WO2023228435A1 - 摺動材及び気体圧縮機械 - Google Patents

摺動材及び気体圧縮機械 Download PDF

Info

Publication number
WO2023228435A1
WO2023228435A1 PCT/JP2022/040167 JP2022040167W WO2023228435A1 WO 2023228435 A1 WO2023228435 A1 WO 2023228435A1 JP 2022040167 W JP2022040167 W JP 2022040167W WO 2023228435 A1 WO2023228435 A1 WO 2023228435A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
sliding
sliding material
present disclosure
Prior art date
Application number
PCT/JP2022/040167
Other languages
English (en)
French (fr)
Inventor
颯 斎藤
義雄 小林
聡之 石井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023228435A1 publication Critical patent/WO2023228435A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00

Definitions

  • the present invention relates to sliding materials and gas compression machines.
  • Reciprocating type gas compression machines and scroll type gas compression machines are known as gas compression machines that compress gases such as air.
  • a piston ring is attached to a piston that reciprocates within a metal cylinder as a sliding member that slides on the inner surface of the cylinder.
  • a chip seal is used as a sliding material at the end of a metal fixed scroll or an orbiting scroll that slides in contact with the fixed scroll while rotating. It is attached.
  • a resin material typified by polytetrafluoroethylene (PTFE) is used as the sliding material.
  • PTFE polytetrafluoroethylene
  • PTFE has high crystallinity and low shear strength, so when subjected to shearing, the surface layer easily peels off at a microscopic level and is transferred to a mating surface (sliding surface) such as the inner surface of a cylinder.
  • a mating surface sliding surface
  • composite resin materials containing metal particles are known.
  • Patent Document 1 states, ⁇ A resin sliding material for machine tools that is in sliding contact with a metal counterpart material under oil lubrication and whose main component is PTFE resin has a standard unipolar potential lower than that of the material metal of the metal counterpart material. , and a metal powder other than a copper-aluminum based copper alloy is blended. Alternatively, recycled PTFE resin powder is further blended with this resin sliding material.”
  • Patent Document 1 has a problem in terms of wear resistance.
  • the problem to be solved by the present disclosure is to provide a sliding material with excellent wear resistance and a gas compression machine.
  • the sliding material of the present disclosure includes a resin, first particles arranged in the resin and made of an inorganic material, and an inorganic material arranged in the resin and having a Vickers hardness larger than the first particles. and a hardness ratio obtained by dividing the Vickers hardness of the second particles by the Vickers hardness of the first particles, and the content of the first particles with respect to the resin.
  • the value obtained by dividing the content of the second particles relative to the resin is defined as the content ratio
  • the value obtained by dividing the hardness ratio by the content ratio is 0.3 or more and 2.8 or less.
  • a sliding material and a gas compression machine with excellent wear resistance can be provided.
  • FIG. 2 is an enlarged cross-sectional view of a sliding part in a gas compression machine according to an embodiment.
  • FIG. 1 is a sectional view showing the structure of a gas compression machine according to an embodiment.
  • 3 is a partially enlarged view of a fixed scroll and an orbiting scroll of the gas compression machine shown in FIG. 2.
  • FIG. It is a sectional view showing the structure of a gas compression machine of another embodiment.
  • 5 is an enlarged view showing the inside of the cylinder shown in FIG. 4.
  • FIG. It is a figure explaining the test method of a friction test. It is a figure explaining the test result of a friction test.
  • FIG. 1 is an enlarged cross-sectional view showing a sliding portion 10 in a gas compression machine 20, 40 according to an embodiment. 1 corresponds to a section A shown in FIG. 3 and a section B shown in FIG. 5, both of which will be described later.
  • the gas compression machine 20 is, for example, a scroll type
  • the gas compression machine 40 is, for example, a reciprocating type.
  • the sliding part 10 includes a metal member 11 (for example, aluminum) and a sliding member 12.
  • the sliding member 12 slides on the member 11 by, for example, rotating or reciprocating.
  • the member 11 slides on the sliding member 12 by, for example, rotating or reciprocating.
  • the sliding member 12 is provided, for example, in the fixed scroll 21, the orbiting scroll 22 (both shown in FIG. 3), and the piston 42 (see FIG. 5).
  • the sliding material 12 comes into contact with the member 11 on the sliding surface 13 and slides thereon.
  • Lubricating oil, grease, etc. may be present on the sliding surface 13.
  • the sliding material 12 slides on the sliding surface 13 in an oil-free manner. In such a case, the effects of the present disclosure can be particularly large.
  • Oil-free here refers to a state in which no lubricating oil or the like exists at all. However, a so-called oil-less state in which sufficient lubricating oil or the like is not present may also be used.
  • the member 11 includes a metal material 11a and a surface layer 11b.
  • the metal material 11a functions, for example, as a base material, and a surface layer 11b is formed on the surface of the metal material 11a.
  • a sliding surface 13 is formed on the surface of the surface layer 11b, and the sliding material 12 slides while contacting the surface layer 11b.
  • the metal material 11a is not particularly limited as long as it has the strength to be used as a member of the gas compression machines 20, 40, but includes light metals such as aluminum, magnesium, and silicon, as well as iron, chromium, nickel, and molybdenum. , titanium, copper, and other transition metals or compounds (alloys, etc.) can be used. More specifically, for example, aluminum materials such as aluminum and aluminum alloys, iron materials such as iron and iron-nickel alloys, titanium materials such as titanium and titanium alloys, and copper materials such as copper and copper alloys are used. can. Among these, aluminum-based materials are preferred, and by using aluminum-based materials, excellent wear resistance can be exhibited.
  • the aluminum-based material may contain, for example, small amounts of magnesium, silicon, and the like.
  • the iron-based material may include, for example, chromium, nickel, molybdenum, and the like.
  • the surface layer 11b may be, for example, a natural oxide film naturally formed on the metal material 11a or an artificially applied surface coating.
  • a natural oxide film for example, when the metal material 11a is made of an aluminum-based material, the surface layer 11b is made of aluminum oxide. Further, when the metal material 11a is made of an iron-based material, the surface layer 11b is made of iron oxide.
  • the metal material 11a is made of a copper-based material
  • the surface layer 11b is made of copper oxide.
  • the surface layer 11b is an alumite layer made of aluminum oxide
  • the sliding surface 13 is the surface of the alumite layer.
  • the surface layer 11b can be formed by, for example, plating, physical vapor deposition (PVD), chemical vapor deposition (CVD), carburizing, or the like.
  • the surface layer 11b is usually made of a material containing at least one of aluminum, phosphorus, chromium, iron, nickel, and zinc. Examples of surface coatings containing such elements include alumite treatment, aluminum plating, nickel plating, chrome plating, iron plating, zinc plating, and the like.
  • a surface layer 11b is formed on the surface of the metal material 11a.
  • the surface layer 11b may not necessarily be formed on the metal material 11a, and the metal material 11a may be exposed on the surface of the member 11. That is, the metal surface of the member 11 may be formed from the metal that constitutes the metal material 11a, or may be formed from the surface layer 11b formed on the metal material 11a.
  • the sliding material 12 includes a resin 12a, first particles 12b, and second particles 12c.
  • the resin 12a functions, for example, as a base material.
  • the resin 12a is a fluororesin. Durability can be improved by using fluororesin. Further, the transfer of the fluororesin to the sliding surface 13 can be promoted.
  • the fluororesin for example, at least one of the above-mentioned PTFE, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/ethylene copolymer (ETFE), and polyvinylidene fluoride (PVDF) is used. Can be used.
  • the resin 12a two or more different types of resins may be used in combination, for example, PTFE and a fluororesin other than PTFE may be mixed and used in combination. Further, the resin 12a does not need to be a fluororesin, and may be any other resin.
  • the first particles 12b are placed in the resin 12a and are made of an inorganic material.
  • the first particles 12b are preferably dispersed and arranged in the resin 12a. It is preferable that the first particles 12b are made of metal. By using metal, it is possible to easily set the Vickers hardness of the first particles 12b to a desired value.
  • the Vickers hardness (HV) of the first particles 12b is preferably the Vickers hardness of a soft material having ductility, specifically, for example, 50 HV or more, and the upper limit is, for example, 200 HV or less, preferably 100 HV or less. When the Vickers hardness is within this range, the first particles 12b can exhibit ductility when sliding on the sliding surface 13, and the wear resistance can be improved.
  • the first particles 12b are preferably at least one of copper, an alloy containing copper as a main component, aluminum, or an alloy containing aluminum as a main component. By using these, wear resistance can be improved. Note that the terms “copper is the main component” and “aluminum is the main component” respectively mean that the most abundant metal in the alloy is copper or aluminum.
  • a chemical conversion treatment layer is preferably formed between the resin 12a and the first particles 12b.
  • the chemical conversion treatment layer is formed on the surface of the first particles 12b.
  • the chemical conversion treatment layer is, for example, an adhesion layer that improves the bonding strength between the resin 12a and the first particles 12b.
  • the adhesive layer can be formed by, for example, coupling treatment, plating treatment, or the like.
  • the coupling process can be performed using, for example, a titanium-based, silicon-based, or the like coupling agent.
  • the plating process can be performed using a transition metal that has a high chemical affinity with the resin 12a, such as nickel plating or iron plating.
  • the average particle diameter (size) of the first particles 12b is not particularly limited, but can be, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and the upper limit can be, for example, 500 ⁇ m or less, preferably 100 ⁇ m or less.
  • the average particle size of the first particles 12b can be measured using, for example, a laser diffraction particle size distribution measuring device. d
  • the second particles 12c are arranged in the resin 12a and are made of an inorganic material.
  • the second particles 12c are preferably dispersed and arranged in the resin 12a.
  • the second particles 12c are preferably made of at least one of metal and ceramic. This makes it easy to set the Vickers hardness of the second particles 12c to a desired value in relation to the first particles 12b.
  • the second particles 12c are made of an inorganic material having a larger Vickers hardness than the first particles 12b.
  • inorganic particles include hard metal particles such as diatomaceous earth, alumina, silica, titanium oxide, zinc oxide, and silicon carbide, and ceramic particles.
  • the second particles 12c are preferably at least one of diatomaceous earth, alumina, silica, titanium oxide, zinc oxide, or silicon carbide. By using these, it is possible to easily increase the Vickers hardness than the first particles 12b.
  • the average particle diameter (size) of the second particles 12c is not particularly limited, but can be, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and the upper limit can be, for example, 500 ⁇ m or less, preferably 100 ⁇ m or less.
  • the average particle size of the second particles 12c can be measured using, for example, a laser diffraction particle size distribution measuring device.
  • the present disclosure When the value obtained by dividing the content of the first particles 12b with respect to the resin 12a by the content of the second particles 12c with respect to the resin 12a is defined as the content ratio (hereinafter referred to as the content ratio of the present disclosure), the present disclosure
  • the content ratio of is not particularly limited.
  • the content ratio of the present disclosure is preferably 3 or more, more preferably 6 or more, and the upper limit is preferably 40 or less, more preferably 20 or less. Note that the content ratio in the present disclosure can be calculated by ⁇ content of first particles 12b (mass %) ⁇ / ⁇ content of second particles 12c (mass %) ⁇ .
  • the hardness ratio of the present disclosure When the value obtained by dividing the Vickers hardness of the second particles 12c by the Vickers hardness of the first particles 12b is defined as a hardness ratio (hereinafter referred to as the hardness ratio of the present disclosure), the hardness ratio of the present disclosure is particularly limited. Not done.
  • the hardness ratio of the present disclosure is preferably 6 or more, more preferably 10 or more, and preferably has an upper limit of 30 or less, more preferably 25 or less. Note that the hardness ratio of the present disclosure can be calculated by ⁇ Vickers hardness (HV) of the second particles 12c ⁇ / ⁇ Vickers hardness (HV) of the first particles 12b ⁇ .
  • the hardness of the first particles 12b and the second particles 12c can be appropriately expressed, and the details of the hardness of the first particles 12b and the second particles are determined based on the ratio of the present disclosure described later. 12c can be appropriately selected.
  • the value obtained by dividing the hardness ratio of the present disclosure by the content ratio of the present disclosure is 0.3 or more and 2.8 or less. Therefore, it is preferable to adjust the hardness ratio of the present disclosure and the content ratio of the present disclosure so that the content ratio of the present disclosure falls within this range.
  • the value of the present disclosure is preferably 1.1 or more, preferably 1.8 or less as an upper limit, and more preferably 1.6 or less. By setting the value of the present disclosure within this range, particularly excellent wear resistance can be exhibited.
  • the value of the present disclosure can be calculated by ⁇ hardness ratio of the present disclosure ( ⁇ )/(content ratio of the present disclosure ( ⁇ ) ⁇ ).
  • the reason for setting the value of the present disclosure within the above range is as follows.
  • the present inventor conducted a friction test many times according to the test method shown in FIG. 7, which will be described later, for example. As a result, the present inventor found that there is a correlation between the amount of wear of the sliding material 12 and the hardness ratio and content ratio of the present disclosure regarding the first particles 12b and the second particles 12c. Ta. Specifically, it has been determined that when the hardness ratio of the present disclosure is too large or the content ratio of the present disclosure is too small, the amount of wear increases due to the abrasive action of the first particles 12b and the second particles 12c. On the other hand, it has been revealed that if the hardness ratio of the present disclosure is too small or the content ratio of the present disclosure is too large, the durability of the sliding material 12 itself decreases and the amount of wear increases.
  • the relatively hard second particles 12c will mainly absorb the shear stress during sliding. effectively support.
  • the relatively soft first particles 12b support shear stress, some of their abrasion powder adheres to the member 11, which has the effect of weakening the aggressiveness of the hard member 11.
  • the sliding material 12 may further include fibers.
  • the fibers are arranged in the resin 12a, preferably dispersed in the resin 12a. By including fibers, the mechanical strength of the sliding material 12 can be improved.
  • the fiber include at least one of carbon fiber, glass fiber, metal fiber, ceramic fiber, and the like. Among these, the fibers are preferably carbon fibers. By using carbon fiber, the sliding material 12 can be both lightweight and strong.
  • the length and diameter of the fibers are not particularly limited as long as they do not significantly impair the effects of the present disclosure, but the length can be, for example, 10 ⁇ m or more and 300 ⁇ m or less, and the diameter can be, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • actual values measured in a cross-sectional micrograph of the sliding material 12 can be used.
  • the sliding material 12 may further include a solid lubricant.
  • the solid lubricant is preferably in the form of particles having a particle size of, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • the particle size can be measured, for example, as an average particle size using a laser diffraction particle size distribution analyzer.
  • the solid lubricant is placed in the resin 12a, preferably dispersed in the resin 12a.
  • the solid lubricant include at least one of molybdenum disulfide, graphite, boron nitride, and the like.
  • the solid lubricant is preferably molybdenum disulfide.
  • the types of at least the resin 12a, the first particles 12b, and the second particles 12c can be confirmed as follows. That is, for example, the surface or crushed material of the sliding material 12 can be easily analyzed by chemical analysis such as a scanning electron microscope, energy dispersive X-ray analysis, infrared spectroscopy, or X-ray diffraction. Further, the hardness of the first particles 12b and the second particles 12c can be confirmed by, for example, hardness measurement using a nanoindenter, and the content of the first particles 12b and the second particles 12c can be easily confirmed by thermogravimetry, etc. can be executed.
  • the sliding material 12 can be manufactured, for example, as follows. That is, a uniform mixed powder can be obtained by mixing the powder of the resin 12a, the first particles 12b, and the second particles 12c with, for example, powder of carbon fiber, molybdenum disulfide, etc., using a mixer. . Next, a molded article is obtained by molding the mixture into an arbitrary shape by compression molding or injection molding. Finally, the sliding material 12 is obtained by firing the molded product in an electric furnace or the like. It is preferable to carry out the firing by adjusting the temperature range appropriately depending on the type of resin 12a and the like used.
  • FIG. 2 is a cross-sectional view showing the structure of a gas compression machine 20 according to one embodiment.
  • the gas compression machine 20 is a scroll type gas compression machine.
  • the gas compression machine 20 includes a casing 23 forming an outer shell of the gas compression machine 20, a drive shaft 24 rotatably provided in the casing 23, a fixed scroll 21 attached to the casing 23, and a crankshaft of the drive shaft 24. It has an orbiting scroll 22 which is rotatably provided at 24A.
  • the fixed scroll 21 has a fixed end plate 21a and a fixed scroll wrap 21b formed in a spiral shape on one main surface side of the fixed end plate 21a.
  • the orbiting scroll 22 includes an orbiting mirror plate 22a and an orbiting scroll wrap 22b formed in a spiral shape on one main surface side of the orbiting mirror plate 22a.
  • the orbiting scroll 22 has a boss portion 22f protruding from the center of the rear side of the orbiting mirror plate 22a.
  • the orbiting scrolls 22 are arranged to face each other so that the orbiting scroll wrap 22b and the fixed scroll wrap 21b mesh with each other. Thereby, a compression and expansion chamber 25 is formed between the fixed scroll wrap 21b and the orbiting scroll wrap 22b.
  • the compression/expansion chamber 25 is provided in the gas compression machine 20 and performs at least one of compression and expansion on gas. In the illustrated example, the gas that has flowed into the compression/expansion chamber 25 is compressed.
  • a suction port 26 is provided on the outer peripheral side of the fixed end plate 21a of the fixed scroll 21.
  • the suction port 26 communicates with the compression and expansion chamber 25 on the outermost circumferential side.
  • a discharge port 27 is bored in the center of the fixed end plate 21a of the fixed scroll 21. The discharge port 27 opens into the compression and expansion chamber 25 on the innermost circumferential side.
  • the drive shaft 24 is rotatably supported by the casing 23 via a ball bearing 28.
  • One end of the drive shaft 24 is connected to an electric motor (not shown) or the like outside the casing 23, and the other end of the drive shaft 24 extends into the casing 23 to serve as a crankshaft 24A.
  • the axis of the crankshaft 24A is eccentric with respect to the axis of the drive shaft 24 by a predetermined dimension.
  • An annular thrust receiving portion 31 is provided on the inner circumference of the casing 23 on the orbiting scroll 22 side.
  • a thrust plate 32 is provided between the thrust receiving portion 31 and the rotating mirror plate 22a.
  • the thrust plate 32 is formed as an annular plate made of a metal material such as iron.
  • the thrust plate 32 and the thrust receiving portion 31 receive the load mainly in the thrust direction (the direction in which the orbiting scroll 22 is separated from the fixed scroll 21) that acts on the orbiting scroll 22 during the compression operation. This suppresses galling and abnormal wear between the casing 23 and the rotating mirror plate 22a.
  • an Oldham ring 33 is provided between the thrust receiving portion 31 and the rotating mirror plate 22a at a position closer to the center than the thrust plate 32.
  • the Oldham ring 33 suppresses the rotation of the orbiting scroll 22 when the orbiting scroll 22 is rotationally driven by the drive shaft 24, and provides circular motion with a predetermined radius of rotation by the crankshaft 24A.
  • the orbiting scroll 22 rotates with a predetermined radius of rotation, and the external air sucked in from the suction port 26 is sequentially compressed in the compression/expansion chamber 25. .
  • This compressed air is discharged from the discharge port 27 of the fixed scroll 21 to an external air tank or the like.
  • FIG. 3 is an enlarged view of a portion of the fixed scroll 21 and orbiting scroll 22 of the gas compression machine 20 shown in FIG. 2.
  • the fixed scroll 21 and the orbiting scroll 22 are examples of the member 11 shown in FIG.
  • the chip seals 291 and 292 are examples of the sliding member 12 shown in FIG. Therefore, the sliding section 10 includes a fixed scroll 21, an orbiting scroll 22, and tip seals 291 and 292.
  • a groove 21d is formed in the end surface 21c of the fixed scroll wrap 21b on the side opposite to the rotating end plate 22a, and a chip seal 291 is fitted into the groove 21d. Further, a groove 22d is also formed in the end surface 22c of the orbiting scroll wrap 22b on the side opposite to the fixed end plate 21a, and a chip seal 292 is fitted into this groove 22d as well.
  • the chip seals 291 and 292 slide on the lap bottom surfaces 21e and 22e that partition the compression and expansion chamber 25.
  • the wrap bottom surfaces 21e and 22e are examples of the sliding surface 13 shown in FIG.
  • the fixed scroll 21 and the orbiting scroll 22 are made of, for example, an aluminum-based material such as aluminum or aluminum alloy.
  • the surfaces of the fixed scroll 21 and the orbiting scroll 22 are subjected to alumite treatment. Therefore, the wrap bottom surfaces 21e and 22e are the surfaces of the alumite layer.
  • the tip seal 291 slides on the lap bottom surface 22e of the orbiting end plate 22a, and the tip seal 292 slides on the lap bottom surface 21e of the fixed end plate 21a.
  • contact between the fixed scroll wrap 21b and the wrap bottom surface 22e of the rotating end plate 22a, and contact between the orbiting scroll wrap 22b and the wrap bottom surface 21e of the fixed end plate 21a can be suppressed.
  • a smooth sliding condition can be obtained.
  • the sliding material 12 may be coated on the surface of the thrust plate 32 or the surface of the rotating mirror plate 22a that forms these sliding surfaces. Further, in the above description, an example was shown in which the thrust plate 32 was formed of a metal material such as iron, but the thrust plate 32 itself may be formed of the sliding material 12.
  • the scroll type gas compression machine 20 is not limited to this, and the present disclosure also applies to scroll type gas compression machines using other anti-rotation mechanisms such as an auxiliary crank and an Oldham joint (not shown). can be applied.
  • FIG. 4 is a sectional view showing the structure of a gas compression machine 40 according to another embodiment.
  • the gas compression machine 40 is a reciprocating type gas compression machine.
  • the gas compression machine 40 includes a cylinder 41 and a piston 42 that reciprocates inside the cylinder 41.
  • a compression and expansion chamber 43 is formed in the space defined by the piston 42 within the cylinder 41 .
  • the compression/expansion chamber 43 is an example of a chamber that compresses or expands gas. In the illustrated example, the gas that has flowed into the compression and expansion chamber 43 is compressed.
  • the upper end of the cylinder 41 is closed by a partition plate 44, and the partition plate 44 is provided with an inlet port 44a and a discharge port 44b.
  • the suction port 44a and the discharge port 44b are provided with a suction valve 44c and a discharge valve 44d, respectively, and pipes (not shown) are connected to the ends of the suction valve 44c and the discharge valve 44d, respectively.
  • the cylinder 41 is open at its lower end, and is connected to the housing 45 at this lower end.
  • a connecting rod 46 is connected to the piston 42 via a piston pin 46a.
  • a motor 47 is housed within the housing 45 . The motor 47 is connected to the connecting rod 46 via a pulley 48 and a belt 49 wound between the pulleys 48 .
  • FIG. 5 is an enlarged view showing the inside of the cylinder 41 shown in FIG. 4.
  • the cylinder 41 is an example of the member 11 shown in FIG.
  • the piston ring 421 is an example of the sliding member 12 shown in FIG. Therefore, the sliding part 10 includes a cylinder 41 and a piston ring 421.
  • the rider ring 422 may also be formed of the sliding material 12.
  • the cylinder 41 may be made of metal or resin.
  • the cylinder 41 is made of, for example, an aluminum-based material such as aluminum or aluminum alloy.
  • the inner peripheral surface 43a of the cylinder 41 (an example of the sliding surface 13 shown in FIG. 1) is subjected to alumite treatment. Therefore, the inner peripheral surface 43a is the surface of the alumite layer.
  • a piston ring 421 and a rider ring 422 are attached to the piston 42.
  • the piston ring 421 and the rider ring 422 slide on the inner peripheral surface 43a of the cylinder 41. Thereby, contact between the piston 42 and the cylinder 41 and galling can be suppressed. As a result, a smooth sliding state between the piston 42 and the cylinder 41 can be obtained.
  • the gas supplied to the compression and expansion chambers 25 and 43 may be, for example, the atmosphere (air) or dry gas containing extremely little water vapor.
  • the sliding material 12 of the present disclosure can exhibit sufficient abrasion durability regardless of the type of gas to be compressed. Therefore, the gas compression machines 20 and 40 to which the sliding material 12 of the present disclosure is applied can be used, for example, to compress dry gas.
  • the drying gas include gases having a dew point of ⁇ 30° C. or lower. Specific examples include synthetic air, high-purity nitrogen gas, oxygen gas, helium gas, argon gas, and hydrogen gas.
  • Examples 1 to 7 and Comparative Examples 1 to 5 were produced using the materials shown in Table 1 below.
  • the resin 12a PTFE was used as an example of a fluororesin.
  • the first particles 12b are copper as an example of metal, and have an average particle diameter (size) of 60 ⁇ m.
  • the second particles 12c are each made of diatomaceous earth, silica, or alumina as examples of ceramics.
  • the average particle size (size) of diatomaceous earth is 36 ⁇ m
  • the average particle size (size) of silica is 24 ⁇ m
  • the average particle size (size) of alumina is 50 ⁇ m.
  • the Vickers hardness of copper is 57HV
  • the Vickers hardness of diatomaceous earth is 600HV
  • the Vickers hardness of silica is 900HV
  • the Vickers hardness of alumina is 1385HV. Therefore, diatomaceous earth, silica, and alumina all have a Vickers hardness greater than that of copper.
  • the hardness ratio of the present disclosure is 11, and when the first particles 12b are copper and the second particles 12c are silica, the hardness ratio of the present disclosure is 16.
  • the hardness ratio of the present disclosure is 24 when the first particles 12b are copper and the second particles 12c are alumina.
  • Example 1 to 7 and Comparative Examples 1 to 4 copper is used as the first particles 12b. In Comparative Example 5, the first particles 12b are not used. In Examples 1 to 3, 5, and 7 and Comparative Examples 2 and 4, diatomaceous earth is used as the second particles 12c. In Example 4 and Comparative Examples 3 and 5, silica is used as the second particles 12c. In Example 6, alumina is used as the second particles 12c. In Comparative Example 1, the second particles 12c are not used, and Comparative Example 1 corresponds to the technique described in Patent Document 1 mentioned above.
  • the value of the present disclosure is 0.3 or more and 2.8 or less.
  • the values of the present disclosure are less than 0.3 or greater than 2.8.
  • the content ratio of the present disclosure is 0, and the denominator when the value of the present disclosure is expressed as a fraction is 0. Therefore, the value of the present disclosure cannot be uniquely conceived and is infinite. However, even in this case, the value of the present disclosure is at least larger than 2.8.
  • FIG. 6 is a diagram explaining the test method of the friction test.
  • the sliding materials of Examples 1 to 7 and Comparative Examples 1 to 5 were processed into a block-shaped test piece 71, and a ring-shaped test piece 72 was brought into contact with the upper surface of the test piece 71.
  • the test piece 71 has a substantially prismatic shape with a width of 6 mm, a length of 20 mm, and a height of 5 mm. In the test piece 71, C-chamfering with a depth of 0.5 mm is performed at two opposing corners at the upper part of the prism.
  • the test piece 72 is made of an aluminum alloy, and the surface is subjected to sulfuric acid alumite treatment.
  • the test piece 72 has a cylindrical shape, and has an inner diameter of 9 mm and an outer diameter of 13 mm.
  • a friction test was conducted by rotating the test piece 72 with the test piece 71 fixed.
  • the experimental conditions for the friction test were a contact pressure of 1 MPa, a speed of 2 m/s, and a temperature of 120° C., and sliding was performed for 15 hours.
  • FIG. 7 is a diagram illustrating the test results of the friction test.
  • the vertical axis of the graph shown in FIG. 7 shows the amount of wear of the test piece 71 after the friction test.
  • the amount of wear was determined by dividing the amount of mass reduction before and after the friction test by the density of the test piece 71.
  • the amount of wear was expressed as a relative value when Comparative Example 1 was taken as 100.
  • Example 1 to 7 in which the value of the present disclosure is 0.3 or more and 2.8 or less, the wear amount was all less than 100, which is the value corresponding to the technology described in Patent Document 1.
  • the wear amount when the value of the present disclosure was 1.1 or more and 1.8 or less (Examples 2 to 5), the amount of wear was particularly small.
  • the amount of wear was 1600, which was 16 times that of Comparative Example 1.
  • the first particles 12b and the second particles 12c having different Vickers hardnesses together and setting the value of the present disclosure to 0.3 or more and 2.8 or less it is possible to reduce the amount of wear and improve the wear resistance. It has been shown that it can improve sexual performance.
  • the first particles 12b and the second particles 12c together and setting the value of the present disclosure to 0.3 or more and 2.8 or less the It was shown that the amount of wear can be reduced.
  • Patent Document 1 which corresponds to Comparative Example 1, PTFE is used as the base material and a copper alloy is added. Since copper and copper alloys are soft, they cannot support shear stress and easily yield in harsh environments such as high pressure, causing increased wear. Copper alloy is classified as the first particle 12b of the present disclosure, and no material corresponding to the second particle 12c is used. Therefore, in the sliding material described in Patent Document 1, the hardness ratio of the present disclosure is small and the content ratio of the present disclosure is large. That is, since the value of the present disclosure is small, it is considered that the durability of the material itself was insufficient in a harsh environment and the amount of wear increased.
  • Comparative Example 5 the relatively soft first particles 12b as described above are not used, but the second particles 12c made of relatively hard silica are used.
  • Hard materials such as silica and alumina produce abrasive particles when they fall off due to shearing as described above. As a result, the amount of wear tends to increase due to the cutting action. Therefore, in a sliding material that uses only the second particles 12c without using the first particles 12b, the hardness ratio of the present disclosure is large and the content ratio of the present disclosure is small. That is, since the value of the present disclosure is large, it is considered that the amount of wear increased due to the abrasive action.
  • the sliding material 12 of the present disclosure wear resistance (friction durability) can be improved. Therefore, by applying the sliding material 12 to, for example, the chip seals 291, 292 (FIG. 3), the piston ring 421 (FIG. 5), etc., the replacement life of these can be extended. Therefore, the maintenance cycle and life of the gas compression machines 20, 40 can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)

Abstract

耐摩耗性に優れた摺動材を提供する。この課題の解決のため、摺動材(12)は、樹脂(12a)と、樹脂(12a)中に配置され、無機材料により構成される第1粒子(12b)と、樹脂(12a)中に配置され、第1粒子(12b)よりも大きなビッカース硬度を有する無機材料により構成される第2粒子(12c)と、を含み、第2粒子(12c)のビッカース硬度を第1粒子(12b)のビッカース硬度で除算して得られる値を硬度比と、樹脂(12a)に対する第1粒子(12b)の含有量を樹脂(12a)に対する第2粒子(12c)の含有量を除算して得られる値を含有比と定義した場合に、硬度比を含有比で除算して得られる値が0.3以上2.8以下である。

Description

摺動材及び気体圧縮機械
 本発明は、摺動材及び気体圧縮機械に関する。
 空気等の気体を圧縮する気体圧縮機械として、レシプロ型の気体圧縮機械、スクロール式の気体圧縮機械が知られている。例えばレシプロ式の気体圧縮機械では、金属製のシリンダ内を往復動するピストンには、シリンダの内面と摺動する摺動材として、ピストンリングが取り付けられる。また、例えばスクロール式の気体圧縮機械では、金属製の固定スクロール、又は、固定スクロールに対して旋回運動しながら接触して摺動する旋回スクロールの端部には、摺動材として、チップシールが取り付けられる。
 摺動材として、例えばポリテトラフルオロエチレン(PTFE)に代表される樹脂材料が使用される。例えばPTFEは、結晶性が高く、せん断強度が小さいため、せん断を受けるとミクロレベルで容易に表層剥離し、シリンダ内面等の相手面(摺動面)に移着する。PTFEを母材とした摺動材の摩耗耐久性を高めるため、金属粒子を配合した複合樹脂材が知られている。
 特許文献1の要約書には「金属相手材と油潤滑下にて摺接し、PTFE樹脂を主成分とする工作機械用樹脂摺動材に、金属相手材の素材金属より標準単極電位が低く、かつ、銅-アルミニウム系の銅合金を除く金属の粉末を配合する。あるいは、この樹脂摺動材に、更に再生PTFE樹脂粉末を配合する。」ことが記載されている。
特開2015-71793号公報
 本発明者が検討したところ、詳細は実施例を挙げて後記するが、特許文献1に記載の摺動材は耐摩耗性の観点で課題があることが分かった。
 本開示が解決しようとする課題は、耐摩耗性に優れた摺動材及び気体圧縮機械の提供である。
 本開示の摺動材は、樹脂と、前記樹脂中に配置され、無機材料により構成される第1粒子と、前記樹脂中に配置され、前記第1粒子よりも大きなビッカース硬度を有する無機材料により構成される第2粒子と、を含み、前記第2粒子のビッカース硬度を前記第1粒子のビッカース硬度で除算して得られる値を硬度比と、前記樹脂に対する前記第1粒子の含有量で前記樹脂に対する前記第2粒子の含有量を除算して得られる値を含有比と定義した場合に、前記硬度比を前記含有比で除算して得られる値が0.3以上2.8以下である。その他の解決手段は発明を実施するための形態において後記する。
 本開示によれば、耐摩耗性に優れた摺動材及び気体圧縮機械を提供できる。
一実施形態の気体圧縮機械における摺動部を拡大して示す断面図である。 一実施形態の気体圧縮機械の構造を示す断面図である。 図2に示す気体圧縮機械の固定スクロール及び旋回スクロールの一部を拡大した図である。 別の実施形態の気体圧縮機械の構造を示す断面図である。 図4に示すシリンダの内部を拡大して示す図である。 摩擦試験の試験方法を説明する図である。 摩擦試験の試験結果を説明する図である。
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。
 図1は、一実施形態の気体圧縮機械20,40における摺動部10を拡大して示す断面図である。図1は、何れも後記する図3に示すA部、及び図5に示すB部に対応する。詳細は後記するが、気体圧縮機械20は例えばスクロール式であり、気体圧縮機械40は、例えばレシプロ式である。まず、図1を参照して、気体圧縮機械20,40に備えられる摺動部10を説明する。
 摺動部10は、金属製(例えばアルミニウム製)の部材11と、摺動材12と、を備える。部材11から視れば、摺動材12が例えば旋回動、往復動等することで、摺動材12が部材11を摺動する。摺動材12から視れば、部材11が例えば旋回動、往復動等することで、部材11が摺動材12を摺動する。摺動材12は、詳細は後記するが、例えば固定スクロール21及び旋回スクロール22(いずれも図3)、ピストン42(図5)に備えられる。
 摺動部10では、摺動材12が摺動面13で部材11と接触して摺動する。摺動面13には、潤滑油、グリース等が存在してもよい。ただし、気体圧縮機械20,40では、摺動材12は摺動面13をオイルフリーで摺動する。このようなときに、本開示による効果を特に大きくできる。ここでいうオイルフリーとは、潤滑油等が全く存在しない状態である。ただし、十分な潤滑油等を存在しない、所謂オイルレスの状態でもよい。
 部材11は、金属材11aと表面層11bとを備える。金属材11aは例えば基材として機能し、金属材11aの表面に、表面層11bが形成される。表面層11bの表面に摺動面13が形成され、摺動材12は、表面層11bに対して接触しながら摺動する。
 金属材11aは、気体圧縮機械20,40の一部材としての強度を有する金属であれば特に制限されないが、例えば、例えば、アルミニウム、マグネシウム、ケイ素等の軽金属の他、鉄、クロム、ニッケル、モリブデン、チタン、銅等の遷移金属の単体又は化合物(合金等)等を使用できる。より具体的には、例えばアルミニウム、アルミニウム合金等のアルミニウム系材料、鉄、鉄-ニッケル合金等の鉄系材料、チタン、チタン合金等のチタン系材料、銅、銅合金等の銅系材料を使用できる。中でも、アルミニウム系材料が好ましく、アルミニウム系材料の使用により、優れた耐摩耗性を発揮できる。アルミニウム系材料は、例えば少量のマグネシウム、ケイ素等を含んでもよい。また、鉄系材料は、例えばクロム、ニッケル、モリブデン等を含んでもよい。
 表面層11bは、例えば、金属材11aに自然に生成した自然酸化膜、人工的に施した表面コーティングのいずれでもよい。自然酸化膜の場合、例えば金属材11aがアルミニウム系材料により構成されるとき、表面層11bは酸化アルミニウムにより構成される。また、金属材11aが鉄系材料により構成される場合、表面層11bは酸化鉄により構成される。金属材11aが銅系材料により構成される場合、表面層11bは酸化銅により構成される。
 図示の例では、表面層11bは、酸化アルミニウムにより構成されるアルマイト層であり、摺動面13は、アルマイト層の表面である。摺動面13をこのようにすることで、金属材11aを保護できる。
 表面層11bが表面コーティングの場合、一例として、表面層11bは、メッキ処理、物理蒸着(PVD)法、化学蒸着(CVD)法、浸炭処理等により形成できる。この場合、表面層11bは、通常は、例えばアルミニウム、リン、クロム、鉄、ニッケル、亜鉛のうち少なくとも1つを含む材料で構成される。このような元素を含む表面コーティングの一例として、アルマイト処理、アルミニウムめっき、ニッケルめっき、クロムめっき、鉄めっき、亜鉛めっき等が挙げられる。
 図1に示す例では、金属材11aの表面に表面層11bが形成されている。しかし、金属材11aには、必ずしも表面層11bが形成されていなくてもよく、部材11の表面に、金属材11aが露出していてもよい。即ち、部材11の金属表面は、金属材11aを構成する金属により形成されていてもよく、金属材11a上に形成された、表面層11bにより形成されていてもよい。
 摺動材12は、樹脂12aと、第1粒子12bと、第2粒子12cとを含む。樹脂12aは、例えば母材として機能する。樹脂12aは、フッ素樹脂であることが好ましい。フッ素樹脂を使用することで、耐久性を向上できる。また、摺動面13へのフッ素樹脂の移着を促進できる。フッ素樹脂としては、例えば、上記のPTFE、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)のうちの少なくとも一種を使用できる。樹脂12aは、異なる種類の2以上の樹脂を併用してもよく、例えば、PTFEと、PTFE以外のフッ素樹脂とを混合して併用してもよい。また、樹脂12aは、フッ素樹脂でなくてもよく、他に任意の樹脂でもよい。
 第1粒子12bは、樹脂12a中に配置され、無機材料により構成される。第1粒子12bは、好ましくは、樹脂12a中に分散して配置される。第1粒子12bは、金属により構成されることが好ましい。金属により構成することで、第1粒子12bのビッカース硬度を所望の値に設定し易くできる。
 第1粒子12bのビッカース硬度(HV)は、延性を有する軟質材のビッカース硬度が好ましく、具体的には例えば50HV以上、上限として例えば200HV以下、好ましくは100HV以下である。ビッカース硬度がこの範囲にあることで、摺動面13での摺動時に第1粒子12bが延性を発揮でき、耐摩耗性を向上できる。
 第1粒子12bは、銅、銅を主成分とする合金、アルミニウム、又は、アルミニウムを主成分とする合金、のうちの少なくとも一種であることが好ましい。これらを使用することで、耐摩耗性を向上できる。なお、銅が主成分、及びアルミニウムが主成分とは、それぞれ、合金中で最も多い金属が銅又はアルミニウムであることをいう。
 樹脂12aと第1粒子12bとの間には、化成処理層が形成されることが好ましい。化成処理層が形成されることで、化成処理層に起因する各種機能を付与できる。化成処理層は、例えば、第1粒子12bの表面に形成される。化成処理層は、例えば、樹脂12aと第1粒子12bとの接合強度を向上させる密着層である。密着層は、例えば、カップリング処理、めっき処理等により形成できる。カップリング処理は、例えば、チタン系、シリコン系等のカップリング剤を使用して実行できる。めっき処理は、ニッケルめっき、鉄めっき等の、樹脂12aとの化学的親和性の高い遷移金属を使用して実行できる。
 第1粒子12bの平均粒径(大きさ)は、特に制限されないが、例えば10μm以上、好ましくは50μm以上、上限として例えば500μm以下、好ましくは100μm以下にできる。第1粒子12bの平均粒径は、例えば、レーザ回折式粒度分布測定装置を用いて測定できる。d
 第2粒子12cは、樹脂12a中に配置され、無機材料により構成される。第2粒子12cは、好ましくは、樹脂12a中に分散して配置される。第2粒子12cは、金属又はセラミックの少なくとも一方により構成されることが好ましい。これにより、第1粒子12bとの関係で、第2粒子12cのビッカース硬度を所望の値に設定し易くできる。
 第2粒子12cは、第1粒子12bよりも大きなビッカース硬度を有する無機材料により構成される。このような無機粒子としては、珪藻土、アルミナ、シリカ、酸化チタン、酸化亜鉛、炭化珪素等の硬質な金属粒子、セラミックス粒子が挙げられる。中でも、第2粒子12cは、珪藻土、アルミナ、シリカ、酸化チタン、酸化亜鉛、又は、炭化珪素のうちの少なくとも一種であることが好ましい。これらを使用することで、第1粒子12bよりもビッカース硬度を大きくし易くできる。
 第2粒子12cの平均粒径(大きさ)は、特に制限されないが、例えば10μm以上、好ましくは20μm以上、上限として例えば500μm以下、好ましくは100μm以下にできる。第2粒子12cの平均粒径は、例えば、レーザ回折式粒度分布測定装置を用いて測定できる。
 樹脂12aに対する第1粒子12bの含有量を、樹脂12aに対する第2粒子12cの含有量で除算して得られる値を含有比(以下、本開示の含有比という)と定義した場合に、本開示の含有比は特に限定されない。本開示の含有比は、好ましくは3以上、より好ましくは6以上、上限として好ましくは40以下、より好ましくは20以下である。なお、本開示の含有比は、{第1粒子12bの含有量(質量%)}/{第2粒子12cの含有量(質量%)}により算出できる。
 第2粒子12cのビッカース硬度を上記第1粒子12bのビッカース硬度で除算して得られる値を硬度比(以下、本開示の硬度比という)と定義した場合に、本開示の硬度比は特に限定されない。本開示の硬度比は、好ましくは6以上、より好ましくは10以上、上限として好ましくは30以下、より好ましくは25以下である。なお、本開示の硬度比は、{第2粒子12cのビッカース硬度(HV)}/{第1粒子12bのビッカース硬度(HV)}により算出できる。また、硬度の指標としてビッカース硬度を使用することで、第1粒子12b及び第2粒子12cの硬度を適切に表現でき、詳細は後記する本開示の比に基づき、第1粒子12b及び第2粒子12cの材料の選定を適切に実行できる。
 本開示の摺動材12では、本開示の硬度比を本開示の含有比で除算して得られる値(以下、本開示の値という)が0.3以上2.8以下である。従って、本開示の含有比がこの範囲になるように、本開示の硬度比及び本開示の含有比を調整することが好ましい。本開示の値をこの範囲にすることで、詳細は実施例を参照して後記するが、優れた耐摩耗性を発揮できる。本開示の値は、好ましくは1.1以上、上限として好ましくは1.8以下、より好ましくは1.6以下である。本開示の値をこの範囲することで、特に優れた耐摩耗性を発揮できる。なお、本開示の値は、{本開示の硬度比(-)/(本開示の含有比(-)}により算出できる。
 本開示の値を上記範囲に設定する理由は以下のとおりである。本発明者は、例えば後記の図7に試験方法に沿って多数回の摩擦試験を行った。この結果、本発明者は、摺動材12の摩耗量と、第1粒子12b及び第2粒子12cに係る本開示の硬度比及び本開示の含有比との間に、相関があることを見出した。具体的には、本開示の硬度比が大き過ぎる、又は、本開示の含有比が小さ過ぎる場合、第1粒子12b及び第2粒子12cのアブレシブ作用で摩耗量が増加することを特定した。一方で、本開示の硬度比が小さ過ぎる、又は、本開示の含有比が大き過ぎる場合、摺動材12自体の耐久性が小さくなり、摩耗量が増加することを明らかにした。
 一方で、第1粒子12b及び第2粒子12cについて、本開示の硬度比及び含有比が適切な範囲に制御されれば、主として相対的に硬質な第2粒子12cが、摺動中のせん断応力を効果的に支持する。これに加えて、相対的に軟質な第1粒子12bはせん断応力を支持しつつ、その摩耗粉が部材11に一部付着することで、硬質な部材11からの攻撃性を弱める効果がある。これらの相乗効果は、本開示の硬度比と本開示の含有比とを1つのパラメータとした、本開示の値が適切に制御された場合に発揮される。従って、本開示の値は、例えば過酷環境での摺動材12の耐摩耗性の向上に寄与する。
 摺動材12は、更に、繊維を含んでもよい。繊維は、樹脂12a中に配置され、好ましくは樹脂12aに分散して配置される。繊維を含むことで、摺動材12の機械的強度を向上できる。繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維、セラミックス繊維等の少なくとも一種が挙げられる。中でも、繊維は、炭素繊維であることが好ましい。炭素繊維であることで、摺動材12の軽量化と強度向上とを両立できる。
 繊維の長さ及び径は、本開示の効果を著しく損なわない限り特に制限されないが、例えば、長さは例えば10μm以上300μm以下、径は例えば1μm以上30μm以下にすることができる。長さ及び径は、摺動材12の断面顕微鏡写真における実測値を採用できる。
 摺動材12は、更に、固体潤滑剤を含んでもよい。固体潤滑剤は、例えば10μm以上500μ以下の粒径を有する粒子状であることが好ましい。粒径は、例えば、レーザ回折式粒度分布測定装置を用いた平均粒径として測定できる。
 固体潤滑剤は、樹脂12a中に配置され、好ましくは樹脂12aに分散して配置される。固体潤滑剤は、例えば、二硫化モリブデン、グラファイト、窒化ホウ素等の少なくとも1種が挙げられる。中でも、固体潤滑剤は、二硫化モリブデンであることが好ましい。二硫化モリブデンであることで、摩擦を低減して耐摩耗性を向上できるとともに、例えばせん断応力等の応力に対する摺動材12の強度を向上できる。
 摺動材12において、少なくとも樹脂12a、第1粒子12b及び第2粒子12cの種類の確認は以下のようにして実行できる。即ち、摺動材12の例えば表面又は破砕物を、走査型電子顕微鏡、エネルギ分散型X線分析、赤外分光分析、X線回折等の化学分析により、容易に実行できる。また、第1粒子12b及び第2粒子12cの硬度確認は、例えば、ナノインデンタ等の硬度測定により実行できる、また、第1粒子12b及び第2粒子12cの含有量確認は、熱重量測定等により容易に実行できる。
 摺動材12は、例えば、以下のようにして製造できる。即ち、樹脂12aの粉末、第1粒子12b、及び第2粒子12cと、例えば、適宜炭素繊維、二硫化モリブデン等の粉末とを、ミキサを用いて混合することで、均一な混合粉末が得られる。次いで、混合物を圧縮成型又は射出成型で任意の形状に成型することで、成形物が得られる。最後に、成形物を電気炉等で焼成することで、摺動材12が得られる。焼成は、使用する樹脂12a等の種類に応じて、その温度範囲を適宜調整して行うことが好ましい。
 図2は、一実施形態の気体圧縮機械20の構造を示す断面図である。図2に示す例では、気体圧縮機械20は、スクロール式の気体圧縮機械である。気体圧縮機械20は、気体圧縮機械20の外殻をなすケーシング23と、ケーシング23に回転可能に設けられた駆動軸24と、ケーシング23に取り付けられた固定スクロール21と、駆動軸24のクランク軸24Aに旋回可能に設けられた旋回スクロール22と、を有する。
 固定スクロール21は、固定鏡板21aと、固定鏡板21aの一主面側に渦巻状に形成された固定スクロールラップ21bと、を有する。旋回スクロール22は、旋回鏡板22aと、旋回鏡板22aの一主面側に渦巻状に形成された旋回スクロールラップ22bと、を有する。旋回スクロール22には、旋回鏡板22aの背面側中央にボス部22fが突設する。
 旋回スクロール22は、旋回スクロールラップ22bが固定スクロールラップ21bと互いに噛み合うように、互いに対向して配置される。これにより、固定スクロールラップ21bと旋回スクロールラップ22bとの間に、圧縮膨張室25が形成される。圧縮膨張室25は、気体圧縮機械20に備えられ、気体に対し、圧縮又は膨張の少なくとも一方を行うものである。図示の例では、圧縮膨張室25では、流入した気体が圧縮される。
 固定スクロール21の固定鏡板21aの外周側には、吸入口26が穿設される。吸入口26は、最外周側の圧縮膨張室25に連通する。また、固定スクロール21の固定鏡板21aの中心部には、吐出口27が穿設される。吐出口27は、最内周側の圧縮膨張室25に開口する。
 駆動軸24は、玉軸受28を介してケーシング23に回転可能に支持される。駆動軸24の一端側は、ケーシング23外で電動モータ(不図示)等に連結されており、駆動軸24の他端側は、ケーシング23内に伸張してクランク軸24Aとなる。クランク軸24Aの軸線は、駆動軸24の軸線に対して、所定寸法だけ偏心する。
 ケーシング23の旋回スクロール22側の内周には、円環状のスラスト受部31が設けられる。スラスト受部31と旋回鏡板22aとの間には、スラストプレート32が設けられる。スラストプレート32は、例えば鉄等の金属材料により円環状の板体として形成される。旋回スクロール22が旋回運動したときに、旋回鏡板22aに対してその表面が摺動する。これにより、主に圧縮運転時に旋回スクロール22に作用するスラスト方向(旋回スクロール22を固定スクロール21から離間させる方向)の荷重を、スラストプレート32はスラスト受部31と共に受けとめる。これにより、ケーシング23と旋回鏡板22aとのかじり及び異常摩耗を抑制する。
 また、スラスト受部31と旋回鏡板22aとの間には、スラストプレート32より中心寄りの位置に、オルダムリング33が設けられる。オルダムリング33は、駆動軸24によって旋回スクロール22が回転駆動されたときに、旋回スクロール22の自転を抑制し、クランク軸24Aによる所定寸法の旋回半径を持った円運動を与える。
 不図示の電動モータ等により駆動軸24を回転駆動させると、旋回スクロール22が所定寸法の旋回半径で旋回運動し、吸入口26から吸い込まれた外部の空気が圧縮膨張室25で順次圧縮される。この圧縮空気は、固定スクロール21の吐出口27から、外部の空気タンク等に吐出される。
 図3は、図2に示す気体圧縮機械20の固定スクロール21及び旋回スクロール22の一部を拡大した図である。固定スクロール21及び旋回スクロール22は、図1に示した部材11の一例である。また、チップシール291,292は、図1に示した摺動材12の一例である。従って、摺動部10は、固定スクロール21、旋回スクロール22及びチップシール291,292を備える。
 固定スクロールラップ21bの旋回鏡板22aとの対向側の端面21cには、溝21dが形成されており、この溝21dには、チップシール291が嵌め込まれる。また、旋回スクロールラップ22bの固定鏡板21aとの対向側の端面22cにも、溝22dが形成されており、この溝22dにもチップシール292が嵌め込まれる。
 チップシール291,292は、圧縮膨張室25を区画するラップ底面21e,22eを摺動する。ラップ底面21e,22eは、図1に示した摺動面13の一例である。固定スクロール21及び旋回スクロール22は、例えばアルミニウム、アルミニウム合金等のアルミニウム系材料である。固定スクロール21及び旋回スクロール22の表面にはアルマイト処理が施される。従って、ラップ底面21e,22eはアルマイト層の表面である。
 旋回スクロール22の旋回運動に伴い、チップシール291が旋回鏡板22aのラップ底面22eと摺動し、チップシール292が固定鏡板21aのラップ底面21eと摺動する。これにより、固定スクロールラップ21bと旋回鏡板22aのラップ底面22eとの接触、及び、旋回スクロールラップ22bと固定鏡板21aのラップ底面21eとの接触を抑制できる。この結果、スムーズな摺動状態を得ることができる。
 スラストプレート32(図2)と旋回鏡板22aとの摺動部分において、これらの摺動面を形成するスラストプレート32表面又は旋回鏡板22aの表面に、摺動材12をコーティングしてもよい。また、上記の説明では、スラストプレート32を、鉄等の金属材料により形成した例を示したが、スラストプレート32自体を、摺動材12により形成してもよい。
 また、上記の説明では、スラストプレート32と、スラストプレート32より中心寄りの位置に設けられたオルダムリング33により、旋回スクロール22の自転を抑制する機構について示した。しかし、スクロール式の気体圧縮機械20は、これに限られるものではなく、何れも不図示の例えば補助クランク、オルダム継手等の他の自転防止機構を用いたスクロール式の気体圧縮機械にも本開示を適用できる。
 図4は、別の実施形態の気体圧縮機械40の構造を示す断面図である。図4に示す例では、気体圧縮機械40は、レシプロ式の気体圧縮機械である。気体圧縮機械40は、シリンダ41と、シリンダ41内部を往復動するピストン42と、を有する。シリンダ41内の、ピストン42により画成された空間には、圧縮膨張室43が形成される。圧縮膨張室43は、気体に対し、圧縮又は膨張の少なくとも一方を行う室の一例である。図示の例では、圧縮膨張室43では、流入した気体が圧縮される。
 シリンダ41の上端は、仕切り板44により閉塞されており、仕切り板44に、吸入口44a及び吐出口44bが設けられる。吸入口44a及び吐出口44bには、それぞれ、吸入弁44c及び吐出弁44dが設けられ、吸入弁44c及び吐出弁44dの先には、それぞれ配管(不図示)が接続される。
 シリンダ41は、下端側が開放されており、この下端部において、筐体45と接続される。ピストン42には、ピストンピン46aを介して連結棒46が接続される。筐体45内には、モータ47が収容される。モータ47は、プーリ48、及びプーリ48間に巻き回されたベルト49を介して、連結棒46に接続される。
 気体圧縮機械40の作動時には、モータ47の動力が、ベルト49、プーリ48を介して、連結棒46によりピストン42に伝えられる。ピストン42を上下動させることで、吸入口44aから圧縮膨張室43内に外気を吸入し、圧縮膨張室43内で吸入ガスが圧縮される。圧縮されたガスは、吐出口44bを通って、圧縮膨張室43の外部に吐出され、配管により回収される。
 図5は、図4に示すシリンダ41の内部を拡大して示す図である。シリンダ41は、図1に示した部材11の一例である。また、ピストンリング421は、図1に示した摺動材12の一例である。従って、摺動部10は、シリンダ41及びピストンリング421を備える。ライダーリング422も、摺動材12によって形成されてもよい。
 シリンダ41は、金属製でもよく、樹脂製でもよい。シリンダ41は、例えばアルミニウム、アルミニウム合金等のアルミニウム系材料である。シリンダ41の内周面43a(図1に示した摺動面13の一例)にはアルマイト処理が施される。従って、内周面43aはアルマイト層の表面である。
 ピストン42には、ピストンリング421及びライダーリング422が環装される。ピストン42の上下動に伴い、ピストンリング421及びライダーリング422が、シリンダ41の内周面43aと摺動する。これにより、ピストン42とシリンダ41との接触、及び、カジリを抑制できる。この結果、ピストン42とシリンダ41とのスムーズな摺動状態を得ることができる。
 気体圧縮機械20,40では、圧縮膨張室25,43に供給される気体は、例えば大気(空気)でもよく、水蒸気が極端に少ない乾燥ガスでもよい。本開示の摺動材12は、圧縮する気体の種類に拠らずに、十分な摩耗耐久性を発現できる。このため、本開示の摺動材12を適用した気体圧縮機械20,40を、例えば乾燥ガスの圧縮に供することもできる。乾燥ガスとしては、例えば、露点-30℃以下のガスが挙げられる。具体的には、例えば、合成空気、高純度窒素ガス、酸素ガス、ヘリウムガス、アルゴンガス、水素ガス等が挙げられる。
 以下、実施例を挙げて、本開示をより具体的に説明する。
 下記表1に示す材料を使用して、実施例1~7及び比較例1~5の摺動材を作製した。樹脂12aは、フッ素樹脂の一例として、PTFEを用いた。第1粒子12bは、金属の一例としての銅であり、平均粒径(大きさ)は60μmである。第2粒子12cは、何れもセラミックの一例として、珪藻土、シリカ、又はアルミナである。珪藻土の平均粒径(大きさ)は36μm、シリカの平均粒径(大きさ)は24μm、アルミナの平均粒径(大きさ)は50μmである。
Figure JPOXMLDOC01-appb-T000001
 
 使用した各材料について、銅のビッカース硬度は57HV、珪藻土のビッカース硬度は600HV、シリカのビッカース硬度は900HV、アルミナのビッカース硬度は1385HVである。従って、珪藻土、シリカ及びアルミナは、いずれも、銅のビッカース硬度よりも大きなビッカース硬度を有する。なお、第1粒子12bが銅、第2粒子12cが珪藻土の場合の本開示の硬度比は11、第1粒子12bが銅、第2粒子12cがシリカの場合の本開示の硬度比は16、第1粒子12bが銅、第2粒子12cがアルミナの場合の本開示の硬度比は24である。
 実施例1~7及び比較例1~4では、第1粒子12bとして銅が使用される。比較例5では、第1粒子12bは使用されない。実施例1~3,5,7及び比較例2,4では、第2粒子12cとして珪藻土が使用される。実施例4及び比較例3,5では、第2粒子12cとしてシリカが使用される。実施例6では、第2粒子12cとしてアルミナが使用される。比較例1では、第2粒子12cは使用されず、比較例1は上記特許文献1に記載の技術に相当する。
 実施例1~7では、本開示の値は、0.3以上2.8以下である。比較例1~5では、本開示の値は、0.3未満、又は、2.8よりも大きい。なお、比較例5では、本開示の含有比が0であり、本開示の値を分数で示したときの分母が0である。従って、本開示の値は一義的に観念できず無限大になる。しかし、この場合であっても、本開示の値は、少なくとも、2.8よりは大きくなる。
 図6は、摩擦試験の試験方法を説明する図である。実施例1~7及び比較例1~5の摺動材をブロック状の試験片71に加工し、試験片71の上面に、リング状の試験片72を接触させた。試験片71は、幅6mm、長さ20mm、高さ5mmの略角柱状を有する。試験片71では、角柱において上部で対向する2つの角で、深さ0.5mmのC面取りが行われる。試験片72は、アルミニウム合金により構成され、表面には硫酸アルマイト処理が施されている。試験片72は、円筒状を有し、内径は9mm、外径は13mmである。
 試験片71を固定した状態で試験片72を回転させることで、摩擦試験を行った。摩擦試験の実験条件として、接触圧は1MPa、速度は2m/s、温度は120℃に制御し、15時間摺動させた。
 図7は、摩擦試験の試験結果を説明する図である。図7に示すグラフの縦軸は、摩擦試験後の試験片71の摩耗量を示す。摩耗量は、摩擦試験前後での質量減少量を試験片71の密度で除することで求めた。また、結果を理解しやすくするため、摩耗量は、比較例1を100としたときの相対値で表した。
 本開示の値が0.3以上2.8以下である実施例1~7では、摩耗量は、いずれも、上記特許文献1に記載の技術に対応する値である100を下回った。中でも、本開示の値が1.1以上1.8以下の場合(実施例2~5)では、摩耗量が特に少なかった。一方で、本開示の値が0.3未満、又は、2.8よりも大きい比較例1~5では、摩耗量は100以上であった。特に、比較例5では、摩耗量は1600であり、比較例1の16倍であった。
 これらの結果から、ビッカース硬度が異なる第1粒子12b及び第2粒子12cを併用し、かつ、本開示の値を0.3以上2.8以下にすることで、摩耗量を低減でき、耐摩耗性を向上できることが示された。特に、第1粒子12b及び第2粒子12cを併用し、かつ、本開示の値を0.3以上2.8以下にすることで、それぞれ単独で使用した場合(比較例1,5)よりも、摩耗量を低減できることが示された。
 一方で、本開示の値が0.3未満である比較例1,2では、外部からのせん断応力によって第1粒子12b及び第2粒子12cが容易に降伏したと考えられる。このため、材料自体の耐久性が低く、実施例1~7よりも摩耗量が増加したと考えられる。
 比較例1に対応する、上記特許文献1に記載の技術では、PTFEを母材とし、銅合金が添加される。銅及び銅合金は軟質であるため、高圧等の過酷環境では、せん断応力を支持できずに容易に降伏し、摩耗増加が引き起こされる。銅合金は本開示の第1粒子12bに分類され、第2粒子12cに相当する材料は使用されない。このため、特許文献1に記載の摺動材では、本開示の硬度比が小さく、かつ、本開示の含有比が大きい。即ち、本開示の値が小さいため、過酷環境では、材料自体の耐久性が足りずに、摩耗量が増加したと考えられる。
 更に、本開示の値が2.8を超える比較例3~5では、アブレシブ作用により摩耗が増加した。特に、第1粒子12bを含まない比較例5では、ビッカース硬度が極めて大きいシリカに起因して、アブレッシブ作用が強く働き、摩耗量が極めて大きくなったと考えられる。
 比較例5では、上記のように比較的軟質な第1粒子12bが使用されず、比較的硬質なシリカにより構成される第2粒子12cが使用される。シリカ、アルミナ等の硬質な材料は、上記のようにせん断による脱落等によりアブレシブ粒子が生成する。これにより、切削作用によって摩耗量が増大し易い。従って、第1粒子12bを使用せず、第2粒子12cのみを使用する摺動材では、本開示の硬度比が大きく、本開示の含有比が小さくなる。即ち、本開示の値が大きいため、アブレシブ作用により、摩耗量が増加したと考えられる。
 以上のように、本開示の摺動材12によれば、耐摩耗性(摩擦耐久性)を向上できる。このため、摺動材12を、例えばチップシール291,292(図3)、ピストンリング421(図5)等に適用することで、これらの交換寿命を長期化できる。このため、気体圧縮機械20,40のメンテナンスサイクル及び寿命を長期化できる。
10 摺動部
12 摺動材
12a 樹脂
12b 第1粒子
12c 第2粒子
13 摺動面
20 気体圧縮機械
21 固定スクロール(摺動部)
21e ラップ底面(摺動面)
22e ラップ底面(摺動面)
22 旋回スクロール(摺動部)
25 圧縮膨張室(室)
291 チップシール(摺動材、摺動部)
292 チップシール(摺動材、摺動部)
40 気体圧縮機械
41 シリンダ(摺動部)
421 ピストンリング(摺動材、摺動部)
43 圧縮膨張室(室)
43a 内周面(摺動面)

Claims (14)

  1.  樹脂と、
     前記樹脂中に配置され、無機材料により構成される第1粒子と、
     前記樹脂中に配置され、前記第1粒子よりも大きなビッカース硬度を有する無機材料により構成される第2粒子と、を含み、
     前記第2粒子のビッカース硬度を前記第1粒子のビッカース硬度で除算して得られる値を硬度比と、前記樹脂に対する前記第1粒子の含有量を前記樹脂に対する前記第2粒子の含有量で除算して得られる値を含有比と定義した場合に、
     前記硬度比を前記含有比で除算して得られる値が0.3以上2.8以下である
     ことを特徴とする摺動材。
  2.  前記第1粒子は、金属により構成され、
     前記第2粒子は、金属又はセラミックの少なくとも一方により構成される
     ことを特徴とする請求項1に記載の摺動材。
  3.  前記第1粒子のビッカース硬度は50HV以上200HV以下である
     ことを特徴とする請求項1に記載の摺動材。
  4.  前記樹脂はフッ素樹脂である
     ことを特徴とする請求項1に記載の摺動材。
  5.  前記第1粒子は、銅、銅を主成分とする合金、アルミニウム、又は、アルミニウムを主成分とする合金、のうちの少なくとも一種である
     ことを特徴とする請求項1に記載の摺動材。
  6.  前記第2粒子は、珪藻土、アルミナ、シリカ、酸化チタン、酸化亜鉛、又は、炭化珪素のうちの少なくとも一種である
     ことを特徴とする請求項1に記載の摺動材。
  7.  更に、前記樹脂中に配置される繊維を含む
     ことを特徴とする請求項1に記載の摺動材。
  8.  前記繊維は、炭素繊維である
     ことを特徴とする請求項7に記載の摺動材。
  9.  更に、前記樹脂中に配置される固体潤滑剤を含む
     ことを特徴とする請求項1に記載の摺動材。
  10.  前記固体潤滑剤は、二硫化モリブデンである
     ことを特徴とする請求項9に記載の摺動材。
  11.  前記樹脂と前記第1粒子との間には、化成処理層が形成される
     ことを特徴とする請求項1に記載の摺動材。
  12.  気体に対し、圧縮又は膨張の少なくとも一方を行う室と、
     前記室を区画する摺動面を摺動する摺動材を備える摺動部と、
     を備え、
     前記摺動材は、
     樹脂と、
     前記樹脂中に配置され、無機材料により構成される第1粒子と、
     前記樹脂中に配置され、前記第1粒子よりも大きなビッカース硬度を有する無機材料により構成される第2粒子と、を含み、
     前記第2粒子のビッカース硬度を前記第1粒子のビッカース硬度で除算して得られる値を硬度比と、前記樹脂に対する前記第1粒子の含有量を前記樹脂に対する前記第2粒子の含有量で除算して得られる値を含有比と定義した場合に、
     前記硬度比を前記含有比で除算して得られる値が0.3以上2.8以下である
     ことを特徴とする気体圧縮機械。
  13.  前記摺動面はアルマイト層の表面である
     ことを特徴とする請求項12に記載の気体圧縮機械。
  14.  前記摺動材は前記摺動面をオイルフリーで摺動する
     こと特徴とする請求項12に記載の気体圧縮機械。
     
PCT/JP2022/040167 2022-05-23 2022-10-27 摺動材及び気体圧縮機械 WO2023228435A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022083905A JP2023172245A (ja) 2022-05-23 2022-05-23 摺動材及び気体圧縮機械
JP2022-083905 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228435A1 true WO2023228435A1 (ja) 2023-11-30

Family

ID=88918877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040167 WO2023228435A1 (ja) 2022-05-23 2022-10-27 摺動材及び気体圧縮機械

Country Status (2)

Country Link
JP (1) JP2023172245A (ja)
WO (1) WO2023228435A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320455A (ja) * 1992-05-21 1993-12-03 Daikin Ind Ltd 摺動部品用樹脂組成物
JP2001131372A (ja) * 2000-09-13 2001-05-15 Daikin Ind Ltd 摺動部品用樹脂組成物
JP2004277610A (ja) * 2003-03-17 2004-10-07 Tokico Ltd 摺動部材及び非摺動部材並びにスクロール流体機械
JP2005036198A (ja) * 2003-06-30 2005-02-10 Tokico Ltd シール材及びそれを備えたスクロール流体機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320455A (ja) * 1992-05-21 1993-12-03 Daikin Ind Ltd 摺動部品用樹脂組成物
JP2001131372A (ja) * 2000-09-13 2001-05-15 Daikin Ind Ltd 摺動部品用樹脂組成物
JP2004277610A (ja) * 2003-03-17 2004-10-07 Tokico Ltd 摺動部材及び非摺動部材並びにスクロール流体機械
JP2005036198A (ja) * 2003-06-30 2005-02-10 Tokico Ltd シール材及びそれを備えたスクロール流体機械

Also Published As

Publication number Publication date
JP2023172245A (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
KR100934843B1 (ko) 습동부재용 조성물, 습동부재 및 유체기계
US7563510B2 (en) Fluid machinery
KR100840464B1 (ko) 습동 부재용 조성물, 습동 부재 및 유체 기계
WO2006035680A1 (ja) 摺動部材及び流体機械
KR20120085231A (ko) 미끄럼 베어링, 제조방법 및 내연기관
CN1132319A (zh) 涡旋型流体机械
AU2007208667B2 (en) Method for manufacturing compressor slider, and compressor
JP2013015092A (ja) 圧縮機
JP2018066427A (ja) 機械装置及びこれに用いる摺動材
JP2004323594A (ja) 塗料組成物及び摺動部品
WO2023228435A1 (ja) 摺動材及び気体圧縮機械
JP6951561B2 (ja) 流体機械、機械要素およびフッ素樹脂材
JP2825334B2 (ja) 圧縮機
JP5393967B2 (ja) 摺動材及び流体圧縮機械
JP2006275280A (ja) 摺動部材及び流体機械
JP2009287483A (ja) 冷媒圧縮機
JPS61197794A (ja) 容積形オイルフリ−式ガス圧送ポンプ
JP7431105B2 (ja) 圧縮機
US20210222693A1 (en) Orbiter vacuum pump capable of dry-running
WO2020250743A1 (ja) 摺動材
JPH03162559A (ja) 摺動部材およびそれを用いた圧縮機
JPH05113181A (ja) スクロール流体圧縮機
JP4128442B2 (ja) シール材及びそれを備えたスクロール流体機械
JP5217233B2 (ja) 摺動部材用組成物、摺動部材及び流体機械
JPH06207253A (ja) 鉄基摺動部品材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943834

Country of ref document: EP

Kind code of ref document: A1