WO2023115943A1 - 封装胶膜及光伏组件 - Google Patents

封装胶膜及光伏组件 Download PDF

Info

Publication number
WO2023115943A1
WO2023115943A1 PCT/CN2022/108006 CN2022108006W WO2023115943A1 WO 2023115943 A1 WO2023115943 A1 WO 2023115943A1 CN 2022108006 W CN2022108006 W CN 2022108006W WO 2023115943 A1 WO2023115943 A1 WO 2023115943A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
infrared high
adhesive film
parts
light
Prior art date
Application number
PCT/CN2022/108006
Other languages
English (en)
French (fr)
Inventor
魏梦娟
彭瑞群
侯宏兵
林维红
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Publication of WO2023115943A1 publication Critical patent/WO2023115943A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to the technical field of photovoltaic components, in particular, to an encapsulation adhesive film and a photovoltaic component.
  • the solar cell body is used to realize the most basic function of solar cells, that is, the conversion of solar energy (light energy) into electrical energy, which involves the utilization of visible-near-infrared energy and the redistribution of mid-infrared energy.
  • the energy of solar radiation is mainly concentrated in the ultraviolet region, visible region and infrared region. Among them, the ultraviolet region occupies 7% of the energy, the visible light region occupies 50% of the energy, and the infrared region accounts for about 43% of the energy.
  • Photovoltaic cells mainly absorb and utilize visible light of 400-700nm.
  • Infrared light with a wavelength greater than 1100nm will not be converted into electrical energy by the battery sheet, but directly converted into heat energy, causing the internal temperature of the photovoltaic module to rise rapidly. Therefore, reasonable and effective use of sunlight is an effective way to improve the efficiency of solar cells.
  • the current white film is generally added with white pigments such as silicon oxide, silicon carbide, silicon nitride, titanium oxide, titanium nitride, etc., which can achieve high infrared reflection, but cannot achieve visible-near infrared (0.38 ⁇ 1.1 ⁇ m) high transmittance.
  • the current black film is generally added with carbon black, but carbon black can only reflect 4% of infrared light in the infrared region and absorb most of the infrared light, resulting in an increase in the temperature of the photovoltaic module.
  • the main purpose of the present invention is to provide an encapsulating adhesive film and a photovoltaic module to solve the problem of low photoelectric conversion efficiency of the photovoltaic module in the prior art.
  • a packaging adhesive film which includes an infrared high-transmittance adhesive film layer and an infrared high-reflection adhesive film layer stacked on the infrared high-transmission adhesive film layer.
  • the light transmittance of the high-transparency adhesive film layer to the light in the wavelength range of 700-1100nm is greater than 55%; the light transmittance of the infrared high-transparency adhesive film layer to the light in the wavelength range of 400-700nm is less than 2%;
  • the reflectance of light in the wavelength range of 700-1100nm is greater than 75%.
  • the transmittance of the infrared high-transmittance adhesive film layer to light in the wavelength range of 700-1100nm is greater than 58%; the transmittance of the infrared high-transmittance adhesive film layer to light in the wavelength range of 400-700nm is less than 1%.
  • the above-mentioned infrared high-reflective film layer has a reflectivity of more than 85% for light in the wavelength range of 700-1100nm.
  • the reflectivity of the packaging adhesive film to light in the wavelength range of 700-1100 nm is greater than 70%.
  • the above-mentioned infrared high-transparency adhesive film layer includes pigments, and the pigments are selected from any of fullerenes and their derivatives, direct light-fast dyes, direct diazo dyes, direct cross-linking dyes, and azo dyes containing complexed metals.
  • the infrared high-transparency adhesive film layer includes 100 parts of the first olefin resin, 0.01-10 parts of the pigment, 0.01-0.1 parts of the first coupling agent, 0.01-0.3 parts of The first crosslinking agent, 0.01 to 0.3 parts of the first auxiliary crosslinking agent, the first olefin resin is selected from ethylene-vinyl acetate, ethylene-octene copolymer, ethylene-alpha olefin copolymer, ethylene-methacrylic acid Any one or more of methyl ester copolymers, ethylene-methacrylic acid ionomers, and metallocene-catalyzed ethylene-butene copolymers.
  • the infrared high-reflection film layer includes 100 parts of the second olefin resin, 5-40 parts of the filler, 0.01-0.1 parts of the second coupling agent, 0.01-0.3 parts of the second Crosslinking agent, 0.01 ⁇ 0.3 parts of the second auxiliary crosslinking agent
  • the second olefin resin is selected from ethylene-vinyl acetate, ethylene-alpha olefin copolymer, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate Any one or more of acrylic ionomers and metallocene catalyzed ethylene butene copolymers
  • fillers are selected from titanium dioxide, talc, silicon dioxide, aluminum hydroxide, magnesium hydroxide, aluminum oxide, boehmite, Any one or more of mica, kaolin, calcium carbonate, wollastonite, aluminum nitride, boron nitride, the particle size of the filler is 0.4-2.0 ⁇
  • the thickness of the infrared high-transmitting adhesive film layer is 80-300 ⁇ m
  • the infrared high-transmitting adhesive film layer is a pre-crosslinked film
  • the pre-crosslinking degree of the infrared high-transmitting adhesive film layer is 5-50%.
  • the thickness of the infrared high-reflective film layer is 120-500 ⁇ m
  • the infrared high-reflective film layer is a pre-crosslinked film
  • the pre-crosslinking degree of the infrared high-reflective film layer is 10-70%.
  • a photovoltaic module comprising a front transparent encapsulation layer, a first encapsulation film layer, a cell array, a second encapsulation film layer and a back encapsulation layer, the second encapsulation film layer It is the above-mentioned encapsulation film.
  • the infrared high-transmittance adhesive film layer of the above-mentioned encapsulation adhesive film is arranged in contact with the cells of the photovoltaic module.
  • the infrared high-transmittance adhesive film layer of the packaging film provided by the application has a light transmittance greater than 55% for light in the 700-1100nm wavelength range, and a light transmittance for light in the 400-700nm wavelength range is less than 2%; the reflectivity of the infrared high-reflective film layer to light in the wavelength range of 700-1100nm is greater than 75%, so that the encapsulation film can be used as the encapsulation film on the reverse side of the cell, which can not only realize the black appearance of the photovoltaic module and reduce light pollution, Moreover, it can maximize the use of sunlight, improve the overall photoelectric conversion efficiency of the photovoltaic module, and then improve the efficiency and life of the solar cell. Furthermore, the use of the encapsulation film in BIPV building integration can take into account both the architectural beauty and the efficiency of photovoltaic modules.
  • the present invention provides an encapsulating adhesive film and a photovoltaic module.
  • a packaging adhesive film in a typical implementation of the present application, includes an infrared high-transparency adhesive film layer and an infrared high-reflection adhesive film layer stacked on the infrared high-transmission adhesive film layer, and the infrared
  • the light transmittance of the high-transparency adhesive film layer to the light in the wavelength range of 700-1100nm is greater than 55%; the light transmittance of the infrared high-transparency adhesive film layer to the light in the wavelength range of 400-700nm is less than 2%;
  • the reflectance of light in the wavelength range of 700-1100nm is greater than 75%.
  • the infrared high-transmittance adhesive film layer of the packaging film provided by the application has a light transmittance of more than 55% for light in the wavelength range of 700-1100nm, and a light transmittance of less than 2% for light in the wavelength range of 400-700nm;
  • the reflectivity of the film layer to light in the wavelength range of 700-1100nm is greater than 75%, so that the encapsulation film can be used as the encapsulation film on the reverse side of the cell, which can not only achieve the black appearance of the photovoltaic module and reduce light pollution, but also maximize the use of sunlight.
  • Light improve the overall photoelectric conversion efficiency of photovoltaic modules, and then improve the efficiency and life of solar cells.
  • the use of the encapsulation film in BIPV building integration can take into account both the architectural beauty and the efficiency of photovoltaic modules.
  • the light transmittance of the above-mentioned infrared high-transparency adhesive film layer to the light of the 700 ⁇ 1100nm wavelength range is greater than 58%; In order to further encapsulate the utilization rate of light in the near-infrared wavelength range of the film, and reduce light pollution as much as possible.
  • the infrared high-reflective film layer has a reflectivity of more than 85% for light in the wavelength range of 700-1100nm, which is beneficial to improving the overall utilization of the packaging film for light in the wavelength range of 700-1100nm.
  • the reflectivity of the packaging film to light in the wavelength range of 700-1100 nm is greater than 70%.
  • the encapsulant film with the above-mentioned reflectance performance is more helpful to improve the light conversion rate of the photovoltaic module.
  • the infrared high-transparency adhesive film layer includes pigments, and the pigments are selected from fullerenes and their derivatives, direct light-fast dyes, direct diazo dyes, direct cross-linking dyes, and metal complexed dyes.
  • the infrared high-transparency adhesive film layer includes 100 parts of the first olefin resin, 0.01-10 parts of the pigment, and 0.01-0.1 part of the first coupling agent , 0.01 to 0.3 parts of the first crosslinking agent, 0.01 to 0.3 parts of the first auxiliary crosslinking agent, the pigment is preferably 0.01 to 0.03 parts, and the pigment is preferably selected from Direct Black 144, metal complex dye X55, azo pigment B27 , any one or more of Aniline Black NO.2, Perylene Black LP32, Perylene Black L0086, BASF Orasol Black X51, BASF Paliotol Black L0080, the first olefin resin is selected from ethylene-vinyl acetate, ethylene-octene Any one or more of copolymers, ethylene-alpha olefin copolymers, ethylene-methyl methacrylate copolymers, ethylene-meth
  • the content makes the infrared high-transmittance film layer a black film, which can improve the transmittance of the infrared high-transparency film layer to light in the wavelength range of 700-1100nm, and reduce the light that the black film will absorb as much as possible. Converted into heat, thereby reducing the risk of temperature rise of photovoltaic modules.
  • first coupling agent helps to improve the cross-linking effect of the first olefinic resin
  • first crosslinking agent helps to improve the cross-linking effect of the first olefinic resin
  • those skilled in the art can also choose other suitable types of first coupling
  • the agent, the first crosslinking agent and the first auxiliary crosslinking agent will not be repeated here.
  • the infrared high-reflection film layer includes 100 parts of the second olefinic resin, 5-40 parts of the filler, 0.01-0.1 part of the second coupling agent, 0.01 ⁇ 0.3 parts of the second crosslinking agent, 0.01 ⁇ 0.3 parts of the second auxiliary crosslinking agent,
  • the second olefin resin is selected from ethylene-vinyl acetate, ethylene-alpha olefin copolymer, ethylene-methyl methacrylate copolymer Any one or more of ethylene-methacrylic acid ionic polymers and metallocene-catalyzed ethylene-butene copolymers
  • fillers are selected from titanium dioxide, talcum powder, silicon dioxide, aluminum hydroxide, magnesium hydroxide, oxide Any one or more of aluminum, boehmite, mica, kaolin, calcium carbonate, wollastonite, aluminum nitride, boron nitride, the particle size of the filler
  • the filler in the above-mentioned infrared high-reflection film layer of the present application makes the infrared high-reflection film layer a white film, thereby helping to improve the reflectivity of the packaging film to the irradiated light, and the titanium dioxide with a large particle size has a higher near Infrared reflectivity, therefore, the near-infrared reflectivity of titanium dioxide within the preferred particle size range is higher.
  • the addition of too much filler will lead to its accumulation, which will reduce the effective specific surface area for sunlight reflection and reduce the overall reflectivity of the packaging film. Therefore, it is better to use 5 to 15 parts of filler to improve the packaging performance.
  • the reflectivity of the film to irradiating light is better to use 5 to 15 parts of filler to improve the packaging performance.
  • the preferred second coupling agent, the second crosslinking agent and the second auxiliary crosslinking agent help to improve the crosslinking effect of the second olefinic resin, and of course those skilled in the art can also choose other suitable types of second coupling agent, the second crosslinking agent and the second auxiliary crosslinking agent, which will not be repeated here.
  • the thickness of the infrared high-transparency film layer has a certain influence on the light transmittance of the irradiated light.
  • the thickness of the above-mentioned infrared high-transparency film layer is 80-300 ⁇ m, which is conducive to improving the infrared high-transparency film layer to 700-1100nm wavelength range.
  • the infrared high-permeability adhesive film layer is a pre-crosslinked film, and the pre-crosslinking degree of the infrared high-permeability adhesive film layer is preferably 5 to 50%, which helps to avoid the risk of the infrared high-permeability adhesive film layer overflowing to the front of the battery.
  • the laminated appearance of the photovoltaic module is good and to avoid unnecessary loss of frontal power of the photovoltaic module.
  • the infrared high-transparency adhesive film layer has no risk of overflow, the lower the pre-crosslinking degree of the infrared high-transparency adhesive film layer is, the more it helps to reduce or avoid the cracking or cracking of the battery.
  • the thickness of the infrared high-reflective film layer is 120-500 ⁇ m, which is conducive to improving the overall reflectance of the infrared high-reflective film layer to light in the wavelength range of 700-1100 nm.
  • the infrared high-reverse adhesive film layer is a pre-crosslinked film, and the preferred infrared high-reverse adhesive film layer has a pre-crosslinking degree of 10 to 70%, which helps to avoid infrared high-reverse adhesive due to the flow of the infrared high-reverse adhesive film layer.
  • the risk of the film layer overflowing to the front of the cell ensures that the laminated appearance of the photovoltaic module is good and avoids unnecessary loss of power on the front of the photovoltaic module.
  • the pre-crosslinking degree of the infrared high-transmitting adhesive film layer is lower than the pre-crosslinking degree of the infrared high-reflective adhesive film layer, which is more conducive to taking into account the good appearance of the photovoltaic module and the integrity of the battery.
  • a photovoltaic module including a front transparent encapsulation layer, a first encapsulation film layer, a cell array, a second encapsulation film layer and a back encapsulation layer.
  • the second packaging film layer is the above-mentioned packaging film.
  • Using the above-mentioned encapsulation film as the second encapsulation film layer on the opposite side of the cell array can maximize the use of sunlight, improve the overall photoelectric conversion efficiency of the photovoltaic module, and further improve the efficiency and life of the solar cell.
  • the infrared high-transmittance adhesive film layer of the above-mentioned packaging film is placed in contact with the cells of the photovoltaic module, and part of the sunlight irradiated on the packaging film is absorbed by the cells through the infrared high-transparency film layer, while the other part of the sunlight is absorbed by the cells.
  • the infrared high-reflective film layer forms reflected light, and the reflected light is reflected to the packaging film through the inner surface of the backplane, and then reaches the battery after passing through the infrared high-transmitting film layer, thereby improving the overall reflectivity of the packaging film , thereby improving the overall photoelectric conversion efficiency of photovoltaic modules.
  • Infrared high-transparency adhesive film layer E1-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E1-2 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E1-1 and E1-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E1.
  • the thickness of the infrared high-transmittance film layer E1-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E1-2 is 0.3 mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E1-1 is 10%, and the pre-crosslinking degree of the infrared high-reflective adhesive film layer E1-2 is 15%.
  • Infrared high-transparency adhesive film layer E2-1 100 parts of ethylene-octene copolymer, 0.03 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E2-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E2-1 and E2-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E2.
  • the thickness of the infrared high-transmittance film layer E2-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E2-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transmittance adhesive film layer E2-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E2-2 is 15%.
  • Infrared high-transparency adhesive film layer E3-1 100 parts of ethylene-octene copolymer, 10 parts of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E3-2 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E3-1 and E3-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E3.
  • the thickness of the infrared high-transmittance adhesive film E3-1 layer of the obtained encapsulation adhesive film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E3-2 is 0.3 mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E3-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E3-2 is 15%.
  • Infrared high-transmittance film layer E4-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of perylene black L0086, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part of propylene Oxidized pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E4-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E4-1 and E4-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E4.
  • the thickness of the infrared high-transmittance film layer E4-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E4-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E4-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E4-2 is 15%.
  • Infrared high-transmittance film layer E5-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of BASF Paliotol Black L0080, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E5-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E5-1 and E5-2 are multi-layer co-extruded to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E5.
  • the thickness of the infrared high-transmittance film layer E5-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E5-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E5-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E5-2 is 15%.
  • Infrared high-transmittance adhesive film layer E6-1 100 parts of ethylene-octene copolymer, 5 parts of azo pigment B27, 0.05 parts of vinyltrimethoxysilane, 0.2 parts of tert-butyl peroxyisopropyl carbonate, 0.2 parts Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E6-2 formula: 100 parts of ethylene-vinyl acetate, 25 parts of titanium dioxide (particle size 1 ⁇ m), 0.05 parts of vinyltrimethoxysilane, 0.2 parts of tert-butyl peroxyisopropyl carbonate , 0.2 parts of propoxylated pentaerythritol tetraacrylate.
  • E6-1 and E6-2 are multi-layer co-extruded to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E6.
  • the thickness of the infrared high-transmittance film layer E6-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E6-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E6-1 is 20%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E6-2 is 40%.
  • Infrared high-transmittance adhesive film E7-1 layer formula: 100 parts of ethylene-octene copolymer, 10 parts of azo pigment B27, 0.1 part of vinyltrimethoxysilane, 0.3 part of tert-butyl peroxyisopropyl carbonate, 0.8 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E7-2 formula: 100 parts of ethylene-vinyl acetate, 40 parts of titanium dioxide (particle size 1 ⁇ m), 0.1 part of vinyltrimethoxysilane, 0.3 part of tert-butyl peroxyisopropyl carbonate , 0.3 parts of propoxylated pentaerythritol tetraacrylate.
  • E7-1 and E7-2 are multi-layer co-extruded to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E7.
  • the thickness of the infrared high-transmittance film layer E7-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E7-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transmittance adhesive film layer E7-1 is 50%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E7-2 is 50%.
  • Infrared high-transmittance film layer E8-1 formula: 100 parts of ethylene- ⁇ -olefin copolymer, 0.01 part of azo pigment B27, 0.1 part of methacryloxypropyltrimethoxysilane, 0.3 part of 2,5-dimethyl 2,5-bis(tert-butylperoxy)hexane, 0.3 parts ethoxylated glycerol triacrylate.
  • Infrared high-reflective film layer E8-2 formula: 100 parts of ethylene-methacrylic acid ionomer, 40 parts of aluminum oxide (particle size of 1 ⁇ m), 0.1 part of vinyl tris ( ⁇ -methoxyethoxy) silane, 0.3 Parts of 2,2-bis(tert-butylperoxy)butane, 0.3 parts of polyethylene glycol (200) diacrylate.
  • E8-1 and E8-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E8.
  • the thickness of the infrared high-transmittance film layer E8-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E8-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E8-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E8-2 is 15%.
  • Infrared high-transmittance adhesive film layer E9-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E9-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 0.7 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate ester, 0.01 part propoxylated pentaerythritol tetraacrylate.
  • E9-1 and E9-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E9.
  • the thickness of the infrared high-transmittance film layer E9-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E9-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transparency adhesive film layer E9-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E9-2 is 15%.
  • Infrared high-transparency adhesive film layer E10-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E10-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 0.4 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate ester, 0.01 part propoxylated pentaerythritol tetraacrylate.
  • E10-1 and E10-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E10.
  • the thickness of the infrared high-transmittance film layer E10-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E10-2 is 0.3mm, wherein the pre-crosslinking degree of the infrared high-transmitting adhesive film layer E10-1 is 10%, and the pre-crosslinking degree of the infrared high-reflective adhesive film layer E10-2 is 15%.
  • Infrared high-transparency adhesive film layer E11-1 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E11-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 2 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E11-1 and E11-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E11.
  • the thickness of the infrared high-transmittance film layer E11-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E11-2 is 0.3 mm, and the pre-crosslinking degree of the infrared high-transmitting adhesive film layer E11-1 is 10%, and the pre-crosslinking degree of the infrared high-reflective adhesive film layer E11-2 is 15%.
  • Infrared high-transparency adhesive film layer E12-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E12-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E12-1 and E12-2 are multi-layer co-extruded to prepare two layers of photovoltaic encapsulation adhesive film, denoted as E12.
  • the thickness of the infrared high-transmittance film layer E12-1 of the obtained encapsulation film is 0.08mm, and the infrared high-reflection adhesive film
  • the thickness of the layer E12-2 is 0.12mm, wherein the pre-crosslinking degree of the infrared high-permeability adhesive film layer E12-1 is 10%, and the pre-crosslinking degree of the infrared high-reflection adhesive film layer E12-2 is 15%.
  • Infrared high-transparency adhesive film layer E13-1 formula: 100 parts of ethylene-octene copolymer, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part Propoxylated pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E13-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E13-1 and E13-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E13.
  • the thickness of the infrared high-transmittance film layer E13-1 of the obtained encapsulation film is 0.3mm, and the infrared high-reflection film
  • the thickness of the layer E13-2 is 0.5 mm, wherein the pre-crosslinking degree of the infrared high-transmitting adhesive film layer E13-1 is 10%, and the pre-crosslinking degree of the infrared high-reflective adhesive film layer E13-2 is 15%.
  • Infrared high-transparency adhesive film layer E14-1 formula: 100 parts of ethylene-vinyl acetate, 0.01 part of azo pigment B27, 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate, 0.01 part of propylene Oxidized pentaerythritol tetraacrylate.
  • Infrared high-reflective film layer E14-2 formula: 100 parts of ethylene-vinyl acetate, 5 parts of titanium dioxide (particle size 1 ⁇ m), 0.01 part of vinyltrimethoxysilane, 0.01 part of tert-butyl peroxyisopropyl carbonate , 0.01 parts propoxylated pentaerythritol tetraacrylate.
  • E14-1 and E14-2 are prepared by multi-layer co-extrusion to prepare two layers of photovoltaic encapsulation film, denoted as E14.
  • the thickness of the infrared high-transmittance film layer E14-1 of the obtained encapsulation film is 0.2mm, and the infrared high-reflection film
  • the thickness of the layer E14-2 is 0.3 mm, wherein the pre-crosslinking degree of the infrared high-transmitting adhesive film layer E14-1 is 10%, and the pre-crosslinking degree of the infrared high-reflective adhesive film layer E14-2 is 15%.
  • Photovoltaic modules Place tempered glass, conventional transparent encapsulation films, crystalline silicon cells, encapsulation films E1-E14 (infrared high-transmittance films E1-1-E14- of encapsulation films E1-E14- 1 respectively set in contact with crystalline silicon cells), transparent back sheet, and laminated by a laminator at 145°C to obtain corresponding black photovoltaic modules PV-1 ⁇ PV-14.
  • Comparative example 1 Place tempered glass, conventional transparent encapsulation film, crystalline silicon cell, conventional transparent EVA encapsulation film F806PS, and black backplane BEC306HB in order from top to bottom, and laminate at 145°C by a laminator to obtain the corresponding Black photovoltaic module PV-D1.
  • the transmission and reflection properties of the infrared high-transmittance adhesive film layers E1-1 to E14-1, the infrared high-reflection adhesive film layers E1-2 to E14-2, and the packaging adhesive films E1 to E14 were respectively tested according to the above examples 1 to 14. And list the test results in Table 1.
  • Light transmittance test measure with reference to the standard GB/T 2410-2008, and measure the light transmittance of infrared high-transmittance film layers E1-1 ⁇ E14-1 with an ultraviolet-visible spectrophotometer.
  • Reflectance test measure with reference to the standard GB/T 29848, and use a UV-visible spectrophotometer to measure the reflectance of infrared high-reflective film layers E1-2 ⁇ E14-2 and packaging films E1 ⁇ E14.
  • Example 1 As can be seen from the data in Table 1, compared with Example 1, the addition of too much titanium dioxide in Examples 6 and 7 will cause the accumulation of titanium dioxide, thereby reducing the effective specific surface area that plays the role of sunlight reflection , which ultimately reduces the overall reflectivity of the encapsulation film.
  • Example 6 Compared with Example 1, in Examples 6 and 7, the light transmittance of the infrared high-transparency adhesive film layer to sunlight is reduced due to the excessive addition of the azo pigment B27.
  • Photovoltaic module PID test F406PS transparent adhesive film is used for the front layer of adhesive film, and P-type double-sided cells of A manufacturer are used.
  • the photovoltaic module PID test is tested according to IEC TS2804-1:2015, and the test conditions are 85°C, 85%RH , plus a constant DC voltage of -1500V, after 192 hours, measure the power attenuation of the photovoltaic module before and after the PID test, and the test results are listed in Table 2.
  • the infrared high-transmittance adhesive film layer of the packaging film provided by the application has a light transmittance of more than 55% for light in the wavelength range of 700-1100nm, and a light transmittance of less than 2% for light in the wavelength range of 400-700nm;
  • the reflectivity of the film layer to light in the wavelength range of 700-1100nm is greater than 75%, so that the encapsulation film can be used as the encapsulation film on the reverse side of the cell, which can not only achieve the black appearance of the photovoltaic module and reduce light pollution, but also maximize the use of sunlight.
  • Light improve the overall photoelectric conversion efficiency of photovoltaic modules, and then improve the efficiency and life of solar cells.
  • the use of the encapsulation film in BIPV building integration can take into account both the architectural beauty and the efficiency of photovoltaic modules.
  • the packaging adhesive film provided by this application uses inorganic fillers for the infrared high-reflective film layer, which helps to improve the anti-PID performance of the P-type double-sided cell photovoltaic module, especially the infrared high-reflective film layer.
  • inorganic fillers for the infrared high-reflective film layer, which helps to improve the anti-PID performance of the P-type double-sided cell photovoltaic module, especially the infrared high-reflective film layer.
  • titanium dioxide is used as a filler, the anti-PID performance of the conventional transparent film is significantly improved, which is expected to be related to the electronegativity of titanium dioxide or the function of titanium dioxide to delay the entry of sodium ions into the packaging film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供了一种封装胶膜及光伏组件。该封装胶膜包括红外高透胶膜层和叠置于红外高透胶膜层的红外高反胶膜层,红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%;红外高透胶膜层对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%。将上述封装胶膜作为电池片反面的封装胶膜不仅能够实现光伏组件的黑色外观而降低光污染,而且能够最大限度的利用太阳光,提高光伏组件整体的光电转换效率,进而提高太阳能电池的效率和寿命。进一步地,将该封装胶膜用于BIPV建筑一体化,可以兼顾建筑美观与光伏组件的效率。

Description

封装胶膜及光伏组件
本申请是以CN申请号为202111593985.X,申请日为2021年12月24日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及光伏组件技术领域,具体而言,涉及一种封装胶膜及光伏组件。
背景技术
太阳能电池本体用以实现最基本的太阳能电池的功能,即太阳能(光能)转换为电能,涉及了可见-近红外能量的利用,又涉及了中红外能量的重新分配。太阳辐照的能量主要集中于紫外区、可见光区和红外区。其中,紫外区域占据了7%的能量,可见光区域占据了50%的能量,红外部分约占43%左右的能量。光伏电池主要吸收利用400~700nm的可见光。波长大于1100nm的红外光不会被电池片利用转换成电能,而是直接转化为热能,导致光伏组件内部温度快速上升。因此,合理有效利用太阳光是提高太阳能电池工作效率的有效途径。
但事实上,目前的白色胶膜一般添氧化硅、碳化硅、氮化硅、氧化钛、氮化钛等白色颜料,可实现红外高反射,但是不能实现可见-近红外(0.38~1.1μm)的高透过率。目前的黑色胶膜一般是添加炭黑,但炭黑等在红外区只能反射4%的红外光,吸收绝大多数的红外光,导致光伏组件温度提升。
因此亟待开发一种全新的不影响可见-近红外透过率的同时对红外高反射的胶膜结构。
发明内容
本发明的主要目的在于提供一种封装胶膜及光伏组件,以解决现有技术中光伏组件的光电转换效率较低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种封装胶膜,该封装胶膜包括红外高透胶膜层和叠置于红外高透胶膜层的红外高反胶膜层,红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%;红外高透胶膜层对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%。
进一步地,上述红外高透胶膜层对700~1100nm波长范围的光的透光率大于58%;红外高透胶膜层对400~700nm波长范围的光的透光率小于1%。
进一步地,上述红外高反胶膜层对700~1100nm波长范围的光的反射率大于85%。
进一步地,上述封装胶膜对700~1100nm波长范围的光的反射率大于70%。
进一步地,上述红外高透胶膜层包括颜料,颜料选自富勒烯及其衍生物、直接耐晒染料、直接重氮染料、直接交链染料、含有络合金属的偶氮染料中的任意一种或多种,按重量份计,红外高透胶膜层包括100份的第一烯烃类树脂、0.01~10份的颜料、0.01~0.1份的第一偶联剂、0.01~0.3份的第一交联剂、0.01~0.3份的第一助交联剂,第一烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-辛烯共聚物、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种。
进一步地,按重量份计,上述红外高反胶膜层包括100份的第二烯烃类树脂、5~40份的填料、0.01~0.1份的第二偶联剂、0.01~0.3份的第二交联剂、0.01~0.3份的第二助交联剂,第二烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种;填料选自钛白粉、滑石粉、二氧化硅、氢氧化铝、氢氧化镁、氧化铝、勃姆石、云母、高岭土、碳酸钙、硅灰石、氮化铝、氮化硼中的任意一种或多种,填料的粒径为0.4~2.0μm。
进一步地,上述红外高透胶膜层的厚度为80~300μm,红外高透胶膜层为预交联膜,红外高透胶膜层的预交联度为5~50%。
进一步地,上述红外高反胶膜层的厚度为120~500μm,红外高反胶膜层为预交联膜,红外高反胶膜层的预交联度为10~70%。
根据本发明的另一方面,提供了一种光伏组件,包括正面透明封装层、第一封装胶膜层、电池片阵列、第二封装胶膜层和背面封装层,该第二封装胶膜层为上述的封装胶膜。
进一步地,上述封装胶膜的红外高透胶膜层与光伏组件的电池片接触设置。
应用本发明的技术方案,本申请提供的封装胶膜的红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%,对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%,从而将该封装胶膜作为电池片反面的封装胶膜不仅能够实现光伏组件的黑色外观而降低光污染,而且能够最大限度的利用太阳光,提高光伏组件整体的光电转换效率,进而提高太阳能电池的效率和寿命。进一步地,将该封装胶膜用于BIPV建筑一体化,可以兼顾建筑美观与光伏组件的效率。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中存在光伏组件的光电转换效率较低的问题,为解决该问题,本发明提供了一种封装胶膜及光伏组件。
在本申请的一种典型的实施方式中,提供了一种封装胶膜,该封装胶膜包括红外高透胶膜层和叠置于红外高透胶膜层的红外高反胶膜层,红外高透胶膜层对700~1100nm波长范围的 光的透光率大于55%;红外高透胶膜层对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%。
本申请提供的封装胶膜的红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%,对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%,从而将该封装胶膜作为电池片反面的封装胶膜不仅能够实现光伏组件的黑色外观而降低光污染,而且能够最大限度的利用太阳光,提高光伏组件整体的光电转换效率,进而提高太阳能电池的效率和寿命。进一步地,将该封装胶膜用于BIPV建筑一体化,可以兼顾建筑美观与光伏组件的效率。
优选上述红外高透胶膜层对700~1100nm波长范围的光的透光率大于58%;优选红外高透胶膜层对400~700nm波长范围的光的透光率小于1%,从而有助于进一步地封装胶膜对近红外波长范围的光的利用率,并尽可能地降低光污染。
优选上述红外高反胶膜层对700~1100nm波长范围的光的反射率大于85%,从而有利于提高封装胶膜对700~1100nm波长范围的光的整体利用率。
造本申请的一种实施例中,上述封装胶膜对700~1100nm波长范围的光的反射率大于70%。
具有上述反射率性能的封装胶膜更有助于提高光伏组件对光的转化率。
在本申请的一种实施方式中,红外高透胶膜层包括颜料,颜料选自富勒烯及其衍生物、直接耐晒染料、直接重氮染料、直接交链染料、含有络合金属的偶氮染料中的任意一种或多种,按重量份计,红外高透胶膜层包括100份的第一烯烃类树脂、0.01~10份的颜料、0.01~0.1份的第一偶联剂、0.01~0.3份的第一交联剂、0.01~0.3份的第一助交联剂,颜料优选为0.01~0.03份,优选颜料选自直接黑144、金属络合染料X55、偶氮颜料B27、苯胺黑NO.2、苝黑LP32、苝黑L0086、BASF Orasol Black X51、BASF Paliotol Black L0080中的任意一种或多种,第一烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-辛烯共聚物、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种;优选第一偶联剂选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、氨丙基三甲氧基硅烷、氨丙基三乙氧基硅烷、氨丙基三异丙氧基硅烷中的任意一种或多种,优选第一交联剂选自叔丁基过氧化碳酸异丙酯、2,5-二甲基2,5-双(叔丁过氧基)己烷、1-双(过氧化叔丁基)-3,3,5-三甲基环己烷、叔丁基过氧化碳酸-2-乙基己酯、1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)环己烷、2,2-双(叔丁基过氧)丁烷、过氧化碳酸叔戊酯、过氧化3,3,5-三甲基己酸叔丁酯的一种或多种按任意配比混合组成中的任意一种或多种,优选第一助交联剂选自三甲代烯丙基异氰酸酯、三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、二乙烯基苯、二-异丙烯基苯、二烯丙基邻苯二甲酸酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯、马来酸二烯丙酯、邻苯二甲酸二烯丙酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、乙氧 化季戊四醇四丙烯酸酯、丙氧化季戊四醇四丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、丙氧化三羟甲基丙烷三丙烯酸酯、乙氧化甘油三丙烯酸酯、丙氧化甘油三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、乙氧化三羟甲基丙烷三甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、聚乙二醇(200)二丙烯酸酯、聚乙二醇(400)二丙烯酸酯、聚乙二醇(600)二丙烯酸酯、聚乙二醇(200)二甲基丙烯酸酯、聚乙二醇(400)二甲基丙烯酸酯、聚乙二醇(600)二甲基丙烯酸酯、乙氧化双酚A二丙烯酸酯、乙氧化双酚A二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯、1,4-丁二醇二丙烯酸酯、新戊二醇二丙烯酸酯中的任意一种或多种。
颜料的添加量越多越有利于使光伏组件呈现黑色外观,但是过多的颜料会导致红外高透胶膜层的透光率的降低,本申请优选的上述红外高透胶膜层中的颜料含量使得该红外高透胶膜层为黑色胶膜的基础上,能够提高红外高透胶膜层对700~1100nm波长范围的光的透光率,并尽可能地减少黑色胶膜将吸收的光转化为热量,从而降低光伏组件温升的风险。优选的第一偶联剂、第一交联剂及第一助交联剂有助于提高第一烯烃类树脂的交联效果,当然本领域技术人员也可以选择其它合适种类的第一偶联剂、第一交联剂及第一助交联剂,在此不再赘述。
在本申请的一种实施方式中,按重量份计,红外高反胶膜层包括100份的第二烯烃类树脂、5~40份的填料、0.01~0.1份的第二偶联剂、0.01~0.3份的第二交联剂、0.01~0.3份的第二助交联剂,第二烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种;填料选自钛白粉、滑石粉、二氧化硅、氢氧化铝、氢氧化镁、氧化铝、勃姆石、云母、高岭土、碳酸钙、硅灰石、氮化铝、氮化硼中的任意一种或多种,填料的粒径为0.4~2.0μm,优选为0.7~2.0μm,优选第二偶联剂选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、氨丙基三甲氧基硅烷、氨丙基三乙氧基硅烷、氨丙基三异丙氧基硅烷中的任意一种或多种,优选第二交联剂选自叔丁基过氧化碳酸异丙酯、2,5-二甲基2,5-双(叔丁过氧基)己烷、1-双(过氧化叔丁基)-3,3,5-三甲基环己烷、叔丁基过氧化碳酸-2-乙基己酯、1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)环己烷、2,2-双(叔丁基过氧)丁烷、过氧化碳酸叔戊酯、过氧化3,3,5-三甲基己酸叔丁酯的一种或多种按任意配比混合组成中的任意一种或多种,优选第二助交联剂选自三甲代烯丙基异氰酸酯、三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、二乙烯基苯、二-异丙烯基苯、二烯丙基邻苯二甲酸酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯、马来酸二烯丙酯、邻苯二甲酸二烯丙酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、乙氧化季戊四醇四丙烯酸酯、丙氧化季戊四醇四丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、丙氧化三羟甲基丙烷三丙烯酸酯、乙氧化甘油三丙烯酸酯、丙氧化甘油三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、乙氧化三羟甲基丙烷三甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、聚乙二醇(200)二丙烯酸酯、聚乙二醇(400)二丙烯酸酯、聚乙二醇(600)二丙烯酸酯、聚乙二醇(200) 二甲基丙烯酸酯、聚乙二醇(400)二甲基丙烯酸酯、聚乙二醇(600)二甲基丙烯酸酯、乙氧化双酚A二丙烯酸酯、乙氧化双酚A二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯、1,4-丁二醇二丙烯酸酯、新戊二醇二丙烯酸酯中的任意一种或多种。
本申请的上述红外高反胶膜层中的填料使得该红外高反胶膜层为白色胶膜,从而有利于提高封装胶膜对照射光的反射率,大粒径的二氧化钛具有更高的近红外反射率,因此,优选的上述粒径范围内的二氧化钛的近红外反射率更高。过多填料的添加会导致其堆积,使起到太阳光反射作用的有效比表面积减小,使封装胶膜整体的反射率随之降低,因此,优选5~15份的填料更有利于提高封装胶膜对照射光的反射率。优选的第二偶联剂、第二交联剂及第二助交联剂有助于提高第二烯烃类树脂的交联效果,当然本领域技术人员也可以选择其它合适种类的第二偶联剂、第二交联剂及第二助交联剂,在此不再赘述。
红外高透胶膜层的厚度对照射光的透光率有一定的影响,上述红外高透胶膜层的厚度为80~300μm,有利于提高红外高透胶膜层对700~1100nm波长范围的光的整体透光率。优选红外高透胶膜层为预交联膜,优选红外高透胶膜层的预交联度为5~50%,从而有助于避免红外高透胶膜层上溢至电池正面的风险,进而有利于保证光伏组件的层压外观良好以及避免光伏组件正面功率的不必要损失。在红外高透胶膜层无上溢风险的情况下,红外高透胶膜层的预交联度越低越有助于减少或避免电池的裂片或隐裂现象。
优选上述红外高反胶膜层的厚度为120~500μm,有利于提高红外高反胶膜层对700~1100nm波长范围的光的整体反射率。优选红外高反胶膜层为预交联膜,优选红外高反胶膜层的预交联度为10~70%,从而有利于避免因红外高反胶膜层的流动而导致红外高反胶膜层上溢至电池正面的风险,保证光伏组件的层压外观良好以及避免光伏组件正面功率的不必要损失。
优选红外高透胶膜层的预交联度低于红外高反胶膜层的预交联度,从而更有助于兼顾光伏组件的良好外观和电池的完整性。
在本申请的另一种典型的实施方式中,提供了一种光伏组件,包括正面透明封装层、第一封装胶膜层、电池片阵列、第二封装胶膜层和背面封装层,该第二封装胶膜层为上述的封装胶膜。
采用上述的封装胶膜作为电池片阵列反面的第二封装胶膜层能够最大限度的利用太阳光,提高光伏组件整体的光电转换效率,进而提高太阳能电池的效率和寿命。
优选上述封装胶膜的红外高透胶膜层与光伏组件的电池片接触设置,照射到封装胶膜的一部分太阳光透过红外高透胶膜层而被电池片吸收,另一部分太阳光则被红外高反胶膜层形成反射光,该反射光再经背板内表面二次反射到封装胶膜而透过红外高透胶膜层后到达电池片上,从而提高了封装胶膜的整体反射率,进而提升了光伏组件的整体光电转化效率。
以下将结合具体实施例和对比例,对本申请的有益效果进行说明。
实施例1
红外高透胶膜层E1-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E1-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E1-1与E1-2采用多层共挤制备两层光伏封装胶膜,记为E1,所得封装胶膜的红外高透胶膜层E1-1的厚度为0.2mm,红外高反胶膜层E1-2的厚度为0.3mm,其中红外高透胶膜层E1-1的预交联度为10%,红外高反胶膜层E1-2的预交联度为15%。
实施例2
实施例2与实施例1的区别在于,
红外高透胶膜层E2-1配方:100份乙烯-辛烯共聚物,0.03份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E2-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E2-1与E2-2采用多层共挤制备两层光伏封装胶膜,记为E2,所得封装胶膜的红外高透胶膜层E2-1的厚度为0.2mm,红外高反胶膜层E2-2的厚度为0.3mm,其中红外高透胶膜层E2-1的预交联度为10%,红外高反胶膜层E2-2的预交联度为15%。
实施例3
实施例3与实施例1的区别在于,
红外高透胶膜层E3-1配方:100份乙烯-辛烯共聚物,10份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E3-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E3-1与E3-2采用多层共挤制备两层光伏封装胶膜,记为E3,所得封装胶膜的红外高透胶膜E3-1层的厚度为0.2mm,红外高反胶膜层E3-2的厚度为0.3mm,其中红外高透胶膜层E3-1的预交联度为10%,红外高反胶膜层E3-2的预交联度为15%。
实施例4
实施例4与实施例1的区别在于,
红外高透胶膜层E4-1配方:100份乙烯-辛烯共聚物,0.01份苝黑L0086,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E4-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E4-1与E4-2采用多层共挤制备两层光伏封装胶膜,记为E4,所得封装胶膜的红外高透胶膜层E4-1的厚度为0.2mm,红外高反胶膜层E4-2的厚度为0.3mm,其中红外高透胶膜层E4-1的预交联度为10%,红外高反胶膜层E4-2的预交联度为15%。
实施例5
实施例5与实施例1的区别在于,
红外高透胶膜层E5-1配方:100份乙烯-辛烯共聚物,0.01份BASF Paliotol Black L0080,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E5-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E5-1与E5-2采用多层共挤制备两层光伏封装胶膜,记为E5,所得封装胶膜的红外高透胶膜层E5-1的厚度为0.2mm,红外高反胶膜层E5-2的厚度为0.3mm,其中红外高透胶膜层E5-1的预交联度为10%,红外高反胶膜层E5-2的预交联度为15%。
实施例6
实施例6与实施例1的区别在于,
红外高透胶膜层E6-1配方:100份乙烯-辛烯共聚物,5份偶氮颜料B27,0.05份乙烯基三甲氧基硅烷,0.2份叔丁基过氧化碳酸异丙酯,0.2份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E6-2配方:100份乙烯-乙酸乙烯酯,25份钛白粉(粒径为1μm),0.05份乙烯基三甲氧基硅烷,0.2份叔丁基过氧化碳酸异丙酯,0.2份丙氧化季戊四醇四丙烯酸酯。
将E6-1与E6-2采用多层共挤制备两层光伏封装胶膜,记为E6,所得封装胶膜的红外高透胶膜层E6-1的厚度为0.2mm,红外高反胶膜层E6-2的厚度为0.3mm,其中红外高透胶膜层E6-1的预交联度为20%,红外高反胶膜层E6-2的预交联度为40%。
实施例7
实施例7与实施例1的区别在于,
红外高透胶膜E7-1层配方:100份乙烯-辛烯共聚物,10份偶氮颜料B27,0.1份乙烯基三甲氧基硅烷,0.3份叔丁基过氧化碳酸异丙酯,0.8份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E7-2配方:100份乙烯-乙酸乙烯酯,40份钛白粉(粒径为1μm),0.1份乙烯基三甲氧基硅烷,0.3份叔丁基过氧化碳酸异丙酯,0.3份丙氧化季戊四醇四丙烯酸酯。
将E7-1与E7-2采用多层共挤制备两层光伏封装胶膜,记为E7,所得封装胶膜的红外高透胶膜层E7-1的厚度为0.2mm,红外高反胶膜层E7-2的厚度为0.3mm,其中红外高透胶膜层E7-1的预交联度为50%,红外高反胶膜层E7-2的预交联度为50%。
实施例8
实施例8与实施例1的区别在于,
红外高透胶膜层E8-1配方:100份乙烯-α烯烃共聚物,0.01份偶氮颜料B27,0.1份甲基丙烯酰氧基丙基三甲氧基硅烷,0.3份2,5-二甲基2,5-双(叔丁过氧基)己烷,0.3份乙氧化甘油三丙烯酸酯。
红外高反胶膜层E8-2配方:100份乙烯-甲基丙烯酸离子聚合物,40份氧化铝(粒径为1μm),0.1份乙烯基三(β-甲氧乙氧基)硅烷,0.3份2,2-双(叔丁基过氧)丁烷,0.3份聚乙二醇(200)二丙烯酸酯。
将E8-1与E8-2采用多层共挤制备两层光伏封装胶膜,记为E8,所得封装胶膜的红外高透胶膜层E8-1的厚度为0.2mm,红外高反胶膜层E8-2的厚度为0.3mm,其中红外高透胶膜层E8-1的预交联度为10%,红外高反胶膜层E8-2的预交联度为15%。
实施例9
实施例9与实施例1的区别在于,
红外高透胶膜层E9-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E9-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为0.7μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E9-1与E9-2采用多层共挤制备两层光伏封装胶膜,记为E9,所得封装胶膜的红外高透胶膜层E9-1的厚度为0.2mm,红外高反胶膜层E9-2的厚度为0.3mm,其中红外高透胶膜层E9-1的预交联度为10%,红外高反胶膜层E9-2的预交联度为15%。
实施例10
实施例10与实施例1的区别在于,
红外高透胶膜层E10-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E10-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为0.4μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E10-1与E10-2采用多层共挤制备两层光伏封装胶膜,记为E10,所得封装胶膜的红外高透胶膜层E10-1的厚度为0.2mm,红外高反胶膜层E10-2的厚度为0.3mm,其中红外高透胶膜层E10-1的预交联度为10%,红外高反胶膜层E10-2的预交联度为15%。
实施例11
实施例11与实施例1的区别在于,
红外高透胶膜层E11-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E11-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为2μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E11-1与E11-2采用多层共挤制备两层光伏封装胶膜,记为E11,所得封装胶膜的红外高透胶膜层E11-1的厚度为0.2mm,红外高反胶膜层E11-2的厚度为0.3mm,其中红外高透胶膜层E11-1的预交联度为10%,红外高反胶膜层E11-2的预交联度为15%。
实施例12
实施例12与实施例1的区别在于,
红外高透胶膜层E12-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E12-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E12-1与E12-2采用多层共挤制备两层光伏封装胶膜,记为E12,所得封装胶膜的红外高透胶膜层E12-1的厚度为0.08mm,红外高反胶膜层E12-2的厚度为0.12mm,其中红外高透胶膜层E12-1的预交联度为10%,红外高反胶膜层E12-2的预交联度为15%。
实施例13
实施例13与实施例1的区别在于,
红外高透胶膜层E13-1配方:100份乙烯-辛烯共聚物,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E13-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E13-1与E13-2采用多层共挤制备两层光伏封装胶膜,记为E13,所得封装胶膜的红外高透胶膜层E13-1的厚度为0.3mm,红外高反胶膜层E13-2的厚度为0.5mm,其中红外高透胶膜层E13-1的预交联度为10%,红外高反胶膜层E13-2的预交联度为15%。
实施例14
实施例14与实施例1的区别在于,
红外高透胶膜层E14-1配方:100份乙烯-乙酸乙烯酯,0.01份偶氮颜料B27,0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
红外高反胶膜层E14-2配方:100份乙烯-乙酸乙烯酯,5份钛白粉(粒径为1μm),0.01份乙烯基三甲氧基硅烷,0.01份叔丁基过氧化碳酸异丙酯,0.01份丙氧化季戊四醇四丙烯酸酯。
将E14-1与E14-2采用多层共挤制备两层光伏封装胶膜,记为E14,所得封装胶膜的红外高透胶膜层E14-1的厚度为0.2mm,红外高反胶膜层E14-2的厚度为0.3mm,其中红外高透胶膜层E14-1的预交联度为10%,红外高反胶膜层E14-2的预交联度为15%。
光伏组件:按照从上到下顺序放置钢化玻璃、常规透明封装胶膜、晶硅电池片、封装胶膜E1~E14(封装胶膜E1~E14的红外高透胶膜层E1-1~E14-1分别与晶硅电池片接触设置)、透明背板,经层压机在145℃层压制得相应的黑色光伏组件PV-1~PV-14。
对比例1:按照从上到下顺序放置钢化玻璃、常规透明封装胶膜、晶硅电池片、常规透明EVA封装胶膜F806PS、黑色背板BEC306HB,经层压机在145℃层压制得相应的黑色光伏组件PV-D1。
分别测试以上实施例1至14对应得到红外高透胶膜层E1-1~E14-1、红外高反胶膜层E1-2~E14-2、封装胶膜E1~E14的透射、反射性能,并将测试结果列于表1。
测试方法:
透光率测试:参照标准GB/T 2410-2008进行测定,用紫外-可见分光光度计测定红外高透胶膜层E1-1~E14-1的透光率。
反射率测试:参照标准GB/T 29848进行测定,用紫外-可见分光光度计测定红外高反胶膜层E1-2~E14-2、封装胶膜E1~E14的反射率。
表1
Figure PCTCN2022108006-appb-000001
Figure PCTCN2022108006-appb-000002
从表1的数据可以看出,与实施例1相比,实施例6、7由于过多的钛白粉的添加会导致钛白粉的堆积,从而使起到太阳光反射作用的有效比表面积减小,最终使得封装胶膜整体的反射率有所降低。
与实施例1相比,实施例6、7由于偶氮颜料B27的添加量过多,降低了红外高透胶膜层对太阳光的透光率。
实施例8中改变交联剂、助交联剂的用量和种类也会使得红外高透胶膜层对太阳光的透光率、红外高透胶膜层以及封装胶膜对太阳光的反射率造成较大的影响。
光伏组件PID测试:前层胶膜均采用F406PS透明胶膜,均采用A厂家的P型双面电池,光伏组件PID试验依据IEC TS2804-1∶2015进行测试,测试条件为85℃,85%RH,外加-1500V恒定直流电压,经192h后,测定光伏组件PID试验前后的功率衰减,并将测试结果列于表2。
表2
组件 光伏组件PID 192h功率衰减
PV-1 2.36
PV-2 2.54
PV-3 2.24
PV-4 2.33
PV-5 2.42
PV-6 2.29
PV-7 2.22
PV-8 4.25
PV-9 2.28
PV-10 2.29
PV-11 2.21
PV-12 2.79
PV-13 2.17
PV-14 2.86
PV-D1 6.92
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请提供的封装胶膜的红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%,对400~700nm波长范围的光的透光率小于2%;红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%,从而将该封装胶膜作为电池片反面的封装胶膜不仅能够实现光伏组件的黑色外观而降低光污染,而且能够最大限度的利用太阳光,提高光伏组件整体的光电转换效率,进而提高太阳能电池的效率和寿命。进一步地,将该封装胶膜用于BIPV建筑一体化,可以兼顾建筑美观与光伏组件的效率。
从PID对比测试可以发现,本申请提供的封装胶膜因红外高反胶膜层采用无机填料,有助于提升P型双面电池光伏组件的抗PID性能,尤其红外高反胶膜层采用纯钛白粉填料时, 较常规透明胶膜的抗PID性能有显著提升,预计与钛白粉的电负性相关或钛白粉具有迟滞钠离子进入封装胶膜的功能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种封装胶膜,其特征在于,所述封装胶膜包括红外高透胶膜层和叠置于所述红外高透胶膜层的红外高反胶膜层,所述红外高透胶膜层对700~1100nm波长范围的光的透光率大于55%;所述红外高透胶膜层对400~700nm波长范围的光的透光率小于2%;所述红外高反胶膜层对700~1100nm波长范围的光的反射率大于75%。
  2. 根据权利要求1所述的封装胶膜,其特征在于,所述红外高透胶膜层对700~1100nm波长范围的光的透光率大于58%;所述红外高透胶膜层对400~700nm波长范围的光的透光率小于1%。
  3. 根据权利要求1所述的封装胶膜,其特征在于,所述红外高反胶膜层对700~1100nm波长范围的光的反射率大于85%。
  4. 根据权利要求1至3中任一项所述的封装胶膜,其特征在于,所述封装胶膜对700~1100nm波长范围的光的反射率大于70%。
  5. 根据权利要求1至3中任一项所述的封装胶膜,其特征在于,所述红外高透胶膜层包括颜料,所述颜料选自富勒烯及其衍生物、直接耐晒染料、直接重氮染料、直接交链染料、含有络合金属的偶氮染料中的任意一种或多种,
    按重量份计,所述红外高透胶膜层包括100份的第一烯烃类树脂、0.01~10份的颜料、0.01~0.1份的第一偶联剂、0.01~0.3份的第一交联剂、0.01~0.3份的第一助交联剂,
    所述第一烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-辛烯共聚物、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种。
  6. 根据权利要求1至3中任一项所述的封装胶膜,其特征在于,按重量份计,所述红外高反胶膜层包括100份的第二烯烃类树脂、5~40份的填料、0.01~0.1份的第二偶联剂、0.01~0.3份的第二交联剂、0.01~0.3份的第二助交联剂,
    所述第二烯烃类树脂选自乙烯-乙酸乙烯酯、乙烯-α烯烃共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-甲基丙烯酸离子聚合物和茂金属催化乙烯丁烯共聚物中的任意一种或多种;
    所述填料选自钛白粉、滑石粉、二氧化硅、氢氧化铝、氢氧化镁、氧化铝、勃姆石、云母、高岭土、碳酸钙、硅灰石、氮化铝、氮化硼中的任意一种或多种,所述填料的粒径为0.4~2.0μm。
  7. 根据权利要求1至3中任一项所述的封装胶膜,其特征在于,所述红外高透胶膜层的厚度为80~300μm,所述红外高透胶膜层为预交联膜,所述红外高透胶膜层的预交联度为5~50%。
  8. 根据权利要求1至3中任一项所述的封装胶膜,其特征在于,所述红外高反胶膜层的厚度为120~500μm,所述红外高反胶膜层为预交联膜,所述红外高反胶膜层的预交联度为10~70%。
  9. 一种光伏组件,包括正面透明封装层、第一封装胶膜层、电池片阵列、第二封装胶膜层和背面封装层,其特征在于,所述第二封装胶膜层为权利要求1至8中任一项所述的封装胶膜。
  10. 根据权利要求9所述的光伏组件,其特征在于,所述封装胶膜的红外高透胶膜层与所述光伏组件的电池片接触设置。
PCT/CN2022/108006 2021-12-24 2022-07-26 封装胶膜及光伏组件 WO2023115943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111593985.X 2021-12-24
CN202111593985.XA CN113980588B (zh) 2021-12-24 2021-12-24 封装胶膜及光伏组件

Publications (1)

Publication Number Publication Date
WO2023115943A1 true WO2023115943A1 (zh) 2023-06-29

Family

ID=79734239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108006 WO2023115943A1 (zh) 2021-12-24 2022-07-26 封装胶膜及光伏组件

Country Status (2)

Country Link
CN (1) CN113980588B (zh)
WO (1) WO2023115943A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117025208A (zh) * 2023-10-10 2023-11-10 江苏鹿山新材料有限公司 复合光转粉及其制备方法和光转胶膜
CN117720474A (zh) * 2024-02-07 2024-03-19 江苏鹿山新材料有限公司 反应型光转材料、光转封装胶膜和光伏组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980588B (zh) * 2021-12-24 2022-04-15 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件
CN115044308A (zh) * 2022-06-17 2022-09-13 上海海优威应用材料技术有限公司 一种黑色反红外封装胶膜及其制备方法及光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107403A1 (zh) * 2014-12-31 2016-07-07 广州鹿山新材料股份有限公司 一种增透的聚烯烃光伏组件封装胶膜及其制备方法
CN106945378A (zh) * 2017-03-03 2017-07-14 杭州福斯特应用材料股份有限公司 一种网格状双层结构光伏组件封装胶膜及其制备方法
CN110643298A (zh) * 2019-10-10 2020-01-03 常州斯威克光伏新材料有限公司 一种多层荧光封装胶膜
CN110682647A (zh) * 2019-10-21 2020-01-14 常州斯威克光伏新材料有限公司 一种光电转换效率高的光伏组件用封装胶膜
CN113980588A (zh) * 2021-12-24 2022-01-28 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736147B2 (ja) * 1999-07-13 2011-07-27 東洋紡績株式会社 赤外線吸収フィルタ
GB0315846D0 (en) * 2003-07-07 2003-08-13 Dow Corning Solar cells and encapsulation thereof
JP2011508984A (ja) * 2008-01-03 2011-03-17 マディコ インコーポレイテッド 光太陽電池用光ルミネッセンスバックシート
MY170295A (en) * 2010-11-02 2019-07-17 Mitsui Chemicals Inc Encapsulating material for solar cell and solar cell module
CN106960888B (zh) * 2017-03-03 2018-10-16 杭州福斯特应用材料股份有限公司 一种高反射增益型光伏封装胶膜及用途
CN108342167A (zh) * 2018-02-06 2018-07-31 苏州赛伍应用技术股份有限公司 一种太阳能电池用封装胶膜及其制备方法和应用
CN110713803B (zh) * 2018-07-12 2021-10-08 杭州福斯特应用材料股份有限公司 一种热塑性光伏组件封装胶膜及制备方法
CN109337599B (zh) * 2018-10-18 2021-07-20 杭州福斯特应用材料股份有限公司 一种抗电势诱导衰减的多层复合光伏封装胶膜及制备方法与应用
CN109536072A (zh) * 2018-12-05 2019-03-29 杭州福斯特应用材料股份有限公司 一种网格状高反射双层复合结构光伏封装胶膜及其应用
CN112724851A (zh) * 2021-02-02 2021-04-30 福斯特(滁州)新材料有限公司 一种封装胶膜
CN113416501A (zh) * 2021-06-16 2021-09-21 常州百佳年代薄膜科技股份有限公司 复合胶膜、光伏组件及复合胶膜用照射光反射方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107403A1 (zh) * 2014-12-31 2016-07-07 广州鹿山新材料股份有限公司 一种增透的聚烯烃光伏组件封装胶膜及其制备方法
CN106945378A (zh) * 2017-03-03 2017-07-14 杭州福斯特应用材料股份有限公司 一种网格状双层结构光伏组件封装胶膜及其制备方法
CN110643298A (zh) * 2019-10-10 2020-01-03 常州斯威克光伏新材料有限公司 一种多层荧光封装胶膜
CN110682647A (zh) * 2019-10-21 2020-01-14 常州斯威克光伏新材料有限公司 一种光电转换效率高的光伏组件用封装胶膜
CN113980588A (zh) * 2021-12-24 2022-01-28 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117025208A (zh) * 2023-10-10 2023-11-10 江苏鹿山新材料有限公司 复合光转粉及其制备方法和光转胶膜
CN117025208B (zh) * 2023-10-10 2023-12-08 江苏鹿山新材料有限公司 复合光转粉及其制备方法和光转胶膜
CN117720474A (zh) * 2024-02-07 2024-03-19 江苏鹿山新材料有限公司 反应型光转材料、光转封装胶膜和光伏组件
CN117720474B (zh) * 2024-02-07 2024-04-12 江苏鹿山新材料有限公司 反应型光转材料、光转封装胶膜和光伏组件

Also Published As

Publication number Publication date
CN113980588B (zh) 2022-04-15
CN113980588A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023115943A1 (zh) 封装胶膜及光伏组件
JP6975262B2 (ja) 高反射ゲインタイプ太陽電池用封止シート及び用途
JP5922232B2 (ja) 太陽電池モジュール
KR101738797B1 (ko) 태양 전지 밀봉재 및 태양 전지 모듈
JP6034756B2 (ja) 太陽電池封止用シートセットおよびそれを用いた太陽電池モジュール
WO2011108600A1 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
EP3358629B1 (en) Multilayer sheet for solar cell sealing material, method for manufacturing multilayer sheet for solar cell sealing material, and solar cell module
JP5854473B2 (ja) 太陽電池封止材および太陽電池モジュール
JP2010073720A (ja) 太陽電池モジュール
JP2015211189A (ja) 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
WO2023236539A1 (zh) 一种封装胶膜及其应用
JP5321543B2 (ja) 太陽電池封止材用樹脂組成物
JP5209540B2 (ja) 太陽電池封止用シート及び太陽電池モジュール
JP5624793B2 (ja) 太陽電池用封止材および太陽電池モジュール
CN217781043U (zh) 一种封装胶膜及光伏组件
JP2023168474A (ja) 太陽電池モジュール用の暗色封止材シート
JP2011077089A (ja) 太陽電池用裏面側封止材及び太陽電池モジュール
JP2014139993A (ja) 太陽電池封止材用樹脂組成物
CN115274900B (zh) 一种量子点光伏背板和双面光伏组件
JP2014179462A (ja) 太陽電池モジュール用裏側封止材及び太陽電池モジュール
CN111087940B (zh) 一种导光复合封装胶膜及其制备方法和应用
JP2014019822A (ja) 太陽電池封止材用樹脂組成物
JPWO2013190940A1 (ja) 太陽電池封止材および太陽電池モジュール
CN215680706U (zh) 一种光重定向膜以及一种光伏模块
JP5234210B1 (ja) 太陽電池封止材用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022909273

Country of ref document: EP

Effective date: 20240522