WO2023245798A1 - 一种uv光转换封装胶膜及其制备方法 - Google Patents

一种uv光转换封装胶膜及其制备方法 Download PDF

Info

Publication number
WO2023245798A1
WO2023245798A1 PCT/CN2022/107876 CN2022107876W WO2023245798A1 WO 2023245798 A1 WO2023245798 A1 WO 2023245798A1 CN 2022107876 W CN2022107876 W CN 2022107876W WO 2023245798 A1 WO2023245798 A1 WO 2023245798A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
copolymer
layer
light conversion
light
Prior art date
Application number
PCT/CN2022/107876
Other languages
English (en)
French (fr)
Inventor
王磊
韩晓航
胡求学
陈洪野
吴小平
Original Assignee
苏州赛伍应用技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州赛伍应用技术股份有限公司 filed Critical 苏州赛伍应用技术股份有限公司
Publication of WO2023245798A1 publication Critical patent/WO2023245798A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Embodiments of the present application relate to the technical field of packaging materials, such as a UV light conversion packaging adhesive film and a preparation method thereof.
  • UV Ultraviolet
  • UVA ultraviolet A, wavelength 380nm-320nm, low frequency and long wave
  • UVB wavelength 320nm-280nm, medium frequency medium wave
  • UVC wavelength 280nm-100nm, high frequency 4 types: short wave
  • EUV 100nm-10nm, ultra-high frequency
  • UVA rays can cause tanning, and ultraviolet B (UVB) has a shorter wavelength and can burn the skin.
  • UVC is generally blocked by the ozone layer.
  • IR is infrared, which can cause sunburn, capillary dilation, dermatitis, and promote the carcinogenicity of ultraviolet rays.
  • Ultraviolet irradiation will cause the skin to produce a large number of free radicals, causing peroxidation of the cell membrane, causing melanocytes to produce more melanin, and distribute it upward to the epidermal stratum corneum, causing black spots.
  • Ultraviolet rays are arguably the biggest culprit causing skin wrinkles, aging, sagging and dark spots.
  • Adding a light conversion layer to the surface of existing solar cells or adding light conversion agents directly to the packaging material can convert the incident light in which the solar cell has a poor response (low quantum efficiency) into a band with a better response (low quantum efficiency). high) band. In this way, maximum utilization of sunlight can be achieved without changing the structure of the solar cell itself.
  • some cells are not resistant to UV light, such as heterojunction cells, so UV light conversion adhesive films are needed to protect the cells.
  • the existing UV light conversion adhesive film cannot completely convert all UV light into visible light, and as the years of outdoor use increase, the UV light conversion efficiency will decrease, and some UV light will still be directly irradiated on the heterojunction cells. , causing damage to the battery cells.
  • CN108003801A discloses a photoconversion POE film and its encapsulated photovoltaic module.
  • the photoconversion POE film is prepared from the following components by weight: 100 parts of POE resin and 0.5-2.0 parts of organic peroxy compound initiator. , 0.5-2.5 parts of cross-linking aids, 0.3-1.5 parts of viscosity-increasing coupling agents, 0.1-0.6 parts of light stabilizers, 0.1-0.6 parts of UV absorbers and 0.05-0.2 parts of photoconversion additives.
  • the photoconversion additive added to the photoconversion POE film in this application has the function of converting the short-wavelength ultraviolet band into longer-wavelength blue light, which solves the problem of low response of photovoltaic modules under conventional packaging materials to short-wavelength bands, and greatly improves the efficiency of the components. Improve the photoelectric conversion efficiency and increase the revenue of photovoltaic modules.
  • adding UV absorbers to the adhesive film reduces the process gain of the module, and the UV light conversion function of the adhesive film has poor long-term weather resistance and poor surface adhesion, making it unsuitable for HJT cells.
  • CN109486446A discloses a high-cutoff solar energy encapsulating film, which is mainly made of EVA resin, peroxide, cross-linking agent, silane coupling agent, antioxidant aging agent, light stabilizer and ultraviolet light absorber in parts by mass. .
  • the encapsulating adhesive film of this application is fixed between the solar cell sheet and the backsheet.
  • the adhesive film has excellent visible light transmittance and ultraviolet light blocking properties, so that the solar module not only improves the photoelectric conversion efficiency, but also bonds with the glass. Stronger.
  • This solution can not only improve the optical properties of the EVA film, increase the light cutoff rate, and improve the working efficiency of the battery, but also improve the aging resistance and anti-yellowing performance of the EVA film, extend the service life of the solar cell, and improve the packaging shrinkage rate.
  • the shrinkage rate is small to avoid cell displacement, damage and electrode damage, achieving fast and efficient packaging.
  • the light conversion performance of the film needs to be further improved.
  • CN104610881A discloses an ultra-high cutoff EVA encapsulating film for photovoltaics, which is prepared from the following raw materials in weight percentage: ethylene-vinyl acetate copolymer 87-98%, rare earth organic light converting agent 0.01-1%, Antioxidant 0.05-5%, UV absorber 0.03-4%, cross-linking agent 0.25-2%, silane coupling agent 0.1-4%. This film can cut off all ultraviolet rays below 380-400nm.
  • CN105925205A discloses a production process of ultra-high cutoff EVA encapsulation film; the production process includes the following steps: combining ethylene vinyl acetate copolymer resin with rare earth organic light converting agent, antioxidant, ultraviolet absorber, cross-linking agent and After the silane coupling agent is fully mixed in proportion, it is sequentially extruded, cast, measured, thickness measured, embossed, shaped, trimmed, rolled and packaged to produce an ultra-high cutoff EVA encapsulating film; the EVA film produced by the manufacturing method provided by this design is The transparency and UV aging resistance have been greatly improved, thereby improving the UV aging resistance of the film, increasing the service life of the solar cell module, and playing a good protective role in the back material of the module.
  • the existing UV light conversion film can convert UV light into visible light, it cannot convert all UV light into visible light. Moreover, as the years of outdoor use increase, the UV light conversion efficiency will decrease, so it is harmful to the battery cells. In particular, the protective effect of heterojunction cells needs to be enhanced, and the service life of the adhesive film is limited.
  • Embodiments of this application provide a UV light conversion encapsulation film and a preparation method thereof.
  • the UV light conversion encapsulation film of this application can convert light below 380nm into visible light above 380nm and pass through it, maximizing the power of the component. At the same time, it has good weather resistance, and can shield UV light that is not completely converted and has increased penetration due to reduced conversion efficiency, extending the service life of the adhesive film and enhancing the protection of the cells.
  • embodiments of the present application provide a UV light conversion encapsulating film.
  • One embodiment of the present application provides a UV light conversion encapsulation film, which includes a UV cut-off layer and a UV light conversion layer, and the UV cut-off layer is provided close to the side of the cell sheet;
  • the UV cutoff layer contains the following components:
  • the UV light conversion layer includes the following components:
  • the setting of the UV light conversion layer can convert light below 380nm into visible light above 380nm to pass through, maximizing the power of the component and having good weather resistance; the UV cutoff layer
  • the setting can shield the initial UV light that has not been completely converted, and can shield the aging UV light that has increased penetration due to the decrease in conversion efficiency of the UV light conversion aid; at the same time, as long as the UV light in the UV light conversion layer is converted into The agent is effective, and the converted visible light will not be cut off by the UV cut-off layer, and the module still has gain.
  • the setting of the UV cut-off layer enhances the protection of the battery cells and extends the service life of the adhesive film.
  • the photoconversion agent containing organic components itself has poor UV resistance. Long-term exposure to UV light will reduce its UV light conversion effect, thereby further damaging the cells (especially HJT cells, which are afraid of UV light).
  • UV light that is not converted into visible light can be shielded, thereby protecting the HJT cells and extending the service life of the components.
  • the matrix resin is any one or at least two of ethylene copolymer, polyvinyl butyral, silane grafted ethylene copolymer, ethylene-methacrylic acid ionomer or liquid silica gel. mixture.
  • the ethylene copolymer is a copolymer of ethylene and one or several monomers.
  • the vinyl acetate content in the ethylene-vinyl acetate copolymer is 15 to 40wt%; for example, 15wt%, 16wt%, 17wt%, 18wt%, 19wt%, 20wt%, 21wt%, 22wt%, 23wt% , 24wt%, 25wt%, 26wt%, 27wt%, 28wt%, 29wt%, 30wt%, 31wt%, 32wt%, 33wt%, 34wt%, 35wt%, 36wt%, 37wt%, 38wt%, 39wt% or 40wt %wait.
  • the transmittance of the EVA resin itself is too low and is not suitable for use as an encapsulating film, and the melting point is high and difficult to process; if the VA content is higher than 40%, The melting point of the resin is too low, it is difficult to process, the cost is high, and the aging performance is not good.
  • the ethylene- ⁇ -olefin copolymer is ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-propylene-1-hexene copolymer .
  • the density of the ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, and ethylene-propylene-1-hexene copolymer is 0.86 to 0.89 g/ cm 3 , such as 0.86g/cm 3 , 0.87g/cm 3 , 0.88g/cm 3 , 0.89g/cm 3 , etc. If the density is too low, the melting point of the resin will be too low and difficult to process, and the cost will be high and the aging performance will be poor. Not good; if the density is too high, the optical properties will be poor and the melting point will be high.
  • the ethylene copolymer is an ethylene-vinyl acetate copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-vinyl acetate series multi-component copolymer, and an ethylene-methyl acrylate series multi-component copolymer.
  • the viscosity of the polyvinyl butyral is 60 to 150 cps, such as 60 cps, 70 cps, 80 cps, 90 cps, 100 cps, 110 cps, 120 cps, 130 cps, 140 cps or 150 cps, etc.
  • the ethylene-methacrylic acid ion polymer is any one or at least one of ethylene-sodium methacrylate ion polymer, ethylene-potassium methacrylate ion polymer or ethylene-zinc methacrylate ion polymer. A mixture of both.
  • the silane grafted ethylene copolymer is vinyltrimethylsilane grafted ethylene-1-octene copolymer, vinyltrimethylsilane grafted ethylene-1-butene copolymer, vinyltrimethoxy silane-grafted ethylene-vinyl acetate copolymer, vinyltriethoxysilane-grafted ethylene-1-octene copolymer, vinyltriethylsilane-grafted ethylene-1-butene copolymer, vinyltriethoxysilane-grafted ethylene-1-butene copolymer, Ethoxysilane grafted ethylene-vinyl acetate copolymer, ⁇ -methacryloxypropyltrimethoxysilane grafted ethylene-1-octene copolymer, ⁇ -methacryloxypropyltrimethyl Oxysilane grafted ethylene-1-butene copolymer, ⁇ -methacryloyloxypropy
  • the liquid silica gel is PV800 and PV6100 series liquid silica gel from Dow Corning Company of the United States.
  • the UV light absorbers are 2-hydroxy-4-octoxybenzophenone, ethyl 2-cyano-3,3-diphenyl acrylate, and p-methoxycinnamic acid Ethylhexyl, isooctyl p-methoxycinnamate, 4-methoxybenzylidenemalonate dimethyl ester, N-(2-ethoxyphenyl)-N'-(4-ethyl ylphenyl)-oxanediamide, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, 3,5-di-tert-butyl-4-hydroxybenzoic acid n-hexadecyl ester, 2-(4,6-diphenyl-1,3,5-triazine-2)-5-n-hexyloxyphenol, 2-(4,6-bis(2,4-dimethylphenyl) -1,3,5-Tria
  • the cross-linking agent is tert-butyl peroxide 2-ethylhexyl carbonate, tert-amyl peroxide 2-ethylhexyl carbonate, 2,5-dimethyl-2,5-bis.
  • the co-crosslinking agent is any one or a mixture of at least two of triallyl isocyanurate, triallyl cyanurate and acrylic co-crosslinking agents. .
  • the acrylic co-crosslinking agent is trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated glycerol triacrylate and ethoxylated pentaerythritol tetraacrylate Any one or a mixture of at least two esters;
  • the silane coupling agent is a vinyl silane coupling agent, a chlorohydrocarbyl silane coupling agent, an aminohydrocarbyl silane coupling agent, an epoxy hydrocarbyl silane coupling agent, or methacrylene. Any one or a mixture of at least two of acyloxyalkyl silane coupling agents, sulfur-containing hydrocarbyl silane coupling agents, pseudohalogen silane coupling agents or quaternary ammonium hydrocarbyl silane coupling agents.
  • the auxiliary agent is any one of a light stabilizer and an antioxidant or a mixture of at least two of them;
  • the light stabilizer is any one of a light-shielding agent type light stabilizer, a quencher type light stabilizer, a free radical trapping agent type light stabilizer and a hydroperoxide decomposing agent type light stabilizer, or A mixture of at least two.
  • the antioxidant is any one of hindered phenol antioxidants, aromatic amine antioxidants, phosphite antioxidants, thioether antioxidants and metal passivator antioxidants. species or a mixture of at least two.
  • the matrix resin is any one or at least two of ethylene copolymer, polyvinyl butyral, silane grafted ethylene copolymer, ethylene-methacrylic acid ionomer or liquid silica gel. species mixture.
  • the matrix resin in the UV light conversion layer and the UV cut-off layer may be the same or different, and the ethylene copolymer, polyvinyl butyral, ethylene-methacrylic acid ion in the UV light conversion layer
  • the types of polymer and/or liquid silica gel can refer to the types in the UV cutoff layer, which will not be described again here.
  • the UV light conversion agent is any one or a mixture of at least two of organic fluorescent pigments, rare earth organic complexes, rare earth inorganic compounds, CdSe quantum dots or perovskite quantum dots.
  • a UV penetrating layer is also provided between the UV cut-off layer and the UV light conversion layer.
  • the setting of the UV penetrating layer can prevent the UV absorption additive of the UV cut-off layer from migrating to the UV light conversion layer and weaken the shielding function of the UV cut-off layer. , while affecting the light conversion effect of the UV light conversion layer.
  • the UV penetrating layer includes the following components;
  • the matrix resin is any one or at least two of ethylene copolymer, polyvinyl butyral, silane grafted ethylene copolymer, ethylene-methacrylic acid ionomer or liquid silica gel. species mixture.
  • the matrix resin in the UV penetrating layer, the UV light conversion layer and the UV cut-off layer may be the same or different, and the ethylene copolymer, polyvinyl butyral in the UV penetrating layer
  • the types of ethylene-methacrylic acid ionomer and/or liquid silica gel can be referred to the types in the UV cut-off layer, which will not be described again here.
  • the cross-linking agent, co-cross-linking agent, and silane coupling agent in the UV penetrating layer can refer to the corresponding component types in the UV cut-off layer and UV light conversion layer.
  • the UV penetrating layer described in this application can also be provided on the battery side and the UV cut-off layer, or can also be provided on the UV light conversion layer and the glass side.
  • embodiments of the present application provide a method for preparing a UV light conversion encapsulating film as described in the first aspect, including the following steps:
  • Each layer is mixed according to the formula, and the mixed materials are added to a co-extrusion extruder, plasticized by respective screws, and then combined at the die head to form the UV light conversion encapsulating film with a multi-layer structure.
  • the UV light conversion encapsulation film provided by the embodiment of the present application can convert light below 380nm into visible light above 380nm and pass through it, maximizing the power of the component. It also has good weather resistance and can shield incompletely converted light. As well as the increased penetration of UV light caused by the decrease in conversion efficiency, the service life of the film is extended and the protection of the cells is enhanced.
  • the HJT module has a UV band (280-380nm) transmittance of 3.7-8.8%, a visible light band (380-1100nm) transmittance of 88.14-92.03%, and an initial module power of 336.11-342.84W. After UV 300kwh, the module power is 315.31-336.77W. After UV 300kwh irradiation, the module power attenuation is 1-7%.
  • Figure 1 is a schematic structural diagram of a UV light conversion encapsulating film according to a preferred solution of the present application
  • Figure 2 is a schematic structural diagram of a UV light conversion encapsulating film according to another preferred embodiment of the present application.
  • the base resin EVA model is E282PV, manufactured by Hanwha Total Petrochemical; the base resin POE is Engage 8669; the PVB resin is B-1776 from Changchun Chemical; and the organic fluorescent pigment is Rhodamine B, a fluorescent agent.
  • the UV light conversion encapsulation film of this embodiment includes a UV cutoff layer and a UV light conversion layer, and the UV cutoff layer is placed close to the side of the cell;
  • the UV cutoff layer contains the following components:
  • the UV light conversion layer contains the following components:
  • each layer is mixed according to the formula, it is extruded through multi-layer co-extrusion casting equipment to form a multi-layer structure encapsulating film.
  • the UV light conversion encapsulation film of this embodiment includes a UV cutoff layer and a UV light conversion layer, and the UV cutoff layer is placed close to the side of the cell;
  • the UV cutoff layer contains the following components:
  • the UV light conversion layer contains the following components:
  • each layer is mixed according to the formula, it is extruded through multi-layer co-extrusion casting equipment to form a multi-layer structure encapsulating film.
  • the UV light conversion encapsulation film of this embodiment includes a UV cut-off layer and a UV light conversion layer, and the UV cut-off layer is located close to the side of the cell;
  • the UV cutoff layer contains the following components:
  • the UV light conversion layer contains the following components:
  • the UV light conversion encapsulation film of this embodiment includes a UV cutoff layer and a UV light conversion layer, and the UV cutoff layer is placed close to the side of the cell;
  • the UV cutoff layer contains the following components:
  • the UV light conversion layer contains the following components:
  • the UV light conversion encapsulation film of this embodiment includes a UV cutoff layer, a UV penetration layer and a UV light conversion layer arranged in sequence from top to bottom.
  • the UV cutoff layer is set close to the battery side, and the composition of each layer is as follows:
  • the UV light conversion encapsulation film of this embodiment includes a UV cutoff layer and a UV light conversion layer, and the UV cutoff layer is placed close to the side of the cell;
  • the UV cutoff layer contains the following components:
  • the UV light transmitting layer contains the following components:
  • the UV light conversion layer contains the following components:
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that in the UV cut-off layer, the type of UV light absorber is replaced by nano-titanium dioxide, and the others are the same as those in Embodiment 1.
  • Example 1 The difference between this embodiment and Example 1 is that in the UV cutoff layer, the additive trimethylolpropane triacrylate is replaced by 1,3,5,7-tetravinyl-1,3,5,7- Tetramethylcyclotetrasiloxane, others are the same as those in Example 1.
  • Example 1 The difference between this embodiment and Example 1 is that in the UV cut-off layer, the peroxide cross-linking agent is replaced by photoinitiator 184, and the others are the same as those in Example 1.
  • Example 1 The difference between this embodiment and Example 1 is that the UV light conversion layer and the light conversion agent are replaced with the inorganic fluorescent pigment YD-20 of Yaodexing Company. Others are the same as those in Example 1.
  • Embodiment 6 The difference between this embodiment and Embodiment 6 is that the additive nano-silica is added to the UV penetrating layer, and the others are the same as those in Embodiment 1.
  • Example 1 The difference between this comparative example and Example 1 is that it does not contain a UV cutoff layer, and everything else is the same as Example 1.
  • the adhesive film layer of this comparative example has a single-layer structure, and the components are composed as follows in parts by weight:
  • Example 1 The difference between this comparative example and Example 1 is that the amount of UV light absorber in the UV cut-off layer is 0.01 part, and the other components are the same as those in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the amount of UV light absorber in the UV cut-off layer is 10 parts, and the other components are the same as those in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the UV light conversion layer and the amount of light conversion agent are smaller, 0.005 parts, and the others are the same as those in Example 1.
  • the adhesive films prepared in Examples 1-10 and Comparative Examples 1-5 are used for the preparation of photovoltaic modules.
  • the specific preparation method is:
  • photovoltaic modules specifically include upper glass, upper light conversion film, heterojunction cells, lower light conversion film, and lower glass, all of which are double-glass modules.
  • the upper light conversion adhesive film and the lower light conversion adhesive film are both UV light conversion encapsulation adhesive films of the present application.
  • the test standard for transmittance is carried out with reference to GB/T 29848-2018, the transmittance test is carried out with a specific UV-visible spectrophotometer (PerkinElmer LAMBDA 950), the test standard for module power is carried out with reference to IEC61215, and the anti-PID performance The test is carried out in accordance with IEC61215.
  • the UV light conversion encapsulation film of this application can convert light below 380nm into visible light above 380nm and pass through it, maximizing the power of the component. It also has good weather resistance and can shield incomplete conversion and conversion efficiency. The increased penetration of UV light caused by the decrease extends the service life of the film and enhances the protection of the cells.
  • the HJT module has a UV band (280-380nm) transmittance of 3.7-8.8%, a visible light band (380-1100nm) transmittance of 88.14-92.03%, and an initial module power of 336.11-342.84W. After UV 300kwh, the module power is 315.31-336.77W. After UV 300kwh irradiation, the module power attenuation is 1-7%.
  • the adhesive film of Comparative Example 1 does not contain a UV cutoff layer, which will significantly increase the transmittance of the UV band (280 ⁇ 380nm), and the module power attenuation will increase after UV300kwh aging.
  • the adhesive film in Comparative Example 2 is a single layer, and the UV cut-off layer and UV light conversion layer are not set separately. After UV300kwh aging, the module power decreases significantly.
  • Comparative Example 3 the amount of UV light absorber is too small, and the initial power of the module is large. However, the module power attenuates greatly after UVUV300kwh aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本文公布一种UV光转换封装胶膜及其制备方法。本申请的UV光转换封装胶膜,包括UV截止层和UV光转换层,所述UV截止层靠近电池片侧设置;其中,所述UV截止层包含如下组分:基体树脂、UV光吸收剂、交联剂、助交联剂、硅烷偶联剂、助剂;所述UV光转换层包含如下组分:基体树脂、UV光转换剂、交联剂、助交联剂、硅烷偶联剂、助剂。本申请的UV光转换封装胶膜可将380nm以下的光转换成380nm以上的可见光穿过,最大限度提高了组件的功率,同时具有良好的耐候性,并且可屏蔽未完全转换的以及转换效率下降导致的穿透增多的UV光,延长了胶膜的使用寿命,增强了对电池片的保护作用。

Description

一种UV光转换封装胶膜及其制备方法 技术领域
本申请实施例涉及封装材料技术领域,例如一种UV光转换封装胶膜及其制备方法。
背景技术
太阳光光谱范围为300nm-2400nm,一般可分为紫外光、可见光和红外光。当太阳光入射到太阳能电池组件上时,由于太阳能电池材料本身光线波长响应的限制,太阳能电池只能吸收一部分特定波长的光线。紫外线(Ultraviolet,UV)是电磁波谱中频率为750THz-30PHz,对应真空中波长为380nm-10nm辐射的总称,不能引起人们的视觉。它是频率比蓝紫光高的不可见光。太阳光谱上,紫外线的频率高于可见光线,可以分为UVA(紫外线A,波长380nm-320nm,低频长波)、UVB(波长320nm-280nm,中频中波)、UVC(波长280nm-100nm,高频短波)、EUV(100nm-10nm,超高频)4种。
其中,UVA射线会导致晒黑,紫外线B(UVB)波长较短,能灼伤皮肤。UVC则一般会被臭氧层阻隔。IR是红外线(infrared),可造成晒红、微血管扩张、皮肤炎,并促进紫外线的致癌性。紫外线照射会让皮肤产生大量自由基,导致细胞膜的过氧化反应,使黑色素细胞产生更多的黑色素,并往上分布到表皮角质层,造成黑色斑点。紫外线可以说是造成皮肤皱纹、老化、松弛及黑斑的最大元凶。
现有的太阳能电池表面增加一层光转换层或是直接在封装材料中添加光转换剂,其能够使入射光中太阳能电池响应较差(量子效率低)的波段转换成响应较好(量子效率高)的波段。这样,在不改变太阳能电池自身结构的前提下实现对太阳光的最大利用。但是,在太阳能电池片领域,某些电池片不耐UV光,比如异质结电池片,因此需要UV光转换胶膜对电池片进行保护。
现有的UV光转换胶膜并不能完全将全部UV光转换成可见光,且随着在户外使用年限的增加,UV光转换效率会下降,还是有一部分UV光会直接照射在异质结电池片上,对电池片造成损害。
CN108003801A公开了一种光转化POE胶膜及其封装的光伏组件,所述光 转化POE胶膜由如下重量分数的组份制备而成:POE树脂100份、有机过氧化合物引发剂0.5-2.0份、交联助剂0.5-2.5份、增粘偶联剂0.3-1.5份、光稳定剂0.1-0.6份、紫外光吸收剂0.1-0.6份以及0.05-0.2份的光转化添加剂。该申请光转化POE胶膜加入的光转化添加剂,具有将紫外短波段转化成更长波段的蓝光的功能,解决了常规封装材料下的光伏组件对短波段响应较低的缺陷,大大提高了组件的光电转化效率,提升光伏组件的收益。但是,胶膜中加入紫外光吸收剂后导致组件的工艺增益降低,并且胶膜的UV光转换功能的长期耐候性不好,表面粘结性差,不适用于HJT电池。
CN109486446A公开了一种高截止型太阳能封装胶膜,按质量份主要采用EVA树脂、过氧化物、助交联剂、硅烷偶联剂、抗氧老化剂、光稳定剂和紫外光吸收剂制成。该申请的封装胶膜固定于太阳能电池片与背板之间,该胶膜具有优越的可见光的透光性和紫外光的阻隔性,使太阳能组件不仅提高了光电转换效率,而且与玻璃粘结更牢固。本方案不仅可以改善EVA胶膜光学性能,提高截止光率,使电池的工作效率提高,而且能改善EVA胶膜耐老化性能,抗黄变性能,延长太阳能电池使用寿命,还能改善封装收缩率,封装交联过程中,收缩率小以避免电池片位移、破坏和电极损坏,实现封装的快速高效。但是,该胶膜的光转换性能有待进一步提高。
CN104610881A公开了一种光伏用超高截止EVA封装胶膜,其由以重量百分计算的以下原料制备而成:乙烯-醋酸乙烯共聚物87-98%,稀土有机转光剂0.01-1%,抗氧剂0.05-5%,紫外线吸收剂0.03-4%,交联剂0.25-2%,硅烷偶联剂0.1-4%。该胶膜能够将380-400nm以下的紫外线全部截止。
CN105925205A公开了一种超高截止EVA封装胶膜的生产工艺;所述生产工艺包括以下步骤:将乙烯醋酸乙烯共聚物树脂与稀土有机转光剂、抗氧剂、紫外线吸收剂、交联剂和硅烷偶联剂按比例充分混合后,依次经过挤出流延测厚压花定型切边收卷包装,制得超高截止EVA封装胶膜;本设计提供的制造方法制得的EVA胶膜的透明性和耐紫外老化性能得到了很大的提高,从而改善了胶膜的耐紫外老化性能,提高了太阳能电池组件的使用寿命,对组件的背材起到了很好的保护作用。
但是,上述胶膜的光转换性能有待进一步提高。
现有的UV光转换胶膜虽然可将UV光转换成可见光,但是并不能将全部的 UV光转换成可见光,且随着在户外使用年限的增加,UV光转换效率会下降,因此对电池片特别是异质结电池片的保护作用有待增强,胶膜的使用寿命受限。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种UV光转换封装胶膜及其制备方法,本申请的UV光转换封装胶膜可将380nm以下的光转换成380nm以上的可见光穿过,最大限度提高了组件的功率,同时具有良好的耐候性,并且可屏蔽未完全转换的以及转换效率下降导致的穿透增多的UV光,延长了胶膜的使用寿命,增强了对电池片的保护作用。
第一方面,本申请实施例提供一种UV光转换封装胶膜。
本申请一实施例提供一种UV光转换封装胶膜,包括UV截止层和UV光转换层,所述UV截止层靠近电池片侧设置;
其中,按重量份计,所述UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000001
按重量份计,所述UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000002
本申请的UV光转换封装胶膜,UV光转换层的设置可将380nm以下的光转换成380nm以上的可见光穿过,最大限度提高了组件的功率,同时具有良好的 耐候性;UV截止层的设置,可以屏蔽初始的没有转换完全的UV光,并且可屏蔽老化后的因UV光转换助剂转换效率下降导致的穿透增多的UV光;同时,只要UV光转换层中的UV光转助剂有效,其转换过后的可见光,将不被UV截止层截止,组件仍然有增益,UV截止层的设置,对电池片的保护作用增强,延长了胶膜的使用寿命。
含有机成分的光转换剂本身抗UV能力较差,长期暴露在UV光下,会降低其UV光转换效果,从而进一步损伤电池片(尤其是HJT电池片,HJT电池片怕UV光)。本申请通过设置UV截止层,可以将没有转换成可见光的UV光屏蔽掉,保护了HJT电池片,延长了组件使用寿命。
所述UV截止层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
所述乙烯共聚物是乙烯和一种或者几种单体的共聚物。优选地,所述乙烯-醋酸乙烯共聚物中醋酸乙烯酯含量为15~40wt%;例如为15wt%、16wt%、17wt%、18wt%、19wt%、20wt%、21wt%、22wt%、23wt%、24wt%、25wt%、26wt%、27wt%、28wt%、29wt%、30wt%、31wt%、32wt%、33wt%、34wt%、35wt%、36wt%、37wt%、38wt%、39wt%或40wt%等。如果乙烯-醋酸乙烯共聚物中VA含量低于15%的话,本身EVA树脂透光率太低,不适合作为封装胶膜使用,且熔点较高,难以加工;若VA含量高于40%的话,树脂熔点太低,难以加工,且成本较高,老化性能不好。
优选地,所述乙烯-α-烯烃共聚物为乙烯-1-丁烯共聚物、乙烯-1-己烯共聚物、乙烯-1-辛烯共聚物、乙烯-丙烯-1-己烯共聚物。
优选地,所述乙烯-1-丁烯共聚物、乙烯-1-己烯共聚物、乙烯-1-辛烯共聚物、乙烯-丙烯-1-己烯共聚物的密度为0.86~0.89g/cm 3,例如为0.86g/cm 3、0.87g/cm 3、0.88g/cm 3、0.89g/cm 3等,若密度太低的话,树脂熔点太低难以加工,且成本较高,老化性能不好;若密度太高的话,光学性能差,熔点高。
优选地,所述乙烯共聚物为乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-醋酸乙烯系多元共聚物、乙烯-丙烯酸甲酯系多元共聚物、乙烯-丙烯酸乙酯系多元共聚物、乙烯-甲基丙烯酸甲酯系多元共聚物、乙烯-甲基丙烯酸乙酯系多元共聚物、乙烯-α-烯烃共聚物中的任意一种或至少两 种的混合物。
优选地,所述聚乙烯醇缩丁醛的粘度为60~150cps,例如为60cps、70cps、80cps、90cps、100cps、110cps、120cps、130cps、140cps或150cps等。
优选地,所述乙烯-甲基丙烯酸离子聚合物为乙烯-甲基丙烯酸钠离子聚合物、乙烯-甲基丙烯酸钾离子聚合物或乙烯-甲基丙烯酸锌离子聚合物中的任意一种或至少两种的混合物。
优选地,所述硅烷接枝乙烯共聚物为乙烯基三甲基硅烷接枝乙烯-1-辛烯共聚物、乙烯基三甲基硅烷接枝乙烯-1-丁烯共聚物、乙烯基三甲氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、乙烯基三乙氧基硅烷接枝乙烯-1-辛烯共聚物、乙烯基三乙基硅烷接枝乙烯-1-丁烯共聚物、乙烯基三乙氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-1-辛烯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-1-丁烯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-1-辛烯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-1-丁烯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-醋酸乙烯酯共聚物中的任意一种或至少两种的混合物。
优选地,所述液体硅胶为美国道康宁公司PV800、PV6100系列液体硅胶。
所述UV截止层中,所述UV光吸收剂为2-羟基-4-辛氧基二苯甲酮、2-氰基-3,3-二苯基丙烯酸乙酯、对甲氧基肉桂酸乙基己酯、对甲氧基肉桂酸异辛酯、4-甲氧基苯亚甲基丙二酸二甲酯、N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺、2-(2'-羟基-5'-叔辛基苯基)苯并三唑、3,5-二叔丁基-4-羟基苯甲酸正十六酯、2-(4,6-二苯基-1,3,5-三嗪-2)-5-正己烷氧基苯酚、2-(4,6-双(2,4-二甲基苯基)-1,3,5-三嗪-2-基)-5-辛氧基酚、2-(2'-羟基-5'-甲基苯基)苯并三唑、聚硅氧烷-15中的任意一种或至少两种的混合物。
所述UV截止层中,所述交联剂为过氧化2-乙基己基碳酸叔丁酯、过氧化2-乙基己基碳酸叔戊酯、2,5-二甲基-2,5-双(过氧化叔丁基)己烷、过氧化-3,5,5-三甲基己酸叔丁酯、二(4-甲基苯甲酰)过氧化物、过氧化二苯甲酰、1,1-二叔丁基过氧化环己烷、叔丁基过氧化-2-乙基己基-碳酸酯、正丁基-4,4-二(叔丁基过氧化)戊酸酯、过氧化二异丙苯、α,α′-双(叔丁基过氧化)-1,3-二异丙苯和1,1-双(叔丁基过氧基)-3,3,5-三甲基环己烷中的任意一种或至少两种的混合物。
所述UV截止层中,所述助交联剂为三烯丙基异氰脲酸酯、三聚氰酸三烯 丙酯和丙烯酸类助交联剂中的任意一种或至少两种的混合物。
优选地,所述丙烯酸类助交联剂为三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、丙氧化丙三醇三丙烯酸酯和乙氧基化季戊四醇四丙烯酸酯中的任意一种或至少两种的混合物;
所述UV截止层中,所述硅烷偶联剂为乙烯基类硅烷偶联剂、氯烃基类硅烷偶联剂、氨烃基类硅烷偶联剂、环氧烃基类硅烷偶联剂、甲基丙烯酰氧烷基类硅烷偶联剂、含硫烃基类硅烷偶联剂、拟卤素类硅烷偶联剂或季氨烃基类硅烷偶联剂中的任意一种或至少两种的混合物。
所述UV截止层中,所述助剂为光稳定剂、抗氧剂中的任意一种或至少两种混合物;
优选地,所述光稳定剂为光屏蔽剂类光稳定剂、淬灭剂类光稳定剂、自由基捕获剂类光稳定剂和氢过氧化物分解剂类光稳定剂中的任意一种或至少两种的混合物。
优选地,所述抗氧剂为受阻酚类抗氧剂、芳香胺类抗氧剂、亚磷酸酯类抗氧剂、硫醚类抗氧剂和金属钝化剂类抗氧剂中的任意一种或至少两种的混合物。
所述UV光转换层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
其中,所述UV光转换层和所述UV截止层中的基体树脂可以相同,也可以不同,所述UV光转换层中的乙烯共聚物、聚乙烯醇缩丁醛、乙烯-甲基丙烯酸离子聚合物和或液体硅胶的种类可参照所述UV截止层中的种类,在此不再赘述。
所述UV光转换层中,所述UV光转换剂为有机荧光颜料、稀土有机配合物、稀土无机化合物、CdSe量子点或钙钛矿量子点中的任意一种或至少两种的混合物。
所述UV截止层和UV光转换层之间还设置有UV穿透层,UV穿透层的设置可以防止UV截止层的UV吸收助剂迁徙到UV光转换层,减弱UV截止层的屏蔽功能,同时影响UV光转换层的光转换效果。
按重量份计,所述UV穿透层包含如下组分;
Figure PCTCN2022107876-appb-000003
Figure PCTCN2022107876-appb-000004
所述UV穿透层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
其中,所述UV穿透层、所述UV光转换层和所述UV截止层中的基体树脂可以相同,也可以不同,所述UV穿透层中的乙烯共聚物、聚乙烯醇缩丁醛、乙烯-甲基丙烯酸离子聚合物和或液体硅胶的种类可参照所述UV截止层中的种类,在此不再赘述。同样,所述UV穿透层中,交联剂、助交联剂、硅烷偶联剂可参照所述UV截止层和UV光转换层中的相应组分种类。
另外,本申请所述的UV穿透层还可以设置在电池侧与UV截止层,也可以设置在UV光转换层和玻璃侧。
第二方面,本申请实施例提供一种如第一方面所述的UV光转换封装胶膜的制备方法,包括如下步骤:
各层按配方进行混料,混好的料加入共挤挤出机中,经各自螺杆塑化,至模头处汇合,形成具有多层结构的所述UV光转换封装胶膜。
与相关技术相比,本申请的有益效果为:
本申请实施例提供的UV光转换封装胶膜,可将380nm以下的光转换成380nm以上的可见光穿过,最大限度提高了组件的功率,同时具有良好的耐候性,并且可屏蔽未完全转换的以及转换效率下降导致的穿透增多的UV光,延长了胶膜的使用寿命,增强了对电池片的保护作用。具体的,所做成的HJT组件UV波段(280~380nm)透过率为3.7-8.8%,可见光波段(380-1100nm)透光率为88.14-92.03%,初始组件功率为336.11-342.84W,UV300kwh后组件功率为315.31-336.77W,UV 300kwh辐照后,组件功率衰减为1-7%。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分, 与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请的一个优选方案的UV光转换封装胶膜的结构示意图;
图2为本申请的另一个优选方案的UV光转换封装胶膜的结构示意图;
1-UV截止层;2-UV光转换层;3-UV穿透层。
具体实施方式
下面结合附图1-2,并通过具体实施方式来进一步说明本申请的技术方案。
如无具体说明,本申请的各种原料均可市售购得,或根据本领域的常规方法制备得到。其中,基体树脂EVA的型号E282PV,生产厂家韩华道达尔;基体树脂POE为Engage 8669;PVB树脂为为长春化学的B-1776;有机荧光颜料为罗丹明类荧光剂Rhodamine B。
实施例1
本实施例的UV光转换封装胶膜,包括UV截止层和UV光转换层,UV截止层靠近电池片侧设置;
其中,按重量份计,UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000005
按重量份计,UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000006
Figure PCTCN2022107876-appb-000007
本实施例的UV光转换封装胶膜的制备方法,包括如下步骤:
各层按配方混合好后,经多层共挤流延设备挤出,形成多层结构封装胶膜。
实施例2
本实施例的UV光转换封装胶膜,包括UV截止层和UV光转换层,UV截止层靠近电池片侧设置;
其中,按重量份计,UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000008
按重量份计,UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000009
本实施例的UV光转换封装胶膜的制备方法,包括如下步骤:
各层按配方混合好后,经多层共挤流延设备挤出,形成多层结构封装胶膜。
实施例3
本实施例的UV光转换封装胶膜,包括UV截止层和UV光转换层,UV截 止层靠近电池片侧设置;
其中,按重量份计,UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000010
按重量份计,UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000011
实施例4
本实施例的UV光转换封装胶膜,包括UV截止层和UV光转换层,UV截止层靠近电池片侧设置;
其中,按重量份计,UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000012
按重量份计,UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000013
实施例5
本实施例的UV光转换封装胶膜,包括从上至下依次设置的UV截止层、UV穿透层和UV光转换层,其中,UV截止层靠近电池侧设置,各层组成如下:
本实施例的UV光转换封装胶膜,包括UV截止层和UV光转换层,UV截止层靠近电池片侧设置;
其中,按重量份计,UV截止层包含如下组分:
Figure PCTCN2022107876-appb-000014
按重量份计,UV光穿透层包含如下组分:
Figure PCTCN2022107876-appb-000015
按重量份计,UV光转换层包含如下组分:
Figure PCTCN2022107876-appb-000016
实施例6
本实施例与实施例1的区别之处在于,UV截止层中,UV光吸收剂的类型替换为纳米二氧化钛,其他的与实施例1的均相同。
实施例7
本实施例与实施例1的区别之处在于,UV截止层中,助剂三羟甲基丙烷三丙烯酸酯替换为1,3,5,7-四乙烯基-1,3,5,7-四甲基环四硅氧烷,其他的与实施例1的均相同。
实施例8
本实施例与实施例1的区别之处在于,UV截止层中,过氧化物交联剂替换成光引发剂184,其他的与实施例1的均相同。
实施例9
本实施例与实施例1的区别之处在于,UV光转换层,光转换剂替换为无机荧光颜料耀德兴公司YD-20,其他的与实施例1的均相同。
实施例10
本实施例与实施例6的区别之处在于,UV穿透层中加入助剂纳米二氧化硅,其他的与实施例1的均相同。
对比例1
本对比例与实施例1的区别之处在于,不含UV截止层,其他的与实施例1的均相同。
对比例2
本对比例的胶膜层为单层结构,按重量份计,各组分组成如下:
Figure PCTCN2022107876-appb-000017
对比例3
本对比例与实施例1的区别之处在于,UV截止层中,UV光吸收剂的用量为0.01份,其他的与实施例1的均相同。
对比例4
本对比例与实施例1的区别之处在于,UV截止层中,UV光吸收剂的用量为10份,其他的与实施例1的均相同。
对比例5
本对比例与实施例1的区别之处在于,UV光转换层,光转换剂用量较小,为0.005份,其他的与实施例1的均相同。
将实施例1-10与对比例1-5制得的胶膜用于光伏组件的制备,具体制备方法为:
其中,光伏组件具体包括上层玻璃、上层光转换胶膜、异质结电池片、下层光转换胶膜、下层玻璃,全部都为双玻组件。上层光转换胶膜和下层光转换胶膜均为本申请的UV光转换封装胶膜。
其中,透过率的测试标准参照GB/T 29848-2018进行,透光率测试采用特定的紫外可见分光光度计(PerkinElmer LAMBDA 950)进行测试,组件功率的测试标准参照IEC61215进行,抗PID性能的测试参照IEC61215进行。
表1
Figure PCTCN2022107876-appb-000018
Figure PCTCN2022107876-appb-000019
本申请的UV光转换封装胶膜,可将380nm以下的光转换成380nm以上的可见光穿过,最大限度提高了组件的功率,同时具有良好的耐候性,并且可屏蔽未完全转换的以及转换效率下降导致的穿透增多的UV光,延长了胶膜的使用寿命,增强了对电池片的保护作用。具体的,所做成的HJT组件UV波段(280~380nm)透过率为3.7-8.8%,可见光波段(380-1100nm)透光率为88.14-92.03%,初始组件功率为336.11-342.84W,UV300kwh后组件功率为315.31-336.77W,UV 300kwh辐照后,组件功率衰减为1-7%。
对比例1的胶膜不含UV截止层,会使UV波段(280~380nm)透过率明显变大,UV300kwh老化后组件功率衰减变大。
对比例2的胶膜为单层设置,没有将UV截止层和UV光转换层单独设置,UV300kwh老化后组件功率明显下降。
对比例3中,UV光吸收剂用量太少,组件初始功率较大,但是UVUV300kwh老化后组件功率衰减很大。
对比例4中,UV光吸收剂用量太多,会使组件初始功率变小。
对比例5中,光转换剂用量太少,组件初始功率变小。
本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申 请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 一种UV光转换封装胶膜,其包括UV截止层和UV光转换层,所述UV截止层靠近电池片侧设置;
    其中,按重量份计,所述UV截止层包含如下组分:
    Figure PCTCN2022107876-appb-100001
    按重量份计,所述UV光转换层包含如下组分:
    Figure PCTCN2022107876-appb-100002
  2. 根据权利要求1所述的UV光转换封装胶膜,其中,所述UV截止层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
  3. 根据权利要求1所述的UV光转换封装胶膜,其中,所述乙烯共聚物为乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-醋酸乙烯系多元共聚物、乙烯-丙烯酸甲酯系多元共聚物、乙烯-丙烯酸乙酯系多元共聚物、乙烯-甲基丙烯酸甲酯系多元共聚物、乙烯-甲基丙烯酸乙酯系多元共聚物、乙烯-α-烯烃共聚物中的任意一种或至少两种的混合物。
  4. 根据权利要求3所述的UV光转换封装胶膜,其中,所述乙烯-醋酸乙烯共聚物中醋酸乙烯酯含量为15~40wt%。
  5. 根据权利要求3所述的UV光转换封装胶膜,其中,所述乙烯-α-烯烃共聚物为乙烯-1-丁烯共聚物、乙烯-1-己烯共聚物、乙烯-1-辛烯共聚物、乙烯-丙烯-1-己烯共聚物。
  6. 根据权利要求5所述的UV光转换封装胶膜,其中,所述乙烯-1-丁烯共 聚物、乙烯-1-己烯共聚物、乙烯-1-辛烯共聚物、乙烯-丙烯-1-己烯共聚物的密度为0.86~0.89g/cm 3
  7. 根据权利要求2-6之一所述的UV光转换封装胶膜,其中,所述聚乙烯醇缩丁醛的粘度为60~150cps;
    优选地,所述乙烯-甲基丙烯酸离子聚合物为乙烯-甲基丙烯酸钠离子聚合物、乙烯-甲基丙烯酸钾离子聚合物或乙烯-甲基丙烯酸锌离子聚合物中的任意一种或至少两种的混合物;
    优选地,所述硅烷接枝乙烯共聚物为乙烯基三甲基硅烷接枝乙烯-1-辛烯共聚物、乙烯基三甲基硅烷接枝乙烯-1-丁烯共聚物、乙烯基三甲氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、乙烯基三乙氧基硅烷接枝乙烯-1-辛烯共聚物、乙烯基三乙基硅烷接枝乙烯-1-丁烯共聚物、乙烯基三乙氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-1-辛烯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-1-丁烯共聚物、γ-甲基丙烯酰氧基丙基三甲氧基硅烷接枝乙烯-醋酸乙烯酯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-1-辛烯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-1-丁烯共聚物、异氰酸酯基三乙氧基硅烷接枝乙烯-醋酸乙烯酯共聚物中的任意一种或至少两种的混合物;
    优选地,所述液体硅胶为美国道康宁公司PV800、PV6100系列液体硅胶。
  8. 根据权利要求1-7之一所述的UV光转换封装胶膜,其中,所述UV截止层中,所述UV光吸收剂为2-羟基-4-辛氧基二苯甲酮、2-氰基-3,3-二苯基丙烯酸乙酯、对甲氧基肉桂酸乙基己酯、对甲氧基肉桂酸异辛酯、4-甲氧基苯亚甲基丙二酸二甲酯、N-(2-乙氧基苯基)-N'-(4-乙基苯基)-乙二酰胺、2-(2'-羟基-5'-叔辛基苯基)苯并三唑、3,5-二叔丁基-4-羟基苯甲酸正十六酯、2-(4,6-二苯基-1,3,5-三嗪-2)-5-正己烷氧基苯酚、2-(4,6-双(2,4-二甲基苯基)-1,3,5-三嗪-2-基)-5-辛氧基酚、2-(2'-羟基-5'-甲基苯基)苯并三唑、聚硅氧烷-15中的任意一种或至少两种的混合物。
  9. 根据权利要求1-8之一所述的UV光转换封装胶膜,其中,所述UV截止层中,所述交联剂为过氧化2-乙基己基碳酸叔丁酯、过氧化2-乙基己基碳酸叔戊酯、2,5-二甲基-2,5-双(过氧化叔丁基)己烷、过氧化-3,5,5-三甲基己酸叔丁酯、二(4-甲基苯甲酰)过氧化物、过氧化二苯甲酰、1,1-二叔丁基过氧化环己烷、叔丁基过氧化-2-乙基己基-碳酸酯、正丁基-4,4-二(叔丁基过氧化)戊酸酯、过氧化 二异丙苯、α,α′-双(叔丁基过氧化)-1,3-二异丙苯和1,1-双(叔丁基过氧基)-3,3,5-三甲基环己烷中的任意一种或至少两种的混合物;
    优选地,所述助交联剂为三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯和丙烯酸类助交联剂中的任意一种或至少两种的混合物;
    优选地,所述丙烯酸类助交联剂为三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、丙氧化丙三醇三丙烯酸酯和乙氧基化季戊四醇四丙烯酸酯中的任意一种或至少两种的混合物;
    优选地,所述硅烷偶联剂为乙烯基类硅烷偶联剂、氯烃基类硅烷偶联剂、氨烃基类硅烷偶联剂、环氧烃基类硅烷偶联剂、甲基丙烯酰氧烷基类硅烷偶联剂、含硫烃基类硅烷偶联剂、拟卤素类硅烷偶联剂或季氨烃基类硅烷偶联剂中的任意一种或至少两种的混合物。
  10. 根据权利要求1-9之一所述的UV光转换封装胶膜,其中,所述UV截止层中,所述助剂为光稳定剂、抗氧剂中的任意一种或至少两种混合物;
    优选地,所述光稳定剂为光屏蔽剂类光稳定剂、淬灭剂类光稳定剂、自由基捕获剂类光稳定剂和氢过氧化物分解剂类光稳定剂中的任意一种或至少两种的混合物;
    优选地,所述抗氧剂为受阻酚类抗氧剂、芳香胺类抗氧剂、亚磷酸酯类抗氧剂、硫醚类抗氧剂和金属钝化剂类抗氧剂中的任意一种或至少两种的混合物。
  11. 根据权利要求1-10之一所述的UV光转换封装胶膜,其中,所述UV光转换层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
  12. 根据权利要求1-11之一所述的UV光转换封装胶膜,其中,所述UV光转换层中,所述UV光转换剂为有机荧光颜料、稀土有机配合物、稀土无机化合物、CdSe量子点或钙钛矿量子点中的任意一种或至少两种的混合物。
  13. 根据权利要求1-12任一项所述的UV光转换封装胶膜,其中,所述UV截止层和UV光转换层之间还设置有UV穿透层;
    按重量份计,所述UV穿透层包含如下组分;
    Figure PCTCN2022107876-appb-100003
    Figure PCTCN2022107876-appb-100004
  14. 根据权利要求13所述的UV光转换封装胶膜,其中,所述UV穿透层中,所述基体树脂为乙烯共聚物、聚乙烯醇缩丁醛、硅烷接枝乙烯共聚物、乙烯-甲基丙烯酸离子聚合物或液体硅胶中的任意一种或至少两种的混合物。
  15. 一种如权利要求1-14任一项所述的UV光转换封装胶膜的制备方法,其包括如下步骤:各层按配方进行混料,混好的料加入共挤挤出机中,经各自螺杆塑化,至模头处汇合,形成具有多层结构的所述UV光转换封装胶膜。
PCT/CN2022/107876 2022-06-23 2022-07-26 一种uv光转换封装胶膜及其制备方法 WO2023245798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210724612.X 2022-06-23
CN202210724612.XA CN114958215B (zh) 2022-06-23 2022-06-23 一种uv光转换封装胶膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023245798A1 true WO2023245798A1 (zh) 2023-12-28

Family

ID=82965436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107876 WO2023245798A1 (zh) 2022-06-23 2022-07-26 一种uv光转换封装胶膜及其制备方法

Country Status (2)

Country Link
CN (1) CN114958215B (zh)
WO (1) WO2023245798A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426227B (zh) * 2023-06-13 2023-08-11 江苏鹿山新材料有限公司 一种含复合光转换剂的光转胶膜及其制备方法和光伏组件
CN117700442B (zh) * 2024-02-05 2024-05-28 常州百佳年代薄膜科技股份有限公司 N位改性的苯并三氮唑转光剂、转光胶膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464898B1 (en) * 1998-11-20 2002-10-15 Idemitsu Kosan Co., Ltd. Fluorescence conversion medium and display device comprising it
CN102891203A (zh) * 2012-10-06 2013-01-23 保定天威薄膜光伏有限公司 荧光转换白色封装材料及使用该封装材料的太阳能电池
CN104428907A (zh) * 2012-02-01 2015-03-18 日东电工株式会社 提高太阳能采收效率的玻璃板上的波长转换层
CN105860864A (zh) * 2015-02-06 2016-08-17 Lg化学株式会社 色彩转换膜和包括所述色彩转换膜的背光单元及显示设备
CN107735700A (zh) * 2015-08-19 2018-02-23 松下知识产权经营株式会社 波长转换滤波器和其制造方法以及太阳能电池模块
CN110637070A (zh) * 2018-02-06 2019-12-31 苏州赛伍应用技术股份有限公司 一种太阳能电池用封装胶膜及其制备方法和应用
CN111087940A (zh) * 2019-12-11 2020-05-01 苏州赛伍应用技术股份有限公司 一种导光复合封装胶膜及其制备方法和应用
CN213534115U (zh) * 2020-08-05 2021-06-25 常州斯威克光伏新材料有限公司 一种对光具有漫反射作用的光伏组件用白色封装胶膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623533B (zh) * 2012-03-16 2014-07-23 友达光电股份有限公司 可吸收紫外光波段的太阳能模块及其制作方法
CN102863918B (zh) * 2012-10-19 2014-07-30 杭州索康博能源科技有限公司 一种高效率太阳能封装胶膜
CN114058271A (zh) * 2021-12-22 2022-02-18 苏州赛伍应用技术股份有限公司 一种不同uv吸收波段的胶膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464898B1 (en) * 1998-11-20 2002-10-15 Idemitsu Kosan Co., Ltd. Fluorescence conversion medium and display device comprising it
CN104428907A (zh) * 2012-02-01 2015-03-18 日东电工株式会社 提高太阳能采收效率的玻璃板上的波长转换层
CN102891203A (zh) * 2012-10-06 2013-01-23 保定天威薄膜光伏有限公司 荧光转换白色封装材料及使用该封装材料的太阳能电池
CN105860864A (zh) * 2015-02-06 2016-08-17 Lg化学株式会社 色彩转换膜和包括所述色彩转换膜的背光单元及显示设备
CN107735700A (zh) * 2015-08-19 2018-02-23 松下知识产权经营株式会社 波长转换滤波器和其制造方法以及太阳能电池模块
CN110637070A (zh) * 2018-02-06 2019-12-31 苏州赛伍应用技术股份有限公司 一种太阳能电池用封装胶膜及其制备方法和应用
CN111087940A (zh) * 2019-12-11 2020-05-01 苏州赛伍应用技术股份有限公司 一种导光复合封装胶膜及其制备方法和应用
CN213534115U (zh) * 2020-08-05 2021-06-25 常州斯威克光伏新材料有限公司 一种对光具有漫反射作用的光伏组件用白色封装胶膜

Also Published As

Publication number Publication date
CN114958215B (zh) 2023-07-07
CN114958215A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023245798A1 (zh) 一种uv光转换封装胶膜及其制备方法
JP4034382B2 (ja) 太陽電池モジュール用保護シート
EP2056356B1 (en) Composition for solar cell sealing film, solar cell sealing film, and solar cell using the sealing film
JP5922232B2 (ja) 太陽電池モジュール
CN102732160B (zh) 提高太阳能电池组件光谱转换效率的eva封装胶膜
EP2262001B1 (en) Pair of sealing films and solar battery using the pair of sealing films
EP3739002B1 (en) Photovoltaic encapsulation material with high light transmittance
CN109161349B (zh) 一种采用成核增透剂的高透光率的光伏封装材料
WO2023236539A1 (zh) 一种封装胶膜及其应用
CN106189932A (zh) 高光电转化效率的太阳能电池组件及其制备方法
CN114058271A (zh) 一种不同uv吸收波段的胶膜及其制备方法
WO2023115943A1 (zh) 封装胶膜及光伏组件
EP2117049A1 (en) Solar cell sealing film and solar cell utilizing the same
CN114854331B (zh) 一种紫外截止型eva光伏胶膜及其制备方法和光伏组件
JP2013133447A (ja) 蛍光物質複合材料
KR20160143642A (ko) 태양 전지용 봉지막 및 이것을 사용한 태양 전지
KR20080106761A (ko) 태양전지용 점착제 조성물
JP2016021433A (ja) 太陽電池モジュール用の封止材シート及びその製造方法
CN106047194B (zh) 紫外光转化太阳能电池封装胶膜及其制备方法
CN114716948A (zh) 一种uv光转换封装材料及其制备方法和应用
JP5351630B2 (ja) 太陽電池用封止膜、及びこれを用いた太陽電池
CN204271109U (zh) 一种低封装损失光伏电池组件
JP5940661B2 (ja) 太陽電池モジュール
JP6303365B2 (ja) 太陽電池モジュール用の封止材シートの製造方法
KR101514028B1 (ko) 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947543

Country of ref document: EP

Kind code of ref document: A1