WO2023233573A1 - 磁気ギア装置 - Google Patents

磁気ギア装置 Download PDF

Info

Publication number
WO2023233573A1
WO2023233573A1 PCT/JP2022/022284 JP2022022284W WO2023233573A1 WO 2023233573 A1 WO2023233573 A1 WO 2023233573A1 JP 2022022284 W JP2022022284 W JP 2022022284W WO 2023233573 A1 WO2023233573 A1 WO 2023233573A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rotor
magnetic gear
torque
poles
Prior art date
Application number
PCT/JP2022/022284
Other languages
English (en)
French (fr)
Inventor
広大 岡崎
純士 北尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022284 priority Critical patent/WO2023233573A1/ja
Publication of WO2023233573A1 publication Critical patent/WO2023233573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • This application relates to a magnetic gear device.
  • the magnetic gears constituting a conventional magnetic gear device include a cylindrical inner magnet tube with a plurality of magnets arranged in parallel on the outer periphery, a cylindrical outer magnet tube with a plurality of magnets arranged in parallel on the inner periphery, and A cylindrical magnetic tube in which a plurality of magnetic bodies are arranged in parallel at equal intervals in the circumferential direction is coaxially arranged with the magnetic tube interposed between the inner magnet tube and the outer magnet tube. Any two of the inner magnet cylinder, outer magnet cylinder, and magnetic cylinder are used as a rotor, and the remaining one is used as a stator to transmit rotational torque.
  • the magnetic body has a rod shape extending parallel to the axial direction of the magnetic tube, and the magnets of the inner magnet tube and the outer magnet tube are located between one end and the other end in the axial direction. They are arranged in a skewed manner with positional deviations in the same direction in the respective circumferential directions.
  • the present application discloses a technology for solving the above-mentioned problems, and provides a magnetic gear device that can reduce torque pulsation output from a combination of a magnetic gear and a rotating electric machine and suppress speed vibration on the output side.
  • the purpose is to provide.
  • a further object is to manufacture such a magnetic gear device easily and at low cost.
  • the magnetic gear device disclosed in the present application includes an inner magnet cylinder in which a plurality of first permanent magnets are arranged on the outer periphery to form a small-pole mechanism, and a plurality of second permanent magnets are arranged in the inner periphery to form a multi-pole mechanism.
  • N pole pieces made of a soft magnetic material are arranged at equal intervals in the circumferential direction, and N pole pieces made of a soft magnetic material are arranged between the inner magnet barrel and the outer magnet barrel with a magnetic gap between the inner magnet barrel and the outer magnet barrel, respectively.
  • one of the inner magnet barrel, the outer magnet barrel and the magnetic barrel is connected to a first rotor to an input part, and the other one is connected to an output part.
  • the rotary electric machine includes a second rotor, a magnetic gear using the remaining one as a stator, a rotor having M1 permanent magnets, and a stator having M2 teeth.
  • the input part of the magnetic gear is connected to the rotating shaft of the rotating electrical machine, and transmits the input rotational force to the output part. and a first condition that a first numerical value based on the least common multiple of the number N of the pole pieces and the number of poles of one of the first and second rotors matches the least common multiple M of M1 and M2; This satisfies at least one of the second condition of being equal to a number multiplied by a multiple of 3.
  • torque pulsation output from the combination of the magnetic gear and the rotating electric machine can be reduced, and speed vibration on the output side can be suppressed. Further, such a magnetic gear device can be manufactured easily and at low cost.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the configuration of a rotating electric machine in a magnetic gear device according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing the configuration of a magnetic gear in the magnetic gear device according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view showing the positional relationship of each part of the magnetic gear according to the first embodiment.
  • FIG. 3 is a waveform chart showing magnetic gear torque of the magnetic gear device according to the first embodiment.
  • FIG. 2 is a partial cross-sectional view showing the positional relationship of each part of the rotating electric machine according to the first embodiment.
  • FIG. 2 is a waveform diagram showing the rotating electrical machine torque when no current is applied in the magnetic gear device according to the first embodiment.
  • FIG. 2 is a waveform diagram showing rotating electrical machine torque, magnetic gear torque, and composite torque when no current is applied in the magnetic gear device according to the first embodiment.
  • 5 is a waveform diagram showing a change in torque pulsation of a composite torque according to a phase shift of a rotor of a rotating electric machine in the magnetic gear device according to the first embodiment.
  • FIG. FIG. 3 is a diagram showing the amplitude of a frequency analysis result of magnetic gear torque in the magnetic gear device according to the first embodiment. In the magnetic gear device according to the first embodiment, it is a diagram showing the amplitude of the frequency analysis result of the rotating electric machine torque.
  • FIG. 1 is a waveform diagram showing the rotating electrical machine torque when no current is applied in the magnetic gear device according to the first embodiment.
  • FIG. 2 is a waveform diagram showing rotating electrical machine torque, magnetic gear torque, and composite torque when no current
  • FIG. 3 is a waveform diagram showing a generalized sixth-order component of torque in the magnetic gear device according to the first embodiment.
  • FIG. 2 is a waveform diagram showing a generalized twelfth order component of torque in the magnetic gear device according to the first embodiment.
  • FIG. 2 is a waveform diagram generally showing torque pulsations of the sixth-order component and the twelfth-order component of the composite torque in the magnetic gear device according to the first embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to another example of the first embodiment.
  • FIG. 7 is a waveform diagram showing rotating electrical machine torque, magnetic gear torque, and composite torque when current is applied in the magnetic gear device according to the second embodiment.
  • FIG. 7 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to a third embodiment.
  • FIG. 7 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to a fourth embodiment.
  • FIG. 7 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to a fourth embodiment.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to the first embodiment.
  • the magnetic gear device 100 is composed of a drive unit including a rotating electrical machine 10 and a magnetic gear 20.
  • FIG. 2 is a cross-sectional view showing the configuration of the rotating electrical machine 10 in the magnetic gear device 100, taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view showing the configuration of the magnetic gear 20 in the magnetic gear device 100, taken along the line BB in FIG.
  • a shaft serving as a rotating shaft 11 of a rotating electric machine 10 is connected to an input section 21 of a magnetic gear 20, and the magnetic gear 20 transmits the rotational force input to the input section 21 to an output section 22.
  • the input section 21 of the magnetic gear 20 is integrally configured with the rotating shaft 11 of the rotating electric machine 10.
  • the rotating electrical machine 10 includes a rotor 12 and a stator 15 provided around the outer periphery of the rotor 12 via a magnetic gap.
  • the rotor 12 includes a plurality (M1) of permanent magnets 13 serving as magnetic poles, eight in this case, arranged in parallel in the circumferential direction on the outer peripheral surface of the rotor core 14 .
  • the permanent magnets 13 are radially magnetized and arranged so that the polarities of adjacent permanent magnets 13 are reversed.
  • the stator 15 has a plurality (M2) of teeth 16, 12 in this case, that protrude toward the magnetic gap, and a coil 17 is wound around each tooth 16.
  • the rotating electric machine 10 is an example of an 8-pole, 12-slot concentrated winding structure having 8 permanent magnets 13 and 12 teeth 16. Note that in FIG. 2, illustration of the coil 17 is omitted for convenience.
  • the magnetic gear 20 includes an inner magnet tube 23 that constitutes a small-pole mechanism with a small number of magnetic poles, an outer magnet tube 26 that constitutes a multi-pole mechanism that has a large number of magnetic poles, and a magnetic gear 20 that is arranged between the inner magnet tube 23 and the outer magnet tube 26.
  • a magnetic cylinder 30 is provided, which is disposed through a magnetic gap 31 from each side.
  • the inner magnet cylinder 23 includes a plurality of first permanent magnets 25, in this case eight, which serve as magnetic poles and are arranged in parallel in the circumferential direction on the outer peripheral surface of a cylindrical support body 24.
  • the first permanent magnets 25 are radially magnetized and arranged so that the polarities of adjacent first permanent magnets 25 are reversed.
  • the outer magnet tube 26 includes a plurality of second permanent magnets 28, in this case 40 pieces, which serve as magnetic poles and are arranged in parallel in the circumferential direction on the inner peripheral surface of a cylindrical support body 27.
  • the second permanent magnets 28 are radially magnetized and arranged so that the polarities of adjacent second permanent magnets 28 are reversed.
  • the magnetic tube 30 disposed between the inner magnet tube 23 and the outer magnet tube 26 is composed of N (24 in this case) pole pieces 29 made of soft magnetic material arranged at equal intervals in the circumferential direction. be done.
  • the parts that generate driving force and gear action are made of magnetic material. This portion is protected by a frame (rotating electric machine frame 18, magnetic gear frame 32) and a bracket (rotating electric machine bracket 19, magnetic gear bracket 33) made of structural members such as iron or non-magnetic material.
  • the magnetic gear 20 has an inner magnet tube 23, an outer magnet tube 26, and a magnetic tube 30 arranged concentrically, and one of these three is connected to the first rotor connected to the input section 21, and the other one is connected to the first rotor connected to the input section 21.
  • the second rotor connected to the output section 22 and the remaining one are used as a stator.
  • the inner magnet tube 23 is used as a first rotor
  • the outer magnet tube 26 is used as a second rotor
  • the magnetic tube 30 is used as a stator.
  • the rotor 12 of the rotating electric machine 10 and the first rotor (inner magnet cylinder 23 ) and second rotor (outer magnet cylinder 26 ) of the magnetic gear 20 are supported by a plurality of bearings 35 .
  • the rotor 12 of the rotating electric machine 10 and the first rotor (inner magnet tube 23) of the magnetic gear 20 are provided coaxially, and the first rotor (inner magnet tube 23) of the magnetic gear 20 is provided on the same axis. rotates together with the rotating shaft 11 of the rotating electric machine 10.
  • the first permanent magnet 25 of the first rotor (inner magnet tube 23) rotates so as to sequentially cross the pole piece 29 of the magnetic tube 30, which is a stator, and the second permanent magnet of the second rotor (outer magnet tube 26) 28 is given a magnetomotive force.
  • the second rotor (outer magnet tube 26) rotates in the opposite direction to the first rotor (inner magnet tube 23).
  • the magnetic gear device 100 is configured as described above, and the driving force generated by the rotating electric machine 10 is decelerated to increase torque or accelerated to decrease torque by the magnetic gear 20, and is outputted to an output section corresponding to the output shaft of the magnetic gear 20. Output from 22.
  • a configuration for decelerating and increasing torque is shown.
  • the number of first permanent magnets 25 in the first rotor (inner magnet tube 23) is 8
  • the number of second permanent magnets 28 in the second rotor (outer magnet tube 26) is 40
  • FIG. 4 is a partial cross-sectional view showing the positional relationship of each part of the magnetic gear 20.
  • FIG. 5 is a waveform diagram showing the magnetic gear torque of the magnetic gear device 100.
  • FIG. 6 is a partial cross-sectional view showing the positional relationship of each part of the rotating electrical machine 10.
  • the rotor core 14 and permanent magnet 13, and one tooth 16 of the stator 15 in the circumferential range (mechanical angle range of 45 degrees) of one permanent magnet 13 of the rotor 12 of the rotating electric machine 10 are shown. Extracted and illustrated.
  • the circumferential magnetic pole center position (center line 43) of the rotor 12 rotating in the direction of the arrow 42 coincides with the circumferential center position (center line 44) of the teeth 16 as a reference.
  • the phase shift of the directional magnetic pole center position (center line 43) from the circumferential center position (center line 44) of the teeth 16 is indicated by ⁇ .
  • FIG. 7 is a waveform diagram showing the rotating electrical machine torque when no current is applied.
  • the torque waveform without a phase shift is shown by a dotted line
  • the torque waveform with a phase shift ⁇ is shown by a solid line.
  • the torque waveform without phase shift has an initial angle of 0° when it includes a cross section where the circumferential magnetic pole center position of the rotor 12 and the circumferential center position of the teeth 16 coincide.
  • the torque waveform of the phase shift ⁇ has an initial angle of 0° when it includes a cross section in which the circumferential magnetic pole center position of the rotor 12 is shifted from the circumferential center position of the teeth 16 by the phase ⁇ .
  • the rotating electrical machine torque has torque pulsations whose main components are six vibrations, similar to the above-mentioned magnetic gear torque.
  • the principle for determining the number of vibrations (order) of the rotating electric machine 10 is also the same as that for the magnetic gear 20, except that the periodically arranged pole pieces 29 correspond to the teeth 16. That is, the number of torque pulsations when the rotor 12 rotates 360 degrees in mechanical angle is a multiple of the least common multiple M of the number of poles of the rotor 12, which is the number of permanent magnets 13, and the number of teeth 16.
  • the least common multiple M(8, 12) 24
  • the rotor 12 of the rotating electric machine 10 and the first rotor (inner magnet tube 23) of the magnetic gear 20 are connected, and the combined torque of the rotating electric machine torque and the magnetic gear torque becomes the total torque.
  • the least common multiple LCM of the number of first permanent magnets 25 of the first rotor (inner magnet cylinder 23) of the magnetic gear 20 and the number of pole pieces 29 is the number of poles of the rotor 12 of the rotating electric machine 10. and the number of teeth 16 match the least common multiple M.
  • the order components of the main torque pulsations per revolution) are both 24 and the same.
  • Torque pulsation varies depending on the relative relationship between the following two positional relationships.
  • One is the positional relationship between the pole piece 29 of the magnetic gear 20 and the teeth 16 of the rotating electric machine 10.
  • the other is the permanent magnet 13 of the rotor 12 of the rotating electrical machine 10 and the first permanent magnet of the first rotor (inner magnet cylinder 23) of the magnetic gear 20 to which the rotor 12 of the rotating electrical machine 10 and the shaft (rotating shaft 11) are connected. This is the positional relationship with the magnet 25.
  • FIG. 8 is a waveform diagram showing the rotating electric machine torque, magnetic gear torque, and composite torque in the magnetic gear device 100 when no current is applied.
  • the torque waveform of the rotating electrical machine 10 dashed line
  • the torque waveform of the magnetic gear 20 dashed line
  • the composite torque waveform solid line
  • the difference (PP) between the maximum value and the minimum value of the waveform which is the magnitude T ⁇ of torque pulsation of the composite torque waveform, is compared with the torque waveform of the rotating electric machine 10 and the torque waveform of the magnetic gear 20.
  • the torque pulsation has been significantly reduced.
  • FIG. 9 is a waveform diagram showing a change in torque pulsation of the composite torque according to the phase shift ⁇ of the rotor 12 of the rotating electric machine 10 in the magnetic gear device 100.
  • the shift phase ⁇ is changed.
  • the variation in the magnitude of torque pulsation (PP) according to the phase shift ⁇ is shown.
  • T ⁇ The magnitude of the torque pulsation, which is smaller between the magnitude of the torque pulsation of the rotating electric machine torque and the magnitude of the torque pulsation of the magnetic gear torque, is defined as T ⁇ .
  • T ⁇ is the magnitude of torque pulsation of the magnetic gear torque, and is approximately 5.0.
  • FIG. 10 is a diagram showing the amplitude of the frequency analysis result of the magnetic gear torque in the magnetic gear device 100.
  • FIG. 11 is a diagram showing the amplitude of the frequency analysis result of the rotating electric machine torque in the magnetic gear device 100.
  • the main components of each torque pulsation of the magnetic gear torque and rotating electric machine torque include components that are multiples of the least common multiple of the numbers of permanent magnets (25, 13) and magnetic bodies (teeth 16, pole piece 29).
  • the 1x and 2x components are dominant.
  • the magnitude relationship between the two components differs depending on the structure of the rotating electric machine 10 and the magnetic gear 20.
  • FIG. 12 is a generalized waveform diagram showing the sixth order component of torque in the magnetic gear device 100.
  • a generalized torque waveform in which only the sixth-order component is extracted and the amplitude is set to 1 is shown for 360 degrees of electrical angle.
  • the torque pulsation magnitude TA is 2.0.
  • FIG. 13 is a waveform diagram showing a generalized twelfth order component of torque in the magnetic gear device 100.
  • the magnitude TB of torque pulsation is 2.0.
  • the dotted line indicates the case where the maximum value of the torque waveform is the initial angle
  • the solid line indicates the torque waveform when there is a phase shift by the phase shift ⁇ .
  • FIG. 14 is a waveform diagram generalizing the torque pulsations of the sixth-order component and the twelfth-order component of the composite torque in the magnetic gear device 100.
  • FIG. 14 shows changes in torque pulsation according to the shift phase ⁇ for the sixth-order component composite torque and the twelfth-order component composite torque generated based on FIGS. 12 and 13.
  • the phase shift ⁇ is changed.
  • the variation in the magnitude of torque pulsation (PP) according to the phase shift ⁇ is shown.
  • the range of ⁇ (12.3° ⁇ 25.5°) shown in FIG. 9 is an example based on the configuration of the rotating electric machine 10 and the magnetic gear 20 of the magnetic gear device 100 according to this embodiment, and the range of ⁇ shown in FIG. Since it is within the ⁇ range (10° ⁇ 50°), it can be explained that a reduction effect appears due to synthesis.
  • the order of torque pulsation is set to the least common multiple M of the number of poles of the rotor 12 and the number of teeth 16 of the rotating electric machine 10, and components that vibrate M times and 2M times per 360° mechanical rotation of the rotor 12 are defined as the order of torque pulsation. Can be reduced. If we apply the above considerations for electrical angle to mechanical angle, the range of shift phase ⁇ (: mechanical angle) in which torque pulsation can be reduced is (360/M/6)° ⁇ ((360/M/ 6) ⁇ 5))°.
  • the least common multiple LCM of the number N of pole pieces 29 of the magnetic gear 20 and the number of poles of the first rotor is the number of poles of the rotor 12 of the rotating electric machine 10. and the number of teeth 16 match the least common multiple M.
  • the magnetic gear device 100 which is a combination of the magnetic gear 20 and the rotating electric machine 10, can reduce output torque pulsations and suppress speed vibrations on the output side.
  • the first and second permanent magnets 25 and 27 used in the magnetic gear 20 do not require any special processing, and the magnetic gear device 100 can be manufactured easily and at low cost.
  • the circumferential magnetic pole center of the first rotor coincides with the circumferential center position of the fixed pole piece 29
  • the circumferential magnetic pole center of the rotor 12 coincides with the circumferential center position of the teeth 16 .
  • the number of poles of the first rotor (inner magnet tube 23) of the magnetic gear 20 matches the number of poles of the rotor 12 of the rotating electric machine 10. This makes it possible to design the permanent magnet 13 of the rotor 12 of the rotating electrical machine 10 and the first permanent magnet 25 of the first rotor (inner magnet tube 23) of the magnetic gear 20 using products with the same specifications, which reduces manufacturing costs. can be reduced.
  • the required specifications of the rotating electric machine 10 are usually determined first from the viewpoint of output and efficiency, and the number of poles of the rotor 12 and the number of teeth 16 are determined accordingly.
  • the magnetic gear 20 is selected so that the torque pulsations of the magnetic gear torque and the torque pulsations of the rotating electric machine torque can be reduced by canceling each other out. That is, the main order of the torque pulsation generated by the magnetic gear 20 is equal to or higher than the order of the torque pulsation generated by the rotating electric machine 10.
  • the number of poles of the first rotor (inner magnet tube 23) connected to the output shaft of the rotating electrical machine 10 is preferably greater than or equal to the number of poles of the rotor 12 of the rotating electrical machine 10.
  • the order of torque pulsation of the magnetic gear 20 is dominated by the least common multiple LCM of the number N of pole pieces 29 and the number of poles of the first rotor (inner magnet cylinder 23).
  • the component of an order smaller than the order component of the torque pulsation generated by the rotating electrical machine 10 is increased. Therefore, there is a concern that the effect of reducing torque pulsation cannot be obtained as a whole.
  • an 8-pole first rotor (inner magnet cylinder 23) forming a small-pole mechanism
  • a 40-pole second rotor (outer magnet cylinder 26) forming a multi-pole mechanism
  • a magnetic cylinder 30 A magnetic gear device 100 is shown in which a magnetic gear 20 including 24 pole pieces 29 constituting a magnetic gear 20 is combined with a rotating electrical machine 10 having 8 poles and 12 slots.
  • X and Y are integers
  • the number of poles of the first rotor is 2X
  • the number of poles of the second rotor is 2Y
  • the number of pole pieces 29 is ( Let us consider the magnetic gear 20 which is set to X+Y.
  • the least common multiple M of the number of poles of the rotor 12 of the rotating electric machine 10 and the number of teeth 16 is the same as the number of poles of the first rotor (inner magnet cylinder 23) connected to the rotating shaft 11 of the rotating electric machine 10. It is clear that if they match the least common multiple LCM with the number of pieces 29, it becomes possible to perform an adjustment in which the torque pulsations of the magnetic gear torque and the torque pulsations of the rotating electric machine torque can be reduced by canceling each other out.
  • FIG. 15 is a longitudinal sectional view showing the configuration of a magnetic gear device 100 according to another example of the first embodiment.
  • the rotating shaft 11 of the rotating electric machine 10 is connected to the input section 21 of the magnetic gear 20 via a rotational force connection mechanism 36 such as a shaft coupling.
  • the connection mechanism 36 may be a belt, a mechanical gear, a magnetic coupling, or the like in addition to a shaft coupling. In this way, even when the rotating shaft 11 of the rotating electrical machine 10 is connected to the input section 21 of the magnetic gear 20 via the rotational force connection mechanism 36, the same effects as in the first embodiment can be obtained.
  • pole piece 29 is fixed, but the pole piece 29 may be configured to be free to rotate and adjust its phase arbitrarily, and the same effect can be obtained.
  • Embodiment 2 In the first embodiment described above, reduction of torque pulsation in the case where no current is applied in the magnetic gear device 100 has been described. In this second embodiment, reduction of torque pulsation when applying current to rotating electrical machine 10 in magnetic gear device 100 will be described.
  • the structure of the magnetic gear device 100 of this embodiment is similar to that shown in FIGS. 1 to 3 of the first embodiment.
  • FIG. 16 is a waveform diagram showing the rotating electric machine torque, magnetic gear torque, and composite torque when current is applied in the magnetic gear device according to the second embodiment.
  • the rotor 12 of the rotating electric machine 10 and the first rotor (inner magnet cylinder 23) of the magnetic gear 20 are connected, and the combined torque of the rotating electric machine torque and the magnetic gear torque is the total torque. It becomes torque.
  • the torque waveform of the rotating electrical machine 10 (broken line) when current is applied to the coil 17 of the rotating electrical machine 10
  • the torque waveform of the magnetic gear 20 (dotted line)
  • a composite torque waveform obtained by adding and combining both. solid line
  • the magnetic gear torque is similar to the torque waveform shown in FIG. 5 of the first embodiment, that is, six torque pulsations occur during the rotation of the first rotor (inner magnet cylinder 23) through 360 degrees of electrical angle. Occur.
  • the rotating electric machine torque is dominated by a sixth-order torque pulsation component that vibrates six times while the rotor 12 rotates through 360 degrees of electrical angle.
  • the component of torque pulsation that vibrates (6 ⁇ N1) times, where N1 is a natural number increases while rotating 360 degrees in electrical angle.
  • the difference (PP) between the maximum value and the minimum value of the waveform, which is the magnitude of torque pulsation T ⁇ of the composite torque waveform is compared with the torque waveform of the rotating electric machine 10 and the torque waveform of the magnetic gear 20.
  • the torque pulsation has been significantly reduced.
  • the phase relationship is adjusted.
  • the resultant torque has the effect of reducing torque pulsation. That is, the number of poles of the rotor 12 of the rotating electric machine 10 x (3 x N1) is the number of poles of the first rotor (inner magnet cylinder 23) connected to the rotating shaft 11 of the rotating electric machine 10 and the number of pole pieces 29. If the condition matching the least common multiple LCM is satisfied, the effect of reducing torque pulsation can be obtained when applying current to the rotating electrical machine 10.
  • the phase of the torque pulsation of the rotating electrical machine 10 when a current is applied varies depending on the amplitude and phase state of the current and the cross-sectional shape of the rotating electrical machine 10. Therefore, regarding the phase adjustment method, the arrangement is such that the torque pulsation is canceled out in the desired current amplitude and phase state for which vibration reduction is desired. For example, since a drive motor for an automobile is often operated in a low to medium torque range, the current amplitude and phase conditions in these torque ranges are set such that torque pulsation is canceled out.
  • the rotor 12 when the circumferential magnetic pole center of the first rotor (inner magnet cylinder 23) coincides with the circumferential center position of the pole piece 29, the rotor 12 This can be done by adjusting the phase (shift phase ⁇ ) between the circumferential magnetic pole center and the circumferential center position of the teeth 16.
  • the torque pulsations can be effectively reduced and speed vibrations caused by the torque pulsations can be suppressed.
  • the least common multiple LCM of the number N of pole pieces 29 of the magnetic gear 20 and the number of poles of the first rotor (inner magnet tube 23) shown in the first embodiment is the number of poles of the rotor 12 of the rotating electric machine 10 and the number of teeth.
  • the first condition is a condition that matches the least common multiple M of 16.
  • the least common multiple LCM of the number N of the pole pieces 29 of the magnetic gear 20 and the number of poles of the first rotor (inner magnet tube 23) shown in this embodiment is the number of poles of the rotor 12 of the rotating electrical machine 10 ⁇ the number of poles of the rotor 12 of the rotating electric machine 10
  • a condition matching (3 ⁇ N1) is defined as a second condition.
  • FIG. 17 is a longitudinal sectional view showing the configuration of a magnetic gear device according to the third embodiment.
  • the magnetic gear device 100A includes a drive unit including a rotating electric machine 10 and a magnetic gear 20A.
  • the rotating electric machine 10 is the same as that in the first embodiment described above.
  • the magnetic gear 20A includes an inner magnet tube 23 that constitutes a small-pole mechanism with a small number of magnetic poles, an outer magnet tube 26A that constitutes a multi-pole mechanism that has a large number of magnetic poles, and a magnetic gear 20A that is arranged between the inner magnet tube 23 and the outer magnet tube 26A.
  • a magnetic cylinder 30A is provided between the magnetic cylinders and the magnetic cylinders, respectively, with a magnetic gap 31 in between.
  • the cross section has the same configuration as in FIG. 3, but the number of first permanent magnets 25 in the inner magnet tube 23, the number of second permanent magnets 28 in the outer magnet tube 26A, and the pole piece in the magnetic tube 30A.
  • the combination of the number of 29 pieces is different.
  • the magnetic gear 20A has an inner magnet tube 23, an outer magnet tube 26A, and a magnetic tube 30A arranged concentrically, and one of these three is connected to the first rotor connected to the input section 21, and the other one is connected to the first rotor connected to the input section 21.
  • the second rotor connected to the output section 22 and the remaining one are used as a stator.
  • the inner magnet tube 23 is used as the first rotor
  • the magnetic tube 30A is used as the second rotor
  • the outer magnet tube 26A is used as the stator.
  • the other configurations are the same as in the first embodiment.
  • the rotor 12 of the rotating electrical machine 10 and the first rotor (inner magnet tube 23) of the magnetic gear 20A are coaxially provided, and the first rotor (inner magnet tube 23) of the magnetic gear 20A is provided on the same axis. rotates together with the rotating shaft 11 of the rotating electrical machine 10.
  • a magnetomotive force is applied to the pole piece 29 of the second rotor (magnetic tube 30A) disposed between the stator (outer magnet tube 26A) and the first rotor (inner magnet tube 23).
  • the second rotor (magnetic tube 30A) rotates in the same direction as the first rotor (inner magnet tube 23).
  • the magnetic gear device 100A uses the magnetic gear 20A to reduce the driving force generated by the rotating electrical machine 10 to increase or decrease torque, and output the driving force from the output section 22 corresponding to the output shaft of the magnetic gear 20A. do.
  • the magnetic gear torque is It vibrates the number of times that the least common multiple LCM of the number N of pieces 29 and the number of poles of the first rotor (inner magnet cylinder 23) is divided by X, that is, (LCM (2X, (X+Y))/X) times.
  • the magnetic gear 20A is configured by determining the combination of the number of first permanent magnets 25 in the outer magnet tube 26A, the number N of second permanent magnets 28 in the outer magnet tube 26A, and the number N of pole pieces 29 in the magnetic tube 30A. That is, the first value is ((number of poles of the stator (outer magnet tube 26A))/N) times the least common multiple LCM of the number N of pole pieces 29 and the number of poles of the first rotor (inner magnet tube 23), The first numerical value is set so as to satisfy the first condition of matching the least common multiple M of the number of poles of the rotor 12 of the rotating electrical machine 10 and the number of teeth 16.
  • the torque pulsations can be effectively reduced and speed vibrations caused by the torque pulsations can be suppressed.
  • the magnetic gear device 100A can reduce output torque pulsations and suppress speed vibrations on the output side. Further, as in the first embodiment, no special processing is required for the first and second permanent magnets 25 and 28 used in the magnetic gear 20A, and the magnetic gear device 100A can be manufactured easily and at low cost.
  • the configuration of the magnetic gear device 100A is determined by ((number of poles of the stator (outer magnet tube 26A))/N of the least common multiple LCM of the number N of pole pieces 29 and the number of poles of the first rotor (inner magnet tube 23). ) times the number of poles of the rotor 12 of the rotating electric machine 10 x (3 x N1), and in that case, in the second embodiment, As shown, the effect of reducing torque pulsation when applying current to the rotating electric machine 10 can be obtained. That is, if at least one of the first condition and the second condition is satisfied, the effect of reducing torque pulsation can be obtained by adjusting the phase relationship. Further, when both the first condition and the second condition are satisfied, the magnetic gear device 100A can obtain the effect of reducing torque pulsation both when no current is applied and when a current is applied. .
  • the magnetic cylinder 30A having the pole piece 29 rotates as a first rotor, and the gear ratio can be improved compared to the first embodiment. Further, since the outer magnet tube 26A at the outermost circumference of the magnetic gear 20A serves as a stator, the structure can be simplified and manufacturing costs can be reduced.
  • the magnetic gear 20A also meets the following conditions: the number of poles of the first rotor (inner magnet tube 23) connected to the output shaft of the rotating electrical machine 10 is greater than or equal to the number of poles of the rotor 12 of the rotating electrical machine 10; It is desirable that at least one of the conditions that the number of pole pieces 29 of the rotor (magnetic cylinder 30A) is greater than or equal to the number of teeth 16 of the rotating electric machine 10 is satisfied.
  • the magnetic gear 20A can be reliably selected so that the main order of the torque pulsation generated by the magnetic gear 20A is equal to or higher than the order of the torque pulsation generated by the rotating electrical machine 10, and the resultant torque output by the magnetic gear device 100A Torque pulsation can be suppressed.
  • stator outer magnet tube 26A
  • stator outer magnet tube 26A
  • FIG. 18 is a longitudinal cross-sectional view showing the configuration of a magnetic gear device according to Embodiment 4.
  • the magnetic gear device 100B is composed of a drive unit including a rotating electric machine 10A and a magnetic gear 20B.
  • the rotor 12A of the rotating electric machine 10A is integrated with the first rotor (inner magnet cylinder 23A) of the magnetic gear 20B.
  • the other configurations are the same as those of the third embodiment.
  • the rotor core material is shared by the magnetic gear 20B and the rotating electric machine 10A, and the number of structural members can be further reduced, so that manufacturing costs can be further reduced.
  • torque pulsation can be reduced by adjusting the phase relationship as in the third embodiment, and the output side speed vibration can be suppressed.
  • the first condition is that the least common multiple LCM of the number N of pole pieces 29 and the number of poles of the first rotor (inner magnet tube 23A) is multiplied by ((number of poles of stator (outer magnet tube 26A))/N).
  • the first numerical value is a condition that matches the least common multiple M of the number of poles of the rotor 12 of the rotating electrical machine 10 and the number of teeth 16. Further, the second condition is that the first numerical value matches the number of poles of the rotor 12 of the rotating electrical machine 10 ⁇ (3 ⁇ N1).
  • the fourth embodiment described above shows a configuration in which the rotating electric machine 10A and the magnetic gear 20B are housed in the same frame 18A, they may be housed in separate frames.
  • the magnetic gears 20, 20A, and 20B are examples of reduction gears for deceleration and torque increase, but the outer magnets of the magnetic gears 20, 20A, and 20B are multipolar mechanisms.
  • the tube 26 as the first rotor and connecting it to the rotating shaft 11 of the rotating electric machine 10, 10A, it is possible to realize a configuration of a speed increasing gear that increases speed and reduces torque. In that case as well, the same effects as in each of the above embodiments can be obtained.
  • FIG. 19 is a longitudinal sectional view showing the configuration of a magnetic gear device according to the fifth embodiment.
  • the magnetic gear device 100C includes a drive unit including a rotating electric machine 10 and a magnetic gear 20C.
  • the magnetic gear 20C includes an inner magnet tube 23B, an outer magnet tube 26A, and a magnetic tube 30B arranged concentrically, with the magnetic tube 30B serving as the first rotor, the inner magnet tube 23B, and the outer magnet tube 30B.
  • 26A is used as a second rotor, and the other is used as a stator.
  • a case is illustrated in which the inner magnet tube 23B is used as the second rotor and the outer magnet tube 26A is used as the stator.
  • the other configurations are the same as in the first embodiment.
  • the least common multiple of the number N of pole pieces 29 and the number of poles of the second rotor (inner magnet tube 23B or outer magnet tube 26A) ((number of poles of stator (outer magnet tube 26A or inner magnet tube 23B)) /N) times as the first value.
  • this first numerical value is set so as to satisfy the first condition of matching the least common multiple M of the number of poles of the rotor 12 of the rotating electric machine 10 and the number of teeth 16.
  • the circumferential magnetic pole center of the first rotor that is, the circumferential center position of the pole piece 29, 23B
  • the phase (shift phase ⁇ ) between the circumferential magnetic pole center of the rotor 12 and the circumferential center position of the teeth 16 is adjusted.
  • the first numerical value may be set to satisfy a second condition that corresponds to the number of poles of the rotor 12 of the rotating electric machine 10 x (3 x N1), in which case
  • a second condition that corresponds to the number of poles of the rotor 12 of the rotating electric machine 10 x (3 x N1), in which case
  • the effect of reducing torque pulsation when applying current to the rotating electric machine 10 can be obtained. That is, if at least one of the first condition and the second condition is satisfied, the effect of reducing torque pulsation can be obtained by adjusting the phase relationship.
  • the number of permanent magnets that constitute each magnetic pole of the rotating electric machine 10 and the magnetic gears 20, 20A, 20B, and 20C is not limited to one. Similar effects can be obtained when the permanent magnet is divided into the magnetization direction, magnetization orthogonal direction, axial direction, and other directions.
  • the rotating electric machine 10 and the magnetic gears 20, 20A, 20B, and 20C are of the radial type having a magnetic gap in a direction perpendicular to the rotational axis
  • the magnetic gears have a magnetic gap in a direction parallel to the rotational axis.
  • a similar effect can be obtained with an axial type.
  • the magnetic gear 20 has an example in which the small pole mechanism (inner magnet cylinder 23) has 8 poles, the multipolar mechanism (outer magnet cylinder 26) has 40 poles, and the number of pole pieces 29 is 24.
  • the shapes of the teeth 16, pole pieces 29, and permanent magnets 13, 25, and 28 of the rotating electric machine 10 and the magnetic gears 20, 20A, 20B, and 20C are shown in the simplest shapes.
  • the shape of the teeth 16 and the pole piece 29 may be such that they become wider in the radial direction toward the magnetic gap, or have a narrower hem.
  • bonded magnets may be used for the permanent magnets 13, 25, and 28, or two or more permanent magnets may be embedded in a V-shape per magnetic pole. In either case, the same effects can be obtained as long as the pole arrangement related to the magnetic gap has the same relationship as in each of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

磁気ギア装置(100)は、少極機構である内側磁石筒(23)、多極機構である外側磁石筒(26)、および内側磁石筒(23)および外側磁石筒(26)の間で、周方向に等間隔を隔てて配列されたポールピース(29)を有し、内側磁石筒(23)、外側磁石筒(26)およびのポールピース(29)の内、1つを入力部(21)に接続された第1ロータ、1つを出力部(22)に接続された第2ロータ、残りの1つをステータとしする磁気ギア(20)と、永久磁石(13)を有するロータ(12)およびティース(16)を有するステータ(15)を備える回転電機(10)とを備える。ポールピース(29)の個数と第1、第2ロータの一方の極数との最小公倍数に基づく第1数値が、ロータ(12)の極数とティース(16)の数との最小公倍数に一致する第1条件と、ロータ(12)の極数に3の倍数を乗じた数に一致する第2条件との少なくとも一方を満たす。

Description

磁気ギア装置
 本願は、磁気ギア装置に関するものである。
 近年、回転電機から所望の出力および効率特性を得るため、磁気ギアを回転電機と組み合わせて用いられる。
 従来の磁気ギア装置を構成する磁気ギアは、外周に複数の磁石を並設してある円筒形の内側磁石筒、内周に複数の磁石を並設してある円筒形の外側磁石筒、及び周方向に等間隔を隔てて複数の磁性体を並設してある円筒形の磁性体筒を、該磁性体筒を前記内側磁石筒と前記外側磁石筒との間に介在させて同軸上に支持し、前記内側磁石筒、外側磁石筒及び磁性体筒のいずれか2つを回転子とし、残りの1つを固定子として回転トルクを伝達する。そして、前記磁性体は、前記磁性体筒の軸長方向に対して平行に延びる棒状をなしており、前記内側磁石筒及び外側磁石筒の磁石は、軸長方向の一端と他端との間で夫々の周方向に同じ向きの位置ずれを有してスキュー配置してある。
 これにより、高いトルク密度を確保しながらコギングトルクを有効に低減し、小さいトルク変動下での安定した動力伝達を実現できる。
特許第6213573号公報
 特許文献1記載の従来の磁気ギアでは、永久磁石を軸方向に連続的にスキューさせる必要があり、容易に製造できない。また、磁気ギア単体としてトルク脈動を低減できるが、回転電機のトルク脈動に起因する速度振動が、磁気ギアの出力側にも発生するという問題点があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、磁気ギアと回転電機との組み合わせから出力されるトルク脈動を低減して出力側の速度振動を抑制できる磁気ギア装置を提供する事を目的とする。さらに、このような磁気ギア装置を容易で安価に製造する事を目的とする。
 本願に開示される磁気ギア装置は、複数の第1永久磁石が外周に配列されて少極機構を構成する内側磁石筒、複数の第2永久磁石が内周に配列されて多極機構を構成する外側磁石筒、および、前記内側磁石筒および前記外側磁石筒の間で双方からそれぞれ磁気ギャップを介して配置され、軟磁性体から成るN個のポールピースが周方向に等間隔を隔てて配列された磁性体筒を有し、前記内側磁石筒、前記外側磁石筒および前記磁性体筒の内、1つを入力部に接続された第1ロータ、他の1つを出力部に接続された第2ロータ、残りの1つをステータとして用いる磁気ギアと、M1個の永久磁石を有するロータ、およびM2個のティースを有するステータを備える回転電機とを備える。前記磁気ギアは、前記入力部が前記回転電機の回転軸に接続され、入力された回転力を前記出力部に伝達する。そして、前記ポールピースの個数Nと前記第1、第2ロータの一方の極数との最小公倍数に基づく第1数値が、M1とM2との最小公倍数Mに一致する第1条件と、M1に3の倍数を乗じた数に一致する第2条件との少なくとも一方を満たすものである。
 本願に開示される磁気ギア装置によれば、磁気ギアと回転電機との組み合わせから出力されるトルク脈動が低減でき、出力側の速度振動を抑制できる。また、このような磁気ギア装置を容易で安価に製造できる。
実施の形態1による磁気ギア装置の構成を示す縦断面図である。 実施の形態1による磁気ギア装置内の回転電機の構成を示す横断面図である。 実施の形態1による磁気ギア装置内の磁気ギアの構成を示す横断面図である。 実施の形態1による磁気ギアの各部の位置関係を示した部分横断面図である。 実施の形態1による磁気ギア装置の磁気ギアトルクを示す波形図である。 実施の形態1による回転電機の各部の位置関係を示した部分横断面図である。 実施の形態1による磁気ギア装置において、電流を印加しない場合の回転電機トルクを示す波形図である。 実施の形態1による磁気ギア装置において、電流を印加しない場合の、回転電機トルク、磁気ギアトルクおよび合成トルクを示す波形図である。 実施の形態1による磁気ギア装置において、回転電機のロータのずれ位相に応じた合成トルクのトルク脈動の変化を示す波形図である。 実施の形態1による磁気ギア装置において、磁気ギアトルクの周波数分析結果の振幅を示す図である。 実施の形態1による磁気ギア装置において、回転電機トルクの周波数分析結果の振幅を示す図である。 実施の形態1による磁気ギア装置において、トルクの6次成分を一般化して示した波形図である。 実施の形態1による磁気ギア装置において、トルクの12次成分を一般化して示した波形図である。 実施の形態1による磁気ギア装置において、合成トルクの6次成分および12次成分のトルク脈動を一般化して示した波形図である。 実施の形態1の別例による磁気ギア装置の構成を示す縦断面図である。 実施の形態2による磁気ギア装置において、電流印加時の回転電機トルク、磁気ギアトルクおよび合成トルクを示す波形図である。 実施の形態3による磁気ギア装置の構成を示す縦断面図である。 実施の形態4による磁気ギア装置の構成を示す縦断面図である。 実施の形態4による磁気ギア装置の構成を示す縦断面図である。
実施の形態1.
 図1は、実施の形態1による磁気ギア装置の構成を示す縦断面図である。図1に示すように、磁気ギア装置100は、回転電機10と磁気ギア20とを備えた駆動ユニットで構成される。
 図2は、磁気ギア装置100内の回転電機10の構成を示す横断面図であり、図1のA-A断面を示す。
 図3は、磁気ギア装置100内の磁気ギア20の構成を示す横断面図であり、図1のB-B断面を示す。
 図に示すように、回転電機10の回転軸11となるシャフトは、磁気ギア20の入力部21に接続され、磁気ギア20は、入力部21に入力された回転力を出力部22に伝達する。この場合、磁気ギア20の入力部21は回転電機10の回転軸11と一体構成される。回転電機10は、ロータ12と、ロータ12の外周に磁気ギャップを介して設けられたステータ15とを備える。
 ロータ12は、磁極を担う複数(M1個)、この場合8個の永久磁石13が、ロータコア14の外周面に周方向に並設されて成る。永久磁石13は径方向に着磁されており、互いに隣接する永久磁石13の極性が反転するように配置される。
 ステータ15は、磁気ギャップに向かって突出する複数(M2個)、この場合12個のティース16を有し、各ティース16にはコイル17が巻回される。このように、回転電機10は、8個の永久磁石13と、12個のティース16とを有する8極12スロットの集中巻き構造の例である。なお、図2においてコイル17の図示は便宜上、省略する。
 磁気ギア20は、磁極数が少ない少極機構を構成する内側磁石筒23、磁極数が多い多極機構を構成する外側磁石筒26、および、内側磁石筒23および外側磁石筒26の間で双方からそれぞれ磁気ギャップ31を介して配置される磁性体筒30を備える。
 内側磁石筒23は、磁極を担う複数、この場合8個の第1永久磁石25が、円筒状の支持体24の外周面に周方向に並設されて成る。第1永久磁石25は径方向に着磁されており、互いに隣接する第1永久磁石25の極性が反転するように配置される。外側磁石筒26は、磁極を担う複数、この場合40個の第2永久磁石28が、円筒状の支持体27の内周面に周方向に並設されて成る。第2永久磁石28は径方向に着磁されており、互いに隣接する第2永久磁石28の極性が反転するように配置される。
 内側磁石筒23および外側磁石筒26の間に配される磁性体筒30は、軟磁性体から成るN個、この場合24個のポールピース29が周方向に等間隔を隔てて配列されて構成される。
 回転電機10と磁気ギア20とにおいて、それぞれ駆動力およびギア作用を発生する部分(図1のハッチング部分)は磁性材料で構成される。この部分を鉄あるいは非磁性体等の構造部材から成るフレーム(回転電機フレーム18,磁気ギアフレーム32)およびブラケット(回転電機ブラケット19、磁気ギアブラケット33)により保護している。
 磁気ギア20は、内側磁石筒23、外側磁石筒26および磁性体筒30を同心円状に配置し、これら3つの内、1つを入力部21に接続された第1ロータ、他の1つを出力部22に接続された第2ロータ、残りの1つをステータとして用いる。なお、磁気ギア20の第1、第2永久磁石25、28のみでなく、軟磁性体から成るN個のポールピース29についても、ロータあるいはステータの磁極と称す。
 この実施の形態では、内側磁石筒23を第1ロータとし、外側磁石筒26を第2ロータとし、磁性体筒30をステータとする。回転電機10のロータ12、磁気ギア20の第1ロータ(内側磁石筒23)および第2ロータ(外側磁石筒26)は、複数個のベアリング35により支持される。
 即ち、この実施の形態では、回転電機10のロータ12と、磁気ギア20の第1ロータ(内側磁石筒23)とが同軸上に設けられ、磁気ギア20の第1ロータ(内側磁石筒23)は、回転電機10の回転軸11と共に回転する。第1ロータ(内側磁石筒23)の第1永久磁石25が、ステータである磁性体筒30のポールピース29を順次横切るように回転し、第2ロータ(外側磁石筒26)の第2永久磁石28に起磁力が与えられる。そして、第2ロータ(外側磁石筒26)は第1ロータ(内側磁石筒23)と逆向きに回転する。
 磁気ギア装置100は、以上のように構成され、回転電機10で生成した駆動力を、磁気ギア20で減速増トルク化あるいは増速減トルク化して、磁気ギア20の出力軸に対応する出力部22から出力する。この実施の形態では、減速増トルク化する構成を示す。
 第1ロータ(内側磁石筒23)の第1永久磁石25の個数は8個、第2ロータ(外側磁石筒26)の第2永久磁石28の個数は40個、ポールピース29の個数は24個であるため、磁気ギア20のギア比は(40/2)/(8/2)=5である。即ち、磁気ギア20は、入力部21に入力される回転力を、1/5倍に減速、かつ5倍に増トルク化して出力部22に出力する。
 図4は、磁気ギア20の各部の位置関係を示した部分横断面図である。図4では、第1ロータ(内側磁石筒23)の第1永久磁石25の1個分を、磁性体筒30のポールピース29と共に抽出して図示した。即ち、機械的角度(以降、機械角と称す)で45°(=(360°/8))分の周方向範囲である。
 図5は、磁気ギア装置100の磁気ギアトルクを示す波形図である。図5では、第1ロータ(内側磁石筒23)を電気的角度(以降、電気角と称す)で360°、すなわち機械角で90°(=(360°/(8/2))回転させたときの第1ロータ(内側磁石筒23)のトルク波形を示している。
 図5に示すように、磁気ギアトルクは、第1ロータ(内側磁石筒23)の電気角360°の回転の間に、6回のトルク脈動が発生していることがわかる。このトルク脈動は、周期的に配置された第1永久磁石25と対向する位置に、磁性体であるポールピース29を同様に周期的に配置することで発生するものであり、コギングトルクとも別称される。トルク脈動の回数は、第1永久磁石25とポールピース29との個数関係で決定される。第1永久磁石25を有する第1ロータ(内側磁石筒23)が機械角で360°回転する場合、第1永久磁石25の個数と、ポールピース29の個数との最小公倍数LCMの倍数となることが、一般的な理論として知られている。
 この場合、LCM(8、24)=24であり、磁気ギアトルクには、機械角360°で24K(Kは自然数)回振動する成分が含まれる。このため、電気角360°では6K(=(24K/(8/2))回振動することになり、K=1とした6回振動する成分が多く含まれており、図5が示す結果と合致する。
 なお、図5に示すトルク波形の位相は、図4において、中心線41が示すように、矢印40の向きに回転する第1ロータ(内側磁石筒23)の周方向磁極中心位置と、ポールピース29の周方向中心位置が一致する断面が含まれるときを初期角度0°として示した。
 図6は、回転電機10の各部の位置関係を示した部分横断面図である。図6では、回転電機10のロータ12の永久磁石13の1個分の周方向範囲(機械角45°の範囲)における、ロータコア14と永久磁石13、およびステータ15のティース16の1個分を抽出して図示した。
 図6において、矢印42の向きに回転するロータ12の周方向磁極中心位置(中心線43)が、ティース16の周方向中心位置(中心線44)と一致するときを基準として、ロータ12の周方向磁極中心位置(中心線43)の、ティース16の周方向中心位置(中心線44)からのずれ位相をθで示す。
 図7は、電流を印加しない場合の回転電機トルクを示す波形図である。図7では、回転電機10のコイル17に電流を印加していないとき、ロータ12を電気角360°分回転させた場合、即ち、機械角で90°(=(360°/(8/2))回転させたときのロータ12のトルク波形を示している。
 ここでは、位相ずれなしのトルク波形を点線で、位相ずれθのトルク波形を実線で示した。位相ずれなしのトルク波形は、ロータ12の周方向磁極中心位置と、ティース16の周方向中心位置が一致する断面が含まれるときを初期角度0°とする。また、位相ずれθのトルク波形は、ロータ12の周方向磁極中心位置が、ティース16の周方向中心位置と位相θでずれている断面が含まれるときを初期角度0°とする。
 図7に示すように、回転電機トルクは、上述した磁気ギアトルクと同様に、6回の振動を主成分とするトルク脈動を有する。
 回転電機10の振動の回数(次数)を決定する原理についても、周期的に配置されるポールピース29がティース16に対応する点を除き、磁気ギア20の場合と同様である。即ち、ロータ12が機械角で360°回転する場合のトルク脈動の回数は、永久磁石13の数であるロータ12の極数とティース16の数との最小公倍数Mの倍数となる。
 この場合、最小公倍数M(8、12)=24であり、回転電機トルクには、機械角360°で24K(Kは自然数)回振動する成分が含まれる。このため、電気角360°では6K(=(24K/(8/2))回振動することになり、K=1とした6回振動する成分が多く含まれており、図7が示す結果と合致する。
 磁気ギア装置100では、回転電機10のロータ12と磁気ギア20の第1ロータ(内側磁石筒23)は接続されており、回転電機トルクと磁気ギアトルクとの合成トルクが全体のトルクとなる。
 この実施の形態では、磁気ギア20の第1ロータ(内側磁石筒23)の第1永久磁石25の個数と、ポールピース29の個数との最小公倍数LCMが、回転電機10のロータ12の極数とティース16の数との最小公倍数Mに一致している。即ち、磁気ギア20の第1ロータ(内側磁石筒23)の1回転(機械角360°回転)あたりの主要なトルク脈動の次数成分と、回転電機10のロータ12の1回転(機械角360°回転)あたりの主要なトルク脈動の次数成分が、共に24で一致している。
 このため、回転電機トルクのトルク脈動は、磁気ギアトルクのトルク脈動と互いに相殺して低減することが可能になる。
 トルク脈動は、以下の2つの位置関係の相対関係により変動する。一方は、磁気ギア20のポールピース29と回転電機10のティース16との位置関係である。他方は、回転電機10のロータ12の永久磁石13と、回転電機10のロータ12とシャフト(回転軸11)が接続されている磁気ギア20の第1ロータ(内側磁石筒23)の第1永久磁石25との位置関係である。
 即ち、第1ロータ(内側磁石筒23)の周方向磁極中心が、ステータ(磁性体筒30)の周方向磁極中心、即ち、ポールピース29の周方向中心位置に一致する時に、ロータ12の周方向磁極中心を、ティース16の周方向中心位置からずらす位相θを、設定角度であるパラメータとすることで、トルク脈動の位相に寄与する上記相対関係の規定が可能となる。
 なお、図4で示す状態が、第1ロータ(内側磁石筒23)の周方向磁極中心が、ポールピース29の周方向中心位置に一致する時である。そして、その状態における、ロータ12の周方向磁極中心位置(中心線43)の、ティース16の周方向中心位置(中心線44)からのずれ位相θを調整する(図6参照)。これにより、効果的にトルク脈動を低減して、トルク脈動に起因する速度振動を抑制できる。
 図8は、磁気ギア装置100において、電流を印加しない場合の、回転電機トルク、磁気ギアトルクおよび合成トルクを示す波形図である。この場合、ずれ位相θ=21°とした場合の回転電機10のトルク波形(破線)と、磁気ギア20のトルク波形(点線)と、双方を加算して合成した合成トルク波形(実線)とを示している。
 図に示すように、合成トルク波形のトルク脈動の大きさTαである、波形の最大値と最小値の差(P-P)は、回転電機10のトルク波形および磁気ギア20のトルク波形と比較し顕著に小さくなり、トルク脈動は格段と低減されている。
 図9は、磁気ギア装置100において、回転電機10のロータ12のずれ位相θに応じた合成トルクのトルク脈動の変化を示す波形図である。ここでは、回転電機トルクおよび磁気ギアトルクにおけるトルク脈動の主成分である、電気角360°で6回振動する成分の一周期分、即ち電気角60°(=(360/6))の範囲で、ずれ位相θを変化させる。そして、ずれ位相θに応じたトルク脈動の大きさ(P-P)の変動を示す。
 回転電機トルクのトルク脈動の大きさと、磁気ギアトルクのトルク脈動の大きさとの小さい方のトルク脈動の大きさをTβとする。図6および図7を参照すると、この場合、Tβは、磁気ギアトルクのトルク脈動の大きさで、約5.0である。
 図9に示すように、合成トルクのトルク脈動は、θを電気角で表すと、θ=21°付近で極小値Tαをとり、θの範囲(12.3°<θ<25.5°)で、磁気ギアトルクおよび回転電機トルクの各トルク脈動よりも低減される。
 次に、トルク脈動の低減効果のあるずれ位相θの範囲は、ロータの永久磁石および磁性体(ポールピースあるいはティースなど)の形状、配置等の構成で変化するため、一般的に低減効果が考えられるθの範囲について以下に考察する。
 図10は、磁気ギア装置100において、磁気ギアトルクの周波数分析結果の振幅を示す図である。図11は、磁気ギア装置100において、回転電機トルクの周波数分析結果の振幅を示す図である。
 上述したように、磁気ギアトルクおよび回転電機トルクの各トルク脈動の主要な成分は、永久磁石(25,13)と磁性体(ティース16,ポールピース29)の個数の最小公倍数の倍数成分が含まれており、特に1倍および2倍の成分が支配的となる。この実施の形態では、電気角360°におけるトルク脈動の次数は6Kであるため、6次成分(K=1)と12次成分(K=2)が支配的であることがわかる。また、一般的に多くの構造でこれら1倍(K=1)および2倍(K=2)の次数成分が支配的となることが知られているため、これら2つの成分の低減に着目する。なお、2つの成分の大小関係は回転電機10および磁気ギア20の構造により異なる。
 図12は磁気ギア装置100において、トルクの6次成分を一般化して示した波形図である。ここでは、磁気ギアトルクおよび回転電機トルクにおいて、6次成分のみ抽出し振幅を1として一般化したトルク波形を、電気角360°分示したものである。この場合、トルク脈動の大きさTAは2.0である。
 また、図13は、磁気ギア装置100において、トルクの12次成分を一般化して示した波形図である。ここでは、磁気ギアトルクおよび回転電機トルクにおいて、12次成分のみ抽出し振幅を1として一般化したトルク波形を、電気角360°分示したものである。この場合、トルク脈動の大きさTBは2.0である。
 図12および図13では、トルク波形の最大値が初期角度となる場合を点線で示し、ずれ位相θだけ位相ずれを有する場合のトルク波形を実線で示す。
 上述したように、この実施の形態では、回転電機トルクと磁気ギアトルクを加算して合成する際、ロータ12の周方向磁極中心位置の、ティース16の周方向中心位置からのずれ位相θを調整することで、効果的にトルク脈動を低減できる。
 図12および図13において、位相ずれなしのトルク波形(点線)を磁気ギアトルクと仮定し、位相ずれθのトルク波形(実線)を回転電機トルクと仮定して、両者を加算することにより、合成トルクの6次成分および12次成分のトルク波形を生成することができる。
 図14は、磁気ギア装置100において、合成トルクの6次成分および12次成分のトルク脈動を一般化して示した波形図である。
 図14では、図12および図13に基づいて生成された、6次成分の合成トルクおよび12次成分の合成トルクについて、ずれ位相θに応じたトルク脈動の変化を示す。この場合も、回転電機トルクおよび磁気ギアトルクにおけるトルク脈動の主成分である、電気角360°で6回振動する成分の一周期分、即ち電気角60°(=(360/6))の範囲で、ずれ位相θを変化させる。そして、ずれ位相θに応じたトルク脈動の大きさ(P-P)の変動を示す。
 6次成分の合成トルクのトルク脈動は、θを電気角で表すと、20°<θ<40°の範囲で、合成前トルクのトルク脈動TA,TB(=2.0)よりも低減される。また、12次成分の合成トルクのトルク脈動は、10°<θ<20°および40°<θ<50°の範囲で、合成前トルクのトルク脈動TA,TB(=2.0)よりも低減される。
 即ち、6次成分または12次成分の合成トルクのトルク脈動は、10°<θ<50°のθ範囲で合成前トルクのトルク脈動よりも低減される事が分かる。
 図9で示した、θの範囲(12.3°<θ<25.5°)は、この実施の形態による磁気ギア装置100の回転電機10および磁気ギア20の構成に基づく例であり、上記θ範囲(10°<θ<50°)内であるため、合成により低減効果が出現したものと説明できる。
 この実施の形態では、回転電機10のロータ12の極数とティース16の数との最小公倍数Mをトルク脈動の次数とし、ロータ12の機械角360°回転あたりM回および2M回振動する成分を低減できる。そして、上記電気角での考察を機械角に適用すると、トルク脈動の低減可能なずれ位相φ(:機械角)の範囲は、(360/M/6)°<φ<((360/M/6)×5))°である。
 即ち、第1ロータ(内側磁石筒23)の周方向磁極中心が、固定のポールピース29の周方向中心位置に一致する時に、ロータ12の周方向磁極中心が、ティース16の周方向中心位置と、位相(機械角)φの範囲(360/M/6)°<φ<((360/M/6)×5))°でずれた位置関係であれば、トルク脈動は効果的に低減される。
 以上のように、この実施の形態では、磁気ギア20のポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMが、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mに一致する。これにより、磁気ギア20と回転電機10との組み合わせである磁気ギア装置100は、出力されるトルク脈動が低減可能になり、出力側の速度振動を抑制できる。また、磁気ギア20で用いる第1、第2永久磁石25、27に特別な加工は不要で、磁気ギア装置100は容易で安価に製造できる。
 また、第1ロータ(内側磁石筒23)の周方向磁極中心が、固定のポールピース29の周方向中心位置に一致する時に、ロータ12の周方向磁極中心が、ティース16の周方向中心位置と、設定角度分、位相をずらすことで、回転電機10のトルク脈動と磁気ギア20のトルク脈動とを互いに低減させる。これにより、磁気ギア装置100から出力される合成トルクのトルク脈動が効果的に低減されて、出力側の速度振動を抑制する。
 また、この実施の形態では、磁気ギア20の第1ロータ(内側磁石筒23)の極数は、回転電機10のロータ12の極数と一致している。これにより、回転電機10のロータ12の永久磁石13と、磁気ギア20の第1ロータ(内側磁石筒23)の第1永久磁石25とを同じ仕様の製品を使用する設計が可能となり、製造コストを低減することができる。
 また、磁気ギア装置100では、通常、出力および効率の観点から、まず、回転電機10の必要スペックが決定し、それに応じてロータ12の極数とティース16の個数が決まる。そして、磁気ギアトルクのトルク脈動と回転電機トルクのトルク脈動とが相殺により低減できるように、磁気ギア20が選定される。即ち、磁気ギア20から発生するトルク脈動の主要な次数が、回転電機10が発生するトルク脈動の次数以上となる。
 磁気ギア20において、回転電機10の出力軸と接続されている第1ロータ(内側磁石筒23)の極数は、回転電機10のロータ12の極数以上であることが望ましい。上述したように、磁気ギア20のトルク脈動の次数は、ポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMが支配的となる。このため、第1ロータ(内側磁石筒23)の極数が、回転電機10のロータ12の極数より小さい場合、回転電機10が発生するトルク脈動の次数成分より小さい次数の成分を増加させることがあり、全体としてトルク脈動の低減効果が得られない懸念がある。
 この実施の形態では、少極機構を構成する8極の第1ロータ(内側磁石筒23)と、多極機構を構成する40極の第2ロータ(外側磁石筒26)と、磁性体筒30を構成する24個のポールピース29とを備える磁気ギア20と、8極12スロットの回転電機10とを組み合わせた磁気ギア装置100を示した。この例を一般化して、X、Yを整数として第1ロータ(内側磁石筒23)の極数を2X、第2ロータ(外側磁石筒26)の極数を2Y、ポールピース29の個数を(X+Y)とした磁気ギア20を考察する。
 このような磁気ギア20では、第1ロータ(内側磁石筒23)が電気角で360°回転、即ち、機械角で(360/X)°回転する間に、磁気ギアトルクは、(最小公倍数LCM(2X、(X+Y))/X)回振動する。このため、第1ロータ(内側磁石筒23)が1回転する間に磁気ギアトルクが振動する回数は、(LCM(2X、(X+Y))/X)×(360/(360/X))=LCM(2X、(X+Y))である。
 これにより、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mが、回転電機10の回転軸11と接続されている第1ロータ(内側磁石筒23)の極数とポールピース29の個数との最小公倍数LCMと一致すれば、磁気ギアトルクのトルク脈動と回転電機トルクのトルク脈動とが相殺により低減できる調整が可能になることが明らかである。
 なお、上記実施の形態では、回転電機10の回転軸11が、磁気ギア20の入力部21と一体構成されるものであったが、これに限らない。
 図15は、実施の形態1の別例による磁気ギア装置100の構成を示す縦断面図である。
 図15に示すように、回転電機10の回転軸11は、軸継手などの回転力の接続機構36を介して磁気ギア20の入力部21と接続される。接続機構36は、軸継手の他、ベルト、機械式ギアあるいは磁気カップリングなどでも良い。
 このように、回転力の接続機構36を介して、回転電機10の回転軸11が磁気ギア20の入力部21と接続された場合も、上記実施の形態1と同様の効果が得られる。
 また、上記実施の形態では、ポールピース29が固定されている例を示したが、ポールピース29は、回転自由であって任意に位相調整できる構成であっても良く、同様の効果が得られる。
実施の形態2.
 上記実施の形態1では、磁気ギア装置100において、電流を印加しない場合の、トルク脈動の低減について説明した。この実施の形態2では、磁気ギア装置100において、回転電機10に電流印加する場合の、トルク脈動の低減について説明する。なお、この実施の形態の磁気ギア装置100の構造は、上記実施の形態1の図1~図3で示す同様の構造である。
 図16は、実施の形態2による磁気ギア装置において、電流印加時の回転電機トルク、磁気ギアトルクおよび合成トルクを示す波形図である。
 上述したように、磁気ギア装置100では、回転電機10のロータ12と磁気ギア20の第1ロータ(内側磁石筒23)は接続されており、回転電機トルクと磁気ギアトルクとの合成トルクが全体のトルクとなる。図16では、回転電機10のコイル17に電流印加している場合の回転電機10のトルク波形(破線)と、磁気ギア20のトルク波形(点線)と、双方を加算して合成した合成トルク波形(実線)とを示している。
 磁気ギアトルクは、上記実施の形態1の図5で示したトルク波形と同様であり、即ち、第1ロータ(内側磁石筒23)の電気角360°の回転の間に、6回のトルク脈動が発生する。上述したように、第1永久磁石25の個数である第1ロータ(内側磁石筒23)の極数と、ポールピース29の個数との最小公倍数LCMが24であるため、磁気ギアトルクは、電気角360°では6K(=(24K/(8/2))回振動することになる。これにより、K=1とした6回振動する成分が多く含まれる。
 図16に示すように、回転電機トルクは、ロータ12を電気角360°分回転させる間、6回振動する6次のトルク脈動成分が支配的であることがわかる。回転電機10は、電流を印加するとき、電気角で360°回転する間に、N1を自然数として(6×N1)回振動するトルク脈動の成分が増加することが一般的に知られている。
 図に示すように、合成トルク波形のトルク脈動の大きさTγである、波形の最大値と最小値の差(P-P)は、回転電機10のトルク波形および磁気ギア20のトルク波形と比較し顕著に小さくなり、トルク脈動は格段と低減されている。
 この実施の形態2においても、上記実施の形態1と同様に、回転電機10のトルク脈動の主要な次数と、磁気ギア20のトルク脈動の主要な次数が一致していれば、位相関係の調整により、合成トルクは、トルク脈動の低減効果が得られる。即ち、回転電機10のロータ12の極数×(3×N1)が、回転電機10の回転軸11と接続されている第1ロータ(内側磁石筒23)の極数とポールピース29の個数との最小公倍数LCMと一致する条件を満たせば、回転電機10に電流を印加するときに、トルク脈動の低減効果が得られる。
 この場合、上記最小公倍数LCM(=24)は、回転電機10のロータ12の極数(=8)の3倍であり、N1=1として上記条件を満たし、トルク脈動の低減効果が得られる。
 また、電流印加時における回転電機10のトルク脈動の位相は、電流の振幅および位相の状態、ならびに回転電機10の断面形状により変動する。そこで位相の調整方法については、低振動化を付与したい所望の電流の振幅および位相の状態において、トルク脈動が打ち消されるような配置とする。例えば自動車の駆動用モータでは、低~中トルク領域での運転状態が多いことから、これらのトルク領域における電流の振幅および位相の条件において、トルク脈動が打ち消されるような位相関係とする。
 このときの位相調整についても、上記実施の形態1と同様に、第1ロータ(内側磁石筒23)の周方向磁極中心が、ポールピース29の周方向中心位置に一致する時における、ロータ12の周方向磁極中心と、ティース16の周方向中心位置との間の位相(ずれ位相θ)を調整することで行える。そして、回転電機10のトルク脈動と磁気ギア20のトルク脈動とを互いに低減させるように位相調整することにより、効果的にトルク脈動を低減して、トルク脈動に起因する速度振動を抑制できる。
 上記実施の形態1で示した、磁気ギア20のポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMが、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mに一致する条件を第1条件とする。そして、この実施の形態で示した、磁気ギア20のポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMが、回転電機10のロータ12の極数×(3×N1)に一致する条件を第2条件とする。このように第1条件と第2条件とを設定すると、第1条件および第2条件の少なくとも1つを満たせば、トルク脈動の低減効果が得られる。
 この実施の形態で用いた磁気ギア装置100は、磁気ギア20のポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCM(=24)が、回転電機10のロータ12の極数とティース16の個数との最小公倍数M(=24)に一致し、かつロータ12の極数の3倍に一致しているため、第1条件と第2条件との双方を満たす。このため、磁気ギア装置100は、電流を印加しない場合と、電流を印加する場合との双方で、トルク脈動の低減効果が得られる。
実施の形態3.
 図17は、実施の形態3による磁気ギア装置の構成を示す縦断面図である。
 図17に示すように、磁気ギア装置100Aは、回転電機10と磁気ギア20Aとを備えた駆動ユニットで構成される。
 回転電機10は上記実施の形態1と同様である。磁気ギア20Aは、磁極数が少ない少極機構を構成する内側磁石筒23、磁極数が多い多極機構を構成する外側磁石筒26A、および、内側磁石筒23および外側磁石筒26Aの間で双方からそれぞれ磁気ギャップ31を介して配置される磁性体筒30Aを備える。横断面は図3と同様の構成となるが、内側磁石筒23内の第1永久磁石25の個数、外側磁石筒26A内の第2永久磁石28の個数、および磁性体筒30A内のポールピース29の個数の組み合わせが異なる。
 磁気ギア20Aは、内側磁石筒23、外側磁石筒26Aおよび磁性体筒30Aを同心円状に配置し、これら3つの内、1つを入力部21に接続された第1ロータ、他の1つを出力部22に接続された第2ロータ、残りの1つをステータとして用いる。
 この実施の形態では、内側磁石筒23を第1ロータとし、磁性体筒30Aを第2ロータとし、外側磁石筒26Aをステータとする。
 その他の構成は、上記実施の形態1と同様である。
 即ち、この実施の形態では、回転電機10のロータ12と、磁気ギア20Aの第1ロータ(内側磁石筒23)とが同軸上に設けられ、磁気ギア20Aの第1ロータ(内側磁石筒23)は、回転電機10の回転軸11と共に回転する。これにより、ステータ(外側磁石筒26A)と第1ロータ(内側磁石筒23)との間に配置された第2ロータ(磁性体筒30A)のポールピース29に起磁力が与えられる。そして、第2ロータ(磁性体筒30A)は第1ロータ(内側磁石筒23)と同じ向きに回転する。
 このように、磁気ギア装置100Aは、回転電機10で生成した駆動力を、磁気ギア20Aで減速増トルク化あるいは増速減トルク化して、磁気ギア20Aの出力軸に対応する出力部22から出力する。
 磁気ギア20Aの内側磁石筒23内の第1永久磁石25の個数、外側磁石筒26A内の第2永久磁石28の個数、および磁性体筒30A内のポールピース29の個数Nの組み合わせについて以下に示す。X、Y(>X)を自然数として、内側磁石筒23内の第1永久磁石25の個数を2X、外側磁石筒26A内の第2永久磁石28の個数を2Y、および磁性体筒30A内のポールピース29の個数Nを(X+Y)とする。
 第1ロータ(内側磁石筒23)が第2ロータ(磁性体筒30)に対し電気角で360°回転、すなわち機械角で(360/X+360/Y)°回転する間に、磁気ギアトルクは、ポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMをXで除算した回数、即ち(LCM(2X、(X+Y))/X)回振動する。即ち、第1ロータ(内側磁石筒23)が機械角で360°回転する間に磁気ギアトルクが振動する回数は、(LCM(2X、(X+Y))/X)×(360/(360/X+360/Y))=LCM(2X、(X+Y))×(Y/(X+Y))である。
 このため、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mが、LCM(2X、(X+Y))×(Y/(X+Y))と一致するように、内側磁石筒23内の第1永久磁石25の個数、外側磁石筒26A内の第2永久磁石28の個数、および磁性体筒30A内のポールピース29の個数Nの組み合わせを決定して磁気ギア20Aを構成する。
 即ち、ポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMの((ステータ(外側磁石筒26A)の極数)/N)倍を第1数値として、第1数値が、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mに一致する第1条件を満たすように設定する。
 これにより、回転電機10の電流を印加しない場合、回転電機10の主要なトルク脈動の次数と、磁気ギア20Aの主要なトルク脈動の次数が一致していれば、位相関係の調整により、互いに相殺して低減することができ、合成トルクのトルク脈動は低減される。
 この場合も、上記実施の形態1と同様に、第1ロータ(内側磁石筒23)の周方向磁極中心が、ステータ(外側磁石筒26A)の周方向磁極中心に一致する時における、ロータ12の周方向磁極中心と、ティース16の周方向中心位置との間の位相(ずれ位相θ)を調整する。そして、回転電機10のトルク脈動と磁気ギア20のトルク脈動とを互いに低減させるように位相調整することにより、効果的にトルク脈動を低減して、トルク脈動に起因する速度振動を抑制できる。
 このように、磁気ギア装置100Aは、出力されるトルク脈動が低減可能になり、出力側の速度振動を抑制できる。
 また、上記実施の形態1と同様に、磁気ギア20Aで用いる第1、第2永久磁石25、28に特別な加工は不要で、磁気ギア装置100Aは容易で安価に製造できる。
 なお、磁気ギア装置100Aの構成を、ポールピース29の個数Nと第1ロータ(内側磁石筒23)の極数との最小公倍数LCMの((ステータ(外側磁石筒26A)の極数)/N)倍である上記第1数値が、回転電機10のロータ12の極数×(3×N1)に一致する第2条件を満たすように設定しても良く、その場合、上記実施の形態2で示したように、回転電機10に電流印加する場合の、トルク脈動の低減効果が得られる。
 即ち、上記第1条件、第2条件の少なくとも1つを満たせば、位相関係の調整により、トルク脈動の低減効果が得られる。また、第1条件と第2条件との双方を満たす場合は、磁気ギア装置100Aは、電流を印加しない場合と、電流を印加する場合との双方で、トルク脈動の低減効果を得ることができる。
 また、この実施の形態においては、ポールピース29を有する磁性体筒30Aが第1ロータとして回転する構造になり、上記実施の形態1と比べてギア比を向上できる。また、磁気ギア20Aの最外周部の外側磁石筒26Aがステータとなるため、構造を単純化でき製造コストを低減できる。
 また、磁気ギア20Aは、回転電機10の出力軸と接続されている第1ロータ(内側磁石筒23)の極数が、回転電機10のロータ12の極数以上である条件、および、第2ロータ(磁性体筒30A)のポールピース29の個数が、回転電機10のティース16の数以上である条件の少なくとも1つの条件を満たすのが望ましい。これにより、磁気ギア20Aが発生するトルク脈動の主要な次数が、回転電機10が発生するトルク脈動の次数以上となるよう、磁気ギア20Aを確実に選定でき、磁気ギア装置100Aが出力する合成トルクのトルク脈動を抑制できる。
 なお、上記実施の形態では、ステータ(外側磁石筒26A)が固定されている例を示したが、ステータ(外側磁石筒26A)は、回転自由であって任意に位相調整できる構成であっても良く、同様の効果が得られる。
 なお、上記各実施の形態では、回転電機10の回転軸11と磁気ギア20、20Aの回転軸(入力部21)が同軸上に配置されている例を示したが、これに限らない。回転電機10の回転軸11と、磁気ギア20、20Aの入力部21が接続されている構成であれば同様の効果が得られる。
実施の形態4.
 この実施の形態4では、上記実施の形態3の磁気ギア装置100Aのおける回転電機10のロータ12と、磁気ギア20の第1ロータ(内側磁石筒23)が一体に構成されたものを示す。
 図18は、実施の形態4による磁気ギア装置の構成を示す縦断面図である。
 図18に示すように、磁気ギア装置100Bは、回転電機10Aと磁気ギア20Bとを備えた駆動ユニットで構成される。この場合、回転電機10Aのロータ12Aが、磁気ギア20Bの第1ロータ(内側磁石筒23A)と一体に構成される。その他の構成は、上記実施の形態3と同様である。
 この実施の形態では、磁気ギア20Bと回転電機10Aとでロータコア材を共有し、さらに構造部材を少なくすることができるため、製造コストをさらに削減することができる。
 この場合も、上記実施の形態3で示した第1条件、第2条件の少なくとも1つを満たせば、上記実施の形態3と同様に、位相関係の調整によりトルク脈動が低減可能になり、出力側の速度振動を抑制できる。第1条件は、ポールピース29の個数Nと第1ロータ(内側磁石筒23A)の極数との最小公倍数LCMの((ステータ(外側磁石筒26A)の極数)/N)倍を第1数値として、第1数値が、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mに一致する条件である。また、第2条件は、上記第1数値が、回転電機10のロータ12の極数×(3×N1)に一致する条件である。
 なお、上記実施の形態4では、回転電機10Aと磁気ギア20Bとが同一のフレーム18Aに収納された構成を示したが、別々のフレームに収納しても良い。
 また、上記実施の形態1~4では、磁気ギア20、20A、20Bが減速、増トルク化とする減速ギアの例を示したが、磁気ギア20、20A、20Bの多極機構である外側磁石筒26を第1ロータに用いて、回転電機10、10Aの回転軸11と接続すると、増速、減トルク化とする増速ギアの構成が実現できる。その場合も、上記各実施の形態と同様の効果が得られる。
 実施の形態5.
 図19は、実施の形態5による磁気ギア装置の構成を示す縦断面図である。
 図19に示すように、磁気ギア装置100Cは、回転電機10と磁気ギア20Cとを備えた駆動ユニットで構成される。
 この実施の形態では、磁気ギア20Cは、内側磁石筒23B、外側磁石筒26Aおよび磁性体筒30Bを同心円状に配置し、磁性体筒30Bを第1ロータとし、内側磁石筒23B、外側磁石筒26Aのいずれか1方を第2ロータとし、他方をステータとする。この場合、内側磁石筒23Bを第2ロータとし、外側磁石筒26Aをステータとして用いる場合を図示した。その他の構成は、上記実施の形態1と同様である。
 この場合、ポールピース29の個数Nと第2ロータ(内側磁石筒23Bあるいは外側磁石筒26A)の極数との最小公倍数の((ステータ(外側磁石筒26Aあるいは内側磁石筒23B)の極数)/N)倍を第1数値とする。そして、この第1数値が、回転電機10のロータ12の極数とティース16の個数との最小公倍数Mに一致する第1条件を満たすように設定する。
 これにより、回転電機10の電流を印加しない場合、回転電機10の主要なトルク脈動の次数と、磁気ギア20Cの主要なトルク脈動の次数が一致していれば、位相関係の調整により、互いに相殺して低減することができ、合成トルクのトルク脈動は低減される。
 この場合も、上記実施の形態1と同様に、第1ロータ(磁性体筒30B)の周方向磁極中心、即ち、ポールピース29の周方向中心位置が、ステータ(外側磁石筒26Aあるいは内側磁石筒23B)の周方向磁極中心に一致する時における、ロータ12の周方向磁極中心と、ティース16の周方向中心位置との間の位相(ずれ位相θ)を調整する。そして、回転電機10のトルク脈動と磁気ギア20Cのトルク脈動とを互いに低減させるように位相調整することにより、効果的にトルク脈動を低減して、トルク脈動に起因する速度振動を抑制できる。
 また、上記第1数値が、回転電機10のロータ12の極数×(3×N1)に一致する第2条件を満たすように設定しても良く、その場合、上記実施の形態2で示したように、回転電機10に電流印加する場合の、トルク脈動の低減効果が得られる。即ち、上記第1条件、第2条件の少なくとも1つを満たせば、位相関係の調整により、トルク脈動の低減効果が得られる。
 なお、上記各実施の形態において、回転電機10および磁気ギア20、20A、20B、20Cの各磁極を構成する永久磁石は1個に限らない。永久磁石を、磁化方向、磁化直交方向ならびに軸方向、およびその他の方向に分割する場合についても同様の効果が得られる。
 また、回転電機10および磁気ギア20、20A、20B、20Cは、回転軸に対し直交する方向に磁気ギャップを有するラジアル型である例を示したが、回転軸に対し平行な方向に磁気ギャップを有するアキシャル型においても同様の効果が得られる。
 また、回転電機10を8極12スロットの例を示したが、上記各実施の形態で示した、磁気ギア20、20A、20B、20Cのロータの極数およびポールピース29の個数との関係が上述した条件を満たすものであれば、その他の極スロット数の構成としても同様の効果が得られる。
 また、上記実施の形態1では、磁気ギア20の少極機構(内側磁石筒23)が8極、多極機構(外側磁石筒26)が40極、ポールピース29が24個の例を示したが、例えば、以下の組み合わせでも良い。
 少極機構の極数Nsが多極機構の極数Nmより小さく、ポールピース29の個数をNpとおくと、lとmを共に自然数とすると、(2l-1)Np=Nm±(2m-1)Ns、の関係を満たす。そして、かつ上記各実施の形態で示す、トルク脈動の低減条件を満たす組み合わせについても、同様の効果が得られる。
 また、上記各実施の形態では、回転電機10および磁気ギア20、20A、20B、20Cのティース16、ポールピース29、永久磁石13、25、28の形状はいずれも最も単純な形状で示しているが、以下に示すものでも良い。例えば、ティース16とポールピース29の形状を、磁気ギャップに向かって径方向に末広がりとする、又は裾を絞る形状とする。また、永久磁石13、25、28にボンド磁石を用いる、あるいは、1磁極あたり2個以上の永久磁石を用いてV字状に埋め込むなどである。いずれの場合も、磁気ギャップに係わる極配置が上記各実施の形態と同様の関係性を有していれば、同様の効果が得られる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 10,10A 回転電機、11 回転軸、12,12A ロータ、13 永久磁石、15 ステータ、16 ティース、20,20A,20B,20C 磁気ギア、21 入力部、22 出力部、23,23A,23B 内側磁石筒、25 第1永久磁石、26,26A 外側磁石筒、28 第2永久磁石、29 ポールピース、30,30A,30B 磁性体筒、31 磁気ギャップ、100,100A,100B,100C 磁気ギア装置、θ,φ ずれ位相。

Claims (11)

  1.  複数の第1永久磁石が外周に配列されて少極機構を構成する内側磁石筒、複数の第2永久磁石が内周に配列されて多極機構を構成する外側磁石筒、および、前記内側磁石筒および前記外側磁石筒の間で双方からそれぞれ磁気ギャップを介して配置され、軟磁性体から成るN個のポールピースが周方向に等間隔を隔てて配列された磁性体筒を有し、前記内側磁石筒、前記外側磁石筒および前記磁性体筒の内、1つを入力部に接続された第1ロータ、他の1つを出力部に接続された第2ロータ、残りの1つをステータとして用いる磁気ギアと、
     M1個の永久磁石を有するロータ、およびM2個のティースを有するステータを備える回転電機とを備え、
     前記磁気ギアは、前記入力部が前記回転電機の回転軸に接続され、入力された回転力を前記出力部に伝達し、
     前記ポールピースの個数Nと前記第1、第2ロータの一方の極数との最小公倍数に基づく第1数値が、M1とM2との最小公倍数Mに一致する第1条件と、M1に3の倍数を乗じた数に一致する第2条件との少なくとも一方を満たす、
    磁気ギア装置。
  2.  前記第1ロータの周方向磁極中心が、前記磁気ギアの前記ステータの周方向磁極中心に一致する時における、前記回転電機の前記ロータの周方向磁極中心と、前記ティースの周方向中心位置との間の位相を調整することで、前記回転電機のトルク脈動と前記磁気ギアのトルク脈動とを互いに低減させる、
    請求項1に記載の磁気ギア装置。
  3.  前記磁性体筒が前記磁気ギアの前記ステータとして用いられ、
     前記ポールピースの個数Nと前記第1ロータの極数との最小公倍数が、前記第1数値である、
    請求項1または請求項2に記載の磁気ギア装置。
  4.  前記第1ロータの周方向磁極中心が、前記ステータの磁極である前記ポールピースの周方向中心位置に一致する時に、前記回転電機の前記ロータの周方向磁極中心を、前記ティースの周方向中心位置と、設定角度分、位相をずらすことで、前記回転電機のトルク脈動と前記磁気ギアのトルク脈動とを互いに低減させる、
    請求項3に記載の磁気ギア装置。
  5.  前記設定角度は、(360/M/6)度より大きく、((360/M/6)×5)度より小さい、
    請求項4に記載の磁気ギア装置。
  6.  前記磁性体筒が前記磁気ギアの前記第2ロータとして用いられ、
     前記ポールピースの個数Nと前記第1ロータの極数との最小公倍数の((前記ステータの極数)/N)倍が、前記第1数値である、
    請求項1または請求項2に記載の磁気ギア装置。
  7.  前記第1ロータの極数≧M1、である
    請求項1から請求項6のいずれか1項に記載の磁気ギア装置。
  8.  前記第1ロータの極数=M1、である
    請求項7に記載の磁気ギア装置。
  9.  前記磁性体筒が前記磁気ギアの前記第1ロータとして用いられ、
     前記ポールピースの個数Nと前記第2ロータの極数との最小公倍数の((前記ステータの極数)/N)倍が、前記第1数値である、
    請求項1または請求項2に記載の磁気ギア装置。
  10.  N≧M2、である
    請求項9に記載の磁気ギア装置。
  11.  前記磁気ギアの前記入力部は、前記回転電機の回転軸と一体構成される、
    請求項1から請求項10のいずれか1項に記載の磁気ギア装置。
PCT/JP2022/022284 2022-06-01 2022-06-01 磁気ギア装置 WO2023233573A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022284 WO2023233573A1 (ja) 2022-06-01 2022-06-01 磁気ギア装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022284 WO2023233573A1 (ja) 2022-06-01 2022-06-01 磁気ギア装置

Publications (1)

Publication Number Publication Date
WO2023233573A1 true WO2023233573A1 (ja) 2023-12-07

Family

ID=89026062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022284 WO2023233573A1 (ja) 2022-06-01 2022-06-01 磁気ギア装置

Country Status (1)

Country Link
WO (1) WO2023233573A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111440A1 (ja) * 2011-02-17 2012-08-23 日立金属株式会社 モータ装置
JP2017166467A (ja) * 2016-03-18 2017-09-21 株式会社荏原製作所 流体機械及び変速装置
JP2018127998A (ja) * 2017-02-10 2018-08-16 株式会社荏原製作所 ポンプ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111440A1 (ja) * 2011-02-17 2012-08-23 日立金属株式会社 モータ装置
JP2017166467A (ja) * 2016-03-18 2017-09-21 株式会社荏原製作所 流体機械及び変速装置
JP2018127998A (ja) * 2017-02-10 2018-08-16 株式会社荏原製作所 ポンプ装置

Similar Documents

Publication Publication Date Title
KR100899913B1 (ko) 모터
US7679260B2 (en) Axial gap motor
US9537362B2 (en) Electrical machine with improved stator flux pattern across a rotor for providing high torque density
JP4904736B2 (ja) 回転電機の固定子
CN101663806B (zh) 轴向间隙型电机
JP4071510B2 (ja) 電動機
JP2004357405A (ja) 電動機
JP2003153508A (ja) 電動機
JP2010098929A (ja) ダブルギャップモータ
CN103051136A (zh) 马达
US6781260B2 (en) Permanent magnet type rotary machine
JP4463947B2 (ja) ブラシレスdcモータの構造
JP4062269B2 (ja) 同期型回転電機
WO2023233573A1 (ja) 磁気ギア装置
JP2009296701A (ja) アキシャルギャップ型モータ
JP2002153028A (ja) 多段高出力用永久磁石形電動機
JP3679294B2 (ja) 環状コイル式回転電機
JP7258100B1 (ja) 回転電機
WO2023238335A1 (ja) 磁気ギヤ
WO2023042439A1 (ja) ギヤモータ
WO2023199460A1 (ja) 回転装置
JP2000125533A (ja) モータ
WO2021149753A1 (ja) 磁気ギアード回転電機、及びステータの製造方法
WO2021149699A1 (ja) 磁気ギアード回転電機
JP5126584B2 (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944860

Country of ref document: EP

Kind code of ref document: A1