4,6-二苯基-1,3,5-三嗪-2)-5-正己烷氧基苯酚、2-(2'-羟基-5'-甲基苯基)苯并三唑或聚硅氧烷中的至少一种。
  5. 根据权利要求1所述的封装胶膜,其特征在于:所述紫外光转换剂选自有机荧光颜料、Eu3+掺杂稀土氧化物或量子点中的一种或者多种;所述有机荧光颜料为β-二酮与吡啶类衍生物的混合稀土配合物;所述Eu3+掺杂稀土氧化物选自Y2Mo6-Eu3+、Y2O2S-Eu3+、Gd2O3-Eu3+/Bi3+或YVO4-Eu3+中的一种或者多种;所述量子点选自Si量子点、GaAs量子点、CdS量子点、CdSe量子点、CdTe量子点、ZnS量子点、ZnSe量子点或ZnTe量子点中的一种或者多种。
  6. 根据权利要求1所述的封装胶膜,其特征在于:根据GB/T 2410-2008透光率测试标准,所述封装胶膜在波长280~380nm的紫外波段的透光率不超过20%;所述封装胶膜在波长400~1100nm的可见光波段的透光率不低于85%。
  7. 一种电子器件,包括封装胶膜,其特征在于,所述封装胶膜为权利要求1~6任一项所述的封装胶膜;所述电子器件选自光伏组件、场致发光器件、等离子显示器件中的任意一种。
  8. 根据权利要求7所述的电子器件,其特征在于,所述光伏组件为HJT电池组件。
  9. 根据权利要求7所述的电子器件,所述光伏组件包括玻璃、第一封装胶膜层、电池片阵列、第二封装胶膜层和盖板,其特征在于,所述第一封装胶膜层包括所述封装胶膜;所述紫外光吸收层设置于所述光伏组件的电池片阵列侧,所述紫外光转换层设置于所述光伏组件的玻璃侧;所述紫外光转换层中紫外光转换剂的含量为5~10g/m2;所述紫外光吸收层的紫外光吸收剂的含量为0.1~2g/m2
  10. 根据权利要求7所述的电子器件,所述光伏组件包括玻璃、第一封装胶膜层、电池片阵列、第二封装胶膜层和盖板,其特征在于,所述第二封装胶膜层包括所述封装胶膜;所述紫外光转换层设置于所述光伏组件的电池片阵列侧,所述紫外光吸收层设置于所述光伏组件的盖板侧;所述紫外光吸收层中所述紫外光吸收剂的含量为5~10g/m2;所述紫外光转换层中所述紫外光转换剂的含量为0.1~2g/m2
  11. 一种夹胶玻璃,包括至少两个玻璃层和设置在相邻所述玻璃层之间的封装胶膜,其特征在于,所述封装胶膜为权利要求1~6任一项所述的封装胶膜。
PCT/CN2023/072426 2022-06-06 2023-01-16 一种封装胶膜及其应用 WO2023236539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210627915.X 2022-06-06
CN202210627915.XA CN114854316A (zh) 2022-06-06 2022-06-06 一种封装胶膜及其应用

Publications (1)

Publication Number Publication Date
WO2023236539A1 true WO2023236539A1 (zh) 2023-12-14

Family

ID=82624830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072426 WO2023236539A1 (zh) 2022-06-06 2023-01-16 一种封装胶膜及其应用

Country Status (2)

Country Link
CN (1) CN114854316A (zh)
WO (1) WO2023236539A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854316A (zh) * 2022-06-06 2022-08-05 杭州福斯特应用材料股份有限公司 一种封装胶膜及其应用
CN115322692B (zh) * 2022-08-25 2023-10-31 盐城百佳年代薄膜科技有限公司 用于hjt光伏组件的紫外转光型耐老化光伏胶膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576807A (zh) * 2009-10-30 2012-07-11 住友化学株式会社 有机光电转换元件
CN102732160A (zh) * 2012-07-06 2012-10-17 广州鹿山新材料股份有限公司 提高太阳能电池组件光谱转换效率的eva封装胶膜
JP2013069728A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 太陽電池用波長変換フィルム
JP2014096251A (ja) * 2012-11-08 2014-05-22 Toppan Printing Co Ltd 色素増感太陽電池
CN106960888A (zh) * 2017-03-03 2017-07-18 杭州福斯特应用材料股份有限公司 一种高反射增益型光伏封装胶膜及用途
US20170345960A1 (en) * 2016-05-27 2017-11-30 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacture thereof
CN107735700A (zh) * 2015-08-19 2018-02-23 松下知识产权经营株式会社 波长转换滤波器和其制造方法以及太阳能电池模块
CN108517188A (zh) * 2018-05-11 2018-09-11 杭州福斯特应用材料股份有限公司 高透光率的光伏封装材料
CN113314634A (zh) * 2020-07-23 2021-08-27 中天光伏材料有限公司 一种具有下转换功能的太阳能电池背板及其制备方法
CN113698877A (zh) * 2021-07-02 2021-11-26 杭州福斯特应用材料股份有限公司 一对封装胶膜、和使用其的光伏组件
CN114854316A (zh) * 2022-06-06 2022-08-05 杭州福斯特应用材料股份有限公司 一种封装胶膜及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067889A1 (ja) * 2014-10-27 2016-05-06 日立化成株式会社 波長変換型太陽電池モジュール
CN106398592B (zh) * 2016-08-20 2018-04-03 杭州鑫富节能材料有限公司 一种提高太阳能组件转换功率的eva封装胶膜
CN108878567A (zh) * 2018-06-11 2018-11-23 中天光伏材料有限公司 一种功能性太阳能电池背板膜及其制备方法
CN111690327B (zh) * 2019-03-11 2022-03-15 杭州福斯特应用材料股份有限公司 一种三层共挤胶膜
KR102315458B1 (ko) * 2019-12-18 2021-10-20 한화토탈 주식회사 콜로이드 형태의 알루미늄 기반 태양광변환 소재, 이의 제조방법 및 이를 포함하는 태양전지

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576807A (zh) * 2009-10-30 2012-07-11 住友化学株式会社 有机光电转换元件
JP2013069728A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 太陽電池用波長変換フィルム
CN102732160A (zh) * 2012-07-06 2012-10-17 广州鹿山新材料股份有限公司 提高太阳能电池组件光谱转换效率的eva封装胶膜
JP2014096251A (ja) * 2012-11-08 2014-05-22 Toppan Printing Co Ltd 色素増感太陽電池
CN107735700A (zh) * 2015-08-19 2018-02-23 松下知识产权经营株式会社 波长转换滤波器和其制造方法以及太阳能电池模块
US20170345960A1 (en) * 2016-05-27 2017-11-30 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacture thereof
CN106960888A (zh) * 2017-03-03 2017-07-18 杭州福斯特应用材料股份有限公司 一种高反射增益型光伏封装胶膜及用途
CN108517188A (zh) * 2018-05-11 2018-09-11 杭州福斯特应用材料股份有限公司 高透光率的光伏封装材料
CN113314634A (zh) * 2020-07-23 2021-08-27 中天光伏材料有限公司 一种具有下转换功能的太阳能电池背板及其制备方法
CN113698877A (zh) * 2021-07-02 2021-11-26 杭州福斯特应用材料股份有限公司 一对封装胶膜、和使用其的光伏组件
CN114854316A (zh) * 2022-06-06 2022-08-05 杭州福斯特应用材料股份有限公司 一种封装胶膜及其应用

Also Published As

Publication number Publication date
CN114854316A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023236539A1 (zh) 一种封装胶膜及其应用
CN104927686B (zh) 一种具有高光转换效率的太阳能电池封装胶膜
JP5922232B2 (ja) 太陽電池モジュール
EP2216828B1 (en) Sealing film for solar cell and solar cell obtained by use of the sealing film
CN104540677A (zh) 聚合物片材
JP6152099B2 (ja) 太陽電池モジュール
JP2015211189A (ja) 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
WO2023115943A1 (zh) 封装胶膜及光伏组件
JP2009302220A (ja) 太陽電池用封止膜および太陽電池モジュール
WO2023245798A1 (zh) 一种uv光转换封装胶膜及其制备方法
CN111621236A (zh) 胶膜、其制备方法及光伏组件
JP6476967B2 (ja) 太陽電池モジュール用の封止材シート
JP2012069865A (ja) 太陽電池封止材及びそれを用いた太陽電池モジュール
JP2014179462A (ja) 太陽電池モジュール用裏側封止材及び太陽電池モジュール
KR20130067389A (ko) 발전효율이 향상된 태양전지용 봉지재 시트 및 그 제조방법
JP6384162B2 (ja) 太陽電池モジュール
JP5940661B2 (ja) 太陽電池モジュール
JP2014139992A (ja) 太陽電池封止材用樹脂組成物
KR101514028B1 (ko) 태양전지 모듈
JP6446868B2 (ja) 太陽電池モジュール用の封止材シート及びその製造方法
KR20130095537A (ko) 고점도 백색 eva 수지층을 포함하는 태양전지 모듈
JP6665956B2 (ja) 太陽電池モジュール
JP2013138047A (ja) 太陽電池モジュールの製造方法
CN116640535A (zh) 一种可提高太阳能电池转换效率的量子点转光胶膜的制备方法
JP2016039207A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818707

Country of ref document: EP

Kind code of ref document: A1