WO2023226551A1 - 一种mvr系统渣样回收锂及硅的方法 - Google Patents

一种mvr系统渣样回收锂及硅的方法 Download PDF

Info

Publication number
WO2023226551A1
WO2023226551A1 PCT/CN2023/081945 CN2023081945W WO2023226551A1 WO 2023226551 A1 WO2023226551 A1 WO 2023226551A1 CN 2023081945 W CN2023081945 W CN 2023081945W WO 2023226551 A1 WO2023226551 A1 WO 2023226551A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
silicon
acid
liquid
Prior art date
Application number
PCT/CN2023/081945
Other languages
English (en)
French (fr)
Inventor
余萌
刘少葵
肖久成
刘勇奇
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023226551A1 publication Critical patent/WO2023226551A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention belongs to the technical field of recovering valuable components from MVR system slag samples, and particularly relates to a method for recovering lithium and silicon from MVR system slag samples.
  • the lithium carbonate causticization method is a commonly used method to produce lithium hydroxide.
  • the causticizing liquid will be affected by the calcium hydroxide raw material and introduce more silicon.
  • silicon element is enriched in the form of lithium silicate, and lithium silicate is self-drying. After the water evaporates, it can form a dry film insoluble in water, which together with the lithium carbonate slag sample of the system It is concentrated inside the MVR tube heat exchanger, which greatly affects the evaporation efficiency of the MVR system.
  • MVR manufacturers mainly use high-pressure water guns to physically clean the slag samples on the inner walls of their tubes and systems, and directly discard the slag samples, resulting in a waste of resources.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a method for recovering lithium and silicon from slag samples in an MVR system. This method can effectively recover lithium and silicon from slag samples and avoid resource waste.
  • a method for recovering lithium and silicon from MVR system slag samples including the following steps: (1) leaching the MVR system slag samples with acid to obtain acid leaching liquid and acid leaching residue; (2) acid leaching in step (1) Add alkali liquid to the back liquid to adjust the pH to obtain a lithium liquid; (3) Evaporate and concentrate the lithium liquid in step (2) to obtain a concentrated lithium liquid; (4) Add alkali liquid to the acid leaching residue of step (1) to perform alkali treatment.
  • step (5) Mix the concentrated lithium solution of step (3) and the soda ash solution of step (4) to perform a high-temperature lithium precipitation reaction to obtain lithium carbonate slurry; (6) After filtering the lithium carbonate slurry in step (5), wash to obtain crude lithium carbonate.
  • the filtrate is the lithium precipitation mother liquor, and the lithium carbonate washing water is returned to step (3) as the lithium liquid; (7) add the lithium carbonate slurry in step (6) to
  • the lithium precipitation mother liquor is decarburized and adjusted and then filtered by pressure to obtain a filter residue and an adjusted filtrate.
  • the filter residue is silicate gel, and the adjusted filtrate is returned to step (3) as a lithium liquid.
  • the acid added is at least one of hydrochloric acid, sulfuric acid, and nitric acid, and the acid concentration is 3wt%-7wt%.
  • the acid leaching temperature is 70-95°C, and the acid leaching time is 6-12 hours.
  • the pH value of the lithium solution in step (2) is 6-8.
  • the alkali solution is at least one of lithium hydroxide, sodium hydroxide and potassium hydroxide, and the concentration of the alkali solution is greater than 3wt%.
  • the lithium content in the concentrated lithium liquid is 10-15g/L.
  • the temperature of the alkali dissolution is 85-100°C.
  • the concentration of the soda ash solution is 280-350g/L.
  • the added amount of the soda ash solution is 1.2-1.5 times the weight of the concentrated lithium solution.
  • the temperature of the high-temperature lithium precipitation reaction is 70-95°C, and the time of the high-temperature lithium precipitation reaction is 2-4 hours.
  • the water used for washing is distilled water or pure water.
  • the pH value of the lithium precipitation mother liquor after decarburization adjustment is 2-3.
  • the acid used for decarburization adjustment is at least one of hydrochloric acid, sulfuric acid and nitric acid.
  • the present invention dissolves MVR system slag samples based on inorganic acid leaching and alkali dissolution, thereby realizing the leaching of lithium and silicon.
  • the leached lithium undergoes a high-temperature lithium precipitation reaction with sodium carbonate through evaporation and concentration, and the washed residue becomes crude lithium carbonate.
  • the leached silicon produces silicic acid gel through a decarburization adjustment reaction, thus realizing the control of the residue in the MVR system.
  • Lithium and silicon are recycled.
  • the lithium carbonate wash water in step (6) and the adjustment filtrate in step (7) are returned to step (3) as lithium liquid for continued reuse, achieving maximum lithium recovery and further reducing waste water and waste residue. emissions, improve production efficiency, and have high economic value.
  • Figure 1 is a process flow chart of Embodiments 1-4 of the present invention.
  • a method for recovering lithium and silicon from slag samples in an MVR system includes the following steps:
  • step (2) Add 15wt% sodium hydroxide to the acid leaching liquid in step (1) to adjust the pH to 7 to obtain a lithium liquid;
  • step (3) Evaporate and concentrate the lithium liquid in step (2) to a lithium content of 12g/L to obtain a concentrated lithium liquid;
  • step (1) Add 5wt% sodium hydroxide to the acid leaching residue in step (1), perform alkali dissolution at a temperature of 85°C, and prepare the obtained alkali dissolution solution with a soda ash solution with a concentration of 300g/L;
  • step (3) Mix the concentrated lithium solution in step (3) and the soda ash solution in step (4) to perform a high-temperature lithium precipitation reaction.
  • the high-temperature lithium precipitation temperature is 85°C
  • the reaction time is 2 hours
  • the amount of alkali solution added is 1.3% of the weight of the concentrated lithium solution. times to obtain lithium carbonate slurry;
  • step (6) After filtering the lithium carbonate slurry in step (5), wash it with distilled water to obtain crude lithium carbonate.
  • the filtrate is the lithium precipitation mother liquor, and the lithium carbonate washing water is returned to step (3) as the lithium liquid;
  • step (7) Use concentrated sulfuric acid to decarburize the lithium precipitation mother liquor in step (6) and adjust the pH to 2.
  • the filter residue is silicate gel, and the adjusted filtrate is returned to step (3) as lithium liquid.
  • compositions of the MVR system slag sample, crude lithium carbonate and silicate gel in this example were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 1.
  • the present invention can recover higher purity lithium carbonate and silicate gel, thereby effectively recovering lithium and silicon in the MVR system slag sample and avoiding resource waste.
  • a method for recovering lithium and silicon from slag samples in an MVR system includes the following steps:
  • step (2) Add 15wt% sodium hydroxide to the acid leaching liquid in step (1) to adjust the pH to 7 to obtain a lithium liquid;
  • step (3) Evaporate and concentrate the lithium liquid in step (2) to a lithium content of 12g/L to obtain a concentrated lithium liquid;
  • step (1) Add 5wt% sodium hydroxide to the acid leaching residue in step (1), perform alkali dissolution at a temperature of 85°C, and prepare the obtained alkali dissolution solution with a soda ash solution with a concentration of 300g/L;
  • step (3) Mix the concentrated lithium solution in step (3) and the soda ash solution in step (4) to perform a high-temperature lithium precipitation reaction.
  • the high-temperature lithium precipitation temperature is 95°C
  • the reaction time is 2 hours
  • the amount of alkali solution added is 1.5% of the weight of the concentrated lithium solution. times to obtain lithium carbonate slurry;
  • step (6) After filtering the lithium carbonate slurry in step (5), wash it with distilled water to obtain crude lithium carbonate.
  • the filtrate is the lithium precipitation mother liquor, and the lithium carbonate washing water is returned to step (3) as the lithium liquid;
  • step (7) Use concentrated sulfuric acid to decarburize the lithium precipitation mother liquor in step (6) and adjust the pH to 2.
  • the filter residue is silicate gel, and the filtrate is returned to step (3) as lithium liquid.
  • compositions of the MVR system slag sample, crude lithium carbonate and silicate gel in this example were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 2.
  • the present invention can recover higher purity lithium carbonate and silicate gel, thereby effectively recovering lithium and silicon in the MVR system slag sample and avoiding resource waste.
  • a method for recovering lithium and silicon from slag samples in an MVR system includes the following steps:
  • step (2) Add 15wt% potassium hydroxide to the acid leaching liquid in step (1) to adjust the pH to 7 to obtain a lithium liquid;
  • step (3) Evaporate and concentrate the lithium liquid in step (2) to a lithium content of 12g/L to obtain a concentrated lithium liquid;
  • step (1) Add 8wt% sodium hydroxide to the acid leaching residue in step (1), perform alkali dissolution at a temperature of 85°C, and prepare the resulting alkali solution with a soda ash solution with a concentration of 300g/L;
  • step (3) Mix the concentrated lithium solution in step (3) and the soda ash solution in step (4) to perform a high-temperature lithium precipitation reaction.
  • the high-temperature lithium precipitation temperature is 85°C
  • the reaction time is 2 hours
  • the amount of alkali solution added is 1.3% of the weight of the concentrated lithium solution. times to obtain lithium carbonate slurry;
  • step (6) After filtering the lithium carbonate slurry in step (5), wash it with pure water to obtain crude lithium carbonate.
  • the filtrate is the lithium precipitation mother liquor, and the lithium carbonate washing water is returned to step (3) as the lithium liquid;
  • step (7) Use concentrated sulfuric acid to decarburize the lithium precipitation mother liquor in step (6) and adjust the pH to 3.
  • the filter residue is silicate gel, and the adjusted filtrate is returned to step (3) as lithium liquid.
  • compositions of the MVR system slag sample, crude lithium carbonate and silicate gel in this embodiment were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer. The detection results are shown in Table 3.
  • the present invention can recover higher purity lithium carbonate and silicate gel, thereby effectively recovering lithium and silicon in the MVR system slag sample and avoiding resource waste.
  • a method for recovering lithium and silicon from slag samples in an MVR system includes the following steps:
  • step (3) Evaporate and concentrate the lithium liquid in step (2) to a lithium content of 15g/L to obtain a concentrated lithium liquid;
  • step (1) Add 5wt% sodium hydroxide to the acid leaching residue in step (1), perform alkali dissolution at a temperature of 85°C, and prepare the obtained alkali dissolution solution with a soda ash solution with a concentration of 300g/L;
  • step (3) Mix the concentrated lithium solution in step (3) and the soda ash solution in step (4) to perform a high-temperature lithium precipitation reaction.
  • the high-temperature lithium precipitation temperature is 85°C
  • the reaction time is 2 hours
  • the amount of alkali solution added is 1.3% of the weight of the concentrated lithium solution. times to obtain lithium carbonate slurry;
  • step (6) After filtering the lithium carbonate slurry in step (5), wash it with pure water to obtain crude lithium carbonate.
  • the filtrate is the lithium precipitation mother liquor, and the lithium carbonate washing water is returned to step (3) as the lithium liquid;
  • step (7) Use concentrated sulfuric acid to decarburize the lithium precipitation mother liquor in step (6) and adjust the pH to 3.
  • the filter residue is silicate gel, and the filtrate is returned to step (3) as lithium liquid.
  • compositions of the MVR system slag sample, crude lithium carbonate and silicate gel in this example were collected. It was detected using inductively coupled plasma optical emission spectrometer (ICP-OES) and atomic absorption spectrophotometer. The detection results are shown in Table 4.
  • the present invention can recover higher purity lithium carbonate and silicate gel, thereby effectively recovering lithium and silicon in the MVR system slag sample and avoiding resource waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicon Compounds (AREA)

Abstract

一种MVR系统渣样回收锂及硅的方法,包括以下步骤:(1)将MVR系统渣样用酸浸出,得到酸浸后液及酸浸渣;(2)向酸浸后液中加入碱液调节pH,得到锂液;(3)将锂液蒸发浓缩,得到浓缩锂液;(4)向酸浸渣中加入碱液进行碱溶,得到的碱溶后液配制纯碱溶液;(5)将浓缩锂液与纯碱溶液混合进行高温沉锂反应,得到碳酸锂浆料;(6)将碳酸锂浆料压滤后,洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;(7)将沉锂母液进行脱碳调值后压滤,得到滤渣及调值滤液,其中滤渣为硅酸凝胶,其调值滤液返回步骤(3)作为锂液。该方法能有效回收渣样中的锂及硅,避免资源浪费。

Description

一种MVR系统渣样回收锂及硅的方法 技术领域
本发明属于MVR系统渣样有价组分回收技术领域,特别涉及一种MVR系统渣样回收锂及硅的方法。
背景技术
目前,碳酸锂苛化法是生产氢氧化锂常用的一种方法,碳酸锂苛化法制备氢氧化锂的工艺中,其苛化液会受氢氧化钙原料的影响而引入较多的硅。在MVR系统的浓缩过程中,硅元素以硅酸锂的形式富集,且硅酸锂具有自干性,水分蒸发后能生成一种不溶于水的干膜,与系统的碳酸锂渣样一起富集在MVR列管换热器内部,极大影响了MVR系统的蒸发效率。目前MVR厂家主要采取高压水枪将其列管及系统内壁的渣样采用物理方式清洗,并直接将渣样丢弃,造成资源浪费。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种MVR系统渣样回收锂及硅的方法,该方法能有效回收渣样中的锂及硅,避免资源浪费。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种MVR系统渣样回收锂及硅的方法,包括以下步骤:(1)将MVR系统渣样用酸浸出,得到酸浸后液及酸浸渣;(2)向步骤(1)的酸浸后液中加入碱液调节pH,得到锂液;(3)将步骤(2)的锂液蒸发浓缩,得到浓缩锂液;(4)向步骤(1)的酸浸渣中加入碱液进行碱溶,将得到的碱溶后液配置为纯碱溶液;(5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,得到碳酸锂浆料;(6)将步骤(5)的碳酸锂浆料压滤后,洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;(7)将步骤(6)的沉锂母液进行脱碳调值后压滤,得到滤渣及调值滤液,其中滤渣为硅酸凝胶,其调值滤液返回步骤(3)作为锂液。
优选的,步骤(1)中,其加入的酸为盐酸、硫酸、硝酸中的至少一种,酸的浓度为3wt%-7wt%。
优选的,步骤(1)中,所述酸浸温度为70-95℃,所述酸浸时间为6-12h。
优选的,步骤(2)中所述锂液的pH值为6-8。
优选的,步骤(2)及步骤(4)中,所述的碱液为氢氧化锂、氢氧化钠及氢氧化钾中的至少一种,所述碱液的浓度大于3wt%。
优选的,步骤(3)中,所述浓缩锂液中锂的含量为10-15g/L。
优选的,步骤(4)中,所述碱溶的温度为85-100℃。
优选的,步骤(4)中,所述纯碱溶液的浓度为280-350g/L。
优选的,步骤(5)中,所述纯碱溶液的加入量为所述浓缩锂液重量的1.2-1.5倍。
优选的,步骤(5)中,所述高温沉锂反应的温度为70-95℃,所述高温沉锂反应的时间为2-4h。
优选的,步骤(6)中,所述洗涤用的水为蒸馏水或纯水。
优选的,步骤(7)中,脱碳调值后的所述沉锂母液的pH值为2-3。
优选的,步骤(7)中,脱碳调值用到的酸为盐酸、硫酸及硝酸的至少一种。
本发明的有益效果是:
本发明基于无机酸浸出和碱溶的方式对MVR系统渣样进行溶解,实现了锂及硅的浸出。其中浸出的锂通过蒸发浓缩与碳酸钠进行高温沉锂反应,洗涤渣样成为粗制碳酸锂,浸出的硅通过脱碳调值反应生产硅酸凝胶,从而实现了对MVR系统渣样中的锂及硅进行回收。此外,该回收方法中,步骤(6)中碳酸锂洗水与步骤(7)中调值滤液返回步骤(3)作为锂液继续回用,实现了最大程度的锂回收,进一步减少了废水废渣的排放,提高了生产效率,具有较高的经济价值。
附图说明
图1为本发明实施例1-4的工艺流程图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种MVR系统渣样回收锂及硅的方法,如图1所示,包括以下步骤:
(1)将MVR系统渣样用浓度5wt%的硫酸浸出,酸浸温度85℃,酸浸时间6h,得到酸浸后液及酸浸渣;
(2)向步骤(1)的酸浸后液中加入15wt%氢氧化钠调值至pH为7,得到锂液;
(3)将步骤(2)的锂液蒸发浓缩至锂含量12g/L,得到浓缩锂液;
(4)向步骤(1)的酸浸渣中加入5wt%氢氧化钠,温度为85℃,进行碱溶,得到的碱溶后液配置浓度为300g/L的纯碱溶液;
(5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,高温沉锂温度为85℃,反应时间2h,碱液加入量为浓缩锂液重量的1.3倍,得到碳酸锂浆料;
(6)将步骤(5)的碳酸锂浆料压滤后,用蒸馏水洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;
(7)将步骤(6)的沉锂母液用浓硫酸脱碳调值为pH为2,滤渣为硅酸凝胶,其调值滤液返回步骤(3)作为锂液。
对本实施例的MVR系统渣样、粗制碳酸锂以及硅酸凝胶的组成采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表1所示。
表1:实施例1中MVR系统渣、粗制碳酸锂以及硅酸凝胶组成
由表1可知,本发明可回收得到较高纯度的碳酸锂及硅酸凝胶,从而能有效回收MVR系统渣样中的锂及硅,避免资源浪费。
实施例2:
一种MVR系统渣样回收锂及硅的方法,如图1所示,包括以下步骤:
(1)将MVR系统渣样用浓度5wt%的硫酸浸出,酸浸温度85℃,酸浸时间6h,得到酸浸后液及酸浸渣;
(2)向步骤(1)的酸浸后液中加入15wt%氢氧化钠调值至pH为7,得到锂液;
(3)将步骤(2)的锂液蒸发浓缩至锂含量12g/L,得到浓缩锂液;
(4)向步骤(1)的酸浸渣中加入5wt%氢氧化钠,温度为85℃,进行碱溶,得到的碱溶后液配置浓度为300g/L的纯碱溶液;
(5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,高温沉锂温度为95℃,反应时间2h,碱液加入量为浓缩锂液重量的1.5倍,得到碳酸锂浆料;
(6)将步骤(5)的碳酸锂浆料压滤后,用蒸馏水洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;
(7)将步骤(6)的沉锂母液用浓硫酸脱碳调值为pH为2,滤渣为硅酸凝胶,其滤液返回步骤(3)作为锂液。
对本实施例的MVR系统渣样、粗制碳酸锂以及硅酸凝胶的组成采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表2所示。
表2:实施例2中MVR系统渣、粗制碳酸锂以及硅酸凝胶组成

由表2可知,本发明可回收得到较高纯度的碳酸锂及硅酸凝胶,从而能有效回收MVR系统渣样中的锂及硅,避免资源浪费。
实施例3:
一种MVR系统渣样回收锂及硅的方法,如图1所示,包括以下步骤:
(1)将MVR系统渣样用浓度5wt%的硫酸浸出,酸浸温度85℃,酸浸时间6h,得到酸浸后液及酸浸渣;
(2)向步骤(1)的酸浸后液中加入15wt%氢氧化钾调值至pH为7,得到锂液;
(3)将步骤(2)的锂液蒸发浓缩至锂含量12g/L,得到浓缩锂液;
(4)向步骤(1)的酸浸渣中加入8wt%氢氧化钠,温度为85℃,进行碱溶,得到的碱溶后液配置浓度为300g/L的纯碱溶液;
(5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,高温沉锂温度为85℃,反应时间2h,碱液加入量为浓缩锂液重量的1.3倍,得到碳酸锂浆料;
(6)将步骤(5)的碳酸锂浆料压滤后,用纯水洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;
(7)将步骤(6)的沉锂母液用浓硫酸脱碳调值为pH为3,滤渣为硅酸凝胶,其调值滤液返回步骤(3)作为锂液。
对本实施例的MVR系统渣样、粗制碳酸锂以及硅酸凝胶的组成采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表3所示。
表3:实施例3中MVR系统渣、粗制碳酸锂以及硅酸凝胶组成
由表3可知,本发明可回收得到较高纯度的碳酸锂及硅酸凝胶,从而能有效回收MVR系统渣样中的锂及硅,避免资源浪费。
实施例4:
一种MVR系统渣样回收锂及硅的方法,如图1所示,包括以下步骤:
(1)将MVR系统渣样用浓度5wt%的硫酸浸出,酸浸温度85℃,酸浸时间6h,得到酸浸后液及酸浸渣;
(2)向步骤(1)的酸浸后液中加入15wt%氢氧化钠值至pH为7,得到锂液;
(3)将步骤(2)的锂液蒸发浓缩至锂含量15g/L,得到浓缩锂液;
(4)向步骤(1)的酸浸渣中加入5wt%氢氧化钠,温度为85℃,进行碱溶,得到的碱溶后液配置浓度为300g/L的纯碱溶液;
(5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,高温沉锂温度为85℃,反应时间2h,碱液加入量为浓缩锂液重量的1.3倍,得到碳酸锂浆料;
(6)将步骤(5)的碳酸锂浆料压滤后,用纯水洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;
(7)将步骤(6)的沉锂母液用浓硫酸脱碳调值为pH为3,滤渣为硅酸凝胶,其滤液返回步骤(3)作为锂液。
对本实施例的MVR系统渣样、粗制碳酸锂以及硅酸凝胶的组成采 用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表4所示。
表4:实施例4中MVR系统渣、粗制碳酸锂以及硅酸凝胶组成
由表4可知,本发明可回收得到较高纯度的碳酸锂及硅酸凝胶,从而能有效回收MVR系统渣样中的锂及硅,避免资源浪费。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种MVR系统渣样回收锂及硅的方法,其特征在于:包括以下步骤:
    (1)将MVR系统渣样用酸浸出,得到酸浸后液及酸浸渣;
    (2)向步骤(1)的酸浸后液中加入碱液调节pH,得到锂液;
    (3)将步骤(2)的锂液蒸发浓缩,得到浓缩锂液;
    (4)向步骤(1)的酸浸渣中加入碱液进行碱溶,将得到的碱溶后液配置为纯碱溶液;
    (5)将步骤(3)的浓缩锂液与步骤(4)的纯碱溶液混合进行高温沉锂反应,得到碳酸锂浆料;
    (6)将步骤(5)的碳酸锂浆料压滤后,洗涤得到粗制碳酸锂,滤液为沉锂母液,其碳酸锂洗水返回步骤(3)作为锂液;
    (7)将步骤(6)的沉锂母液进行脱碳调值后压滤,得到滤渣及调值滤液,其中滤渣为硅酸凝胶,其调值滤液返回步骤(3)作为锂液。
  2. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(1)中,其加入的酸为盐酸、硫酸、硝酸中的至少一种,酸的浓度为3wt%-7wt%。
  3. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(1)中,所述酸浸温度为70-95℃,所述酸浸时间为6-12h。
  4. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(2)中,所述锂液的pH值为6-8。
  5. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(3)中,所述浓缩锂液中锂的含量为10-15g/L。
  6. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(4)中,所述碱溶的温度为85-100℃。
  7. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(4)中,所述纯碱溶液的浓度为280-350g/L。
  8. 根据权利要求7所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(5)中,所述纯碱溶液的加入量为所述浓缩锂液重量的1.2-1.5倍。
  9. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于: 步骤(5)中,所述高温沉锂反应的温度为70-95℃,所述高温沉锂反应的时间为2-4h。
  10. 根据权利要求1所述的MVR系统渣样回收锂及硅的方法,其特征在于:步骤(7)中,脱碳调值后的所述沉锂母液的pH值为2-3。
PCT/CN2023/081945 2022-05-24 2023-03-16 一种mvr系统渣样回收锂及硅的方法 WO2023226551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210567379.9A CN115072746A (zh) 2022-05-24 2022-05-24 一种mvr系统渣样回收锂及硅的方法
CN202210567379.9 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023226551A1 true WO2023226551A1 (zh) 2023-11-30

Family

ID=83249237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081945 WO2023226551A1 (zh) 2022-05-24 2023-03-16 一种mvr系统渣样回收锂及硅的方法

Country Status (2)

Country Link
CN (1) CN115072746A (zh)
WO (1) WO2023226551A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115072746A (zh) * 2022-05-24 2022-09-20 广东邦普循环科技有限公司 一种mvr系统渣样回收锂及硅的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095951A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> リチウム回収方法
CN105347364A (zh) * 2015-10-30 2016-02-24 华陆工程科技有限责任公司 一种碳酸锂生产中沉锂母液闭环回收的方法
CN105907983A (zh) * 2016-04-20 2016-08-31 天齐锂业股份有限公司 从火法回收锂电池产生的炉渣中提取锂的方法
CN106044784A (zh) * 2016-07-27 2016-10-26 陕西师范大学 一种利用粉煤灰生产高纯度二氧化硅的方法
CN109911906A (zh) * 2019-03-28 2019-06-21 内蒙古工业大学 一种利用锆冶金渣制备疏水二氧化硅的方法
CN113912032A (zh) * 2021-09-16 2022-01-11 湖北锂宝新材料科技发展有限公司 一种从废旧磷酸铁锂电池正极粉中回收制备电池级碳酸锂和磷酸铁的方法
CN115072746A (zh) * 2022-05-24 2022-09-20 广东邦普循环科技有限公司 一种mvr系统渣样回收锂及硅的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095951A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> リチウム回収方法
CN105347364A (zh) * 2015-10-30 2016-02-24 华陆工程科技有限责任公司 一种碳酸锂生产中沉锂母液闭环回收的方法
CN105907983A (zh) * 2016-04-20 2016-08-31 天齐锂业股份有限公司 从火法回收锂电池产生的炉渣中提取锂的方法
CN106044784A (zh) * 2016-07-27 2016-10-26 陕西师范大学 一种利用粉煤灰生产高纯度二氧化硅的方法
CN109911906A (zh) * 2019-03-28 2019-06-21 内蒙古工业大学 一种利用锆冶金渣制备疏水二氧化硅的方法
CN113912032A (zh) * 2021-09-16 2022-01-11 湖北锂宝新材料科技发展有限公司 一种从废旧磷酸铁锂电池正极粉中回收制备电池级碳酸锂和磷酸铁的方法
CN115072746A (zh) * 2022-05-24 2022-09-20 广东邦普循环科技有限公司 一种mvr系统渣样回收锂及硅的方法

Also Published As

Publication number Publication date
CN115072746A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN103290224B (zh) 钨渣中有价金属的回收工艺
CN110217810B (zh) 一种高效回收铝灰中有价元素的方法
WO2023226551A1 (zh) 一种mvr系统渣样回收锂及硅的方法
CN109516479B (zh) 电池级氢氧化锂的制备方法
JP2013094780A (ja) 酸化バナジウム生産廃水の処理方法
CN107758714B (zh) 一种粉煤灰中铝硅锂镓联合法协同提取的方法
CN114314625B (zh) 一种复杂铝电解质回收氟化盐的方法
CN102701263B (zh) 一种含锡铜渣选择性浸出免蒸发制备硫酸铜的方法
WO2018072499A1 (zh) 一种从硫酸体系含铜废液中回收碱式氯化铜的方法
CN110902699B (zh) 从锂云母提锂后的废渣原料中制备高纯硫酸钾的方法
CN102676809B (zh) 一种锑冶炼纯碱型砷碱渣脱锑后的浸出液砷碱分离方法
CN102602993A (zh) 一种从氧氯化锆结晶母液残液中回收锆元素的方法
CN105753241A (zh) 一种酸性铵盐沉钒废水还原蒸发浓缩处理的方法
CN113429282A (zh) 一种高纯度锂盐的制备方法
WO2023246156A1 (zh) 一种苛化法制备氢氧化锂的工艺及其应用
WO2024055520A1 (zh) 硫酸锂料液回收制备氢氧化锂的方法
CN116715270A (zh) 一种水合氧化铬除去重铬酸钠母液中杂质离子的方法
CN111592017A (zh) 一种锂辉石压浸制备电池级氯化锂的方法
WO2023142674A1 (zh) 一种强碱溶液除铝的方法和应用
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN103864116B (zh) 一种利用水泥窑灰生产氯化钾及联产碳酸钙的方法
CN106629809B (zh) 一种提纯粗氧化钪的方法
CN110697739B (zh) 一种浸出铝基富锂渣中锂制备无水氯化锂的方法
CN111500867A (zh) 沉钒废水与三氧化二钒除尘淋洗水的回收处理及利用方法
CN106745131B (zh) 硫酸活化-氯化氢结晶联合生产高纯氧化铝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810626

Country of ref document: EP

Kind code of ref document: A1