WO2023228234A1 - 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法 - Google Patents

半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法 Download PDF

Info

Publication number
WO2023228234A1
WO2023228234A1 PCT/JP2022/021063 JP2022021063W WO2023228234A1 WO 2023228234 A1 WO2023228234 A1 WO 2023228234A1 JP 2022021063 W JP2022021063 W JP 2022021063W WO 2023228234 A1 WO2023228234 A1 WO 2023228234A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
ridge
semiconductor laser
trench
Prior art date
Application number
PCT/JP2022/021063
Other languages
English (en)
French (fr)
Inventor
宏昭 前原
聡 平
歩 淵田
涼子 鈴木
亮輔 宮越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021063 priority Critical patent/WO2023228234A1/ja
Priority to TW112117491A priority patent/TWI836984B/zh
Publication of WO2023228234A1 publication Critical patent/WO2023228234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Definitions

  • the present application relates to a semiconductor laser, a semiconductor laser device, and a method for manufacturing a semiconductor laser.
  • Patent Document 1 discloses a semiconductor laser having a buried heterostructure.
  • the semiconductor laser disclosed in Patent Document 1 includes an n-type semiconductor substrate, an n-type cladding layer, an active layer, a ridge including a p-type cladding layer, a buried region for filling the ridge, a pair of trench grooves formed in the buried region, a ridge, and a buried region for filling the ridge.
  • An insulating film such as silicon oxide (SiO 2 ) allows current to be efficiently injected from the anode electrode to the active layer.
  • the resistance of the injection current path is appropriately expressed as injection resistance.
  • semiconductor lasers for high-power applications have large operating currents, and the heat generated by the injection resistance is large, resulting in a noticeable deterioration in characteristics, so it is very important to efficiently dissipate the heat generated during operation.
  • Patent Document 2 discloses a semiconductor laser device in which a semiconductor laser is mounted on a heat sink in a junction-down manner.
  • a cladding layer, a contact layer, and an electrode metal are provided on a waveguide layer including an active layer in order to efficiently dissipate heat generated during operation of the semiconductor laser to a heat sink.
  • a recess (trench) is formed in the cladding layer and extends through the contact layer to the vicinity of the active layer, and a heat transfer material is filled between the recess (trench) and the heat sink.
  • the semiconductor laser device of Patent Document 2 improves heat dissipation by increasing the thermal conductivity of the heat dissipation path to the heat sink by arranging a heat transfer material with high thermal conductivity near the active layer that is the heat source. There is.
  • JP2011-216680A Figure 1 Japanese Patent Application Publication No. 2001-94210 ( Figure 1, Figure 8)
  • a thick cladding layer is formed on top of the waveguide layer including the active layer, and the resistance of the injection current path is larger than that of the semiconductor laser device of Patent Document 1.
  • a semiconductor laser having a buried structure such as the semiconductor laser disclosed in Patent Document 1 is generally used.
  • the semiconductor laser of Patent Document 1 is mounted on a heat sink with a junction down, there is an insulating film that covers the contact layer and trench grooves other than the area immediately above the ridge including the active layer, so the insulating film with low thermal conductivity is used. The thermal resistance of the heat radiation path to the heat sink increases.
  • the technology disclosed in this specification aims to achieve excellent heat dissipation while suppressing leakage current that does not contribute to laser oscillation when mounted on a heat sink with a junction down.
  • An exemplary semiconductor laser disclosed in the present specification includes a ridge formed on an n-type semiconductor substrate, and a buried layer embedded to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge. , a semiconductor laser that is mounted from the surface on which the ridge protrudes.
  • the direction in which the ridge protrudes from the front surface side of the n-type semiconductor substrate is defined as the z direction
  • the direction in which the ridge extends is defined as the y direction
  • the direction perpendicular to the z and y directions is defined as the x direction.
  • the ridge includes an n-type cladding layer, an active layer, and a p-type first cladding layer, which are formed sequentially from the n-type semiconductor substrate side.
  • the buried layer includes a p-type first buried layer, a second buried layer, and an n-type third buried layer that are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge. ing.
  • the semiconductor laser includes a p-type second cladding layer and a p-type contact layer formed sequentially from the n-type semiconductor substrate side on the positive side of the ridge in the z-direction and on the positive side of the n-type third buried layer in the z-direction; a semi-insulating layer formed at an outer edge away from the ridge portion in the x direction, including a front side electrode connected to the p-type contact layer, and a ridge and a p-type first buried layer in contact with two side surfaces of the ridge; A semi-insulating layer or a surface-side electrode is formed on the positive side in the z-direction at the end side in the x-direction of the semiconductor laser.
  • One example of the semiconductor laser disclosed in this specification includes a semi-insulating layer on the outer edge on the side opposite to the n-type semiconductor substrate, which is away from the ridge portion having the active layer in the x direction, so that the semi-insulating layer When mounted from the outside, it is possible to achieve excellent heat dissipation while suppressing leakage current that does not contribute to laser oscillation.
  • FIG. 1 is a diagram showing a cross-sectional structure of a first semiconductor laser according to Embodiment 1.
  • FIG. 1 is a diagram showing a cross-sectional structure of a semiconductor laser device according to Embodiment 1.
  • FIG. 3 is a diagram showing a cross-sectional structure of a second semiconductor laser according to Embodiment 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. 1 is a diagram showing a cross-sectional structure of a first semiconductor laser according to Embodiment 1.
  • FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1.
  • FIG. FIG. 3 is a diagram showing a cross-sectional structure of a semiconductor laser of a comparative example.
  • FIG. 3 is a diagram showing a cross-sectional structure of a semiconductor laser device of a comparative example.
  • 3 is a diagram showing a cross-sectional structure of a semiconductor laser according to a second embodiment.
  • FIG. FIG. 3 is a diagram showing a cross-sectional structure of a semiconductor laser device according to a second embodiment.
  • 13 is a diagram showing the width of a convex portion in the semiconductor laser of FIG. 12.
  • FIG. 13 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 12.
  • FIG. 13 is a diagram showing a method of manufacturing the semiconductor laser of FIG.
  • FIG. 13 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 12.
  • FIG. 13 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 12.
  • FIG. 13 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 12.
  • FIG. 7 is a diagram showing a cross-sectional structure of a semiconductor laser according to a third embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a semiconductor laser device according to a third embodiment.
  • 21 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 20.
  • FIG. 21 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 20.
  • FIG. 21 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 20.
  • FIG. 7 is a diagram showing a cross-sectional structure of a first semiconductor laser according to a fourth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a first semiconductor laser device according to a fourth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a second semiconductor laser according to a fourth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a second semiconductor laser device according to a fourth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a third semiconductor laser according to a fourth embodiment.
  • FIG. 7 is a diagram showing the width of a convex portion in a semiconductor laser according to a fourth embodiment.
  • 26 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 25.
  • FIG. 25 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 25.
  • FIG. 26 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 25.
  • FIG. 26 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 25.
  • FIG. 26 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 25.
  • FIG. FIG. 7 is a diagram showing a cross-sectional structure of a first semiconductor laser according to a fifth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a first semiconductor laser device according to a fifth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a second semiconductor laser according to Embodiment 5.
  • FIG. 7 is a diagram showing a cross-sectional structure of a second semiconductor laser device according to a fifth embodiment.
  • FIG. 7 is a diagram showing a cross-sectional structure of a third semiconductor laser according to a fifth embodiment.
  • 36 is a diagram showing a method of manufacturing the semiconductor laser of FIG. 35.
  • FIG. 35 is a diagram showing a
  • FIG. 1 is a diagram showing a cross-sectional structure of a first semiconductor laser according to the first embodiment
  • FIG. 2 is a diagram showing a cross-sectional structure of the semiconductor laser device according to the first embodiment
  • FIG. 3 is a diagram showing a cross-sectional structure of the second semiconductor laser according to the first embodiment
  • 4 to 9 are diagrams showing a method of manufacturing the semiconductor laser of FIG. 1.
  • FIG. 10 is a diagram showing a cross-sectional structure of a semiconductor laser device of a comparative example
  • FIG. 11 is a diagram showing a cross-sectional structure of a semiconductor laser device of a comparative example.
  • the semiconductor laser 100 of the first embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, which is an n-type InP substrate, and a buried pad buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5. It is provided with a mixed layer 25.
  • the direction in which the ridge 5 protrudes from the front surface side of the n-type semiconductor substrate 1 is defined as the z direction
  • the direction in which the ridge 5 extends is defined as the y direction
  • the direction perpendicular to the z and y directions is defined as the x direction.
  • the ridge 5 protrudes from the front surface side of the n-type semiconductor substrate 1 in the positive direction in the z direction, and the positive end in the x direction indicated by the broken line 51a is the end in the x direction 29b.
  • the negative end in the x direction indicated by the broken line 51d is the x direction end 29a.
  • the ridge 5 is formed between the broken line 41a and the broken line 41b, and the ridge portion 50 is formed between the broken line 43a and the broken line 43b. Note that, as appropriate, the positive side in the z direction is expressed as the front side, and the negative side in the z direction is expressed as the back side.
  • the semiconductor laser 100 includes a ridge 5 having an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 formed sequentially from the n-type semiconductor substrate 1 side, a side surface of the ridge 5 on the positive side in the x direction, and a side surface of the ridge 5 on the positive side in the x direction.
  • a semi-insulating layer 11 formed on the outer edge away from the ridge portion 50 in the x direction which includes an anode electrode 12 which is a surface side electrode, a ridge 5 and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5. and a cathode electrode 13 which is a back electrode formed on the back surface of the n-type semiconductor substrate 1.
  • a semi-insulating layer 11 and an anode electrode 12 are formed on the positive side in the z direction of the x direction ends 29a and 29b of the semiconductor laser 100.
  • the semi-insulating layer 11 is formed in the end region 24 from the broken line 51a to the broken line 51b.
  • the semi-insulating layer 11 is formed in the end region 24 from the broken line 51c to the broken line 51d.
  • the semiconductor laser device 200 of the first embodiment includes a semiconductor laser 100 and a heat sink 17, and the positive side in the z direction on which the anode electrode 12 of the semiconductor laser 100 is formed is connected to the heat sink 17 with a connecting member such as gold-tin solder. 14.
  • the semiconductor laser device 200 shown in FIG. 2 shows a cross section when it is mounted on the heat sink 17 with a junction down.
  • the semiconductor laser 100 is mounted on the heat sink 17 in a junction-down manner from the surface on which the ridge 5 projects, that is, from the positive side in the z direction.
  • the n-type semiconductor substrate 1 is an n-type InP substrate doped with, for example, sulfur (S).
  • the n-type cladding layer 2 is, for example, an n-type InP cladding layer doped with sulfur.
  • the active layer 3 includes multiple quantum wells made of AlGaInAS-based or InGaASP-based materials.
  • the p-type first cladding layer 4 is, for example, a p-type InP cladding layer doped with zinc (Zn).
  • the ridge 5 has a stripe shape extending in the y direction.
  • the ridge 5 moves the semiconductor layers of the n-type cladding layer 2, the active layer 3, and the p-type first cladding layer 4, which are formed sequentially on the n-type semiconductor substrate 1, to a position lower than the active layer 3, that is, in the z direction of the active layer 3. It is formed by etching to a position lower than the negative side.
  • the first semiconductor laser 100 shown in FIG. 1 is an example in which the ridge etching position 52 reaches the n-type semiconductor substrate 1, and the second semiconductor laser 100 shown in FIG. This is an example where it is arranged in layer 2.
  • the ridge 5 is formed by a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction. It is buried to a higher position, that is, to a higher position than the active layer surface position 44 (see FIG. 6) which is the positive side of the active layer 3 in the z direction.
  • the p-type first buried layer 6 is, for example, a p-type InP doped layer doped with zinc
  • the second buried layer 7 is a semi-insulating InP doped layer doped with iron (Fe), which is a semi-insulating material.
  • the n-type third buried layer 8 is, for example, an n-type InP buried layer doped with sulfur.
  • the first semiconductor laser 100 shown in FIG. 1 is an example in which the second buried layer 7 is formed up to the positive side of the ridge 5 in the z direction, and the second semiconductor laser 100 shown in FIG. This is an example in which the second buried layer 7 is formed up to the active layer surface position 44.
  • the second buried layer 7 may be a semi-insulating buried layer of InP doped with a material such as titanium (Ti), cobalt (Co), or rubidium (Ru).
  • the p-type first buried layer 6 and the second buried layer 7 may be configured in combination with other semiconductor layers having different impurity concentrations or conductivity types.
  • An n-type third buried layer 8 is formed on the surface of the second buried layer 7.
  • a p-type second cladding layer 9 is formed on the positive side of the n-type third buried layer 8 and the ridge 5 in the z direction.
  • a p-type contact layer 10 is formed on the positive side of the p-type second cladding layer 9 in the z-direction, and a semi-insulating layer 11 is formed in the end region 24 on the positive side of the p-type contact layer 10 in the z-direction.
  • An anode electrode 12 is formed to cover the surface of the semi-insulating layer 11 and the surface of the p-type contact layer 10 from which the semi-insulating layer 11 has been removed, and a cathode electrode 13 is formed on the back side of the n-type semiconductor substrate 1. Ru.
  • An opening in the semi-insulating layer 11 is arranged on the positive side in the z direction in a region including the ridge portion 50 of the p-type contact layer 10 .
  • the region where the opening of the semi-insulating layer 11 is arranged is a region where current flows from the anode electrode 12 to the ridge 5 via the p-type contact layer 10 and the p-type second cladding layer 9.
  • the first semiconductor laser 100 shown in FIG. 1 is an example in which the n-type third buried layer 8 is formed at a position farther from the n-type semiconductor substrate 1 than the positive side of the ridge 5 in the z direction.
  • the second semiconductor laser 100 shown is an example in which the n-type third buried layer 8 is formed closer to the n-type semiconductor substrate 1 than the positive side of the ridge 5 in the z direction.
  • 1 and 3 show an example in which the anode electrode 12 covers the entire positive side of the semiconductor laser 100 in the z direction.
  • the p-type second cladding layer 9 is, for example, a p-type InP cladding layer doped with zinc.
  • the p-type contact layer 10 is, for example, a p-type InGaAS contact layer doped with zinc.
  • the semi-insulating layer 11 is, for example, a semi-insulating layer of InP doped with iron.
  • the semi-insulating layer 11 may be a semi-insulating layer of InP doped with a material such as titanium, cobalt or rubidium.
  • the material of the anode electrode 12 and the cathode electrode 13 is a metal such as gold (Au), germanium (Ge), zinc, platinum (Pt), or titanium.
  • the connecting member 14 used when the semiconductor laser 100 is mounted in a junction-down manner is gold-tin solder, gold is diffused into the p-type contact layer 10 and the semiconductor layer closer to the n-type semiconductor substrate 1 than the p-type contact layer 10.
  • a barrier metal such as platinum may be interposed between the p-type contact layer 10 and the anode electrode 12.
  • FIG. 4 shows a ridge forming process for forming the ridge 5.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and a first layer of SiO 2 , SiN, etc. is formed on the width of the ridge 5 in the x direction.
  • a mask 31 is formed.
  • etching is performed to a position lower than the negative side in the z direction, which is the side of the n-type semiconductor substrate 1 in the active layer 3, to remove the side surface on the positive side in the x direction and the negative side in the x direction.
  • a ridge 5 having an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 with exposed side surfaces is formed.
  • the ridge etching position 52 when forming the ridge 5 is a position lower than the negative side of the active layer 3 in the z direction.
  • FIG. 5 and 6 show a embedding process in which the ridge 5 is filled with the embedding layer 25.
  • a p-type first embedding layer 6 is formed on the positive side surface in the x direction and the negative side surface in the x direction, that is, on both side surfaces of the ridge 5 using the first mask 31, and is sequentially formed.
  • the ridge 5 is buried by the second buried layer 7 and the n-type third buried layer 8 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • the first semiconductor laser 100 shown in FIG. 1 and the second semiconductor laser 100 shown in FIG. 3 are examples in which the second buried layer 7 is formed to a position higher than the active layer surface position 44.
  • FIG. 7 and 8 show a stacking process of stacking a semiconductor layer on the surfaces of the ridge 5 and the buried layer 25.
  • the first mask 31 is removed using buffered hydrofluoric acid or hydrofluoric acid as a pretreatment for the lamination process.
  • a p-type second cladding layer 9, a p-type contact layer 10, and a semi-insulating layer 11 are formed on the positive side of the ridge 5 in the z direction and on the positive side of the n-type third buried layer 8 in the z direction. Form sequentially.
  • FIG. 9 shows a contact layer exposing step in which the p-type contact layer 10 is exposed.
  • a resist mask 32 is formed in which a region in the x direction that includes the ridge 5 and the ridge portion 50 including the p-type first buried layer 6 in contact with two side surfaces of the ridge 5 is opened, and then the resist Using a mask 32, the semi-insulating layer 11 is selectively etched with hydrochloric acid to expose the p-type contact layer 10. After that, the resist mask 32 is removed.
  • an anode electrode 12 which is a surface-side electrode
  • an anode electrode 12 is placed on the exposed p-type contact layer 10 and semi-insulating layer 11 on the positive side in the z direction and on the side surface on the ridge portion 50 side.
  • a front side electrode forming process is performed, and a back side electrode forming process is performed to form a cathode electrode 13, which is a back side electrode, on the back side of the n-type semiconductor substrate 1, that is, on the negative side in the z direction.
  • the semiconductor laser 100 of the first embodiment is manufactured through the above steps.
  • the semiconductor laser 110 of the comparative example differs from the first semiconductor laser 100 of the first embodiment in that an SiO 2 insulating film 28 is formed on the p-type contact layer 10 instead of the semi-insulating layer 11.
  • a forward bias is applied between the anode electrode 12 and cathode electrode 13 of the semiconductor laser 100.
  • a forward bias is applied between the anode electrode 12 and the cathode electrode 13 of the semiconductor laser 100 via the heat sink 17 .
  • the current flows to the p-type in the semi-insulating layer opening region, which includes the ridge portion 50 and the semi-insulating layer 11 is removed.
  • the contact layer 10 is injected from the anode electrode 12 .
  • the semi-insulating layer opening region is a current injection region.
  • the injected current is narrowed in the region of the stripe-shaped ridge 5 by the second buried layer 7 and the n-type third buried layer 8 and input into the ridge 5 .
  • the current injected into the active layer 3 generates laser light with a wavelength corresponding to the bandgap energy of the semiconductor layer constituting the active layer 3 and is emitted to the outside of the semiconductor laser 100 .
  • the laser beam is emitted in the y direction in which the ridge 5 extends.
  • the main source of heat in the semiconductor laser 100 is the active layer 3 .
  • the heat generated in the active layer 3 is conducted to the surrounding semiconductor layers and spreads outside the active layer 3.
  • heat generated in the active layer 3 is transferred from the active layer 3 to the surrounding semiconductor layers, that is, the p-type first buried layer 6, the second buried layer 7, and the n-type buried layer 6. It conducts to the three buried layers 8, the p-type second cladding layer 9, and the p-type contact layer 10.
  • the current injection region is an insulating film opening region where the insulating film 28 is removed.
  • the p-type contact layer 10 In the current injection region, heat is conducted from the p-type contact layer 10 to the anode electrode 12. However, in the outer region outside the current injection region where the insulating film 28 exists, heat is conducted from the p-type contact layer 10 to the anode electrode 12 via the insulating film 28. Thereafter, heat is radiated from the anode electrode 12 to the heat sink 17 via the connection member 14.
  • the p-type contact layer 10 is covered with an insulating film 28 except for the current injection region including the ridge 5 having the active layer 3. .
  • the thermal conductivity of SiO 2 used as the insulating film 28 is 1.38 W/(m ⁇ K).
  • SiO 2 has poor thermal conductivity. Therefore, in the semiconductor laser device in which the semiconductor laser 110 of the comparative example is mounted in a junction-down manner, that is, the semiconductor laser device 210 of the comparative example, the heat dissipation from the surface region of the insulating film 28, that is, the aforementioned outer region, is insufficient. High temperature properties deteriorate.
  • the semiconductor laser device 210 of the comparative example in which the semiconductor laser 110 of the comparative example is mounted in a junction-down manner does not have sufficient heat radiation performance because the thermal resistance of the heat radiation path is large.
  • an InP semi-insulating layer is formed instead of the insulating film 28 on the outside of the current injection region, that is, on the positive and negative end regions 24 in the x direction of the current injection region.
  • 11 is interposed between the p-type contact layer 10 and the anode electrode 12, the thermal resistance of the heat dissipation path in the end region 24 is lower than that of the comparative example, and the heat dissipation performance is lower than that of the comparative example. can be improved.
  • the semi-insulating layer 11 is doped with iron, for example, and has semi-insulating properties, it is possible to suppress leakage current to areas other than the active layer 3 during current injection.
  • the semiconductor laser 100 of the first embodiment includes the semi-insulating layer 11 in the end region 24 on the positive side of the p-type contact layer 10 in the z direction, leakage to areas other than the active layer 3 that does not contribute to laser oscillation is prevented. It is possible to achieve excellent heat dissipation while suppressing current, and improve high-temperature characteristics.
  • the material of the semi-insulating layer 11 is not limited to InP, and a material having thermal conductivity 10 times or more higher than that of SiO 2 may be used. Even in this case, the semiconductor laser 100 of the first embodiment can reduce the thermal resistance of the heat dissipation path compared to the comparative example, and can achieve excellent heat dissipation while suppressing leakage current that does not contribute to laser oscillation. .
  • the semiconductor laser 100 of the first embodiment includes the ridge 5 formed on the n-type semiconductor substrate 1, and the buried layer buried so as to cover both sides facing each other in the direction perpendicular to the extending direction of the ridge 5. 25, and is a semiconductor laser mounted from the surface of the side where the ridge 5 protrudes.
  • the direction in which the ridge 5 protrudes from the front surface side of the n-type semiconductor substrate 1 is defined as the z direction
  • the direction in which the ridge 5 extends is defined as the y direction
  • the direction perpendicular to the z and y directions is defined as the x direction.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction. From a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a negative layer 11 or a surface-side electrode (anode electrode 12) is formed.
  • the semiconductor laser 100 of the first embodiment includes the semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1, which is located away from the ridge portion 50 having the active layer 3 in the x direction.
  • the semiconductor laser device 200 of the first embodiment includes the semiconductor laser 100 of the first embodiment and a heat sink 17, and the positive side in the z direction on which the front side electrode (anode electrode 12) of the semiconductor laser 100 is formed is the heat sink. 17 by a connecting member 14.
  • the semiconductor laser device 200 of the first embodiment includes the semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1, which is away from the ridge portion 50 having the active layer 3 in the x direction.
  • the positive side in the z direction where the front side electrode (anode electrode 12) is formed is connected to the heat sink 17 by a connecting member, it does not contribute to laser oscillation when mounting from the front side electrode (anode electrode 12) side. Excellent heat dissipation can be achieved while suppressing leakage current.
  • the method for manufacturing a semiconductor laser according to the first embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried layer buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 having a semiconductor laser 25.
  • the method for manufacturing a semiconductor laser according to the first embodiment includes a ridge forming step, a burying step, a laminating step, a contact layer exposing step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • a p-type second cladding layer 9, a p-type contact layer 10, and a semi-insulating layer 11 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • the semi-insulating layer 11 in the x-direction region encompassing the ridge portion 50 including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5 is etched to form a p-type contact layer.
  • a surface-side electrode (anode electrode 12) is formed on the exposed side surfaces of the p-type contact layer 10 and the semi-insulating layer 11 on the positive side in the z direction and on the ridge portion 50 side.
  • the semiconductor laser manufacturing method of the first embodiment includes a semi-insulating layer 11 on the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 can be manufactured, when it is mounted from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • FIG. 12 is a diagram showing a cross-sectional structure of a semiconductor laser according to the second embodiment
  • FIG. 13 is a diagram showing a cross-sectional structure of a semiconductor laser device according to the second embodiment.
  • FIG. 14 is a diagram showing the width of the convex portion in the semiconductor laser of FIG. 12.
  • 15 to 19 are diagrams showing a method of manufacturing the semiconductor laser of FIG. 12.
  • the semiconductor laser 100 of the second embodiment differs from the embodiment in that it includes two trenches 19 extending in the y direction between the outside of the ridge portion 50 in the x direction and the ends 29a and 29b in the x direction. This is different from the semiconductor laser 100 of the first embodiment.
  • the differences from the semiconductor laser 100 and semiconductor laser device 200 of Embodiment 1 will mainly be explained.
  • the semiconductor laser 100 of the second embodiment covers the ridge 5 formed on the n-type semiconductor substrate 1 and both sides facing each other in the direction perpendicular to the direction in which the ridge 5 extends.
  • a buried layer 25 buried as shown in FIG. a semi-insulating layer 11, an anode electrode 12, and a cathode electrode 13 formed on the outer edge away from the ridge portion 50 in the x direction.
  • the semiconductor laser 100 of the second embodiment further includes two trenches 19 extending in the y direction between the outside of the ridge portion 50 in the x direction and the ends 29a and 29b in the x direction, and an inner surface of the trench 19.
  • An insulating film 15 is formed.
  • the material of the insulating film 15 is SiO 2 , SiN, or other insulating material.
  • the x-direction end 29a side of the surface of the semi-insulating layer 11 on the negative side of the x-direction and the x-direction end 29b side of the semi-insulating layer 11 on the positive side of the x-direction are exposed.
  • the surface of the semi-insulating layer 11 may be covered with the anode electrode 12 or a metal that is not connected to the anode electrode 12.
  • the trench 19 penetrates the p-type contact layer 10 , the p-type second cladding layer 9 , and the n-type third buried layer 8 , and the bottom 22 of the trench 19 penetrates the z of the active layer 3 in the second buried layer 7 .
  • the active layer surface position 44 is the same as the positive side position in the direction, or the bottom 22 of the trench 19 is further away from the n-type semiconductor substrate 1 than the active layer surface position 44 in the second buried layer 7 . That is, it is sufficient that the bottom 22 of the trench 19 is located between the active layer surface position 44 and the positive side of the second buried layer 7 in the z direction.
  • Anode electrode 12 is connected to p-type contact layer 10 at convex portion 18 formed between two trenches 19 .
  • the convex portion 18 is formed to extend in the y direction in the x direction range from the broken line 42a to the broken line 42b. Since the trench 19 corresponds to a mesa groove, the convex portion 18 can also be called a mesa stripe.
  • the side surface of the trench 19 in the x direction on the side away from the convex part 18 is the trench first side surface 46
  • the side surface of the trench 19 in the x direction on the side closer to the convex part 18 than the trench first side surface 46 is the trench second side surface. It is 47.
  • the trench 19 is formed between the broken line 42b and the broken line 51c
  • the end region 24 is formed between the broken line 51c and the broken line 51d.
  • the trench 19 is formed between the broken line 42a and the broken line 51b
  • the end region 24 is formed between the broken line 51b and the broken line 51a.
  • the semi-insulating layer 11 extends in the z-direction of the p-type contact layer 10 from the trench first side surface 46 of the trench 19 to the x-direction end (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. It is formed on the positive side and is not covered with an anode electrode at the end side of the semiconductor laser 100 in the x direction. That is, the semi-insulating layer 11 is formed on the positive side of the p-type contact layer 10 in the z-direction in the end region 24 of the x-direction end 29b, and the semi-insulating layer 11 is formed on the positive side of the p-type contact layer 10 in the end region 24 of the x-direction end 29b. 10 on the positive side in the z direction.
  • the trench 19 is filled with the connecting member 14, and the negative side position of the connecting member 14 in the z direction covers a part of the second buried layer 7 at the ends 29a and 29b in the x direction, while the heat sink 17 is filled with the connecting member 14.
  • An example of a semiconductor laser device 200 in which the semiconductor laser 100 of the second embodiment is mounted in a junction-down manner is shown in FIG.
  • the protrusion width W2 which is the width of the protrusion 18 in the x direction, is larger than the ridge width W1, which is the width of the ridge 50 in the x direction.
  • FIGS. 4 to 8 and 15 to 19 The ridge forming process, embedding process, and lamination process shown in FIGS. 4 to 8 are the same as in the first embodiment.
  • a trench forming process shown in FIG. 15 is performed.
  • the semiconductor layer formed up to the semi-insulating layer 11 using a resist mask 32, two trenches 19 are formed on both sides of the ridge portion 50 in the x direction at a position where the bottom portion 22 is lower than the n-type third buried layer 8 and is active. It is formed at a higher position than layer 3.
  • the semi-insulating layer 11, the p-type contact layer 10, the p-type second cladding layer 9 penetrates the n-type third buried layer 8, and the position of the bottom portion 22 in the z direction is the same as the active layer surface position 44 of the active layer 3 in the second buried layer 7, or the active layer surface position A trench 19 located on the positive side of 44 is formed.
  • a contact layer exposing step is performed in which the semi-insulating layer 11 of the convex portion 18 formed between the two trenches 19 is etched to expose the p-type contact layer 10, and both side surfaces of each trench 19 in the x direction are performed. and an insulating film forming step of forming the insulating film 15 on the bottom portion 22.
  • a resist mask 32 is formed to form an opening at the center of the protrusion 18 in the x direction, and the semi-insulating layer 11 of the protrusion 18 is selectively etched with hydrochloric acid.
  • FIG. 16 shows an example in which the width of the opening of the resist mask 32 in the x direction is smaller than the convex portion 18.
  • the final shape of the insulating film 15, that is, the shape of the insulating film 15 shown in FIG. 19 is formed.
  • an insulating film 15 is formed on the exposed surface of the semiconductor layer and the inner surface of the trench 19.
  • a resist mask 32 is formed to cover the trench 19, and the shape of the insulating film 15 is processed by etching as shown in FIG. After that, the resist mask 32 is removed.
  • FIG. 18 shows an example in which the width of the resist mask 32 in the x direction is larger than the width of the trench 19 in the x direction.
  • FIG. 19 shows an insulating film forming step in which the insulating film 15 is processed by etching to form the insulating film 15 in the final shape, and a contact step in which the insulating film 15 on the convex portion 18 is etched to expose the p-type contact layer 10.
  • An example is shown in which the layer exposure process and the layer exposure process are performed simultaneously.
  • the steps shown in FIG. 16 and the steps shown in FIG. 19 are performed.
  • the insulating film forming step of forming the insulating film 15 on both sides of the trench 19 in the x direction and on the bottom 22 is performed as shown in FIGS. 17 to 19.
  • a surface side electrode forming step is performed in which an anode electrode 12 is formed to cover the p-type contact layer 10 on which the insulating film 15 of the convex portion 18 is not formed in the insulating film forming step, and an n-type A back side electrode forming step is performed in which the cathode electrode 13 is formed on the back side of the semiconductor substrate 1, that is, on the negative side in the z direction.
  • the anode electrode 12 is patterned using a resist mask.
  • the semiconductor laser 100 of the second embodiment is manufactured through the above steps.
  • heat generated in the active layer 3 is transferred from the active layer 3 to the surrounding semiconductor layer, that is, the p-type first buried layer. It conducts to the buried layer 6 , the second buried layer 7 , the n-type third buried layer 8 , the p-type second cladding layer 9 , and the p-type contact layer 10 .
  • the convex portion 18 heat from the active layer 3 is radiated from the anode electrode 12 to the heat sink 17 via the connecting member 14 .
  • heat from the active layer 3 is conducted to the semi-insulating layer 11 and is radiated from the semi-insulating layer 11 to the heat sink 17 via the connecting member 14 .
  • the semiconductor laser 100 of the second embodiment has an InP semi-insulating layer 11 on the x-direction ends 29b and 29a of the positive and negative end regions 24 in the x-direction. covers the p-type contact layer 10, and the insulating film 15 formed on the inner surface of the trench 19 is formed thinner than the insulating film 28 of the semiconductor laser 110 of the comparative example shown in FIG.
  • the thermal resistance of the heat dissipation path in the partial region 24 is lower than that of the comparative example, and similarly to the semiconductor laser 100 of the first embodiment, the heat dissipation performance can be improved compared to the comparative example.
  • the semiconductor laser 100 of the second embodiment includes the semi-insulating layer 11 in the end region 24 on the positive side of the p-type contact layer 10 in the z direction. Excellent heat dissipation can be achieved while suppressing leakage current to areas other than the active layer 3 that do not contribute to laser oscillation, and high-temperature characteristics can be improved.
  • the semiconductor laser 100 of the second embodiment similarly to the semiconductor laser 100 of the first embodiment, in order to improve the efficiency of current injection into the active layer 3, the semiconductor laser 100 has buried layers on both sides of the active layer 3 that function as current blocking layers.
  • a mixed layer 25 is provided.
  • the buried layer 25 has a structure in which a semi-insulating second buried layer 7 doped with iron or the like is sandwiched between a p-type first buried layer 6 and an n-type third buried layer 8. Since the buried layer 25 has a structure similar to that of a capacitor with a dielectric sandwiched between the ends 29a and 29b in the x direction, the buried layer 25 has a parasitic capacitance.
  • the convex portion 18 is formed to encompass both sides of the ridge portion 50 in the x direction, and the n-type third buried layer 8 of the buried layer 25 is divided by the trench 19. Therefore, the area of the n-type third buried layer 8 on the second buried layer 7 side can be made smaller than that of the semiconductor laser 100 of the first embodiment, and even in the vicinity of the active layer 3, the n-type third buried layer 8 can be made smaller. 8 on the second buried layer 7 side can be reduced.
  • the parasitic capacitance is larger than that on the x-direction ends 29a and 29b.
  • the semiconductor laser 100 of the second embodiment has a smaller area of the n-type third buried layer 8 near the active layer 3 than the semiconductor laser 100 of the first embodiment. Parasitic capacitance can be reduced. That is, the semiconductor laser 100 of the second embodiment can realize faster operation than the semiconductor laser 100 of the first embodiment.
  • the semiconductor laser 100 of the second embodiment includes the ridge 5 formed on the n-type semiconductor substrate 1, and the buried layer buried so as to cover both sides facing each other in the direction perpendicular to the extending direction of the ridge 5. 25, and is a semiconductor laser mounted from the surface of the side where the ridge 5 protrudes.
  • the z direction, y direction, and x direction are as described above.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a trench 19 extending in the y direction is provided between each of the trenches 19 and the negative end in the x direction (x direction end 29a).
  • Each trench 19 penetrates the p-type contact layer 10 , the p-type second cladding layer 9 , and the n-type third buried layer 8 , and the bottom 22 of the trench 19 penetrates the active layer in the second buried layer 7 .
  • the surface side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two trenches 19.
  • the side surface of the trench 19 in the x direction on the side away from the convex part 18 is the trench first side surface 46
  • the side surface of the trench 19 in the x direction on the side closer to the convex part 18 than the trench first side surface 46 is the trench second side surface 47. shall be.
  • the semi-insulating layer 11 extends in the z-direction of the p-type contact layer 10 from the trench first side surface 46 of the trench 19 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. It is formed on the positive side of An insulating film 15 is provided on the inner surface of the trench 19.
  • the semiconductor laser 100 of the second embodiment includes the semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1, which is away from the ridge portion 50 having the active layer 3 in the x direction.
  • the method for manufacturing a semiconductor laser according to the second embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried layer buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 having a semiconductor laser 25.
  • the method for manufacturing a semiconductor laser according to the second embodiment includes a ridge forming step, a burying step, a laminating step, a trench forming step, a contact layer exposing step, an insulating film forming step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • a p-type second cladding layer 9, a p-type contact layer 10, and a semi-insulating layer 11 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • a semi-insulating layer is formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5. 11, penetrates the p-type contact layer 10, the p-type second cladding layer 9, and the n-type third buried layer 8, and the position of the bottom 22 in the z direction is the active layer of the active layer 3 in the second buried layer 7.
  • a trench 19 is formed at the same position as the surface position 44 or located on the positive side of the active layer surface position 44.
  • the contact layer exposing step the semi-insulating layer 11 of the convex portion 18 formed between the two trenches 19 is etched to expose the p-type contact layer 10.
  • the insulating film forming step the insulating film 15 is formed on both sides of each trench 19 in the x direction (trench first side 46, trench second side 47) and the bottom 22.
  • the front side electrode forming step the front side electrode (anode electrode 12) is formed so as to cover the p-type contact layer 10 on which the insulating film 15 of the convex portion 18 is not formed in the insulating film forming step.
  • the semiconductor laser manufacturing method of the second embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 can be manufactured, when it is mounted from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • FIG. 20 is a diagram showing a cross-sectional structure of a semiconductor laser according to the third embodiment
  • FIG. 21 is a diagram showing a cross-sectional structure of a semiconductor laser device according to the third embodiment.
  • 22 to 24 are diagrams showing a method of manufacturing the semiconductor laser of FIG. 20.
  • the semiconductor laser 100 of the third embodiment differs from the semiconductor laser 100 of the second embodiment in that the bottom 22 of the trench 19 is not covered with the insulating film 15. Mainly the differences from the semiconductor laser 100 and semiconductor laser device 200 of the second embodiment will be explained.
  • FIG. 20 shows an example in which the anode electrode 12 covers the insulating film 15 on the trench first side surface 46 and the trench second side surface 47 of the trench 19 and the bottom part 22 of the trench 19.
  • a method for manufacturing the semiconductor laser 100 according to the third embodiment will be described using the examples shown in FIGS. 4 to 8, FIGS. 15 to 19, and FIGS. 22 to 24.
  • the ridge forming process, embedding process, and lamination process shown in FIGS. 4 to 8 are the same as in the first embodiment, and the steps in FIGS. 15 to 19 are the same as in the second embodiment.
  • a trench bottom exposing step is added, which is a step of further processing the insulating film 15 shown in FIG. 19.
  • the insulating film forming process of the third embodiment is performed in the steps shown in FIGS. 17 to 19 and 22 to 24.
  • the trench bottom exposing step is a part of the insulating film forming step.
  • the process shown in FIG. 16 and the process shown in FIG. 19 are performed similarly to the second embodiment.
  • the trench bottom exposure process will be explained.
  • a resist mask 32 is formed on the end of the insulating film disposed on the side and on the positive side of the convex portion 18 in the z direction. 22 to 24 show an example in which there are four ends of the insulating film.
  • the insulating film 15 on the bottom 22 of the trench 19 is etched using the resist mask 32 to expose the bottom 22 of the trench 19. Thereafter, as shown in FIG. 24, the resist mask 32 is removed.
  • a front side electrode forming step is performed in which an anode electrode 12 is formed to cover the p-type contact layer 10 on which the insulating film 15 of the convex portion 18 is not formed in the insulating film forming step;
  • a back side electrode forming step is performed in which the cathode electrode 13 is formed on the back side of the type semiconductor substrate 1, that is, on the negative side in the z direction.
  • the anode electrode 12 is patterned using a resist mask.
  • the anode electrode 12 may extend to a region of the convex portion 18 other than the p-type contact layer 10.
  • FIG. 20 shows an example in which the anode electrode 12 covers the insulating film 15 on the first trench side surface 46 and the second trench side surface 47 of the trench 19 and the bottom 22 of the trench 19.
  • the semiconductor laser 100 of the third embodiment is manufactured through the above steps.
  • the semiconductor laser 100 and the semiconductor laser device 200 of the third embodiment have the same effects as the semiconductor laser 100 and the semiconductor laser device 200 of the second embodiment.
  • the insulating film 15 is not present at the bottom 22 of the trench 19, and the anode electrode 12 with high thermal conductivity is arranged in the second buried layer 7.
  • the thermal conductivity is 300 W/(m ⁇ K). Due to the metal disposed at the bottom 22 of the trench 19, the semiconductor laser 100 and the semiconductor laser device 200 of the third embodiment can absorb the heat generated from the active layer 3 better than the semiconductor laser 100 and the semiconductor laser device 200 of the second embodiment.
  • the metal at the bottom 22 of the trench 19 may not be connected to the anode electrode 12, and no metal may be disposed at the bottom 22 of the trench 19. Even if no metal is placed on the bottom 22 of the trench 19, heat is radiated to the heat sink 17 via the connecting member 14 filled inside the trench 19.
  • the semiconductor laser 100 of the third embodiment includes the ridge 5 formed on the n-type semiconductor substrate 1, and the buried layer buried so as to cover both sides facing each other in the direction perpendicular to the extending direction of the ridge 5. 25, and is a semiconductor laser mounted from the surface of the side where the ridge 5 protrudes.
  • the z direction, y direction, and x direction are as described above.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a trench 19 extending in the y direction is provided between each of the trenches 19 and the negative end in the x direction (x direction end 29a).
  • Each trench 19 penetrates the p-type contact layer 10 , the p-type second cladding layer 9 , and the n-type third buried layer 8 , and the bottom 22 of the trench 19 penetrates the active layer in the second buried layer 7 .
  • the surface side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two trenches 19.
  • the semi-insulating layer 11 extends in the z-direction of the p-type contact layer 10 from the trench first side surface 46 of the trench 19 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100.
  • the semiconductor laser 100 of the third embodiment includes the semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1, which is away from the ridge portion 50 having the active layer 3 in the x direction.
  • the method for manufacturing a semiconductor laser according to the third embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried layer buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 having a semiconductor laser 25.
  • the method for manufacturing a semiconductor laser according to the third embodiment includes a ridge forming step, a burying step, a laminating step, a trench forming step, a contact layer exposing step, an insulating film forming step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • a p-type second cladding layer 9, a p-type contact layer 10, and a semi-insulating layer 11 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • a semi-insulating layer is formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5. 11, penetrates the p-type contact layer 10, the p-type second cladding layer 9, and the n-type third buried layer 8, and the position of the bottom 22 in the z direction is the active layer of the active layer 3 in the second buried layer 7.
  • a trench 19 is formed at the same position as the surface position 44 or located on the positive side of the active layer surface position 44.
  • the contact layer exposing step the semi-insulating layer 11 of the convex portion 18 formed between the two trenches 19 is etched to expose the p-type contact layer 10.
  • the insulating film forming step the insulating film 15 is formed on both side surfaces of each trench 19 in the x direction (trench first side surface 46, trench second side surface 47).
  • the semiconductor laser manufacturing method of the third embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 can be manufactured, when it is mounted from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • FIG. 25 is a diagram showing a cross-sectional structure of a first semiconductor laser according to the fourth embodiment
  • FIG. 26 is a diagram showing a cross-sectional structure of the first semiconductor laser device according to the fourth embodiment.
  • FIG. 27 is a diagram showing a cross-sectional structure of a second semiconductor laser according to the fourth embodiment
  • FIG. 28 is a diagram showing a cross-sectional structure of a second semiconductor laser device according to the fourth embodiment.
  • FIG. 29 is a diagram showing a cross-sectional structure of a third semiconductor laser according to the fourth embodiment.
  • FIG. 30 is a diagram showing the width of the convex portion in the semiconductor laser of the fourth embodiment.
  • 31 to 34 are diagrams showing a method of manufacturing the semiconductor laser of FIG. 25.
  • the first and third semiconductor lasers 100 of the fourth embodiment differ from the semiconductor laser 100 of the second embodiment in that the inner surface of the trench 19 is covered with a semi-insulating layer 11 instead of an insulating film 15. .
  • the second semiconductor laser 100 of the fourth embodiment is different from the semiconductor laser 100 of the second embodiment in that the trench 19 is changed to a recessed portion 21 that becomes a bottom portion 23 up to the x-direction ends 29a and 29b. , in that the bottom 23 of the recessed portion 21 and the side surface 48 of the recessed portion are covered with a semi-insulating layer 11.
  • the bottom part 23 of the retreating part 21 extends to the x-direction ends 29a and 29b, the bottom part 23 of the retreating part 21 can also be called an end region 24. Mainly the differences from the semiconductor laser 100 and semiconductor laser device 200 of the second embodiment will be explained.
  • the first semiconductor laser 100 of the fourth embodiment shown in FIG. 25 and the third semiconductor laser 100 of the fourth embodiment shown in FIG. This is an example in which the surface of the p-type contact layer 10 at 24 is covered with a semi-insulating layer 11.
  • the bottom portion 22 of the trench 19 may be located anywhere in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • a third semiconductor laser 100 according to the fourth embodiment shown in FIG. 29 is an example in which the bottom portion 22 of the trench 19 is located at a position in the z direction of the n-type semiconductor substrate 1.
  • FIG. 29 shows an example in which the bottom portion 22 of the trench 19 is located closer to the back surface of the n-type semiconductor substrate 1 than the front surface of the n-type semiconductor substrate 1 where the ridge 5 is formed.
  • the first semiconductor laser 100 of the fourth embodiment shown in FIG. 25 and the third semiconductor laser 100 of the fourth embodiment shown in FIG. It is directly formed on the positive side of the p-type contact layer 10 in the z-direction from the trench first side surface 46 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. .
  • the ridge portion 50 is located between the side surface of the ridge portion 50 on the positive side in the x direction and the end (x direction end 29b) of the semiconductor laser 100 on the positive side in the x direction.
  • Recessed portions 21 extending in the y direction are provided between the side surface on the negative side in the x direction and the end (x direction end 29a) of the semiconductor laser 100 on the negative side in the x direction.
  • the p-type contact layer 10 is removed, and the bottom portion 23 of the recessed portion 21 is located at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • the semi-insulating layer 11 is provided on the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion 21 on the positive side in the x direction, and on the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion 21 on the negative side in the x direction. directly formed.
  • the trench 19 is filled with the connection member 14, and the negative side position of the connection member 14 in the z direction covers a part of the second buried layer 7 at the ends 29a, 29b in the x direction, while the heat sink 17 is filled with the connection member 14.
  • An example of a semiconductor laser device 200 in which the first semiconductor laser 100 of Embodiment 4 is mounted in a junction-down manner is shown in FIG. In FIG.
  • the connecting member 14 is filled in the recessed part 21, and the negative side position of the connecting member 14 in the z direction covers a part of the second embedded layer 7 at the ends 29a and 29b in the x direction, while the heat sink 17 shows an example of a semiconductor laser device 200 in which the second semiconductor laser 100 of the fourth embodiment is mounted in a junction-down manner.
  • the protrusion 18 formed between the two setbacks 21 is similar to the protrusion 18 formed between the two trenches 19.
  • the protrusion width W2, which is the width of each protrusion 18 in the x direction, is larger than the ridge width W1, which is the width of the ridge part 50 in the x direction.
  • FIG. 25 and 29 show an example in which the semi-insulating layer 11 on the inner surface of the trench 19 and on the positive side of the end region 24 in the z direction is exposed.
  • the present invention is not limited thereto, and the surface of the semi-insulating layer 11 may be covered with the anode electrode 12 or a metal that is not connected to the anode electrode 12.
  • FIG. 27 shows an example in which the semi-insulating layer 11 on the positive side of the z-direction of the receding side surface 48 of the recessed portion 21 and the bottom portion 23 is exposed.
  • the present invention is not limited thereto, and the surface of the semi-insulating layer 11 may be covered with the anode electrode 12 or a metal that is not connected to the anode electrode 12.
  • FIGS. 4 to 7 and 31 to 34 The ridge forming process and embedding process shown in FIGS. 4 to 7 are the same as in the first embodiment.
  • FIG. 7 shows the state before the start of the lamination process, and also shows the state after the embedding process.
  • the lamination process shown in FIG. 31 is performed.
  • a p-type second cladding layer 9 and a p-type contact layer 10 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • a trench forming process shown in FIG. 32 is performed.
  • two trenches 19 are formed on both sides of the ridge portion 50 in the x direction using a resist mask 32 in the semiconductor layer formed up to the p-type contact layer 10, and the bottom portion 22 is formed from the p-type second cladding layer 9. It is formed at any position in the z direction up to the inside of the n-type semiconductor substrate 1. More specifically, in the trench forming step, the p-type contact layer 10 is etched at two outer edges away from the ridge portion 50 in the positive and negative sides in the x direction, and the position of the bottom portion 22 in the z direction is etched to form a p-type contact layer 10. A trench 19 is etched to any position in the z direction from the second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • a semi-insulating layer forming step for forming the semi-insulating layer 11 is performed.
  • a second mask 33 made of SiO 2 , SiN, etc. is formed on the positive side of the convex portion 18 in the z direction.
  • the semi-insulating layer 11 is formed in a region other than the positive side of the convex portion 18 in the z direction, as shown in FIG.
  • Semi-insulating layer 11 is formed by selective growth.
  • a semi-insulating layer 11 is directly formed on the inner surface. Thereafter, the second mask 33 is removed using buffered hydrofluoric acid or hydrofluoric acid.
  • a front side electrode forming step is performed in which an anode electrode 12 is formed so as to cover the p-type contact layer 10 on which the semi-insulating layer 11 of the convex portion 18 is not formed in the insulating layer forming step, and
  • a back side electrode forming step is performed in which the cathode electrode 13 is formed on the back side, that is, on the negative side in the z direction.
  • the anode electrode 12 is patterned using a resist mask.
  • the first or third semiconductor laser 100 of the fourth embodiment is manufactured through the above steps.
  • a method for manufacturing the second semiconductor laser 100 of Embodiment 4 will be described using an example.
  • the process up to FIG. 31 is the same as the method of manufacturing the first or third semiconductor laser 100 of the fourth embodiment.
  • a retreated portion forming step is performed in the same manner as the trench forming step.
  • two recessed portions are formed on the semiconductor layer formed up to the p-type contact layer 10 on both sides of the ridge portion 50 in the x direction using a resist mask 32 formed on the positive side of the convex portion 18 in the z direction.
  • the portion 21 is formed such that the bottom portion 23 is at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • the p-type contact layer 10 is etched at two outer edges away from the ridge portion 50 in the positive and negative sides in the x direction, and the position of the bottom portion 23 in the z direction is etched.
  • a recessed portion 21 is formed by etching to any position in the z direction from the second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • a semi-insulating layer forming step for forming the semi-insulating layer 11 is performed.
  • the second mask 33 is formed on the positive side of the convex portion 18 in the z direction as in FIG. 33 .
  • the semi-insulating layer 11 is formed in a region other than the positive side of the convex portion 18 in the z direction, similarly to FIG. More specifically, on the side surface (retreating portion side surface 48) and bottom portion 23 of the retracting portion 21 on the positive side in the x direction, and on the side surface (retracting portion side surface 48) and bottom portion 23 of the retracting portion 21 on the negative side in the x direction, Semi-insulating layer 11 is directly formed. Thereafter, the second mask 33 is removed using buffered hydrofluoric acid or hydrofluoric acid.
  • a front side electrode forming step is performed in which an anode electrode 12 is formed to cover the p-type contact layer 10 on which the semi-insulating layer 11 of the convex portion 18 is not formed in the insulating layer forming step, and the n-type semiconductor substrate 1
  • a back side electrode forming step is performed in which the cathode electrode 13 is formed on the back side, that is, on the negative side in the z direction.
  • the anode electrode 12 is patterned using a resist mask.
  • the second semiconductor laser 100 of the fourth embodiment is manufactured through the above steps.
  • the area of the n-type third buried layer 8 on the second buried layer 7 side can be reduced by the trench 19 or the retreated portion 21, and the area near the active layer 3 is also n-type.
  • the area of the third buried layer 8 on the second buried layer 7 side can be reduced. Therefore, the semiconductor laser 100 and the semiconductor laser device 200 of the fourth embodiment have the same effects as the semiconductor laser 100 and the semiconductor laser device 200 of the second embodiment.
  • the semiconductor laser 100 of the fourth embodiment uses a semi-insulating layer 11 with high thermal conductivity instead of the insulating film 15, so that the inner surface of the trench 19 (trench first side surface 46, trench second side surface 47, bottom part 22) Alternatively, since heat can also be radiated from the side surface of the recessed portion of the recessed portion 21 and the bottom portion 23, the high temperature characteristics can be improved compared to the semiconductor laser 100 of the second embodiment.
  • the first or third semiconductor laser 100 of the fourth embodiment covers the ridge 5 formed on the n-type semiconductor substrate 1, and both sides facing each other in the direction perpendicular to the extending direction of the ridge 5.
  • This semiconductor laser is provided with a buried layer 25 and is mounted from the surface on which the ridge 5 protrudes.
  • the z direction, y direction, and x direction are as described above.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a trench 19 extending in the y direction is provided between each of the trenches 19 and the negative end in the x direction (x direction end 29a).
  • Each trench 19 penetrates the p-type contact layer 10, and the bottom 22 of the trench 19 is located at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1. has been done.
  • the surface side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two trenches 19.
  • the semi-insulating layer 11 is a p-type contact from the inner surface of the trench 19 and the trench first side surface 46 of the trench 19 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. It is formed directly on the positive side of the layer 10 in the z direction.
  • the first or third semiconductor laser 100 of the fourth embodiment has a semi-insulating layer on the outer edge on the side opposite to the n-type semiconductor substrate 1, which is spaced in the x direction from the ridge portion 50 having the active layer 3. 11, when mounting from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • the third semiconductor laser 100 of the fourth embodiment includes a ridge 5 formed on the n-type semiconductor substrate 1, and a buried portion buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • the semiconductor laser is equipped with a layer 25 and is mounted from the surface on which the ridge 5 protrudes.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a retracted portion 21 extending in the y direction is provided between the negative end in the x direction (x direction end 29a).
  • the p-type contact layer 10 is removed, and the bottom portion 23 of the recessed portion 21 is located at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • the front side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two recessed portions 21.
  • the semi-insulating layer 11 is directly attached to the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion 21 on the positive side in the x direction, and to the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion on the negative side in the x direction. It is formed.
  • the third semiconductor laser 100 of the fourth embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1, which is away from the ridge portion 50 having the active layer 3 in the x direction. Therefore, when mounting from the surface electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • the method for manufacturing a semiconductor laser according to the fourth embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried layer 25 buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 equipped with the present invention.
  • the method for manufacturing a semiconductor laser according to the fourth embodiment includes a ridge formation process, a burying process, a lamination process, a trench formation process, a semi-insulating layer formation process, and a front side electrode formation process, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • a p-type second cladding layer 9 and a p-type contact layer 10 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • a p-type contact layer is formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5. 10 is etched to form a trench 19 whose bottom portion 22 is etched from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1 in the z-direction.
  • the semi-insulating layer forming step the positive side of the p-type contact layer 10 in the z-direction and the two trenches on the side away from the convex portion 18 formed between the two trenches 19 in the x-direction and outside the trench 19 A semi-insulating layer 11 is directly formed on the inner surface of 19 .
  • a surface-side electrode (anode electrode 12) is formed in the semi-insulating layer forming step so as to cover the p-type contact layer 10 on which the semi-insulating layer 11 of the convex portion 18 is not formed.
  • the semiconductor laser manufacturing method of the fourth embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 can be manufactured, when it is mounted from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • another method for manufacturing a semiconductor laser according to the fourth embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried pad buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 having an embedded layer 25.
  • Another method for manufacturing a semiconductor laser according to the fourth embodiment includes a ridge forming step, a burying step, a laminating step, a recessed portion forming step, a semi-insulating layer forming step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer 3 in the z direction.
  • a p-type second cladding layer 9 and a p-type contact layer 10 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • p-type contacts are formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • the layer 10 is etched to form a recessed portion 21 in which the bottom portion 23 is etched to any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1 .
  • the p-type contact layer 10 on the convex part 18 formed between the two recessed parts 21 on which the semi-insulating layer 11 of the convex part 18 is not formed is formed in the semi-insulating layer forming process.
  • a front side electrode (anode electrode 12) is formed so as to cover it.
  • the method for manufacturing another semiconductor laser according to the fourth embodiment forms a semi-insulating layer 11 on the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 equipped with the above structure can be manufactured, when mounting from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • FIG. 35 is a diagram showing a cross-sectional structure of a first semiconductor laser according to the fifth embodiment
  • FIG. 36 is a diagram showing a cross-sectional structure of the first semiconductor laser device according to the fifth embodiment.
  • FIG. 37 is a diagram showing a cross-sectional structure of a second semiconductor laser according to the fifth embodiment
  • FIG. 38 is a diagram showing a cross-sectional structure of a second semiconductor laser device according to the fifth embodiment.
  • FIG. 39 is a diagram showing a cross-sectional structure of a third semiconductor laser according to the fifth embodiment.
  • FIG. 40 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 35.
  • the semiconductor laser 100 of the fifth embodiment is different from the semiconductor laser 100 of the fourth embodiment in that both side surfaces of the convex portion 18 in the x direction and the semi-insulating layer 11 from both side surfaces to the ends 29a and 29b in the x direction are n. The difference is that it is formed with a type diffusion block layer 16 interposed therebetween. Mainly the differences from the semiconductor laser 100 and the semiconductor laser device 200 of the fourth embodiment will be explained.
  • the first semiconductor laser 100 of the fifth embodiment shown in FIG. 35 and the third semiconductor laser 100 of the fifth embodiment shown in FIG. This is an example in which the surface of the p-type contact layer 10 in 24 is covered with a semi-insulating layer 11 with an n-type diffusion block layer 16 interposed therebetween.
  • the bottom portion 22 of the trench 19 may be located anywhere in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • a third semiconductor laser 100 according to the fifth embodiment shown in FIG. 39 is an example in which the bottom portion 22 of the trench 19 is located at a position in the z direction of the n-type semiconductor substrate 1.
  • n-type diffusion block layer is formed on the positive side of the p-type contact layer 10 in the z-direction from the trench first side surface 46 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. 16.
  • the bottom portion 23 of is disposed at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • the semi-insulating layer 11 is provided on the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion 21 on the positive side in the x direction, and on the side surface (recessed portion side surface 48) and bottom portion 23 of the recessed portion 21 on the negative side in the x direction. It is formed with an n-type diffusion block layer 16 interposed therebetween.
  • the method of manufacturing the first or third semiconductor laser 100 of the fifth embodiment differs from the method of manufacturing the first or third semiconductor laser 100 of the fourth embodiment in the semi-insulating layer forming step.
  • the ridge forming process and embedding process shown in FIGS. 4 to 7 are the same as in the first embodiment. Note that FIG. 7 shows the state before the start of the lamination process, and also shows the state after the embedding process.
  • the second mask creation process of the lamination process, trench formation process, and semi-insulating layer formation process shown in FIGS. 31 to 33 is the same as in the fourth embodiment.
  • the semi-insulating layer forming process will be explained.
  • the n-type diffusion block layer 16 and the semi-insulating layer 11 are sequentially formed in a region other than the positive side of the convex portion 18 in the z direction.
  • the n-type diffusion block layer 16 and the semi-insulating layer 11 are formed by selective growth. More specifically, on the positive side in the z direction of the p-type contact layer 10 on the side away from the convex portion 18 formed between the two trenches 19 in the x direction and on the outside of the trench 19 and on the positive side in the z direction of the two trenches 19.
  • a semi-insulating layer 11 is formed on the inner surface with an n-type diffusion block layer 16 interposed therebetween.
  • the second mask 33 is removed using buffered hydrofluoric acid or hydrofluoric acid.
  • a front side electrode forming step is performed in which an anode electrode 12 is formed to cover the p-type contact layer 10 on which the semi-insulating layer 11 of the convex portion 18 is not formed in the insulating layer forming step, and the n-type semiconductor substrate 1
  • a back side electrode forming step is performed in which the cathode electrode 13 is formed on the back side, that is, on the negative side in the z direction.
  • the anode electrode 12 is patterned using a resist mask.
  • the first or third semiconductor laser 100 of the fifth embodiment is manufactured through the above steps.
  • the steps up to FIG. 31 are the same as the manufacturing method of the second semiconductor laser 100 of the fourth embodiment.
  • the retreating portion forming step of forming the retreating portion 21 is performed similarly to the second semiconductor laser 100 of the fourth embodiment.
  • a semi-insulating layer forming step for forming the semi-insulating layer 11 is performed.
  • the second mask 33 is formed on the positive side of the convex portion 18 in the z direction as in FIG. 33 .
  • the semi-insulating layer 11 is sequentially formed on the n-type diffusion block layer 16 in a region other than the positive side of the convex portion 18 in the z direction, as in FIG.
  • the n-type diffusion block layer 16 and the semi-insulating layer 11 are formed by selective growth. More specifically, on the side surface (retreating portion side surface 48) and bottom portion 23 of the retracting portion 21 on the positive side in the x direction, and on the side surface (retracting portion side surface 48) and bottom portion 23 of the retracting portion 21 on the negative side in the x direction, A semi-insulating layer 11 is formed via an n-type diffusion block layer 16. Thereafter, the second mask 33 is removed using buffered hydrofluoric acid or hydrofluoric acid. Next, an insulating layer forming step similar to that of the first or third semiconductor laser 100 of Embodiment 5 is performed to form an anode electrode 12 and a cathode electrode 13.
  • the area of the n-type third buried layer 8 on the second buried layer 7 side can be reduced by the trench 19 or the retreated portion 21, and the area near the active layer 3 is also n-type.
  • the area of the third buried layer 8 on the second buried layer 7 side can be reduced. Therefore, the semiconductor laser 100 and the semiconductor laser device 200 of the fifth embodiment have the same effects as the semiconductor laser 100 and the semiconductor laser device 200 of the fourth embodiment.
  • the semi-insulating layer 11 covers the convex portion 18 except for the positive side in the z direction.
  • the semi-insulating property of the semi-insulating layer 11 weakens. , the leakage current blocking effect of the semi-insulating layer 11 may be weakened.
  • the n-type diffusion block layer 16 is formed and the semi-insulating layer 11 is formed on the surface of the n-type diffusion block layer 16, so that the p-type second cladding layer 9 and the p-type Zinc or the like doped in the contact layer 10 can be prevented from diffusing into the buried layer 25.
  • the semiconductor laser 100 of the fifth embodiment prevents the diffusion of zinc, etc., which causes a decrease in the semi-insulating properties of the semi-insulating layer 11, and The parasitic capacitance of the layer 25 can be reduced, and efficient current injection into the active layer 3 and heat dissipation of heat generated in the active layer 3 can be improved.
  • the first or third semiconductor laser 100 of the fifth embodiment covers the ridge 5 formed on the n-type semiconductor substrate 1, and both sides facing each other in the direction perpendicular to the extending direction of the ridge 5.
  • This semiconductor laser is provided with a buried layer 25 and is mounted from the surface on which the ridge 5 protrudes.
  • the z direction, y direction, and x direction are as described above.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a trench 19 extending in the y direction is provided between each of the trenches 19 and the negative end in the x direction (x direction end 29a).
  • Each trench 19 penetrates the p-type contact layer 10, and the bottom 22 of the trench 19 is located at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1. has been done.
  • the surface side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two trenches 19.
  • the semi-insulating layer 11 is a p-type contact from the inner surface of the trench 19 and the trench first side surface 46 of the trench 19 to the x-direction ends (x-direction ends 29a, 29b) opposite to the convex portion 18 of the semiconductor laser 100. It is formed on the positive side of the layer 10 in the z direction with an n-type diffusion block layer interposed therebetween.
  • the first or third semiconductor laser 100 of the fifth embodiment has a semi-insulating layer on the outer edge on the side opposite to the n-type semiconductor substrate 1, which is spaced in the x direction from the ridge portion 50 having the active layer 3. 11, when mounting from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • the third semiconductor laser 100 of the fifth embodiment includes a ridge 5 formed on the n-type semiconductor substrate 1, and a buried portion buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • the semiconductor laser is equipped with a layer 25 and is mounted from the surface on which the ridge 5 protrudes.
  • the ridge 5 includes an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4, which are formed sequentially from the n-type semiconductor substrate 1 side.
  • the buried layer 25 includes a p-type first buried layer 6, a second buried layer 7, and an n-type third buried layer 8, which are in contact with the positive side surface in the x direction and the negative side surface in the x direction of the ridge 5. have.
  • the semiconductor laser 100 includes a p-type second cladding layer 9 and a p-type second cladding layer 9 formed sequentially from the n-type semiconductor substrate 1 side on the positive side of the ridge 5 in the z-direction and the n-type third buried layer 8 on the positive side of the z-direction.
  • a ridge portion 50 that includes a type contact layer 10, a surface side electrode (anode electrode 12) connected to the p-type contact layer 10, a ridge 5, and a p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • a semi-insulating layer 11 formed on an outer edge separated in the x direction, and a semi-insulating layer 11 on the positive side in the z direction on the x direction end (x direction ends 29a, 29b) side of the semiconductor laser 100.
  • a sexual layer 11 is formed.
  • a retracted portion 21 extending in the y direction is provided between the negative end in the x direction (x direction end 29a).
  • the p-type contact layer 10 is removed, and the bottom portion 23 of the recessed portion 21 is located at any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1.
  • the front side electrode (anode electrode 12) is connected to the p-type contact layer 10 at the convex portion 18 formed between the two recessed portions 21.
  • the semi-insulating layer 11 has an n It is formed with a type diffusion block layer 16 interposed therebetween.
  • the third semiconductor laser 100 of the fifth embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Therefore, when mounting from the surface electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • the method for manufacturing a semiconductor laser according to the fifth embodiment includes a ridge 5 formed on an n-type semiconductor substrate 1, and a buried layer 25 buried so as to cover both sides facing each other in a direction perpendicular to the extending direction of the ridge 5.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 equipped with the present invention.
  • the method for manufacturing a semiconductor laser according to the fifth embodiment includes a ridge forming step, a burying step, a laminating step, a trench forming step, a semi-insulating layer forming step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer in the z direction.
  • a p-type second cladding layer 9 and a p-type contact layer 10 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • a p-type contact layer is formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5. 10 is etched to form a trench 19 whose bottom portion 22 is etched from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1 in the z-direction.
  • the semi-insulating layer forming step the positive side of the p-type contact layer 10 in the z-direction and the two trenches on the side away from the convex portion 18 formed between the two trenches 19 in the x-direction and outside the trench 19 A semi-insulating layer 11 is formed on the inner surface of the substrate 19 with an n-type diffusion block layer 16 interposed therebetween.
  • a surface-side electrode (anode electrode 12) is formed in the semi-insulating layer forming step so as to cover the p-type contact layer 10 on which the semi-insulating layer 11 of the convex portion 18 is not formed.
  • the method for manufacturing a semiconductor laser according to the fifth embodiment includes a semi-insulating layer 11 at the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 can be manufactured, when it is mounted from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.
  • 1 is a method for manufacturing a semiconductor laser for manufacturing a semiconductor laser 100 including an embedded layer 25.
  • Another method of manufacturing a semiconductor laser according to the fifth embodiment includes a ridge forming step, a burying step, a laminating step, a recessed portion forming step, a semi-insulating layer forming step, and a front side electrode forming step, which will be described later.
  • an n-type cladding layer 2, an active layer 3, and a p-type first cladding layer 4 are sequentially formed on the n-type semiconductor substrate 1, and the active layer 3 has a negative z-direction on the n-type semiconductor substrate 1 side.
  • a p-type first buried layer 6 is formed on the positive side surface in the x direction and a negative side surface in the x direction of the ridge 5, and the second buried layer 7 and the n-type buried layer 6 are The third buried layer 8 buries the ridge 5 to a position higher than the active layer surface position 44 which is the positive side position of the active layer in the z direction.
  • a p-type second cladding layer 9 and a p-type contact layer 10 are sequentially formed on the positive side of the ridge 5 in the z-direction and on the positive side of the n-type third buried layer 8 in the z-direction.
  • p-type contacts are formed at two outer edges away from the ridge portion 50 on the positive and negative sides in the x direction, including the ridge 5 and the p-type first buried layer 6 in contact with two side surfaces of the ridge 5.
  • the layer 10 is etched to form a recessed portion 21 in which the bottom portion 23 is etched to any position in the z direction from the p-type second cladding layer 9 to the inside of the n-type semiconductor substrate 1 .
  • a semi-insulating layer is formed via the n-type diffusion block layer 16.
  • the p-type contact layer 10 on the convex part 18 formed between the two recessed parts 21 on which the semi-insulating layer 11 of the convex part 18 is not formed is formed in the semi-insulating layer forming process.
  • a front side electrode (anode electrode 12) is formed so as to cover it.
  • the method for manufacturing another semiconductor laser according to the fifth embodiment forms a semi-insulating layer 11 on the outer edge on the side opposite to the n-type semiconductor substrate 1 and away from the ridge portion 50 having the active layer 3 in the x direction. Since the semiconductor laser 100 equipped with the above structure can be manufactured, when mounting from the front side electrode (anode electrode 12) side, excellent heat dissipation can be achieved while suppressing leakage current that does not contribute to laser oscillation.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザ(100)は、n型半導体基板(1)に形成されたリッジ(5)、リッジの延伸方向であるy方向に垂直なx方向の両側を覆うように埋め込まれた埋込層(25)を備えている。リッジが突出している方向であるz方向の正側及び埋込層のz方向の正側にp型第二クラッド層(9)、p型コンタクト層(10)と、p型コンタクト層に接続された表面側電極(12)と、リッジからx方向に離れた外縁に形成された半絶縁性層(11)と、を備えており、当該半導体レーザ(100)のx方向の端(29a、29b)側におけるz方向の正側において、半絶縁性層又は表面側電極が形成されている。

Description

半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法
 本願は、半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法に関するものである。
 半導体レーザは光通信用の光源として広く利用されており、小型、高速動作、高効率、低消費電力への要求は高い。特許文献1には、埋込ヘテロ構造を有する半導体レーザが開示されている。特許文献1の半導体レーザは、n型半導体基板、n型クラッド層、活性層、p型クラッド層を含むリッジ、リッジを埋める埋込領域、埋込領域に形成された一対のトレンチ溝、リッジ及び埋込領域に積層されたp型クラッド層、コンタクト層、コンタクト層に接続されたアノード電極、n型半導体基板の裏面に形成されたカソード電極、リッジの直上領域以外のコンタクト層及びトレンチ溝を覆う絶縁膜を備えている。酸化シリコン(SiO)等の絶縁膜は、アノード電極から活性層へ効率よく電流を注入できるようにしている。
 更に半導体レーザの特性向上を実現する上で重要となるのが注入電流経路の抵抗の低減である。注入電流経路の抵抗は、適宜、注入抵抗と表現する。特に高出力用途の半導体レーザは動作電流も大きく、注入抵抗による発熱が大きく特性低下が顕著であるため、動作の際に発生する熱を効率よく放熱させることが非常に重要である。
 半導体レーザの動作の際に発生する熱を効率よく放熱するために、半導体レーザのpn接合がヒートシンクに対向するように実装する、所謂ジャンクションダウン実装が実行される場合がある。特許文献2には、半導体レーザがヒートシンクにジャンクションダウンにて実装された半導体レーザ装置が開示されている。
 また、特許文献2の半導体レーザ装置は、半導体レーザの動作の際に発生する熱をヒートシンクに効率よく放熱するために、活性層を含む導波路層の上にクラッド層、コンタクト層、電極金属が順次積層されており、コンタクト層を貫いて活性層の近傍に至る凹部(トレンチ)がクラッド層に形成され、凹部(トレンチ)とヒートシンクとの間に伝熱材料が充填されている。特許文献2の半導体レーザ装置は、発熱源となる活性層の近傍に熱伝導率の高い伝熱材料を配置することでヒートシンクへの放熱経路の熱伝導性を高くし、放熱性を向上させている。
特開2011-216680号公報(図1) 特開2001-94210号公報(図1、図8)
 特許文献2の半導体レーザ装置は、活性層を含む導波路層の上部に厚いクラッド層が形成されており、注入電流経路の抵抗は特許文献1の半導体レーザよりも大きくなっている。注入電流経路の抵抗を小さくし、レーザ発振に寄与しない漏れ電流を抑制するには、一般的に特許文献1の半導体レーザのような埋込構造を有する半導体レーザが用いられる。特許文献1の半導体レーザをヒートシンクにジャンクションダウンにて実装する場合には、活性層を含むリッジの直上領域以外のコンタクト層及びトレンチ溝を覆う絶縁膜があるので、熱伝導率が低い絶縁膜によりヒートシンクへの放熱経路の熱抵抗が増大する。
 特許文献1の半導体レーザをヒートシンクにジャンクションダウンにて実装する場合には、放熱経路の熱抵抗が増大するので、半導体レーザの放熱性が十分でない問題があった。
 本願明細書に開示される技術は、ヒートシンクにジャンクションダウンにて実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することを目的とする。
 本願明細書に開示される一例の半導体レーザは、n型半導体基板に形成されたリッジ、リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えており、リッジが突出している側の表面から実装する半導体レーザである。n型半導体基板の表面側からリッジが突出している方向をz方向とし、リッジが延伸している延伸方向をy方向とし、z方向及びy方向に垂直な方向をx方向とする。リッジは、n型半導体基板側から順次形成されたn型クラッド層、活性層、p型第一クラッド層を有している。埋込層は、リッジのx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層と、第二埋込層と、n型第三埋込層を有している。当該半導体レーザは、リッジのz方向の正側及びn型第三埋込層のz方向の正側にn型半導体基板側から順次形成されたp型第二クラッド層、p型コンタクト層と、p型コンタクト層に接続された表面側電極と、リッジ及びリッジの2つの側面に接するp型第一埋込層を含むリッジ部からx方向に離れた外縁に形成された半絶縁性層と、を備えており、当該半導体レーザのx方向の端側におけるz方向の正側において、半絶縁性層又は表面側電極が形成されている。
 本願明細書に開示される一例の半導体レーザは、活性層を有するリッジ部からx方向に離れておりn型半導体基板と反対側における外縁に半絶縁性層を備えているので、表面側電極側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
実施の形態1に係る第一の半導体レーザの断面構造を示す図である。 実施の形態1に係る半導体レーザ装置の断面構造を示す図である。 実施の形態1に係る第二の半導体レーザの断面構造を示す図である。 図1の半導体レーザの製造方法を示す図である。 図1の半導体レーザの製造方法を示す図である。 図1の半導体レーザの製造方法を示す図である。 図1の半導体レーザの製造方法を示す図である。 図1の半導体レーザの製造方法を示す図である。 図1の半導体レーザの製造方法を示す図である。 比較例の半導体レーザの断面構造を示す図である。 比較例の半導体レーザ装置の断面構造を示す図である。 実施の形態2に係る半導体レーザの断面構造を示す図である。 実施の形態2に係る半導体レーザ装置の断面構造を示す図である。 図12の半導体レーザにおける凸部の幅を示す図である。 図12の半導体レーザの製造方法を示す図である。 図12の半導体レーザの製造方法を示す図である。 図12の半導体レーザの製造方法を示す図である。 図12の半導体レーザの製造方法を示す図である。 図12の半導体レーザの製造方法を示す図である。 実施の形態3に係る半導体レーザの断面構造を示す図である。 実施の形態3に係る半導体レーザ装置の断面構造を示す図である。 図20の半導体レーザの製造方法を示す図である。 図20の半導体レーザの製造方法を示す図である。 図20の半導体レーザの製造方法を示す図である。 実施の形態4に係る第一の半導体レーザの断面構造を示す図である。 実施の形態4に係る第一の半導体レーザ装置の断面構造を示す図である。 実施の形態4に係る第二の半導体レーザの断面構造を示す図である。 実施の形態4に係る第二の半導体レーザ装置の断面構造を示す図である。 実施の形態4に係る第三の半導体レーザの断面構造を示す図である。 実施の形態4の半導体レーザにおける凸部の幅を示す図である。 図25の半導体レーザの製造方法を示す図である。 図25の半導体レーザの製造方法を示す図である。 図25の半導体レーザの製造方法を示す図である。 図25の半導体レーザの製造方法を示す図である。 実施の形態5に係る第一の半導体レーザの断面構造を示す図である。 実施の形態5に係る第一の半導体レーザ装置の断面構造を示す図である。 実施の形態5に係る第二の半導体レーザの断面構造を示す図である。 実施の形態5に係る第二の半導体レーザ装置の断面構造を示す図である。 実施の形態5に係る第三の半導体レーザの断面構造を示す図である。 図35の半導体レーザの製造方法を示す図である。
実施の形態1.
 図1は実施の形態1に係る第一の半導体レーザの断面構造を示す図であり、図2は実施の形態1に係る半導体レーザ装置の断面構造を示す図である。図3は、実施の形態1に係る第二の半導体レーザの断面構造を示す図である。図4~図9は、図1の半導体レーザの製造方法を示す図である。図10は比較例の半導体レーザの断面構造を示す図であり、図11は比較例の半導体レーザ装置の断面構造を示す図である。実施の形態1の半導体レーザ100は、n型InP基板であるn型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えている。n型半導体基板1の表面側からリッジ5が突出している方向をz方向とし、リッジ5が延伸している延伸方向をy方向とし、z方向及びy方向に垂直な方向をx方向とする。図1に示した半導体レーザ100は、リッジ5がn型半導体基板1の表面側からz方向の正側に突出しており、破線51aで示したx方向の正側の端がx方向端29bであり、破線51dで示したx方向の負側の端がx方向端29aである例を示した。リッジ5は破線41aから破線41bの間に形成されており、リッジ部50は破線43aから破線43bの間に形成されている。なお、適宜、z方向の正側を表面側、z方向の負側を裏面側と表現する。
 半導体レーザ100は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5と、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有する埋込層25と、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極であるアノード電極12と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、n型半導体基板1の裏面に形成された裏面電極であるカソード電極13と、を備えている。半導体レーザ100のx方向端29a、29b側におけるz方向の正側において、半絶縁性層11及びアノード電極12が形成されている。半導体レーザ100のx方向端29a側において、半絶縁性層11が破線51aから破線51bまでの端部領域24に形成されている。同様に、半導体レーザ100のx方向端29b側において、半絶縁性層11が破線51cから破線51dまでの端部領域24に形成されている。
 実施の形態1の半導体レーザ装置200は、半導体レーザ100と、ヒートシンク17とを備えており、半導体レーザ100のアノード電極12が形成されたz方向の正側がヒートシンク17に金錫はんだ等の接続部材14により接続されている。図2に示した半導体レーザ装置200は、ヒートシンク17にジャンクションダウンにて実装したときの断面を示した。半導体レーザ100は、リッジ5が突出している側の表面すなわちz方向の正側からヒートシンク17にジャンクションダウンにて実装されている。
 n型半導体基板1は、InP基板に例えば硫黄(S)がドーピングされたn型InP基板である。n型クラッド層2は、例えば硫黄がドーピングされたn型InPのクラッド層である。活性層3は、AlGaInAS系もしくはInGaASP系材料の多重量子井戸を含んでいる。p型第一クラッド層4は、例えば亜鉛(Zn)がドーピングされたp型InPのクラッド層である。リッジ5はy方向に延伸したストライプ形状を有している。
 リッジ5は、n型半導体基板1に順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4の半導体層を活性層3よりも低い位置すなわち活性層3のz方向の負側よちりも低い位置までエッチングして形成されている。図1に示した第一の半導体レーザ100はリッジエッチング位置52がn型半導体基板1まで達している例であり、図3に示した第二の半導体レーザ100はリッジエッチング位置52がn型クラッド層2に配置されている例である。リッジ5は、x方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8により、活性層3より高い位置すなわち活性層3のz方向の正側である活性層表面位置44(図6参照)より高い位置まで埋め込まれている。p型第一埋込層6は例えば亜鉛がドーピングされたp型InPの埋込層であり、第二埋込層7は半絶縁性材料である鉄(Fe)がドーピングされたInPの半絶縁性埋込層であり、n型第三埋込層8は例えば硫黄がドーピングされたn型InPの埋込層である。
 図1に示した第一の半導体レーザ100は第二埋込層7がリッジ5のz方向の正側の位置まで形成されている例であり、図3に示した第二の半導体レーザ100は第二埋込層7が活性層表面位置44まで形成されている例である。第二埋込層7は、チタン(Ti)、コバルト(Co)、ルビジューム(Ru)等の材料がドーピングされたInPの半絶縁性埋込層でもよい。また、p型第一埋込層6と第二埋込層7とは不純物濃度又は導電型が異なる他の半導体層との組み合わせによって構成されていてもよい。第二埋込層7の表面にn型第三埋込層8が形成される。n型第三埋込層8及びリッジ5のz方向の正側にp型第二クラッド層9が形成される。p型第二クラッド層9のz方向の正側にp型コンタクト層10が形成され、p型コンタクト層10のz方向の正側で端部領域24に半絶縁性層11が形成される。半絶縁性層11の表面、半絶縁性層11が削除されたp型コンタクト層10の表面を覆うようにアノード電極12が形成され、n型半導体基板1の裏面側にカソード電極13が形成される。p型コンタクト層10のリッジ部50を包含する領域におけるz方向の正側に半絶縁性層11の開口が配置されている。この半絶縁性層11の開口が配置された領域は、アノード電極12からp型コンタクト層10、p型第二クラッド層9を介してリッジ5に電流が流れる領域である。図1に示した第一の半導体レーザ100はn型第三埋込層8がリッジ5のz方向の正側よりもn型半導体基板1から離れる位置に形成された例であり、図3に示した第二の半導体レーザ100はn型第三埋込層8がリッジ5のz方向の正側よりもn型半導体基板1側に形成された例である。図1、図3では、アノード電極12が半導体レーザ100のz方向の正側を全て覆っている例を示した。
 p型第二クラッド層9は、例えば亜鉛がドーピングされたp型InPのクラッド層である。p型コンタクト層10は、例えば亜鉛がドーピングされたp型InGaASのコンタクト層である。半絶縁性層11は、例えば鉄がドーピングされたInPの半絶縁性層である。半絶縁性層11は、チタン、コバルト、ルビジューム等の材料がドーピングされたInPの半絶縁性層でもよい。アノード電極12及びカソード電極13の材料は、金(Au)、ゲルマニューム(Ge)、亜鉛、白金(Pt)、チタン等の金属である。半導体レーザ100がジャンクションダウンにて実装される際の接続部材14が金錫はんだの場合は、金がp型コンタクト層10及びp型コンタクト層10よりもn型半導体基板1側の半導体層に拡散するのを防ぐために、白金等のバリアメタルをp型コンタクト層10とアノード電極12との間に介在させてもよい。
 次に、実施の形態1の半導体レーザ100の製造方法について、図4~図9に示した一例を用いて説明する。図4~図9では第一の半導体レーザ100の製造方法を示しているが、第二の半導体レーザ100の製造方法を含めて説明する。図4は、リッジ5を形成するリッジ形成工程を示している。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、リッジ5のx方向の幅でSiO、SiN等の第一マスク31を形成する。次に、第一マスク31を用いて、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。リッジ5を形成する際のリッジエッチング位置52は、活性層3のz方向の負側よりも低い位置である。
 図5、図6は、リッジ5を埋込層25により埋める埋込工程を示している。埋込工程において、第一マスク31を用いて、リッジ5のx方向の正側の側面及びx方向の負側の側面すなわち両側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。図1に示した第一の半導体レーザ100、図3に示した第二の半導体レーザ100は、第二埋込層7が活性層表面位置44よりも高い位置まで形成された例である。
 図7、図8は、リッジ5及び埋込層25の表面に半導体層を積層する積層工程を示している。図7に示すように、積層工程の前処理として第一マスク31をバッファードフッ酸又はフッ酸を用いて除去する。その後積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10、半絶縁性層11を順次形成する。
 図9は、p型コンタクト層10を露出させるコンタクト層露出工程を示している。コンタクト層露出工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50を包含するx方向の領域が開口されたレジストマスク32を形成し、その後レジストマスク32を用いて半絶縁性層11を塩酸により選択的にエッチングしp型コンタクト層10を露出させる。その後、レジストマスク32を除去する。
 次に、図1、図3に示すように、露出されたp型コンタクト層10、半絶縁性層11におけるz方向の正側及びリッジ部50側の側面に表面側電極であるアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側に裏面側電極であるカソード電極13を形成する裏面側電極形成工程とを実行する。以上の工程により実施の形態1の半導体レーザ100が製造される。
 図10、図11に比較例の半導体レーザ110、半導体レーザ装置210を示した。比較例の半導体レーザ110は、半絶縁性層11の代わりにSiOの絶縁膜28がp型コンタクト層10に形成されている点で実施の形態1の第一の半導体レーザ100と異なる。
 実施の形態1の半導体レーザ100及び半導体レーザ装置200の動作を説明する。動作の際に、半導体レーザ100のアノード電極12とカソード電極13との間に順方向バイアスが印加される。実施の形態1の半導体レーザ装置200では、ヒートシンク17を介して半導体レーザ100のアノード電極12とカソード電極13との間に順方向バイアスが印加される。アノード電極12とカソード電極13の間に順方向バイアスが印加されることにより、電流はリッジ部50を包含しており、かつ半絶縁性層11が削除された半絶縁性層開口領域のp型コンタクト層10にアノード電極12から注入される。半絶縁性層開口領域は電流注入領域である。注入された電流は第二埋込層7及びn型第三埋込層8によって、ストライプ形状のリッジ5の領域に狭窄されてリッジ5に入力される。活性層3に注入された電流により、活性層3を構成する半導体層のバンドギャップエネルギーに対応した波長のレーザ光が発生し、半導体レーザ100の外部に出射される。レーザ光はリッジ5が延伸しているy方向に出射される。
 半導体レーザ100の主な熱の発生源は活性層3である。活性層3で発生した熱は、周囲の半導体層に伝導して、活性層3の外へ広がっていく。比較例の半導体レーザ110、半導体レーザ装置210では、活性層3で発生した熱は、活性層3から周囲の半導体層すなわちp型第一埋込層6、第二埋込層7、n型第三埋込層8、p型第二クラッド層9、p型コンタクト層10に伝導する。比較例の半導体レーザ110、半導体レーザ装置210では、電流注入領域は絶縁膜28が削除された絶縁膜開口領域になっている。電流注入領域では、p型コンタクト層10からアノード電極12に熱が伝導する。しかし、絶縁膜28が存在する電流注入領域の外側である外側領域では、絶縁膜28を介してp型コンタクト層10からアノード電極12に熱が伝導する。その後、アノード電極12から接続部材14を介してヒートシンク17へ熱が放熱される。比較例の半導体レーザ110は、活性層3以外への漏れ電流を抑制するため、活性層3を有するリッジ5を包含する電流注入領域以外はp型コンタクト層10が絶縁膜28で覆われている。絶縁膜28として用いられるSiOの熱伝導率は1.38W/(m・K)である。熱伝導率が70W/(m・K)であるInPに比べるとSiOは熱伝導性が悪い。したがって、比較例の半導体レーザ110がジャンクションダウンにて実装された半導体レーザ装置、すなわち比較例の半導体レーザ装置210は、絶縁膜28の表面領域すなわち前述した外側領域からの放熱性が十分でなく、高温特性が低下する。比較例の半導体レーザ110がジャンクションダウンにて実装された比較例の半導体レーザ装置210は、放熱経路の熱抵抗が大きいので、放熱性が十分でない。
 これに対して、実施の形態1の半導体レーザ100は、電流注入領域の外側すなわち電流注入領域のx方向の正側及び負側の端部領域24において絶縁膜28ではなくInPの半絶縁性層11がp型コンタクト層10とアノード電極12との間に介在しているので、端部領域24における放熱経路の熱抵抗は、比較例に比べて低くなっており、比較例に比べて放熱性を向上できる。半絶縁性層11は、例えば鉄がドープされており半絶縁性を有するので、電流注入の際に活性層3以外への漏れ電流を抑制することができる。実施の形態1の半導体レーザ100は、p型コンタクト層10のz方向の正側における端部領域24に半絶縁性層11を備えているので、レーザ発振に寄与しない活性層3以外への漏れ電流を抑制しつつ、優れた放熱性を実現することができ、高温特性を向上できる。
 なお、半絶縁性層11の材料はInPに限定されず、SiOの熱伝導率より10倍以上大きい材料を用いてもよい。この場合でも、実施の形態1の半導体レーザ100は、比較例に比べて放熱経路の熱抵抗を小さくでき、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 以上のように実施の形態1の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。n型半導体基板1の表面側からリッジ5が突出している方向をz方向とし、リッジ5が延伸している延伸方向をy方向とし、z方向及びy方向に垂直な方向をx方向とする。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11又は表面側電極(アノード電極12)が形成されている。実施の形態1の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態1の半導体レーザ装置200は、実施の形態1の半導体レーザ100とヒートシンク17とを備え、半導体レーザ100の表面側電極(アノード電極12)が形成されたz方向の正側がヒートシンク17に接続部材14により接続されている。実施の形態1の半導体レーザ装置200は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えており、表面側電極(アノード電極12)が形成されたz方向の正側がヒートシンク17に接続部材により接続されているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態1の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態1の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、コンタクト層露出工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10、半絶縁性層11を順次形成する。コンタクト層露出工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50を包含するx方向の領域における半絶縁性層11をエッチングしp型コンタクト層10を露出させる。表面側電極形成工程において、露出されたp型コンタクト層10、半絶縁性層11におけるz方向の正側及びリッジ部50側の側面に表面側電極(アノード電極12)を形成する。実施の形態1の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
実施の形態2.
 図12は実施の形態2に係る半導体レーザの断面構造を示す図であり、図13は実施の形態2に係る半導体レーザ装置の断面構造を示す図である。図14は、図12の半導体レーザにおける凸部の幅を示す図である。図15~図19は、図12の半導体レーザの製造方法を示す図である。実施の形態2の半導体レーザ100は、リッジ部50のx方向の外側とx方向端29a、29bとの間にy方向に延伸して形成された2つのトレンチ19を備えている点で、実施の形態1の半導体レーザ100と異なる。実施の形態1の半導体レーザ100及び半導体レーザ装置200と異なる部分を主に説明する。
 実施の形態2の半導体レーザ100は、実施の形態1の半導体レーザ100と同様に、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に形成されたp型第二クラッド層9、p型コンタクト層10、リッジ部50からx方向に離れた外縁に形成された半絶縁性層11、アノード電極12、カソード電極13を備えている。実施の形態2の半導体レーザ100は、更に、リッジ部50のx方向の外側とx方向端29a、29bとの間にy方向に延伸して形成された2つのトレンチ19、トレンチ19の内面に形成された絶縁膜15を備えている。絶縁膜15の材料は、SiO、SiN、その他絶縁性を有する材料である。図12、図13では、x方向の負側の半絶縁性層11の表面におけるx方向端29a側とx方向の正側の半絶縁性層11におけるx方向端29b側とが露出している例を示したが、半絶縁性層11の表面がアノード電極12又はアノード電極12と接続されていない金属に覆われていてもよい。
 トレンチ19は、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通しており、トレンチ19の底部22が第二埋込層7における活性層3のz方向の正側位置である活性層表面位置44と同じであるか、又はトレンチ19の底部22が第二埋込層7における活性層表面位置44よりもn型半導体基板1から離れている。すなわち、トレンチ19の底部22が活性層表面位置44から第二埋込層7のz方向の正側までの間にあればよい。アノード電極12は2つのトレンチ19の間に形成された凸部18におけるp型コンタクト層10に接続されている。凸部18は破線42aから破線42bまでのx方向の範囲でy方向に延伸して形成されている。トレンチ19はメサ溝に相当するので、凸部18はメサストライプということもできる。
 トレンチ19における凸部18から離れた側のx方向の側面はトレンチ第一側面46であり、トレンチ19におけるトレンチ第一側面46よりも凸部18に近い側のx方向の側面はトレンチ第二側面47である。x方向端29b側では、トレンチ19が破線42bから破線51cの間に形成されており、端部領域24が破線51cから破線51dの間に形成されている。x方向端29a側では、トレンチ19が破線42aから破線51bの間に形成されており、端部領域24が破線51bから破線51aの間に形成されている。半絶縁性層11は、トレンチ19のトレンチ第一側面46から半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に形成されており、かつ半導体レーザ100のx方向の端側においてアノード電極に覆われていない。すなわち、半絶縁性層11は、x方向端29bの端部領域24におけるp型コンタクト層10のz方向の正側に形成されており、x方向端29bの端部領域24におけるp型コンタクト層10のz方向の正側に形成されている。
 図13に、接続部材14がトレンチ19に充填されており、接続部材14のz方向の負側の位置がx方向端29a、29bにおいて第二埋込層7の一部を覆いながら、ヒートシンク17に実施の形態2の半導体レーザ100がジャンクションダウンにて実装された半導体レーザ装置200の例を示した。凸部18のx方向の幅である凸部幅W2は、リッジ部50のx方向の幅であるリッジ部幅W1よりも大きい。
 次に、実施の形態2の半導体レーザ100の製造方法について、前述した図4~図8及び図15~図19に示した一例を用いて説明する。図4~図8で示したリッジ形成工程、埋込工程、積層工程は、実施の形態1と同じである。図8に示した積層工程の後に、図15に示すトレンチ形成工程を実行する。半絶縁性層11まで形成された半導体層に、レジストマスク32を用いてリッジ部50のx方向の両側に2つのトレンチ19を底部22がn型第三埋込層8より低い位置でかつ活性層3より高い位置となるように形成する。より具体的には、トレンチ形成工程では、リッジ部50からx方向の正側及び負側に離れた2つの外縁において、半絶縁性層11、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通しており、底部22のz方向の位置が、第二埋込層7における活性層3の活性層表面位置44と同じであるか又は活性層表面位置44よりも正側に位置しているトレンチ19を形成する。
 次に、2つのトレンチ19の間に形成された凸部18の半絶縁性層11をエッチングし、p型コンタクト層10を露出させるコンタクト層露出工程と、それぞれのトレンチ19のx方向の両側面及び底部22に絶縁膜15を形成する絶縁膜形成工程と、を実行する。図16に示すように、凸部18のx方向の中央部に開口を形成するようにレジストマスク32を形成し、塩酸で凸部18の半絶縁性層11を選択的にエッチングする。図16では、レジストマスク32の開口におけるx方向の幅が凸部18よりも小さくなっている例を示した。
 次に最終的な形状の絶縁膜15すなわち図19に示した形状の絶縁膜15を形成する。図17のようにレジストマスク32を削除した後に、露出している半導体層の表面及びトレンチ19の内面に絶縁膜15を形成する。次に、図18のようにトレンチ19を覆うようにレジストマスク32を形成し、図19のように絶縁膜15の形状をエッチングにより加工する。その後、レジストマスク32を除去する。図18では、レジストマスク32のx方向の幅がトレンチ19のx方向の幅よりも大きくなっている例を示した。図19では、絶縁膜15をエッチングにより加工して最終的な形状の絶縁膜15を形成する絶縁膜形成工程と、凸部18の絶縁膜15をエッチングしてp型コンタクト層10を露出させるコンタクト層露出工程と、を同時に実行される例を示した。p型コンタクト層10を露出させるコンタクト層露出工程は、図16に示した工程と、図19に示した工程とが実行される。トレンチ19のx方向の両側面及び底部22に絶縁膜15を形成する絶縁膜形成工程は、図17~図19に示した工程が実行される。
 その後、図12に示すように、絶縁膜形成工程により凸部18の絶縁膜15が形成されていないp型コンタクト層10を覆うようにアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側にカソード電極13を形成する裏面側電極形成工程を実行する。アノード電極12は、レジストマスクを用いてパターニングされる。以上の工程により実施の形態2の半導体レーザ100が製造される。
 実施の形態2の半導体レーザ100がジャンクションダウンにて実装された実施の形態2の半導体レーザ装置200は、活性層3で発生した熱が活性層3から周囲の半導体層、すなわちp型第一埋込層6、第二埋込層7、n型第三埋込層8、p型第二クラッド層9、p型コンタクト層10に伝導する。凸部18において、活性層3からの熱はアノード電極12から接続部材14を介してヒートシンク17へ放熱される。端部領域24において、活性層3からの熱は半絶縁性層11に伝導し、半絶縁性層11から接続部材14を介してヒートシンク17へ放熱される。
 実施の形態2の半導体レーザ100は、実施の形態1の半導体レーザ100と同様にx方向の正側及び負側の端部領域24のx方向端29b、29a側においてInPの半絶縁性層11がp型コンタクト層10を覆っており、またトレンチ19の内面に形成された絶縁膜15は、図10に示した比較例の半導体レーザ110の絶縁膜28よりも薄く形成されているので、端部領域24における放熱経路の熱抵抗は比較例に比べて低くなっており、実施の形態1の半導体レーザ100と同様に比較例に比べて放熱性を向上できる。半絶縁性層11は、半絶縁性を有するので、電流注入の際に活性層3以外への漏れ電流を抑制することができる。実施の形態2の半導体レーザ100は、実施の形態1の半導体レーザ100と同様に、p型コンタクト層10のz方向の正側における端部領域24に半絶縁性層11を備えているので、レーザ発振に寄与しない活性層3以外への漏れ電流を抑制しつつ、優れた放熱性を実現することができ、高温特性を向上できる。
 また、実施の形態2の半導体レーザ100は、実施の形態1の半導体レーザ100と同様に、活性層3への電流注入効率を向上するために活性層3の両側に電流ブロック層として機能する埋込層25を設けている。埋込層25は、鉄等がドープされた半絶縁性の第二埋込層7をp型第一埋込層6とn型第三埋込層8とで挟む構造をしている。埋込層25は、x方向端29a、29b側において誘電体を挟んだコンデンサと同様の構造であることから、埋込層25は寄生容量を持つ。半導体レーザ100の高速動作を実現するためには、この埋込層25が持つ寄生容量の低減が有効である。実施の形態2の半導体レーザ100は、リッジ部50のx方向の両側を包含するように凸部18を形成し、埋込層25のn型第三埋込層8をトレンチ19で分断することで、実施の形態1の半導体レーザ100よりもn型第三埋込層8の第二埋込層7側の面積を小さくすることができ、活性層3近傍においてもn型第三埋込層8の第二埋込層7側の面積を小さくすることができる。埋込層25におけるp型第一埋込層6とn型第三埋込層8との距離が小さくなる活性層3の近傍は、x方向端29a、29b側よりも寄生容量が大きくなる。実施の形態2の半導体レーザ100は、活性層3の近傍のn型第三埋込層8の面積が実施の形態1の半導体レーザ100よりも小さいので、実施の形態1の半導体レーザ100よりも寄生容量を低減できる。すなわち、実施の形態2の半導体レーザ100は、実施の形態1の半導体レーザ100よりも高速動作を実現できる。
 以上のように実施の形態2の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。z方向、y方向、x方向は前述した通りである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成されたトレンチ19を備えている。それぞれのトレンチ19は、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通しており、当該トレンチ19の底部22が第二埋込層7における活性層3のz方向の正側位置である活性層表面位置44と同じであるか、又は当該トレンチ19の底部22が第二埋込層7における活性層表面位置44よりもn型半導体基板1から離れている。表面側電極(アノード電極12)は、2つのトレンチ19の間に形成された凸部18におけるp型コンタクト層10に接続されている。トレンチ19における凸部18から離れた側のx方向の側面をトレンチ第一側面46とし、トレンチ19におけるトレンチ第一側面46よりも凸部18に近い側のx方向の側面をトレンチ第二側面47とする。半絶縁性層11は、トレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に形成されている。トレンチ19の内面に絶縁膜15を備えている。実施の形態2の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態2の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態2の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、トレンチ形成工程、コンタクト層露出工程、絶縁膜形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10、半絶縁性層11を順次形成する。トレンチ形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、半絶縁性層11、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通し、底部22のz方向の位置が、第二埋込層7における活性層3の活性層表面位置44と同じであるか又は活性層表面位置44よりも正側に位置しているトレンチ19を形成する。コンタクト層露出工程において、2つのトレンチ19の間に形成された凸部18の半絶縁性層11をエッチングし、p型コンタクト層10を露出させる。絶縁膜形成工程において、それぞれのトレンチ19のx方向の両側面(トレンチ第一側面46、トレンチ第二側面47)及び底部22に絶縁膜15を形成する。表面側電極形成工程において、絶縁膜形成工程により凸部18の絶縁膜15が形成されていないp型コンタクト層10を覆うように表面側電極(アノード電極12)を形成する。実施の形態2の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
実施の形態3.
 図20は実施の形態3に係る半導体レーザの断面構造を示す図であり、図21は実施の形態3に係る半導体レーザ装置の断面構造を示す図である。図22~図24は、図20の半導体レーザの製造方法を示す図である。実施の形態3の半導体レーザ100は、実施の形態2の半導体レーザ100とは、トレンチ19の底部22が絶縁膜15で覆われていない点で異なる。実施の形態2の半導体レーザ100及び半導体レーザ装置200と異なる部分を主に説明する。図20では、アノード電極12がトレンチ19のトレンチ第一側面46及びトレンチ第二側面47の絶縁膜15及びトレンチ19の底部22を覆っている例を示した。
 実施の形態3の半導体レーザ100の製造方法について、前述した図4~図8、図15~図19及び図22~図24に示した一例を用いて説明する。図4~図8で示したリッジ形成工程、埋込工程、積層工程は、実施の形態1と同じであり、図15~図19の工程は実施の形態2と同じである。実施の形態3の半導体レーザ100では、図19に示した絶縁膜15を更に加工する工程であるトレンチ底部露出工程が追加されている。実施の形態3の絶縁膜形成工程は、図17~図19及び図22~図24の工程で実行される。トレンチ底部露出工程は、絶縁膜形成工程の一部の工程である。実施の形態3のコンタクト層露出工程は、実施の形態2と同様に、図16に示した工程と、図19に示した工程とが実行される。
 トレンチ底部露出工程を説明する。図19に示した製造途中の半導体レーザ100すなわち製造中間体の端部領域24のz方向の正側、絶縁膜15における凸部18のz方向の正側及び端部領域24のz方向の正側に配置された絶縁膜端部、凸部18のz方向の正側に、図22に示すようにレジストマスク32を形成する。図22~図24では、絶縁膜端部が4つある例を示した。図23に示すように、レジストマスク32を用いてトレンチ19の底部22の絶縁膜15をエッチングして、トレンチ19の底部22を露出させる。その後、図24に示すように、レジストマスク32を除去する。
 次に、図20に示すように、絶縁膜形成工程により凸部18の絶縁膜15が形成されていないp型コンタクト層10を覆うようにアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側にカソード電極13を形成する裏面側電極形成工程を実行する。アノード電極12は、レジストマスクを用いてパターニングされる。アノード電極12は凸部18のp型コンタクト層10以外の領域まで広がっていてもよい。前述したように、アノード電極12がトレンチ19のトレンチ第一側面46及びトレンチ第二側面47の絶縁膜15及びトレンチ19の底部22を覆っている例を図20に示した。以上の工程により実施の形態3の半導体レーザ100が製造される。
 実施の形態3の半導体レーザ100及び半導体レーザ装置200は、実施の形態2の半導体レーザ100及び半導体レーザ装置200と同様の効果を奏する。図20に示した半導体レーザ100は、トレンチ19の底部22に絶縁膜15が存在せず、第二埋込層7に熱伝導率の高いアノード電極12が配置されている。アノード電極12に用いられる金属が例えば金の場合、熱伝導率が300W/(m・K)である。トレンチ19の底部22に配置された金属により、実施の形態3の半導体レーザ100及び半導体レーザ装置200は、実施の形態2の半導体レーザ100及び半導体レーザ装置200よりも、活性層3から発生した熱を凸部18のz方向の正側、端部領域24のz方向の正側、と共にトレンチ19の底部22からも放熱しやくすなり、高温特性が向上する。なお、トレンチ19の底部22の金属はアノード電極12と接続されていなくてもよく、トレンチ19の底部22に金属が配置されていなくてもよい。トレンチ19の底部22に金属が配置されていなくても、トレンチ19の内部に充填された接続部材14を介して、ヒートシンク17に放熱される。
 以上のように実施の形態3の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。z方向、y方向、x方向は前述した通りである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成されたトレンチ19を備えている。それぞれのトレンチ19は、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通しており、当該トレンチ19の底部22が第二埋込層7における活性層3のz方向の正側位置である活性層表面位置44と同じであるか、又は当該トレンチ19の底部22が第二埋込層7における活性層表面位置44よりもn型半導体基板1から離れている。表面側電極(アノード電極12)は、2つのトレンチ19の間に形成された凸部18におけるp型コンタクト層10に接続されている。半絶縁性層11は、トレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に形成されている。トレンチ19のトレンチ第一側面及46びトレンチ第二側面47に絶縁膜15を備えており、表面側電極(アノード電極12)は、トレンチ第一側面46及びトレンチ第二側面47の絶縁膜15及びトレンチ19の底部22を覆っている。実施の形態3の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態3の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態3の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、トレンチ形成工程、コンタクト層露出工程、絶縁膜形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10、半絶縁性層11を順次形成する。トレンチ形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、半絶縁性層11、p型コンタクト層10、p型第二クラッド層9、n型第三埋込層8を貫通し、底部22のz方向の位置が、第二埋込層7における活性層3の活性層表面位置44と同じであるか又は活性層表面位置44よりも正側に位置しているトレンチ19を形成する。コンタクト層露出工程において、2つのトレンチ19の間に形成された凸部18の半絶縁性層11をエッチングし、p型コンタクト層10を露出させる。絶縁膜形成工程において、それぞれのトレンチ19のx方向の両側面(トレンチ第一側面46、トレンチ第二側面47)に絶縁膜15を形成する。表面側電極形成工程において、絶縁膜形成工程により凸部18の絶縁膜15が形成されていないp型コンタクト層10を覆うように及びトレンチ19の両側面(トレンチ第一側面46、トレンチ第二側面47)の絶縁膜15及びトレンチ19の底部22を覆うように表面側電極(アノード電極12)を形成する。実施の形態3の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
実施の形態4.
 図25は実施の形態4に係る第一の半導体レーザの断面構造を示す図であり、図26は実施の形態4に係る第一の半導体レーザ装置の断面構造を示す図である。図27は実施の形態4に係る第二の半導体レーザの断面構造を示す図であり、図28は実施の形態4に係る第二の半導体レーザ装置の断面構造を示す図である。図29は、実施の形態4に係る第三の半導体レーザの断面構造を示す図である。図30は、実施の形態4の半導体レーザにおける凸部の幅を示す図である。図31~図34は、図25の半導体レーザの製造方法を示す図である。実施の形態4の第一及び第三の半導体レーザ100は、実施の形態2の半導体レーザ100とは、トレンチ19の内面が絶縁膜15ではなく半絶縁性層11で覆われている点で異なる。また、実施の形態4の第二の半導体レーザ100は、実施の形態2の半導体レーザ100とは、トレンチ19がx方向端29a、29bに至るまで底部23になっている後退部21に変更され、後退部21の底部23及び後退部側面48が半絶縁性層11で覆われている点で異なる。なお、後退部21の底部23はx方向端29a、29bに至るまで延伸しているので、後退部21の底部23は端部領域24ということもできる。実施の形態2の半導体レーザ100及び半導体レーザ装置200と異なる部分を主に説明する。
 図25に示した実施の形態4の第一の半導体レーザ100、図29に示した実施の形態4の第三の半導体レーザ100は、トレンチ19を備えており、トレンチ19の内面及び端部領域24におけるp型コンタクト層10の表面が半絶縁性層11で覆われている例である。トレンチ19の底部22は、p型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されていればよい。図29に示した実施の形態4の第三の半導体レーザ100は、トレンチ19の底部22がn型半導体基板1のz方向の位置に配置されている例である。図29では、トレンチ19の底部22がリッジ5に形成されたn型半導体基板1の表面よりもn型半導体基板1の裏面側に配置されている例を示した。図25に示した実施の形態4の第一の半導体レーザ100及び図29に示した実施の形態4の第三の半導体レーザ100は、半絶縁性層11が、トレンチ19の内面及びトレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に、直接形成されている。
 実施の形態4の第二の半導体レーザ100は、リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成された後退部21を備えている。それぞれの後退部21は、p型コンタクト層10が削除されており、当該後退部21の底部23がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。半絶縁性層11は、x方向の正側における後退部21の側面(後退部側面48)及び底部23、x方向の負側における後退部21の側面(後退部側面48)及び底部23に、直接形成されている。
 図26に、接続部材14がトレンチ19に充填されており、接続部材14のz方向の負側の位置がx方向端29a、29bにおいて第二埋込層7の一部を覆いながら、ヒートシンク17に実施の形態4の第一の半導体レーザ100がジャンクションダウンにて実装された半導体レーザ装置200の例を示した。図28に、接続部材14が後退部21に充填されており、接続部材14のz方向の負側の位置がx方向端29a、29bにおいて第二埋込層7の一部を覆いながら、ヒートシンク17に実施の形態4の第二の半導体レーザ100がジャンクションダウンにて実装された半導体レーザ装置200の例を示した。2つの後退部21の間に形成された凸部18は、2つのトレンチ19の間に形成された凸部18と同様である。いずれの凸部18のx方向の幅である凸部幅W2は、リッジ部50のx方向の幅であるリッジ部幅W1よりも大きい。
 図25、図29では、トレンチ19の内面及び端部領域24のz方向の正側における半絶縁性層11は、露出している例を示した。しかし、これに限定されることなく、半絶縁性層11の表面がアノード電極12又はアノード電極12と接続されていない金属に覆われていてもよい。図27では、後退部21の後退部側面48及び底部23のz方向の正側における半絶縁性層11は、露出している例を示した。しかし、これに限定されることなく、半絶縁性層11の表面がアノード電極12又はアノード電極12と接続されていない金属に覆われていてもよい。
 次に、実施の形態4の第一又は第三の半導体レーザ100の製造方法について、前述した図4~図7及び図31~図34に示した一例を用いて説明する。図4~図7で示したリッジ形成工程、埋込工程は、実施の形態1と同じである。なお、図7は、積層工程の開始前の状態を表しており、埋込工程の終了状態をも表している。図7に示した埋込工程の後に、図31に示す積層工程を実行する。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10を順次形成する。その後、図32に示すトレンチ形成工程を実行する。トレンチ形成工程において、p型コンタクト層10まで形成された半導体層に、レジストマスク32を用いてリッジ部50のx方向の両側に2つのトレンチ19を、底部22がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置になるように形成する。より具体的には、トレンチ形成工程では、リッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部22のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされたトレンチ19を形成する。
 次に、半絶縁性層11を形成する半絶縁性層形成工程を実行する。半絶縁性層形成工程において、図33に示すように凸部18のz方向の正側にSiO、SiN等の第二マスク33を形成する。第二マスク33を用いて、図34に示すように凸部18のz方向の正側以外の領域に半絶縁性層11を形成する。半絶縁性層11は選択成長により形成される。より具体的には、2つのトレンチ19の間に形成された凸部18からx方向に離れた側でかつトレンチ19の外側におけるp型コンタクト層10のz方向の正側及び2つのトレンチ19の内面に、半絶縁性層11を直接形成する。その後、バッファードフッ酸またはフッ酸を用いて第二マスク33を除去する。
 その後、絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うようにアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側にカソード電極13を形成する裏面側電極形成工程を実行する。アノード電極12は、レジストマスクを用いてパターニングされる。以上の工程により実施の形態4の第一又は第三の半導体レーザ100が製造される。
 次に、実施の形態4の第二の半導体レーザ100の製造方法について、一例を用いて説明する。図31までは、実施の形態4の第一又は第三の半導体レーザ100の製造方法と同じである。その後、トレンチ形成工程と同様に後退部形成工程を実行する。後退部形成工程において、p型コンタクト層10まで形成された半導体層に、凸部18のz方向の正側に形成されたレジストマスク32を用いてリッジ部50のx方向の両側に2つの後退部21を、底部23がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置になるように形成する。より具体的には、後退部形成工程では、リッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部23のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされた後退部21を形成する。
 次に、半絶縁性層11を形成する半絶縁性層形成工程を実行する。半絶縁性層形成工程において、図33と同様に凸部18のz方向の正側に第二マスク33を形成する。第二マスク33を用いて、図34と同様に凸部18のz方向の正側以外の領域に半絶縁性層11を形成する。より具体的には、x方向の正側における後退部21の側面(後退部側面48)及び底部23、及びx方向の負側における後退部21の側面(後退部側面48)及び底部23に、半絶縁性層11を直接形成する。その後、バッファードフッ酸またはフッ酸を用いて第二マスク33を除去する。
 次に、絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うようにアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側にカソード電極13を形成する裏面側電極形成工程を実行する。アノード電極12は、レジストマスクを用いてパターニングされる。以上の工程により実施の形態4の第二の半導体レーザ100が製造される。
 実施の形態4の半導体レーザ100は、トレンチ19又は後退部21によりn型第三埋込層8の第二埋込層7側の面積を小さくすることができ、活性層3近傍においてもn型第三埋込層8の第二埋込層7側の面積を小さくすることができる。したがって、実施の形態4の半導体レーザ100及び半導体レーザ装置200は、実施の形態2の半導体レーザ100及び半導体レーザ装置200と同様の効果を奏する。実施の形態4の半導体レーザ100は、絶縁膜15の代わりに熱伝導率の高い半絶縁性層11を用いることでトレンチ19の内面(トレンチ第一側面46、トレンチ第二側面47、底部22)又は後退部21の後退部側面及び底部23からも放熱できるため、実施の形態2の半導体レーザ100よりも高温特性を向上できる。
 以上のように実施の形態4の第一又は第三の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。z方向、y方向、x方向は前述した通りである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成されたトレンチ19を備えている。それぞれのトレンチ19は、p型コンタクト層10を貫通しており、当該トレンチ19の底部22がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。表面側電極(アノード電極12)は、2つのトレンチ19の間に形成された凸部18におけるp型コンタクト層10に接続されている。半絶縁性層11は、トレンチ19の内面及びトレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に、直接形成されている。実施の形態4の第一又は第三の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態4の第三の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成された後退部21を備えている。それぞれの後退部21は、p型コンタクト層10が削除されており、当該後退部21の底部23がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。表面側電極(アノード電極12)は、2つの後退部21の間に形成された凸部18におけるp型コンタクト層10に接続されている。半絶縁性層11は、x方向の正側における後退部21の側面(後退部側面48)及び底部23、x方向の負側における後退部の側面(後退部側面48)及び底部23に、直接形成されている。実施の形態4の第三の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 実施の形態4の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態4の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、トレンチ形成工程、半絶縁性層形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10を順次形成する。トレンチ形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部22のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされたトレンチ19を形成する。半絶縁性層形成工程において、2つのトレンチ19の間に形成された凸部18からx方向に離れた側でかつトレンチ19の外側におけるp型コンタクト層10のz方向の正側及び2つのトレンチ19の内面に、半絶縁性層11を直接形成する。表面側電極形成工程において、半絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うように表面側電極(アノード電極12)を形成する。実施の形態4の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態4の他の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態4の他の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、後退部形成工程、半絶縁性層形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層3のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10を順次形成する。後退部形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部23のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされた後退部21を形成する。半絶縁性層形成工程において、x方向の正側における後退部21の側面(後退部側面48)及び底部23、及びx方向の負側における後退部21の側面(後退部側面48)及び底部23に、半絶縁性層11を直接形成する。表面側電極形成工程において、2つの後退部21の間に形成された凸部18における、半絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うように表面側電極(アノード電極12)を形成する。実施の形態4の他の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
実施の形態5.
 図35は実施の形態5に係る第一の半導体レーザの断面構造を示す図であり、図36は実施の形態5に係る第一の半導体レーザ装置の断面構造を示す図である。図37は実施の形態5に係る第二の半導体レーザの断面構造を示す図であり、図38は実施の形態5に係る第二の半導体レーザ装置の断面構造を示す図である。図39は、実施の形態5に係る第三の半導体レーザの断面構造を示す図である。図40は、図35の半導体レーザの製造方法を示す図である。実施の形態5の半導体レーザ100は、実施の形態4の半導体レーザ100とは、凸部18のx方向の両側面及びこの両側面からx方向端29a、29bまでの半絶縁性層11がn型拡散ブロック層16を介して形成されている点で異なる。実施の形態4の半導体レーザ100及び半導体レーザ装置200と異なる部分を主に説明する。
 図35に示した実施の形態5の第一の半導体レーザ100、図39に示した実施の形態5の第三の半導体レーザ100は、トレンチ19を備えており、トレンチ19の内面及び端部領域24におけるp型コンタクト層10の表面がn型拡散ブロック層16を介した半絶縁性層11で覆われている例である。トレンチ19の底部22は、p型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されていればよい。図39に示した実施の形態5の第三の半導体レーザ100は、トレンチ19の底部22がn型半導体基板1のz方向の位置に配置されている例である。図39では、トレンチ19の底部22がリッジ5に形成されたn型半導体基板1の表面よりもn型半導体基板1の裏面側に配置されている例を示した。図35に示した実施の形態5の第一の半導体レーザ100及び図39に示した実施の形態5の第三の半導体レーザ100は、半絶縁性層11が、トレンチ19の内面及びトレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に、n型拡散ブロック層16を介して形成されている。
 図37に示した実施の形態5の第二の半導体レーザ100は、2つの後退部21を備えており、それぞれの後退部21は、p型コンタクト層10が削除されており、当該後退部21の底部23がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。半絶縁性層11は、x方向の正側における後退部21の側面(後退部側面48)及び底部23、x方向の負側における後退部21の側面(後退部側面48)及び底部23に、n型拡散ブロック層16を介して形成されている。
 次に、実施の形態5の第一又は第三の半導体レーザ100の製造方法について、前述した図4~図7、図31~図33及び図40に示した一例を用いて説明する。実施の形態5の第一又は第三の半導体レーザ100の製造方法は、実施の形態4の第一又は第三の半導体レーザ100の製造方法とは、半絶縁性層形成工程が異なっている。図4~図7で示したリッジ形成工程、埋込工程は、実施の形態1と同じである。なお、図7は、積層工程の開始前の状態を表しており、埋込工程の終了状態をも表している。図31~図33で示した積層工程、トレンチ形成工程、半絶縁性層形成工程の第二マスク作成工程は、実施の形態4と同じである。
 半絶縁性層形成工程を説明する。図40に示すように、第二マスク33を用いて凸部18のz方向の正側以外の領域にn型拡散ブロック層16、半絶縁性層11を順次形成する。n型拡散ブロック層16、半絶縁性層11は、選択成長により形成される。より具体的には、2つのトレンチ19の間に形成された凸部18からx方向に離れた側でかつトレンチ19の外側におけるp型コンタクト層10のz方向の正側及び2つのトレンチ19の内面に、n型拡散ブロック層16を介して半絶縁性層11を形成する。その後、バッファードフッ酸またはフッ酸を用いて第二マスク33を除去する。
 次に、絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うようにアノード電極12を形成する表面側電極形成工程と、n型半導体基板1の裏面側すなわちz方向の負側にカソード電極13を形成する裏面側電極形成工程を実行する。アノード電極12は、レジストマスクを用いてパターニングされる。以上の工程により実施の形態5の第一又は第三の半導体レーザ100が製造される。
 次に、実施の形態5の第二の半導体レーザ100の製造方法について、一例を用いて説明する。図31までは、実施の形態4の第二の半導体レーザ100の製造方法と同じである。その後、実施の形態4の第二の半導体レーザ100と同様に後退部21を形成する後退部形成工程を実行する。次に、半絶縁性層11を形成する半絶縁性層形成工程を実行する。半絶縁性層形成工程において、図33と同様に凸部18のz方向の正側に第二マスク33を形成する。第二マスク33を用いて、図40と同様に凸部18のz方向の正側以外の領域にn型拡散ブロック層16、に半絶縁性層11を順次形成する。n型拡散ブロック層16、半絶縁性層11は、選択成長により形成される。より具体的には、x方向の正側における後退部21の側面(後退部側面48)及び底部23、及びx方向の負側における後退部21の側面(後退部側面48)及び底部23に、n型拡散ブロック層16を介して半絶縁性層11を形成する。その後、バッファードフッ酸またはフッ酸を用いて第二マスク33を除去する。次に、実施の形態5の第一又は第三の半導体レーザ100と同様の絶縁性層形成工程を実行し、アノード電極12、カソード電極13を形成する。
 実施の形態5の半導体レーザ100は、トレンチ19又は後退部21によりn型第三埋込層8の第二埋込層7側の面積を小さくすることができ、活性層3近傍においてもn型第三埋込層8の第二埋込層7側の面積を小さくすることができる。したがって、実施の形態5の半導体レーザ100及び半導体レーザ装置200は、実施の形態4の半導体レーザ100及び半導体レーザ装置200と同様の効果を奏する。
 実施の形態4の半導体レーザ100は、凸部18のz方向の正側以外を半絶縁性層11で覆っている。しかし、p型第二クラッド層9、p型コンタクト層10にドープされている亜鉛等が、鉄等がドープされた半絶縁性層11へ拡散すると、半絶縁性層11の半絶縁性が弱まり、半絶縁性層11の漏れ電流の遮断効果が弱くなる場合がある。そこで、実施の形態5の半導体レーザ100は、n型拡散ブロック層16を形成しn型拡散ブロック層16の表面に半絶縁性層11を形成するので、p型第二クラッド層9、p型コンタクト層10にドープされている亜鉛等が埋込層25へ拡散することを防止することができる。これにより、実施の形態5の半導体レーザ100は、実施の形態4の半導体レーザ100に比べて、半絶縁性層11の半絶縁性低下の要因となる亜鉛等の拡散を防止しつつ、埋込層25の寄生容量を低減し、活性層3への効率的な電流注入及び活性層3で発生した熱の放熱性を向上することができる。
 以上のように実施の形態5の第一又は第三の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。z方向、y方向、x方向は前述した通りである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成されたトレンチ19を備えている。それぞれのトレンチ19は、p型コンタクト層10を貫通しており、当該トレンチ19の底部22がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。表面側電極(アノード電極12)は、2つのトレンチ19の間に形成された凸部18におけるp型コンタクト層10に接続されている。半絶縁性層11は、トレンチ19の内面及びトレンチ19のトレンチ第一側面46から当該半導体レーザ100の凸部18と反対側のx方向の端(x方向端29a、29b)までのp型コンタクト層10のz方向の正側に、n型拡散ブロック層を介して形成されている。実施の形態5の第一又は第三の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態5の第三の半導体レーザ100は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えており、リッジ5が突出している側の表面から実装する半導体レーザである。リッジ5は、n型半導体基板1側から順次形成されたn型クラッド層2、活性層3、p型第一クラッド層4を有している。埋込層25は、リッジ5のx方向の正側の側面及びx方向の負側の側面に接するp型第一埋込層6、第二埋込層7、n型第三埋込層8を有している。当該半導体レーザ100は、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側にn型半導体基板1側から順次形成されたp型第二クラッド層9、p型コンタクト層10と、p型コンタクト層10に接続された表面側電極(アノード電極12)と、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向に離れた外縁に形成された半絶縁性層11と、を備えており、当該半導体レーザ100のx方向の端(x方向端29a、29b)側におけるz方向の正側において、半絶縁性層11が形成されている。リッジ部50のx方向の正側の側面と当該半導体レーザ100のx方向の正側の端(x方向端29b)との間、リッジ部50のx方向の負側の側面と当該半導体レーザ100のx方向の負側の端(x方向端29a)との間に、それぞれy方向に延伸して形成された後退部21を備えている。それぞれの後退部21は、p型コンタクト層10が削除されており、当該後退部21の底部23がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置に配置されている。表面側電極(アノード電極12)は、2つの後退部21の間に形成された凸部18におけるp型コンタクト層10に接続されている。半絶縁性層11は、x方向の正側における後退部21の側面(後退部側面48)及び底部23、x方向の負側における後退部の側面(後退部側面48)及び底部23に、n型拡散ブロック層16を介して形成されている。実施の形態5の第三の半導体レーザ100は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えているので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 実施の形態5の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態5の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、トレンチ形成工程、半絶縁性層形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10を順次形成する。トレンチ形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部22のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされたトレンチ19を形成する。半絶縁性層形成工程において、2つのトレンチ19の間に形成された凸部18からx方向に離れた側でかつトレンチ19の外側におけるp型コンタクト層10のz方向の正側及び2つのトレンチ19の内面に、n型拡散ブロック層16を介して半絶縁性層11を形成する。表面側電極形成工程において、半絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うように表面側電極(アノード電極12)を形成する。実施の形態5の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 また、実施の形態5の他の半導体レーザの製造方法は、n型半導体基板1に形成されたリッジ5、リッジ5の延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層25を備えた半導体レーザ100を製造する半導体レーザの製造方法である。実施の形態5の他の半導体レーザの製造方法は、後述するリッジ形成工程、埋込工程、積層工程、後退部形成工程、半絶縁性層形成工程、表面側電極形成工程を含んでいる。リッジ形成工程において、n型半導体基板1に、n型クラッド層2、活性層3、p型第一クラッド層4を順次形成し、活性層3におけるn型半導体基板1側であるz方向の負側よりも低い位置までエッチングして、x方向の正側の側面及びx方向の負側の側面が露出された、n型クラッド層2、活性層3、p型第一クラッド層4を有するリッジ5を形成する。埋込工程において、リッジ5のx方向の正側の側面及びx方向の負側の側面にp型第一埋込層6を形成し、順次形成される第二埋込層7及びn型第三埋込層8により活性層のz方向の正側位置である活性層表面位置44よりも高い位置までリッジ5を埋める。積層工程において、リッジ5のz方向の正側及びn型第三埋込層8のz方向の正側に、p型第二クラッド層9、p型コンタクト層10を順次形成する。後退部形成工程において、リッジ5及びリッジ5の2つの側面に接するp型第一埋込層6を含むリッジ部50からx方向の正側及び負側に離れた2つの外縁において、p型コンタクト層10がエッチングされ、底部23のz方向の位置がp型第二クラッド層9からn型半導体基板1の内部までのいずれかのz方向の位置までエッチングされた後退部21を形成する。半絶縁性層形成工程において、x方向の正側における後退部21の側面(後退部側面48)及び底部23、及びx方向の負側における後退部21の側面(後退部側面48)及び底部23に、n型拡散ブロック層16を介して半絶縁性層を形成する。表面側電極形成工程において、2つの後退部21の間に形成された凸部18における、半絶縁性層形成工程により凸部18の半絶縁性層11が形成されていないp型コンタクト層10を覆うように表面側電極(アノード電極12)を形成する。実施の形態5の他の半導体レーザの製造方法は、この構成により、活性層3を有するリッジ部50からx方向に離れておりn型半導体基板1と反対側における外縁に半絶縁性層11を備えた半導体レーザ100を製造できるので、表面側電極(アノード電極12)側から実装する場合に、レーザ発振に寄与しない漏れ電流を抑制しつつ、優れた放熱性を実現することができる。
 なお、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1…n型半導体基板、2…n型クラッド層、3…活性層、4…p型第一クラッド層、5…リッジ、6…p型第一埋込層、7…第二埋込層、8…n型第三埋込層、9…p型第二クラッド層、10…p型コンタクト層、11…半絶縁性層、12…アノード電極(表面側電極)、14…接続部材、15…絶縁膜、16…n型拡散ブロック層、17…ヒートシンク、18…凸部、19…トレンチ、21…後退部、22…底部、23…底部、25…埋込層、29a、29b…x方向端、44…活性層表面位置、46…トレンチ第一側面、47…トレンチ第二側面、48…後退部側面、50…リッジ部、100…半導体レーザ、200…半導体レーザ装置

Claims (15)

  1.  n型半導体基板に形成されたリッジ、前記リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えており、前記リッジが突出している側の表面から実装する半導体レーザであって、
    前記n型半導体基板の表面側から前記リッジが突出している方向をz方向とし、前記リッジが延伸している延伸方向をy方向とし、前記z方向及び前記y方向に垂直な方向をx方向とし、
    前記リッジは、前記n型半導体基板側から順次形成されたn型クラッド層、活性層、p型第一クラッド層を有し、
    前記埋込層は、前記リッジの前記x方向の正側の側面及び前記x方向の負側の側面に接するp型第一埋込層、第二埋込層、n型第三埋込層を有し、
    前記リッジの前記z方向の正側及び前記n型第三埋込層の前記z方向の正側に前記n型半導体基板側から順次形成されたp型第二クラッド層、p型コンタクト層と、
    前記p型コンタクト層に接続された表面側電極と、
    前記リッジ及び前記リッジの2つの前記側面に接する前記p型第一埋込層を含むリッジ部から前記x方向に離れた外縁に形成された半絶縁性層と、を備えており、
    当該半導体レーザの前記x方向の端側における前記z方向の正側において、前記半絶縁性層又は前記表面側電極が形成されている、
    半導体レーザ。
  2.  前記リッジ部の前記x方向の正側の前記側面と当該半導体レーザの前記x方向の正側の端との間、前記リッジ部の前記x方向の負側の前記側面と当該半導体レーザの前記x方向の負側の端との間に、それぞれ前記y方向に延伸して形成されたトレンチを備えており、
    それぞれの前記トレンチは、
    前記p型コンタクト層、前記p型第二クラッド層、前記n型第三埋込層を貫通しており、
    当該トレンチの底部が前記第二埋込層における前記活性層の前記z方向の正側位置である活性層表面位置と同じであるか、又は当該トレンチの底部が前記第二埋込層における前記活性層表面位置よりも前記n型半導体基板から離れており、
    前記表面側電極は、2つの前記トレンチの間に形成された凸部における前記p型コンタクト層に接続されており、
    前記トレンチにおける前記凸部から離れた側の前記x方向の側面をトレンチ第一側面とし、前記トレンチにおける前記トレンチ第一側面よりも前記凸部に近い側の前記x方向の側面をトレンチ第二側面とし、
    前記半絶縁性層は、
    前記トレンチの前記トレンチ第一側面から当該半導体レーザの前記凸部と反対側の前記x方向の端までの前記p型コンタクト層の前記z方向の正側に形成されている、
    請求項1記載の半導体レーザ。
  3.  前記トレンチの内面に絶縁膜を備えている、請求項2記載の半導体レーザ。
  4.  前記トレンチの前記トレンチ第一側面及び前記トレンチ第二側面に絶縁膜を備えており、
    前記表面側電極は、前記トレンチ第一側面及び前記トレンチ第二側面の前記絶縁膜及び前記トレンチの底部を覆っている、
    請求項2記載の半導体レーザ。
  5.  前記リッジ部の前記x方向の正側の前記側面と当該半導体レーザの前記x方向の正側の端との間、前記リッジ部の前記x方向の負側の前記側面と当該半導体レーザの前記x方向の負側の端との間に、それぞれ前記y方向に延伸して形成されたトレンチを備えており、
    それぞれの前記トレンチは、前記p型コンタクト層を貫通しており、当該トレンチの底部が前記p型第二クラッド層から前記n型半導体基板の内部までのいずれかの前記z方向の位置に配置されており、
    前記表面側電極は、2つの前記トレンチの間に形成された凸部における前記p型コンタクト層に接続されており、
    前記トレンチにおける前記凸部から離れた側の前記x方向の側面をトレンチ第一側面とし、前記トレンチにおける前記トレンチ第一側面よりも前記凸部に近い側の前記x方向の側面をトレンチ第二側面とし、
    前記半絶縁性層は、
    前記トレンチの内面及び前記トレンチの前記トレンチ第一側面から当該半導体レーザの前記凸部と反対側の前記x方向の端までの前記p型コンタクト層の前記z方向の正側に、直接又はn型拡散ブロック層を介して形成されている、
    請求項1記載の半導体レーザ。
  6.  前記リッジ部の前記x方向の正側の前記側面と当該半導体レーザの前記x方向の正側の端との間、前記リッジ部の前記x方向の負側の前記側面と当該半導体レーザの前記x方向の負側の端との間に、それぞれ前記y方向に延伸して形成された後退部を備えており、
    それぞれの前記後退部は、前記p型コンタクト層が削除されており、当該後退部の底部が前記p型第二クラッド層から前記n型半導体基板の内部までのいずれかの前記z方向の位置に配置されており、
    前記表面側電極は、2つの前記後退部の間に形成された凸部における前記p型コンタクト層に接続されており、
    前記半絶縁性層は、
    前記x方向の正側における前記後退部の側面及び前記底部、前記x方向の負側における前記後退部の側面及び前記底部に、直接又はn型拡散ブロック層を介して形成されている、
    請求項1記載の半導体レーザ。
  7.  当該半導体レーザの前記x方向の端側における前記z方向の正側において、前記表面側電極は前記半絶縁性層の前記z方向の正側を覆っている、請求項1記載の半導体レーザ。
  8.  前記半絶縁性層は、当該半導体レーザの前記x方向の端側において前記表面側電極に覆われていない、
    請求項2から6のいずれか1項に記載の半導体レーザ。
  9.  請求項1から8のいずれか1項に記載の半導体レーザと、ヒートシンクとを備え、
    前記半導体レーザの前記表面側電極が形成された前記z方向の正側が前記ヒートシンクに接続部材により接続されている、
    半導体レーザ装置。
  10.  n型半導体基板に形成されたリッジ、前記リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えた半導体レーザを製造する半導体レーザの製造方法であって、
    前記n型半導体基板の表面側から前記リッジが突出している方向をz方向とし、前記リッジが延伸している延伸方向をy方向とし、前記z方向及び前記y方向に垂直な方向をx方向とし、
    前記n型半導体基板に、n型クラッド層、活性層、p型第一クラッド層を順次形成し、前記活性層における前記n型半導体基板側である前記z方向の負側よりも低い位置までエッチングして、前記x方向の正側の側面及び前記x方向の負側の側面が露出された、n型クラッド層、活性層、p型第一クラッド層を有する前記リッジを形成するリッジ形成工程と、
    前記リッジの前記x方向の正側の側面及び前記x方向の負側の側面にp型第一埋込層を形成し、順次形成される第二埋込層及びn型第三埋込層により前記活性層の前記z方向の正側位置である活性層表面位置よりも高い位置まで前記リッジを埋める埋込工程と、
    前記リッジの前記z方向の正側及び前記n型第三埋込層の前記z方向の正側に、p型第二クラッド層、p型コンタクト層、半絶縁性層を順次形成する積層工程と、
    前記リッジ及び前記リッジの2つの前記側面に接する前記p型第一埋込層を含むリッジ部を包含する前記x方向の領域における前記半絶縁性層をエッチングし前記p型コンタクト層を露出させるコンタクト層露出工程と、
    露出された前記p型コンタクト層、前記半絶縁性層における前記z方向の正側及び前記リッジ部側の側面に表面側電極を形成する表面側電極形成工程と、
    を含む半導体レーザの製造方法。
  11.  n型半導体基板に形成されたリッジ、前記リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えた半導体レーザを製造する半導体レーザの製造方法であって、
    前記n型半導体基板の表面側から前記リッジが突出している方向をz方向とし、前記リッジが延伸している延伸方向をy方向とし、前記z方向及び前記y方向に垂直な方向をx方向とし、
    前記n型半導体基板に、n型クラッド層、活性層、p型第一クラッド層を順次形成し、前記活性層における前記n型半導体基板側である前記z方向の負側よりも低い位置までエッチングして、前記x方向の正側の側面及び前記x方向の負側の側面が露出された、n型クラッド層、活性層、p型第一クラッド層を有する前記リッジを形成するリッジ形成工程と、
    前記リッジの前記x方向の正側の側面及び前記x方向の負側の側面にp型第一埋込層を形成し、順次形成される第二埋込層及びn型第三埋込層により前記活性層の前記z方向の正側位置である活性層表面位置よりも高い位置まで前記リッジを埋める埋込工程と、
    前記リッジの前記z方向の正側及び前記n型第三埋込層の前記z方向の正側に、p型第二クラッド層、p型コンタクト層、半絶縁性層を順次形成する積層工程と、
    前記リッジ及び前記リッジの2つの前記側面に接する前記p型第一埋込層を含むリッジ部から前記x方向の正側及び負側に離れた2つの外縁において、
    前記半絶縁性層、前記p型コンタクト層、前記p型第二クラッド層、前記n型第三埋込層を貫通し、底部の前記z方向の位置が、前記第二埋込層における前記活性層の前記活性層表面位置と同じであるか又は前記活性層表面位置よりも正側に位置しているトレンチを形成するトレンチ形成工程と、
    2つの前記トレンチの間に形成された凸部の前記半絶縁性層をエッチングし、前記p型コンタクト層を露出させるコンタクト層露出工程と、
    それぞれの前記トレンチの前記x方向の両側面に絶縁膜を形成する絶縁膜形成工程と、
    前記絶縁膜形成工程により前記凸部の前記絶縁膜が形成されていない前記p型コンタクト層を覆うように表面側電極を形成する表面側電極形成工程と、
    を含む半導体レーザの製造方法。
  12.  前記絶縁膜形成工程において、それぞれの前記トレンチの前記底部にも前記絶縁膜を形成する、
    請求項11記載の半導体レーザの製造方法。
  13.  前記表面側電極形成工程において、前記表面側電極は前記トレンチの前記両側面の前記絶縁膜及び前記トレンチの底部を覆っている、
    請求項11記載の半導体レーザの製造方法。
  14.  n型半導体基板に形成されたリッジ、前記リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えた半導体レーザを製造する半導体レーザの製造方法であって、
    前記n型半導体基板の表面側から前記リッジが突出している方向をz方向とし、前記リッジが延伸している延伸方向をy方向とし、前記z方向及び前記y方向に垂直な方向をx方向とし、
    前記n型半導体基板に、n型クラッド層、活性層、p型第一クラッド層を順次形成し、前記活性層における前記n型半導体基板側である前記z方向の負側よりも低い位置までエッチングして、前記x方向の正側の側面及び前記x方向の負側の側面が露出された、n型クラッド層、活性層、p型第一クラッド層を有する前記リッジを形成するリッジ形成工程と、
    前記リッジの前記x方向の正側の側面及び前記x方向の負側の側面にp型第一埋込層を形成し、順次形成される第二埋込層及びn型第三埋込層により前記活性層の前記z方向の正側位置である活性層表面位置よりも高い位置まで前記リッジを埋める埋込工程と、
    前記リッジの前記z方向の正側及び前記n型第三埋込層の前記z方向の正側に、p型第二クラッド層、p型コンタクト層を順次形成する積層工程と、
    前記リッジ及び前記リッジの2つの前記側面に接する前記p型第一埋込層を含むリッジ部から前記x方向の正側及び負側に離れた2つの外縁において、
    前記p型コンタクト層がエッチングされ、
    底部の前記z方向の位置が前記p型第二クラッド層から前記n型半導体基板の内部までのいずれかの前記z方向の位置までエッチングされたトレンチを形成するトレンチ形成工程と、
    2つの前記トレンチの間に形成された凸部から前記x方向に離れた側でかつ前記トレンチの外側における前記p型コンタクト層の前記z方向の正側及び2つの前記トレンチの内面に、直接又はn型拡散ブロック層を介して半絶縁性層を形成する半絶縁性層形成工程と、
    前記半絶縁性層形成工程により前記凸部の前記半絶縁性層が形成されていない前記p型コンタクト層を覆うように表面側電極を形成する表面側電極形成工程と、
    を含む半導体レーザの製造方法。
  15.  n型半導体基板に形成されたリッジ、前記リッジの延伸方向に垂直な方向において互いに対向する両側を覆うように埋め込まれた埋込層を備えた半導体レーザを製造する半導体レーザの製造方法であって、
    前記n型半導体基板の表面側から前記リッジが突出している方向をz方向とし、前記リッジが延伸している延伸方向をy方向とし、前記z方向及び前記y方向に垂直な方向をx方向とし、
    前記n型半導体基板に、n型クラッド層、活性層、p型第一クラッド層を順次形成し、前記活性層における前記n型半導体基板側である前記z方向の負側よりも低い位置までエッチングして、前記x方向の正側の側面及び前記x方向の負側の側面が露出された、n型クラッド層、活性層、p型第一クラッド層を有する前記リッジを形成するリッジ形成工程と、
    前記リッジの前記x方向の正側の側面及び前記x方向の負側の側面にp型第一埋込層を形成し、順次形成される第二埋込層及びn型第三埋込層により前記活性層の前記z方向の正側位置である活性層表面位置よりも高い位置まで前記リッジを埋める埋込工程と、
    前記リッジの前記z方向の正側及び前記n型第三埋込層の前記z方向の正側に、p型第二クラッド層、p型コンタクト層を順次形成する積層工程と、
    前記リッジ及び前記リッジの2つの前記側面に接する前記p型第一埋込層を含むリッジ部から前記x方向の正側及び負側に離れた2つの外縁において、
    前記p型コンタクト層がエッチングされ、
    底部の前記z方向の位置が前記p型第二クラッド層から前記n型半導体基板の内部までのいずれかの前記z方向の位置までエッチングされた後退部を形成する後退部形成工程と、
    前記x方向の正側における前記後退部の側面及び前記底部、及び前記x方向の負側における前記後退部の側面及び前記底部に、直接又はn型拡散ブロック層を介して半絶縁性層を形成する半絶縁性層形成工程と、
    2つの前記後退部の間に形成された凸部における、前記半絶縁性層形成工程により前記凸部の前記半絶縁性層が形成されていない前記p型コンタクト層を覆うように表面側電極を形成する表面側電極形成工程と、
    を含む半導体レーザの製造方法。
PCT/JP2022/021063 2022-05-23 2022-05-23 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法 WO2023228234A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/021063 WO2023228234A1 (ja) 2022-05-23 2022-05-23 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法
TW112117491A TWI836984B (zh) 2022-05-23 2023-05-11 半導體雷射、半導體雷射裝置、及半導體雷射的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021063 WO2023228234A1 (ja) 2022-05-23 2022-05-23 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法

Publications (1)

Publication Number Publication Date
WO2023228234A1 true WO2023228234A1 (ja) 2023-11-30

Family

ID=88918812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021063 WO2023228234A1 (ja) 2022-05-23 2022-05-23 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法

Country Status (1)

Country Link
WO (1) WO2023228234A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004451A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法
JP2013182976A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 埋め込み型光半導体素子
JP2016076612A (ja) * 2014-10-07 2016-05-12 住友電気工業株式会社 量子カスケードレーザ、及び量子カスケードレーザを製造する方法
JP2019192879A (ja) * 2018-04-27 2019-10-31 住友電工デバイス・イノベーション株式会社 光半導体素子およびその製造方法ならびに光集積半導体素子およびその製造方法
WO2019220514A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 光半導体装置及びその製造方法
WO2019229799A1 (ja) * 2018-05-28 2019-12-05 三菱電機株式会社 半導体レーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004451A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法
JP2013182976A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 埋め込み型光半導体素子
JP2016076612A (ja) * 2014-10-07 2016-05-12 住友電気工業株式会社 量子カスケードレーザ、及び量子カスケードレーザを製造する方法
JP2019192879A (ja) * 2018-04-27 2019-10-31 住友電工デバイス・イノベーション株式会社 光半導体素子およびその製造方法ならびに光集積半導体素子およびその製造方法
WO2019220514A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 光半導体装置及びその製造方法
WO2019229799A1 (ja) * 2018-05-28 2019-12-05 三菱電機株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
TW202347910A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP4639107B2 (ja) 半導体レーザ及びその製造方法
US7639719B2 (en) Thermal shunt for active devices on silicon-on-insulator wafers
JP2003318495A (ja) 傾斜状多重量子バリアを用いた半導体発光素子
US20020126722A1 (en) Multiple semiconductor laser structure with narrow wavelength distribution
JP5185892B2 (ja) 半導体光素子、及びその製造方法
US8625647B2 (en) Semiconductor laser
US20080036044A1 (en) Semiconductor optical device and manufacturing method therefor
WO2023228234A1 (ja) 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法
JP5379002B2 (ja) 半導体レーザ及びその製造方法
JPH10290043A (ja) 半導体レーザ
JP2005286192A (ja) 光集積素子
TWI836984B (zh) 半導體雷射、半導體雷射裝置、及半導體雷射的製造方法
WO2019220514A1 (ja) 光半導体装置及びその製造方法
JP2017017282A (ja) 半導体光素子及びその製造方法
JP2001094210A (ja) 半導体レーザ装置及びその製造方法
CN110431720B (zh) 光半导体元件
JP6910580B1 (ja) 光半導体装置およびその製造方法
WO2022264347A1 (ja) 光半導体素子及びその製造方法
JPH07111361A (ja) 埋込型半導体レーザ素子及びその製造方法
US20040086015A1 (en) Semiconductor optical device, semiconductor laser device, semiconductor optical modulation device, and semiconductor optical integrated device
JP4335030B2 (ja) 半導体レーザおよびその製造方法
WO2020090078A1 (ja) 光半導体装置、および光半導体装置の製造方法
JP2001024211A (ja) 半導体受光素子
JP2007013100A (ja) 半導体レーザ
JP2000101186A (ja) 半導体光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943643

Country of ref document: EP

Kind code of ref document: A1