WO2023223479A1 - 放電加工用電源装置、放電加工装置及び放電加工方法 - Google Patents

放電加工用電源装置、放電加工装置及び放電加工方法 Download PDF

Info

Publication number
WO2023223479A1
WO2023223479A1 PCT/JP2022/020731 JP2022020731W WO2023223479A1 WO 2023223479 A1 WO2023223479 A1 WO 2023223479A1 JP 2022020731 W JP2022020731 W JP 2022020731W WO 2023223479 A1 WO2023223479 A1 WO 2023223479A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
machining
voltage
state
discharge
Prior art date
Application number
PCT/JP2022/020731
Other languages
English (en)
French (fr)
Inventor
大揮 齊藤
博紀 彦坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202280070539.7A priority Critical patent/CN118159377A/zh
Priority to PCT/JP2022/020731 priority patent/WO2023223479A1/ja
Priority to JP2022562891A priority patent/JP7237254B1/ja
Publication of WO2023223479A1 publication Critical patent/WO2023223479A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Definitions

  • the detection circuit 4 detects the presence or absence of electrical discharge between the machining electrodes. If discharge is detected by the detection circuit 4, the state shifts to a discharge detection state 2. On the other hand, if discharge is not detected, it is determined whether the commanded time period commanded by the NC device 80 has elapsed. If the command time has not elapsed, the state returns to voltage application state 2. If the command time has elapsed, it is further determined whether or not driving has ended, and if driving has not ended, the state shifts to voltage application state 1. On the other hand, if the driving has ended, the process shifts to the initial state. In the initial state, it waits for the next drive command to be sent from the NC device 80.
  • the voltage between the machining electrodes becomes voltage V1, which is the voltage value of the DC power supply 10
  • the discharge detection state 1 in which a discharge occurs between the machining machining electrodes, the voltage between the machining electrodes reaches the arc voltage.
  • the voltage drops and a discharge current begins to flow between the machining poles. Therefore, by detecting a change in the electrode-to-electrode voltage or a change in the discharge current with the detection circuit 4, it is possible to determine whether the state has shifted to the discharge detection state 1.
  • FIG. 6(d) shows the waveform of the voltage between electrodes when discharge occurs in a steady state as shown in FIG. 4(a), and the right side of FIG.
  • the waveform of the inter-electrode voltage is shown when discharge occurs in a transient state as shown in b).
  • discharge occurs at a lower voltage in the transient state than in the steady state. Therefore, when a discharge occurs in a transient state, the time T12 for switching conduction between two switching elements is longer than the time T1 for switching conduction between two switching elements when a discharge occurs in a steady state. do.
  • the area of the current I1 flowing when switching at time T1 and the area of current I2 flowing when switching at time T12 are made almost equal. can do.
  • the switching element that was controlled to be in the on state is turned off.
  • the discharge charge amount which is an integral of the current flowing between the machining poles
  • the switching element that was controlled to be in the off state is controlled to be in the on state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

放電加工用電源装置(50)は、工具電極(E)と被加工物(W)とで形成される加工極間に放電加工用の電圧を印加する。放電加工用電源装置(50)は、直流電源(10,20)と、スイッチング素子(11,21)と、検出回路(4)と、制御回路(12,22)とを備える。検出回路(4)は、スイッチング素子(11,21)のうちの何れか1つがオン状態に制御されたことによって加工極間に第1の直流電圧、又は第1の直流電圧と逆極性の第2の直流電圧が印加された際に発生した放電を検出し、制御回路(12,22)は、放電が検出された際には、オン状態に制御されていたスイッチング素子をオフ状態に制御し、オフ状態に制御されていたスイッチング素子をオン状態に制御する。

Description

放電加工用電源装置、放電加工装置及び放電加工方法
 本開示は、放電加工用の電源電圧を印加する放電加工用電源装置、放電加工用電源装置を備えた放電加工装置、及び放電加工用電源装置を用いた放電加工方法に関する。
 放電加工では、工具電極と被加工物とで形成される空間に電圧パルスを印加し、工具電極と被加工物とを接近させることで放電を発生させ、発生した放電のアーク熱によって被加工物を加工する。以下、本稿では、この空間を「加工極間」と呼び、加工極間の電圧を「極間電圧」と呼ぶ。
 一般的に所望の加工形状を得るためには、被加工物を多量に除去するための荒加工から、加工面を所望の加工精度、即ち所望の面粗度に仕上げるための仕上げ加工までの間において、複数回の加工が行われる。これらの加工工程において、最終的な加工面の面粗度は、最後に行われた仕上げ加工の電気条件に起因する場合が多い。加工の際の電気条件には、加工極間と直列に接続された電源装置から加工極間へ印加される電圧及びその電圧の休止時間、加工極間へ供給される放電電流のピーク値、放電電流のパルス幅などのパラメータがある。
 一般的に、加工面の面粗度は放電時に加工極間に流れる電流の積分値、放電電荷量などに依存し、放電電荷量が小さいほど細かい面粗度が得られる。従って、細かい面粗度を得るためには、電源装置から加工極間へ供給される放電電流のピーク値、放電電流パルス幅を小さく設定する必要がある。
 一方、実際の放電加工において、加工極間に放電が発生した際には、電源装置から供給される電流以外にも、加工極間と並列に存在し得る浮遊容量からも電流が流れる。浮遊容量は、放電加工装置の配線などの機械構造に起因して存在し得る静電容量である。この浮遊容量により、放電発生時には、浮遊容量に蓄積された、印加電圧と静電容量との積に比例する電荷量が加工極間に供給される。このため、電源装置から供給する電流をゼロにしたとしても、浮遊容量から加工極間に供給される電荷量よりも放電電荷量を小さくすることができない。加工極間に印加する電圧を小さくすれば浮遊容量に蓄積された電荷量を小さくすることは可能である。しかしながら、印加電圧が小さくなることにより放電が発生しなくなってしまうため、印加電圧の制限には限界がある。つまり、放電加工装置で得られる最も細かい面粗度は、加工極間と並列に存在する浮遊容量によって決定されてしまう。そのため、更に細かい面粗度を得るためには、電源装置で浮遊容量に蓄積された電荷量を制御する必要がある。
 上記の課題に対し、下記特許文献1に記載の放電加工機では、直流電源、トランジスタ及び抵抗を2つずつ備え、2つのトランジスタを制御する制御回路を有することで、浮遊容量から加工極間に流れる電荷量を抑制することを可能にしている。具体的に、2つの直流電源は、それぞれが被加工物と工具電極との間の電圧を異なる極性で印加できるように接続されている。制御回路は、2つのトランジスタの導通を制御することで、加工極間に交互に異なる極性の電圧を印加できるように制御している。この制御により、例えば加工極間に正の電圧が印加されているときに放電が発生した場合、直後に負の電圧が印加されるため、浮遊容量から加工極間へ流れる電荷量が負の電圧を印加する回路へ流れることになる。これにより、浮遊容量から加工極間へ流れる電流が小さくなり、浮遊容量に依らない細かい面粗度を得ることが可能になるとされている。
特開平1―257513号公報
 しかしながら、上記特許文献1の方法では、放電が発生するタイミングによって加工極間へ流れる電荷量が変わってしまう。このため、上記特許文献1の方法では、均一に小さい放電電荷量を得られず、結果として想定よりも粗い加工面粗度が得られてしまう。例えば、正の電圧を印加した直後に放電が発生した場合と、正の電圧の印加が終了する直前に放電が発生した場合とでは、放電が発生してから負の電圧が印加されるまでの時間が異なってしまう。負の電圧が加工極間へ印加されるまでの間、浮遊容量から加工極間へ電荷量が流れ続けるため、それぞれの場合において加工極間へ流れる電荷量が変わってしまうことになる。なお、放電が発生するタイミングは、極間に存在する被加工物の加工屑、工具電極の状態によってランダムに変化するため、これを制御することは不可能である。このため、特許文献1の方法では、放電が発生した場所によって加工極間へ流れる電荷量が変わってしまい、放電の態様に依らずに微細な面粗度の加工面を得ることは困難である。
 本開示は、上記に鑑みてなされたものであって、放電の態様に依らずに細かい面粗度の加工面を得ることができる放電加工用電源装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係る放電加工用電源装置は、工具電極と被加工物とで形成される加工極間に放電加工用の電圧を印加する放電加工用電源装置である。放電加工用電源装置は、第1の直流電源と、第2の直流電源と、第1のスイッチング素子と、第2のスイッチング素子と、検出回路と、第1の制御回路と、第2の制御回路とを備える。第1の直流電源は加工極間に第1の直流電圧を印加する。第2の直流電源は、加工極間に対して第1の直流電源と互いに並列に接続され、加工極間に第1の直流電圧とは逆極性の第2の直流電圧を印加する。第1のスイッチング素子は、第1の直流電源と加工極間との間に接続され、第2のスイッチング素子は、第2の直流電源と加工極間との間に接続される。検出回路は、加工極間の電圧及び電流を検出する。第1の制御回路は、検出回路の検出値に基づいて第1のスイッチング素子の導通を制御し、第2の制御回路は、検出回路の検出値に基づいて第2のスイッチング素子の導通を制御する。検出回路は、第1のスイッチング素子及び第2のスイッチング素子のうちの何れか1つがオン状態に制御されたことによって加工極間に第1の直流電圧又は第2の直流電圧が印加された際に発生した放電を検出し、第1の制御回路及び第2の制御回路は、放電が検出された際には、オン状態に制御されていたスイッチング素子をオフ状態に制御し、オフ状態に制御されていたスイッチング素子をオン状態に制御する。
 本開示に係る放電加工用電源装置によれば、放電の態様に依らずに細かい面粗度の加工面を得ることができるという効果を奏する。
実施の形態1に係る放電加工用電源装置を含む放電加工装置の構成例を示す図 実施の形態1に係る放電加工用電源装置の制御方法の説明に供するフローチャート 実施の形態1に係る放電加工用電源装置の制御方法の説明に供するタイミングチャート 図3に示した放電検出状態1における極間電圧の変化の様子をより詳細に示した図 実施の形態2に係る放電加工用電源装置の制御方法の説明に供するフローチャート 実施の形態2に係る放電加工用電源装置の制御方法の説明に供するタイミングチャート 実施の形態3に係る放電加工用電源装置の制御方法の説明に供するフローチャート 実施の形態4に係る放電加工用電源装置を含む放電加工装置の構成例を示す図 実施の形態4に係る放電加工用電源装置の制御方法の説明に供するフローチャート 実施の形態4に係る放電加工用電源装置の制御方法の説明に供するタイミングチャート
 以下に添付図面を参照し、本開示の実施の形態に係る放電加工用電源装置、放電加工装置及び放電加工方法について詳細に説明する。なお、以下では、物理的な接続と電気的な接続とを区別せずに、単に「接続」と称して説明する。即ち、「接続」という文言は、構成要素同士が直接的に接続される場合と、構成要素同士が他の構成要素を介して間接的に接続される場合との双方を含んでいる。
実施の形態1.
 図1は、実施の形態1に係る放電加工用電源装置を含む放電加工装置の構成例を示す図である。図1に示すように、放電加工装置100は、放電加工用電源装置50と、数値制御(Numerical Control:NC)装置80とを備える。
 図1において、放電加工装置100における放電加工機の部分は、模式的に三角形及び四角形の図形で工具電極E及び被加工物Wを示している。放電加工用電源装置50は、工具電極Eと被加工物Wとで形成される加工極間に放電加工用の電源電圧を印加する電源装置である。放電加工機は、放電加工装置100において、NC装置80を含まない部位で構成される。放電加工機がワイヤ放電加工機の場合、工具電極Eはワイヤである。放電加工機が細穴放電加工機及び型彫り放電加工機の場合、工具電極Eは型電極である。また、図1には、加工極間と並列に浮遊容量Cを示している。前述したように、浮遊容量Cは、放電加工装置100の配線などの機械構造に起因して生じる静電容量である。
 放電加工用電源装置50は、電源回路1,2と、検出回路4とを備える。検出回路4は、工具電極Eと被加工物Wとの間に接続される。検出回路4は、工具電極Eと被加工物Wとの間の加工極間の電圧及び電流を検出する。
 電源回路1は、直流電源10と、スイッチング素子11と、制御回路12とを備える。電源回路2は、直流電源20と、スイッチング素子21と、制御回路22とを備える。本稿では、電源回路1,2の構成要素を符号無しで区別する際に、直流電源10,20をそれぞれ「第1の直流電源」及び「第2の直流電源」と記載し、スイッチング素子11,21をそれぞれ「第1のスイッチング素子」及び「第2のスイッチング素子」と記載し、制御回路12,22をそれぞれ「第1の制御回路」及び「第2の制御回路」と記載することがある。
 直流電源10は、加工極間に第1の直流電圧を印加する。直流電源20は、加工極間に対して直流電源10と互いに並列に接続され、加工極間に第2の直流電圧を印加する。第2の直流電圧は、第1の直流電圧とは逆極性の電圧である。即ち、直流電源10,20は、加工極間に異なる極性の電圧が印加できるよう加工極間に接続されている。
 スイッチング素子11は、直流電源10と加工極間との間に接続される。スイッチング素子21は、直流電源20と加工極間との間に接続される。
 制御回路12は、検出回路4の検出値に基づいてスイッチング素子11の導通を制御する。制御回路22は、検出回路4の検出値に基づいてスイッチング素子21の導通を制御する。制御回路12,22は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、CPLD(Complex Programmable Logic Device)又はこれらを組み合わせた回路で実現することができる。
 スイッチング素子11,21の一例は、図示のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であるが、これに限定されない。スイッチング素子11,21は、制御回路12,22によってスイッチング素子11,21の導通状態を制御できる素子であればよく、IGBT(Insulated Gate Bipolar Transistor)、又はIGBT以外のトランジスタ素子でもよい。
 制御回路12,22は、NC装置80に接続される。NC装置80は、制御回路12,22に対し、スイッチング素子11,21の駆動を開始する駆動開始指令、スイッチング素子11,21のオン時間及びオフ時間といったパラメータを含む指令などを送信する。
 図2は、実施の形態1に係る放電加工用電源装置の制御方法の説明に供するフローチャートである。
 まず、スイッチング素子11,21が共にオフの状態を初期状態とする。初期状態は、加工極間に電圧が印加されていない状態である。
 前述したように、スイッチング素子11,21の駆動を開始する駆動開始指令は、NC装置80から送られる。駆動が開始されない場合、初期状態が継続される。一方、駆動が開始されると、電圧印加状態1へ移行する。電圧印加状態1では、スイッチング素子11がオフ状態からオン状態となり、直流電源10の電圧が加工極間へ印加される。なお、電圧印加状態1では、スイッチング素子21はオフの状態のままである。
 電圧印加状態1では、検出回路4によって、加工極間の放電の有無が検出される。検出回路4により放電が検出された場合には、放電検出状態1へ移行する。一方、放電が検出されない場合、指令時間経過の有無が判定される。ここで言う指令時間は、スイッチング素子11をオン状態とする時間であり、NC装置80により指令される。指令時間が経過していない場合、電圧印加状態1に戻る。指令時間が経過している場合、電圧印加状態2へ移行する。
 放電検出状態1では、オン状態となっていたスイッチング素子11はオフ状態に制御され、オフ状態となっていたスイッチング素子21はオン状態に制御される。スイッチング素子21がオン状態となることにより、直前に印加された電圧とは逆極性の電圧が直流電源20から印加される。逆極性の電圧が印加されることにより、浮遊容量Cに蓄積された電荷は、直流電源20に流れ込む。これにより、直流電源10による電圧印加によって浮遊容量Cに蓄積された電荷が加工極間へ流れ込むのを抑制することができる。
 放電検出状態1において、スイッチング素子21をオンする時間はNC装置80からの指令で決められ、決められた時間の経過後、放電休止状態1へ移行する。
 放電休止状態1では、スイッチング素子11,21が共にオフ状態に制御される。共にオフ状態に制御される時間は、NC装置80から指令され、指令された時間の経過後、前述した電圧印加状態1に移行する。以降、上述した処理が繰り返される。
 また、電圧印加状態1において、放電が検出されず、且つ、指令時間が経過した場合、電圧印加状態2に移行する。電圧印加状態2では、スイッチング素子21がオフ状態からオン状態となり、直流電源20の電圧が加工極間へ印加される。
 また、電圧印加状態2においても、検出回路4によって、加工極間の放電の有無が検出される。検出回路4により放電が検出された場合には、放電検出状態2へ移行する。一方、放電が検出されない場合、NC装置80により指令された指令時間経過の有無が判定される。指令時間が経過していない場合、電圧印加状態2に戻る。指令時間が経過している場合、更に駆動終了か否かが判定され、駆動終了でなければ、電圧印加状態1へ移行する。一方、駆動終了であれば、初期状態へ移行する。初期状態では、次の駆動指令がNC装置80から送られるのを待ち受ける。
 放電検出状態2では、オン状態となっていたスイッチング素子21はオフ状態に制御され、オフ状態となっていたスイッチング素子11はオン状態に制御される。この制御によって、放電検出状態1と同様の効果を得ることができる。詳細に説明すると、スイッチング素子11がオン状態となることにより、直前に印加された電圧とは逆極性の電圧が直流電源10から印加される。逆極性の電圧が印加されることにより、浮遊容量Cに蓄積された電荷は、直流電源10に流れ込む。これにより、直流電源20による電圧印加によって浮遊容量Cに蓄積された電荷が加工極間へ流れ込むのを抑制することができる。
 放電検出状態2において、スイッチング素子11をオンする時間はNC装置80からの指令で決められ、決められた時間の経過後、放電休止状態2へ移行する。
 放電休止状態2では、スイッチング素子11,21が共にオフ状態に制御される。共にオフ状態に制御される時間は、NC装置80から指令され、指令された時間の経過後、前述した電圧印加状態2に移行する。
 以上のように、放電加工装置100では、駆動指令が終了するまでの間、NC装置80により指令される指令時間に基づいて、電圧印加状態1、放電検出状態1、放電休止状態1、電圧印加状態2、放電検出状態2及び放電休止状態2が繰り返される。また、放電加工装置100では、駆動指令が終了するまでの間、第1の直流電圧と、第1の直流電圧とは逆極性の第2の直流電圧とが印加される。
 図3は、実施の形態1に係る放電加工用電源装置の制御方法の説明に供するタイミングチャートである。図3(a)には、図2のフローチャートで説明した各種の状態の推移が示されている。図3(b)及び図3(c)には、図3(a)の状態に対応するスイッチング素子11へのゲート信号及びスイッチング素子21へのゲート信号がそれぞれ示されている。図3(d)には、図3(a)の状態に対応する極間電圧の変化が示されている。図3(e)には、図3(a)の状態に対応して加工極間に流れる放電電流の変化が示されている。
 スイッチング素子11がオン状態である電圧印加状態1では、極間電圧は直流電源10の電圧値である電圧V1になり、加工極間に放電が発生する放電検出状態1では、極間電圧はアーク電圧に低下し、加工極間に放電電流が流れ始める。従って、極間電圧の変化、又は放電電流の変化を検出回路4で検出することにより、放電検出状態1への移行を判断できる。前述したように、放電検出状態1において、スイッチング素子11をオフ状態とし、スイッチング素子21をオン状態とすることで、浮遊容量Cから流れ得る放電電流が、加工極間ではなく直流電源20へ流れるようになる。これにより、放電電流は、実線の波形で示されるように、スイッチング素子21がオンしたタイミングで急速に立ち下がる。なお、破線は、スイッチング素子21がオンしないときの放電電流の波形である。
 放電検出状態1において、スイッチング素子11をオフ状態にしてからスイッチング素子21をオン状態にするまでの時間をT1とする。この時間T1は、一意に定めるのではなく、NC装置80によって自由に設定できるようにすることが望ましい。時間T1を任意に設定できれば、放電電流の波形を調整することができるので、所望する加工面粗さを得ることが可能になる。
 なお、前述したように、指令時間が経過するまでの間、電圧印加状態1、又は電圧印加状態1、放電検出状態1及び放電休止状態1が繰り返される。また、指令時間が経過した場合には、電圧印加状態2へ移行する。
 図3では、電圧印加状態2、放電検出状態2及び放電休止状態2の動作は記載されていないが、極間電圧及び放電電流の極性が電圧印加状態1及び放電検出状態1とは逆になるだけであり、電圧印加状態2及び放電検出状態2における制御自体は、圧印加状態1、放電検出状態1及び放電休止状態1のときと同様である。このため、電圧印加状態1及び放電検出状態1と同様の効果が得られる。
 以上説明したように、実施の形態1に係る放電加工用電源装置は、第1の直流電源及び第2の直流電源と、第1のスイッチング素子及び第2のスイッチング素子と、第1の制御回路及び第2の制御回路と、検出回路とを備える。第1の直流電源は、工具電極と被加工物とで形成される加工極間に第1の直流電圧を印加する。第2の直流電源は、加工極間に対して第1の直流電源と互いに並列に接続され、加工極間に第1の直流電圧とは逆極性の第2の直流電圧を印加する。第1のスイッチング素子は第1の直流電源と加工極間との間に接続され、第2のスイッチング素子は第2の直流電源と加工極間との間に接続される。検出回路は、加工極間の電圧及び電流を検出し、第1の制御回路は、検出回路の検出値に基づいて第1のスイッチング素子の導通を制御し、第2の制御回路は、検出回路の検出値に基づいて第2のスイッチング素子の導通を制御する。このように構成された放電加工用電源装置において、検出回路は、第1のスイッチング素子及び第2のスイッチング素子のうちの何れか1つがオン状態に制御されたことによって加工極間に第1の直流電圧又は第2の直流電圧が印加された際に発生した放電を検出し、第1の制御回路及び第2の制御回路は、放電が検出された際には、オン状態に制御されていたスイッチング素子をオフ状態に制御し、オフ状態に制御されていたスイッチング素子をオン状態に制御する。これにより、放電の態様に依らずに細かい面粗度の加工面を得ることができる。
 なお、上述した特許文献1の構成では、加工極間と2つの直流電源との間には抵抗が接続される構成であるのに対し、実施の形態1に係る放電加工用電源装置では、第1の直流電源及び第2の直流電源の各々と加工極間との間には、抵抗が存在しない。特許文献1のように抵抗が存在する場合には、この抵抗によって浮遊容量から直流電源によって流れる電荷量が小さくなり、結果として多くの電荷量が加工極間へ流れてしまう。これに対し、実施の形態1に係る放電加工用電源装置では、当該抵抗が存在しないので、浮遊容量から加工極間へ流れてしまう電流を、特許文献1のものよりも小さくすることができる。
 また、実施の形態1に係る放電加工方法は、上記のように構成された放電加工用電源装置を用いて行う放電加工方法であって、以下に示す第1から第4のステップを含む処理とすることができる。第1のステップでは、第1のスイッチング素子及び第2のスイッチング素子のうちの何れか1つをオン状態に制御して加工極間に第1の直流電圧又は第2の直流電圧を印加する。第2のステップでは、加工極間の電圧及び電流の検出値に基づいて、第1ステップの制御によって生じ得る加工極間の放電を検出する。第3のステップでは、第2ステップによって放電が検出された際に、オン状態に制御されていたスイッチング素子をオフ状態に制御する。第4のステップでは、第3のステップの後に、オフ状態に制御されていたスイッチング素子をオン状態に制御する。このような、第1から第4のステップの処理を含む放電加工方法によれば、放電の態様に依らずに細かい面粗度の加工面を得ることができる。
実施の形態2.
 図4は、図3に示した放電検出状態1における極間電圧の変化の様子をより詳細に示した図である。図4(a)には、定常状態において放電が発生した場合の極間電圧及び放電電流の変化の様子が示され、図4(b)には、過渡状態において放電が発生した場合の極間電圧及び放電電流の変化の様子が示されている。
 図3では、スイッチング素子11をオン状態にした直後には定常状態に移行するものとして図示しているが、実際には、図4に示すように過渡状態を経てから定常状態へと移行する。過渡状態において、極間電圧は、電圧値を変動させながら定常状態の電圧値に近づいていく。また、放電電流は、浮遊容量Cと極間電圧とによって決定される。このため、定常状態で発生した放電と過渡状態で発生した放電とでは、放電電流が異なってしまう。
 実施の形態1では、NC装置80によって定めた時間T1によって、スイッチング素子11をオフ状態にしてからスイッチング素子21をオン状態にしていた。この手法では、放電が定常状態で発生した場合も過渡状態で発生した場合も同じ時間T1を設定することになるため、異なる放電電流が流れてしまう。その結果、得られる加工面粗さには、ばらつきが生じてしまう。
 そこで、実施の形態2では、放電が発生した直前の極間電圧の値に応じて時間T1を調整する。具体的な動作は、図5のフローチャートを用いて説明する。図5は、実施の形態2に係る放電加工用電源装置の制御方法の説明に供するフローチャートである。
 図5に示すフローチャートを図2に示すフローチャートと比較すると、図5では、図2における放電検出状態1の直前に極間電圧判定状態1が追加され、放電検出状態2の直前に極間電圧判定状態2が追加されている。
 極間電圧判定状態1,2では、検出回路4により検出された放電電圧Vdの値に応じて、スイッチング素子11及びスイッチング素子21を切り替える時間T1の値を決定する。放電電圧Vdは、図4(a)、(b)に示すように、極間電圧が零電圧に向かって急激に立ち下がる直前の部分の電圧である。時間T1は、放電電圧Vdと時間T1との関係を示すテーブル、放電電圧Vdと時間T1との関係を表す演算式などに基づいて決定することができる。なお、時間T1は、所望する加工面粗さに応じて、異なるテーブル又は異なる演算式を使用することとすれば、放電電圧Vdの値に依らずに均一な放電電流を得ることができ、より均一な加工面粗さを得ることができる。
 図6は、実施の形態2に係る放電加工用電源装置の制御方法の説明に供するタイミングチャートである。図6(a)には、図5のフローチャートで説明した各種の状態の推移が示されている。図6(b)及び図6(c)には、図6(a)の状態に対応するスイッチング素子11へのゲート信号及びスイッチング素子21へのゲート信号がそれぞれ示されている。図6(d)には、図6(a)の状態に対応する極間電圧の変化が示されている。図6(e)には、図6(a)の状態に対応して加工極間に流れる放電電流の変化が示されている。
 図6(d)の左側には、図4(a)に示すような定常状態で放電が発生した場合の極間電圧の波形が示され、図6(d)の右側には、図4(b)に示すような過渡状態で放電が発生した場合の極間電圧の波形が示されている。図4にも示されるように、過渡状態では、定常状態よりも、より低い電圧で放電が発生する。このため、過渡状態で放電が発生した場合に、2つのスイッチング素子間の導通を切り替える時間T12は、定常状態で放電が発生した場合に、2つのスイッチング素子間の導通を切り替える時間T1よりも長くする。このように制御すれば、図6(e)に示されるように、時間T1で切り替えたときに流れる電流I1の面積と、時間T12で切り替えたときに流れる電流I2の面積とを、ほぼ均等にすることができる。
 なお、図4(b)は、定常状態での電圧よりも低い電圧で放電が発生した場合の例であるが、過渡状態では極間電圧が振動するので、定常状態での電圧よりも高い電圧で放電が発生することもある。従って、図6の例とは異なり、定常状態での電圧よりも高い電圧で放電が発生した場合、2つのスイッチング素子間の導通を切り替える時間T12は、時間T1よりも短くする。
 上述の制御方法を用いれば、放電電圧Vdに依らずに均一な放電電流を加工極間に流すことができ、均一な加工面粗さを得ることができる。前述したように、放電電圧Vdに応じた時間T1は、放電電圧Vdと時間T1との関係を表すテーブル又は演算式を用いて決定することができる。これらの決定を行う制御回路12,22は、前述したFPGA、CPLDを用いて実装すれば、制御回路12,22の構成を単純化することができる。
 以上説明したように、実施の形態2に係る放電加工用電源装置は、実施の形態1に係る放電加工用電源装置の制御において、放電が検出されてオン状態に制御されていたスイッチング素子がオフ状態に制御された後に、オフ状態に制御されていたスイッチング素子をオン状態に制御するまでの時間は、放電が検出された際に検出回路によって検出された電圧値に基づいて決定される。このように制御すれば、放電発生時の極間電圧に依らずに均一な放電電流を加工極間に流すことができる。これにより、実施の形態2に係る放電加工用電源装置によれば、実施の形態1の効果に加え、均一な加工面粗さを得ることができる。
 また、実施の形態2に係る放電加工方法では、実施の形態1で説明した放電加工方法における第2のステップと第3のステップとの間に、放電が発生したときの放電電圧を検出する検出ステップと、第3のステップの実施後に第4のステップを実施する時間の間隔を検出ステップで検出された放電電圧に基づいて決定する決定ステップと、を含むようにする。このようにすれば、放電発生時の極間電圧に依らずに均一な放電電流を加工極間に流すことができる。これにより、実施の形態2に係る放電加工方法によれば、実施の形態1の効果に加え、均一な加工面粗さを得ることができる。
実施の形態3.
 実施の形態2の方法では、放電電圧Vdに応じて設定される時間T1によって、2つのスイッチング素子間の導通を切り替えていた。一方、[背景技術]の項でも説明したように、加工面の面粗度は、放電電荷量にも依存する。放電電荷量は、放電電圧Vdだけでなく浮遊容量Cに応じて決定される。このため、放電加工機ごとに浮遊容量Cに差がある場合、放電電圧Vdが同じでも、放電時の電荷量である放電電荷量が変化してしまうことが想定される。
 そこで、実施の形態3では、放電電荷量に応じて時間T1を調整する。具体的な動作は、図7のフローチャートを用いて説明する。図7は、実施の形態3に係る放電加工用電源装置の制御方法の説明に供するフローチャートである。
 図7に示すフローチャートを図2に示すフローチャートと比較すると、図7では、図2における放電検出状態1の直前に放電電荷量判定状態1が追加され、放電検出状態2の直前に放電電荷量判定状態2が追加されている。
 放電電荷量判定状態1では、検出回路4により検出された放電電流を時間で積分することで、放電電荷量を得る。ここで得られた電荷量を「検出電荷量」と呼ぶ。検出電荷量は、予め設定された閾値である閾値電荷量と比較され、検出電荷量が閾値電荷量に到達したときに放電検出状態1に移行する。放電電荷量判定状態2でも同様であり、検出回路4により検出された放電電流の積分値である検出電荷量が閾値電荷量に到達したときに放電検出状態2に移行する。なお、閾値電荷量は、所望の加工面粗さに応じて設定される。
 上述の制御方法を用いれば、放電電圧Vd及び放電加工機に由来する浮遊容量Cに依らずに均一な放電電荷量を加工極間に流すことができ、均一な加工面粗さを得ることができる。
 実施の形態3の方法において、放電電流の積分値は、接触式又は非接触式の電流センサにて得られた電圧値を、検出回路4内の積分回路を通して積分することで得ることができる。放電電流の積分値と閾値電荷量との比較は、検出回路4内のコンパレータで実現することができる。この場合、検出回路4による比較結果は、検出回路4と制御回路12,22との間のインターフェースを通じて伝送される。これに代え、電流センサにて得られた電圧値をAD(Analog Digital)コンバータによってデジタル値に変換し、制御回路12,22に伝送してもよい。この場合、放電電流の積分値と閾値電荷量との比較処理は、制御回路12,22で実施される。
 以上説明したように、実施の形態3に係る放電加工用電源装置は、実施の形態1に係る放電加工用電源装置の制御において、放電が検出されてオン状態に制御されていたスイッチング素子がオフ状態に制御された場合、加工極間に流れる電流を積分した放電電荷量が、予め決められた閾値電荷量に到達したときに、オフ状態に制御されていたスイッチング素子がオン状態に制御される。この制御により、放電電圧及び浮遊容量に依らずに均一な放電電荷量を加工極間に流すことができる。これにより、実施の形態3に係る放電加工用電源装置によれば、実施の形態1の効果に加え、均一な加工面粗さを得ることができる。
 また、実施の形態3に係る放電加工方法では、実施の形態1で説明した放電加工方法における第2のステップと第3のステップとの間に、放電が発生したときの放電電流を検出する検出ステップと、検出ステップで検出された放電電流を積分して放電電荷量を算出する算出ステップと、放電電荷量と予め設定された閾値電荷量とを比較する比較ステップと、を含む。そして、放電電荷量が閾値電荷量に到達した際に、第3及び第4のステップを実施する。このような制御により、放電電圧及び浮遊容量に依らずに均一な放電電荷量を加工極間に流すことができる。これにより、実施の形態3に係る放電加工方法によれば、実施の形態1の効果に加え、均一な加工面粗さを得ることができる。
実施の形態4.
 実施の形態1から3に係る放電加工用電源装置50は、図1に示されるように、2つの直流電源10,20を備える構成である。これに対し、実施の形態4では、1つの直流電源のみを用いる構成について開示する。図8は、実施の形態4に係る放電加工用電源装置を含む放電加工装置の構成例を示す図である。図8に示すように、実施の形態4に係る放電加工装置100Aは、放電加工用電源装置50Aと、NC装置80とで構成される。図8において、図1に示す実施の形態1に係る放電加工装置100と同一又は同等の構成要素には同一の符号を付し、重複する内容の説明は省略する。
 放電加工用電源装置50Aは、電源回路3と、検出回路4とを備える。電源回路3は、直流電源30と、制御回路35と、ブリッジ回路40とを備える。ブリッジ回路40は、第1のレグ41と、第2のレグ42とを備える。第1のレグ41は、直列に接続されるスイッチング素子31,32を有する。第2のレグ42は、直列に接続されるスイッチング素子33,34を有する。第2のレグ42は、第1のレグ41に並列に接続される。
 ブリッジ回路40において、直流電源30は、スイッチング素子31,33の接続端3aと、スイッチング素子32,34の接続端3bとの間に接続される。接続端3aは、直流電源30の高電位側に接続される端子であり、接続端3bは、直流電源30の低電位側に接続される端子である。なお、本稿では、スイッチング素子31,33をそれぞれ「第1の上側スイッチング素子」及び「第2の上側スイッチング素子」と記載し、スイッチング素子32,34をそれぞれ「第1の下側スイッチング素子」及び「第2の下側スイッチング素子」と記載することがある。
 また、ブリッジ回路40において、スイッチング素子31,32の接続端3cは、工具電極Eに接続され、スイッチング素子33,34の接続端3dは、被加工物Wに接続される。なお、第1のレグ41及び第2のレグ42における「第1」及び「第2」の呼称は便宜的なものであり、「第1」及び「第2」の呼称は入れ替えてもよい。即ち、接続端3cが被加工物Wに接続され、接続端3dが工具電極Eに接続される構成でもよい。
 検出回路4は、工具電極Eと被加工物Wとの間の加工極間の電圧及び電流を検出する。制御回路35は、検出回路4の検出値に基づいて、スイッチング素子31~34の導通を制御する。
 スイッチング素子31~34の一例は、図示のMOSFETであるが、これに限定されない。制御回路35によって、スイッチング素子31~34の導通状態を制御できる素子であればよく、IGBT又はIGBT以外のトランジスタ素子でもよい。
 制御回路35は、NC装置80に接続される。NC装置80は、制御回路35に対し、スイッチング素子31~34の各々に対し、駆動を開始する駆動開始指令、オン時間及びオフ時間といったパラメータを含む指令などを送信する。
 直流電源30は、スイッチング素子31,34をオンすることによって、図1の直流電源10と同様の極性の第1の直流電圧を加工極間に印加することができる。また、直流電源30は、スイッチング素子32,33をオンすることによって、第1の直流電圧とは逆極性の第2の直流電圧を加工極間に印加することができる。
 図9は、実施の形態4に係る放電加工用電源装置の制御方法の説明に供するフローチャートである。実施の形態4に係る放電加工用電源装置50Aは、実施の形態1に係る放電加工用電源装置50におけるスイッチング素子11の役割をスイッチング素子31,34の組が担い、スイッチング素子21の役割をスイッチング素子32,33の組が担っている。これらの点を除くその他の動作は、実施の形態1の動作と同じであり、ここでの説明は省略する。
 図10は、実施の形態4に係る放電加工用電源装置の制御方法の説明に供するタイミングチャートである。図10(a)には、図9のフローチャートで説明した各種の状態の推移が示されている。図10(b)には、図10(a)の状態に対応するスイッチング素子31,34へのゲート信号が示されている。図10(c)には、図10(a)の状態に対応するスイッチング素子32,33へのゲート信号が示されている。図10(d)には、図10(a)の状態に対応する極間電圧の変化が示されている。図10(e)には、図10(a)の状態に対応して加工極間に流れる放電電流の変化が示されている。
 図9と同様に、図10のタイミングチャートでは、図3におけるスイッチング素子11,21がそれぞれスイッチング素子31,34及びスイッチング素子32,33に置き換わっただけである。基本的な動作は実施の形態1と同じであり、ここでの説明は省略する。
 以上説明したように、実施の形態4に係る放電加工用電源装置は、ブリッジ回路と、直流電源と、検出回路と、制御回路とを備える。ブリッジ回路は、第1のレグと、第1のレグに並列に接続される第2のレグとを備える。第1のレグは、直列に接続される第1の上側スイッチング素子及び第1の下側スイッチング素子を有する。第2のレグは、直列に接続される第2の上側スイッチング素子及び第2の下側スイッチング素子を有する。第1の上側スイッチング素子と第1の下側スイッチング素子との接続端は工具電極に接続され、第2の上側スイッチング素子と第2の下側スイッチング素子との接続端は被加工物に接続される。直流電源は、第1の上側スイッチング素子と第2の上側スイッチング素子との接続端と、第1の下側スイッチング素子と第2の下側スイッチング素子との接続端との間に接続される。検出回路は、加工極間の電圧及び電流を検出する。制御回路は、検出回路の検出値に基づいて、第1の上側スイッチング素子、第1の下側スイッチング素子、第2の上側スイッチング素子及び第2の下側スイッチング素子の導通を制御する。このように構成された放電加工用電源装置において、検出回路は、第1の上側スイッチング素子及び第2の下側スイッチング素子、又は第1の下側スイッチング素子及び第2の上側スイッチング素子がオン状態に制御されたことによって加工極間に電源電圧が印加された際に発生した放電を検出し、制御回路は、放電が検出された際には、オン状態に制御されていた2つのスイッチング素子を共にオフ状態に制御し、オフ状態に制御されていた2つスイッチング素子を共にオン状態に制御する。これにより、1つの直流電源で実施の形態1と同等の効果を得ることができる。
 また、実施の形態4に係る放電加工方法は、直列に接続される第1の上側スイッチング素子と第1の下側スイッチング素子との接続端が工具電極に接続され、直列に接続される第2の上側スイッチング素子と第2の下側スイッチング素子との接続端が被加工物に接続され、第1の上側スイッチング素子と第2の上側スイッチング素子との接続端と、第1の下側スイッチング素子と第2の下側スイッチング素子との接続端との間に接続される直流電源によって、工具電極と被加工物とで形成される加工極間に第1の直流電圧及び第1の直流電圧と逆極性の第2の直流電圧を印加することで放電加工を行う放電加工方法である。実施の形態4に係る放電加工方法は、以下に示す第1から第4のステップの処理を含むものとすることができる。第1のステップでは、第1の上側スイッチング素子及び第2の下側スイッチング素子の組、又は第1の下側スイッチング素子及び第2の上側スイッチング素子の組のうちの何れかの組の2つのスイッチング素子をオン状態に制御して加工極間に第1の直流電圧又は第2の直流電圧を印加する。第2のステップでは、加工極間の電圧及び電流の検出値に基づいて、第1のステップの制御によって生じ得る加工極間の放電を検出する。第3のステップでは、第2のステップによって放電が検出された際に、オン状態に制御されていた2つのスイッチング素子の組をオフ状態に制御する。第4のステップでは、第3のステップの後に、オフ状態に制御されていた2つのスイッチング素子の組をオン状態に制御する。これにより、1つの直流電源で実施の形態1と同等の効果を得ることができる。
 なお、実施の形態4に係る放電加工用電源装置及び放電加工方法において、実施の形態2と同様に、放電検出状態1の直前に極間電圧判定状態1による処理を追加し、放電検出状態2の直前に極間電圧判定状態2による処理を追加してもよい。このようにすれば、実施の形態2の効果も得ることができる。
 また、実施の形態4に係る放電加工用電源装置及び放電加工方法において、実施の形態3と同様に、放電検出状態1の直前に放電電荷量判定状態1による処理を追加し、放電検出状態2の直前に放電電荷量判定状態2による処理を追加してもよい。このようにすれば、実施の形態3の効果も得ることができる。
実施の形態5.
 実施の形態1~4において、放電を検出してからスイッチング動作を切り替えるための時間T1が短くなればなるほど、加工極間に流れる放電電流を小さくすることができる。一方、実際には、検出信号及び制御信号の伝送時間、並びにスイッチング素子の動作時間によって処理が遅延するので、これらの遅延時間の要因を考慮する必要がある。
 そこで、実施の形態5に係る放電加工用電源装置では、実施の形態1~3におけるスイッチング素子11,21、及び実施の形態4におけるスイッチング素子31~34に、ワイドギャップ半導体素子を用いる。ワイドギャップ半導体素子は、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドなどのワイドバンドギャップ半導体で形成された素子である。ワイドギャップ半導体素子は、シリコン半導体素子と比べて、制御信号を入力してからスイッチング素子がオン及びオフの状態になるまでの遅延時間が短い。これにより、時間T1の最小値をより小さくすることが可能になり、結果として極間に流れる放電電流をより小さくし、より細かい加工面粗さを得ることが可能になる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1~3 電源回路、3a,3b,3c,3d 接続端、4 検出回路、10,20,30 直流電源、11,21,31~34 スイッチング素子、12,22,35 制御回路、40 ブリッジ回路、41 第1のレグ、42 第2のレグ、50,50A 放電加工用電源装置、80 NC装置、100,100A 放電加工装置、C 浮遊容量、E 工具電極、W 被加工物。

Claims (11)

  1.  工具電極と被加工物とで形成される加工極間に放電加工用の電圧を印加する放電加工用電源装置であって、
     前記加工極間に第1の直流電圧を印加する第1の直流電源と、
     前記加工極間に対して第1の直流電源と互いに並列に接続され、前記加工極間に前記第1の直流電圧とは逆極性の第2の直流電圧を印加する第2の直流電源と、
     前記第1の直流電源と前記加工極間との間に接続される第1のスイッチング素子と、
     前記第2の直流電源と前記加工極間との間に接続される第2のスイッチング素子と、
     前記加工極間の電圧及び電流を検出する検出回路と、
     前記検出回路の検出値に基づいて前記第1のスイッチング素子の導通を制御する第1の制御回路と、
     前記検出回路の検出値に基づいて前記第2のスイッチング素子の導通を制御する第2の制御回路と、
     を備え、
     前記検出回路は、前記第1のスイッチング素子及び前記第2のスイッチング素子のうちの何れか1つがオン状態に制御されたことによって前記加工極間に前記第1の直流電圧又は前記第2の直流電圧が印加された際に発生した放電を検出し、
     前記第1の制御回路及び前記第2の制御回路は、前記放電が検出された際には、オン状態に制御されていたスイッチング素子をオフ状態に制御し、オフ状態に制御されていたスイッチング素子をオン状態に制御する
     ことを特徴とする放電加工用電源装置。
  2.  前記放電が検出されて、前記オン状態に制御されていたスイッチング素子がオフ状態に制御された後に、前記オフ状態に制御されていたスイッチング素子をオン状態に制御するまでの時間は、前記放電が検出された際に前記検出回路によって検出された電圧値に基づいて決定される
     ことを特徴とする請求項1に記載の放電加工用電源装置。
  3.  前記放電が検出されて、前記オン状態に制御されていたスイッチング素子がオフ状態に制御された場合、前記加工極間に流れる電流を積分した放電電荷量が、予め決められた閾値電荷量に到達したときに、前記オフ状態に制御されていたスイッチング素子がオン状態に制御される
     ことを特徴とする請求項1に記載の放電加工用電源装置。
  4.  工具電極と被加工物とで形成される加工極間に放電加工用の電源電圧を印加する放電加工用電源装置であって、
     直列に接続される第1の上側スイッチング素子及び第1の下側スイッチング素子を有する第1のレグと、直列に接続される第2の上側スイッチング素子及び第2の下側スイッチング素子を有し、前記第1のレグに並列に接続される第2のレグとを備え、前記第1の上側スイッチング素子と前記第1の下側スイッチング素子との接続端が前記工具電極に接続され、前記第2の上側スイッチング素子と前記第2の下側スイッチング素子との接続端が前記被加工物に接続されるブリッジ回路と、
     前記第1の上側スイッチング素子と前記第2の上側スイッチング素子との接続端と、前記第1の下側スイッチング素子と前記第2の下側スイッチング素子との接続端との間に接続される直流電源と、
     前記加工極間の電圧及び電流を検出する検出回路と、
     前記検出回路の検出値に基づいて前記第1の上側スイッチング素子、前記第1の下側スイッチング素子、前記第2の上側スイッチング素子及び前記第2の下側スイッチング素子の導通を制御する制御回路と、
     を備え、
     前記検出回路は、前記第1の上側スイッチング素子及び前記第2の下側スイッチング素子、又は前記第1の下側スイッチング素子及び前記第2の上側スイッチング素子がオン状態に制御されたことによって前記加工極間に前記電源電圧が印加された際に発生した放電を検出し、
     前記制御回路は、前記放電が検出された際には、オン状態に制御されていた2つのスイッチング素子を共にオフ状態に制御し、オフ状態に制御されていた2つスイッチング素子を共にオン状態に制御する
     ことを特徴とする放電加工用電源装置。
  5.  前記第1のスイッチング素子及び前記第2のスイッチング素子、又は前記第1の上側スイッチング素子、前記第1の下側スイッチング素子、前記第2の上側スイッチング素子及び前記第2の下側スイッチング素子は、ワイドバンドギャップ半導体を用いて形成されている
     ことを特徴とする請求項1から4の何れか1項に記載の放電加工用電源装置。
  6.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     ことを特徴とする請求項5に記載の放電加工用電源装置。
  7.  請求項1から6の何れか1項に記載の放電加工用電源装置を備えて放電加工を行う放電加工装置。
  8.  工具電極と被加工物とで形成される加工極間に第1の直流電圧を印加する第1の直流電源と、前記加工極間に前記第1の直流電圧とは逆極性の第2の直流電圧を印加する第2の直流電源と、前記第1の直流電源と前記加工極間との間に接続される第1のスイッチング素子と、前記第2の直流電源と前記加工極間との間に接続される第2のスイッチング素子とを備える放電加工用電源装置を用いて行う放電加工方法であって、
     前記第1のスイッチング素子及び前記第2のスイッチング素子のうちの何れか1つをオン状態に制御して加工極間に直流電圧を印加する第1のステップと、
     加工極間の電圧及び電流の検出値に基づいて、前記第1のステップの制御によって生じ得る前記加工極間の放電を検出する第2のステップと、
     前記第2のステップによって前記放電が検出された際に、オン状態に制御されていたスイッチング素子をオフ状態に制御する第3のステップと、
     前記第3のステップの後に、オフ状態に制御されていたスイッチング素子をオン状態に制御する第4のステップと、
     を含むことを特徴とする放電加工方法。
  9.  前記第2のステップと前記第3のステップとの間には、
     前記放電が発生したときの放電電圧を検出する電圧検出ステップと、
     前記第3のステップの実施後に前記第4のステップを実施する時間の間隔を前記電圧検出ステップで検出された放電電圧に基づいて決定する決定ステップと、
     を含むことを特徴とする請求項8に記載の放電加工方法。
  10.  前記第2のステップと前記第3のステップとの間には、
     前記放電が発生したときの放電電流を検出する電流検出ステップと、
     前記電流検出ステップで検出された放電電流を積分して放電電荷量を算出する算出ステップと、
     前記放電電荷量と予め設定された閾値電荷量とを比較する比較ステップと、
     を含み、
     前記放電電荷量が前記閾値電荷量に到達した際に、前記第3及び第4のステップを実施する
     ことを特徴とする請求項8に記載の放電加工方法。
  11.  直列に接続される第1の上側スイッチング素子と第1の下側スイッチング素子との接続端が工具電極に接続され、直列に接続される第2の上側スイッチング素子と第2の下側スイッチング素子との接続端が被加工物に接続され、前記第1の上側スイッチング素子と前記第2の上側スイッチング素子との接続端と、前記第1の下側スイッチング素子と前記第2の下側スイッチング素子との接続端との間に接続される直流電源によって、前記工具電極と前記被加工物とで形成される加工極間に第1の直流電圧及び前記第1の直流電圧と逆極性の第2の直流電圧を印加することで放電加工を行う放電加工方法であって、
     前記第1の上側スイッチング素子及び前記第2の下側スイッチング素子の組、又は前記第1の下側スイッチング素子及び前記第2の上側スイッチング素子の組のうちの何れかの組の2つのスイッチング素子をオン状態に制御して加工極間に前記第1の直流電圧又は前記第2の直流電圧を印加する第1のステップと、
     加工極間の電圧及び電流の検出値に基づいて、前記第1のステップの制御によって生じ得る加工極間の放電を検出する第2のステップと、
     前記第2のステップによって前記放電が検出された際に、オン状態に制御されていた2つのスイッチング素子の組をオフ状態に制御する第3のステップと、
     前記第3のステップの後に、オフ状態に制御されていた2つのスイッチング素子の組をオン状態に制御する第4のステップと、
     を含むことを特徴とする放電加工方法。
PCT/JP2022/020731 2022-05-18 2022-05-18 放電加工用電源装置、放電加工装置及び放電加工方法 WO2023223479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280070539.7A CN118159377A (zh) 2022-05-18 2022-05-18 放电加工用电源装置、放电加工装置及放电加工方法
PCT/JP2022/020731 WO2023223479A1 (ja) 2022-05-18 2022-05-18 放電加工用電源装置、放電加工装置及び放電加工方法
JP2022562891A JP7237254B1 (ja) 2022-05-18 2022-05-18 放電加工用電源装置、放電加工装置及び放電加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020731 WO2023223479A1 (ja) 2022-05-18 2022-05-18 放電加工用電源装置、放電加工装置及び放電加工方法

Publications (1)

Publication Number Publication Date
WO2023223479A1 true WO2023223479A1 (ja) 2023-11-23

Family

ID=85503238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020731 WO2023223479A1 (ja) 2022-05-18 2022-05-18 放電加工用電源装置、放電加工装置及び放電加工方法

Country Status (3)

Country Link
JP (1) JP7237254B1 (ja)
CN (1) CN118159377A (ja)
WO (1) WO2023223479A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
CN102114559A (zh) * 2010-01-05 2011-07-06 北京安德建奇数字设备有限公司 一种交变极性脉冲电源
JP5409964B1 (ja) * 2012-10-30 2014-02-05 三菱電機株式会社 ワイヤ放電加工装置
JP2017052014A (ja) * 2015-09-07 2017-03-16 株式会社東芝 加工装置及び加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
CN102114559A (zh) * 2010-01-05 2011-07-06 北京安德建奇数字设备有限公司 一种交变极性脉冲电源
JP5409964B1 (ja) * 2012-10-30 2014-02-05 三菱電機株式会社 ワイヤ放電加工装置
JP2017052014A (ja) * 2015-09-07 2017-03-16 株式会社東芝 加工装置及び加工方法

Also Published As

Publication number Publication date
CN118159377A (zh) 2024-06-07
JPWO2023223479A1 (ja) 2023-11-23
JP7237254B1 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
TWI436843B (zh) 具有加工狀態判定功能之線切割放電加工機
JP5183827B1 (ja) 放電加工機用電源装置
JP5220036B2 (ja) 放電加工装置
WO2012114524A1 (ja) 放電加工機用電源装置およびその制御方法
JP6063068B2 (ja) ワイヤ放電加工機
JP2536223B2 (ja) 接触検出装置
WO2012140735A1 (ja) 放電加工機用電源装置および放電加工方法
JP2692510B2 (ja) 放電加工装置
WO2023223479A1 (ja) 放電加工用電源装置、放電加工装置及び放電加工方法
JP3882753B2 (ja) ワイヤ放電加工用電源装置及びワイヤ放電加工方法
JP5642810B2 (ja) 放電加工用電源装置
TWI610745B (zh) 放電加工裝置
JP2005531417A (ja) 電解加工のための方法および装置
JP3938044B2 (ja) 放電加工用電源装置
JPH0760548A (ja) 放電加工装置の制御装置
JP3627084B2 (ja) 放電加工機の電源装置
JP5968565B1 (ja) 放電加工装置
JP3726940B2 (ja) ワイヤカット放電加工装置
JP3876346B2 (ja) 放電加工用電源回路と放電加工装置及び放電加工方法
JP2002154015A (ja) 放電加工機の接触検出装置
JP2547365B2 (ja) 放電加工電源装置
JPWO2018216429A1 (ja) 放電加工機用電源装置、放電加工装置及び放電加工方法
JP3396515B2 (ja) 放電加工機の電源装置
KR950004763B1 (ko) 방전가공장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942684

Country of ref document: EP

Kind code of ref document: A1