WO2023221596A1 - 气溶胶产生装置 - Google Patents

气溶胶产生装置 Download PDF

Info

Publication number
WO2023221596A1
WO2023221596A1 PCT/CN2023/078536 CN2023078536W WO2023221596A1 WO 2023221596 A1 WO2023221596 A1 WO 2023221596A1 CN 2023078536 W CN2023078536 W CN 2023078536W WO 2023221596 A1 WO2023221596 A1 WO 2023221596A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
aerosol generating
disk
generating device
unit
Prior art date
Application number
PCT/CN2023/078536
Other languages
English (en)
French (fr)
Inventor
杜靖
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2023221596A1 publication Critical patent/WO2023221596A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to the field of electronic atomization, and more specifically, to an aerosol generating device.
  • Heat Not Burning (HNB) device is a combination of a heating device and an aerosol-generating substrate (processed plant leaf products).
  • the external heating device heats the aerosol-generating matrix at high temperature to a temperature where the aerosol-generating matrix can generate aerosols but is not sufficient to burn, allowing the aerosol-generating matrix to generate the aerosols required by the user without burning.
  • microwave heating devices are used on the market as equipment for heating aerosol-generating substrates.
  • the microwaves are generally fed in from one end and then resonate in the resonator.
  • the height of the cavity is generally above 30 mm. How to reduce the height of the cavity is a technical problem that the relevant industry wants to overcome.
  • microwave heating cavities are mainly designed based on ⁇ /4 coaxial resonant cavity.
  • the height of the coaxial resonant cavity is reduced by adding high-dielectric materials into the cavity.
  • the dielectric loss of the selected high-dielectric material is small (less than 0.001), its location is generally in a strong field area.
  • the high-dielectric material It will also inevitably be heated. This will cause some problems.
  • the energy entering the cavity is absorbed by the high-dielectric material, resulting in a reduction in the energy for heating the aerosol-generating matrix, which reduces the heating rate of the aerosol-generating matrix.
  • the high-dielectric material has obvious Temperature rise, and its contact with the cavity will cause a significant temperature rise in the cavity, which will cause heat dissipation problems.
  • the technical problem to be solved by the present invention is to provide an improved aerosol generating device in view of the shortcomings of related technologies.
  • the present invention constructs an aerosol generating device, including a microwave resonator; the microwave resonator includes an outer conductor unit used to define a resonant cavity and an outer conductor unit disposed on the outer conductor unit.
  • the inner conductor unit includes a conductor post, and the conductor post includes a conductor connected to the outer conductor unit.
  • the inner conductor unit further includes a first conductor disk in ohmic contact with the conductor post; the first conductor disk is provided at the free end.
  • the first conductor disk is fixed to the free end wall.
  • the first conductor disk and the conductor post are integrally formed.
  • the first conductor disk and the conductor post are coaxial.
  • the first conductor plate and the conductor post are made of metal material
  • the surface of the first conductor disk is provided with a third conductive layer, and the surface of the conductor post is provided with
  • the inner conductor unit further includes at least one second conductor disk in an annular shape.
  • the at least one second conductor disk coaxially surrounds the outer peripheral wall of the conductor post and is in ohmic contact with the conductor post.
  • the at least one second conductor disk is arranged below the first conductor disk at axial intervals along the conductor column.
  • the first conductor disk is disk-shaped.
  • the diameter of the first conductor disk is larger than the diameter of the conductor post.
  • the inner conductor unit further includes an electrically conductive probe device; the probe device is in ohmic contact with the first conductor disk.
  • the inner conductor unit further includes a penetration channel that axially penetrates the conductor column and the first conductor disk; the probe device is inserted into the penetration channel near one end of the first conductor disk, and is connected with the penetration channel.
  • the conductor post and the first conductor disk are in ohmic contact.
  • the probe device includes a conductive and longitudinal hollow probe and a temperature measurement component located in the hollow probe;
  • One end of the hollow probe close to the first conductor disk is inserted into the first conductor disk and the conductor column in sequence, and the outer wall surface of the hollow probe is in contact with the first conductor disk and/or the conductor Column ohmic contact.
  • the shape of the end of the hollow probe away from the conductor column includes a plane shape, a sphere, an ellipsoid, a cone, or a truncated cone.
  • the hollow probe includes a conductive second side wall and a conductive second end wall;
  • One end of the second side wall away from the first conductor plate extends toward the second end wall to connect with the second end wall.
  • the maximum diameter of the end of the second side wall away from the first conductor disk is larger than the diameter of the second end wall.
  • an end of the second side wall away from the first conductor plate is smoothly connected to the second end wall.
  • the hollow probe further includes a hollow channel extending along its axial direction; and the temperature measurement component is accommodated in the hollow channel.
  • the microwave resonator is a quarter-wavelength coaxial line resonator.
  • the aerosol generating device further includes a receiving seat for loading the aerosol generating substrate;
  • the receiving seat includes a receiving portion disposed in the resonant cavity to receive the aerosol generating substrate;
  • the bottom of the receiving part is attached to the top of the first conductor disk.
  • the present invention also constructs an aerosol generating device, including a quarter-wavelength coaxial line resonator; the coaxial line resonator includes a resonant cavity and an inner conductor unit located in the resonant cavity;
  • the inner conductor unit includes a conductor post close to the short-circuited end of the coaxial line resonator
  • the inner conductor unit further includes a first conductor disk in ohmic contact with the conductor post; the first conductor disk is provided on the top of the conductor post.
  • the first conductor disk is disk-shaped and is coaxially fixed to the top of the conductor post.
  • the first conductor disk and the conductor post are integrally formed.
  • the outer diameter of the first conductor disk is larger than the diameter of the conductor post.
  • the aerosol generating device further includes a receiving seat installed on the open end of the coaxial line resonator;
  • the receiving seat includes a receiving portion for receiving the aerosol-generating matrix, and the receiving portion is located in the resonant cavity of the coaxial line resonator;
  • the inner conductor unit further includes a probe device close to the open end, the probe device includes a conductive hollow probe; the hollow probe is in ohmic contact with the first conductor disk, and the hollow probe One end extends into the receiving part to act on the aerosol generating matrix.
  • one end of the hollow probe far away from the conductor column extends into the receiving portion; one end of the hollow probe close to the conductor column is inserted into the first conductor disk and the conductor column, and the The outer wall surface of the hollow probe is connected to the first conductor disk and the conductor post.
  • the shape of the end of the hollow probe away from the conductor column includes a plane shape, a spherical shape, an ellipsoid shape, a conical shape or a truncated cone shape.
  • the inner conductor unit further includes at least one second conductor disk in an annular shape.
  • the at least one second conductor disk coaxially surrounds the outer peripheral wall of the conductor post and is in ohmic contact with the conductor post.
  • the at least one second conductor disk is arranged below the first conductor disk at axial intervals along the conductor column.
  • Implementing the aerosol generating device of the present invention has the following beneficial effects: by adding a first conductor disk structure at the top of the inner conductor in the resonant cavity, the height of the resonant cavity can be effectively reduced; the generation of heated aerosols caused by related technologies can be avoided The energy of the matrix is reduced, which reduces the heating rate of the aerosol-generating matrix, heat dissipation problems and other side effects.
  • Figure 1 is a schematic three-dimensional structural diagram of an aerosol generating device and an aerosol generating matrix in some embodiments of the present invention
  • Figure 2 is a schematic three-dimensional structural diagram of an aerosol generating device in some embodiments of the present invention.
  • Figure 3 is a schematic structural diagram of a longitudinal section of the aerosol generating device shown in Figure 2;
  • Figure 4 is a schematic three-dimensional exploded structural view of the aerosol generating device shown in Figure 2;
  • Figure 5 is a schematic longitudinal cross-sectional structural diagram of the aerosol generating device shown in Figure 4 in an exploded state;
  • Figure 6 is a schematic longitudinal cross-sectional structural view of the probe device in the aerosol generating device of the present invention.
  • Figure 7 is a schematic three-dimensional structural diagram of an aerosol generating device in other embodiments of the present invention.
  • Figure 8 is a schematic three-dimensional structural diagram of an aerosol generating device in some embodiments of the present invention.
  • Figure 9 is a resonance frequency diagram of the aerosol generating device of the present invention without a first conductor disk
  • Figure 10 is a resonance frequency diagram of the aerosol generating device of the present invention in a state where a first conductor disk is installed;
  • Figure 11 is a resonant frequency diagram of the aerosol generating device of the present invention when the diameter of the first conductor disk is limited to 10 mm, and the inner diameter of the outer conductor unit is limited to 10.6 mm;
  • Figure 12 is a resonant frequency diagram of the aerosol generating device of the present invention when the diameter of the first conductor disk is limited to 8 mm and the inner diameter of the outer conductor unit is limited to 10.6 mm;
  • Figure 13 is a resonant frequency diagram of the aerosol generating device of the present invention in a state where the diameter of the first conductor disk is limited to 10.4mm, and the inner diameter of the outer conductor unit is limited to 10.6mm;
  • Figure 14 is a microwave field distribution diagram of a hollow probe with a flat-top structure in the aerosol generating device of the present invention.
  • Figure 15 is a microwave field distribution diagram of a hollow probe with a truncated cone-shaped top in the aerosol generating device of the present invention.
  • the aerosol generating device 1 can use microwaves to heat the aerosol generating substrate 40 to atomize it to generate aerosol for the user to inhale.
  • the aerosol-generating substrate 40 is a solid aerosol-generating substrate such as processed plant leaf preparations. It can be understood that in other embodiments, the aerosol generating matrix 40 may also be a liquid aerosol generating matrix.
  • the aerosol generating device 1 may include a microwave resonator 10 , a receiving seat 20 and a microwave feeding device 30 in some embodiments.
  • the microwave resonator 10 may be cylindrical in some embodiments, and may include a resonant cavity 13 in which microwaves continuously oscillate.
  • the receiving seat 20 is used to load the aerosol generating matrix 40, which is fixedly or detachably installed on the microwave resonator 10, so that the aerosol generating matrix 40 inside is exposed to the microwave field in the resonant cavity 13 and is microwaved. Heated atomization.
  • the microwave feeding device 30 is connected to the microwave resonator 10 and is used to feed the microwave generated by the microwave generating device (not shown) into the resonant cavity 13 .
  • the microwave resonator 10 is not limited to a cylindrical shape, and may also be in a square cylinder, an elliptical cylinder or other shapes.
  • the microwave resonator 10 may be a quarter-wavelength coaxial line resonator, which may include a cylindrical outer conductor unit 11 for electromagnetic shielding, and a The inner conductor unit 12 and the medium (for example, air) between the outer wall surface of the inner conductor unit 12 and the inner wall surface of the outer conductor unit 11 , the outer conductor unit 11 and the inner conductor unit 12 together define the above-mentioned resonant cavity 13 .
  • the first end of the inner conductor unit 12 is in ohmic contact with the first end wall 112 of the outer conductor unit 11 , forming a short-circuit end A of the microwave resonator 10 .
  • the second end of the inner conductor unit 12 extends toward the first opening 110 of the outer conductor unit 11 and is not in direct ohmic contact with the outer conductor unit 11 , forming an open end B of the microwave resonator 10 .
  • the receiving seat 20 is installed (for example, detachably or non-detachably embedded) on the open end B of the microwave resonator 10 and is connected to the second end of the inner conductor unit 12 .
  • the axis of the inner conductor unit 12 and the axis of the outer conductor unit 11 coincide with or are parallel to each other. Preferably, the two coincide with each other.
  • the outer conductor unit 11 may include an electrically conductive first side wall 111 , an electrically conductive first end wall 112 , and a first opening 110 in some embodiments.
  • the first side wall 111 may be cylindrical in some embodiments and includes a first end and a second end opposite to the first end.
  • the first end wall 112 is closed on the first end of the first side wall 111 to form a closed end of the outer conductor unit 11 .
  • the first opening 110 is formed on the second end of the first side wall 111 to form an open end of the outer conductor unit 11 for the receiving base 20 to be embedded therein.
  • a radially penetrating feed hole 1110 may be provided on the first side wall 111 of the outer conductor unit 11 near the first end wall 112 for the microwave feed device 30 to be installed therein.
  • the outer conductor unit 11 can be integrally made of a conductive metal material, and the material can be aluminum alloy, copper, gold, silver, stainless steel and other conductive metals. It can be understood that the outer conductor unit 11 is not limited to being integrally made of conductive material. It can also be realized by plating the first conductive layer on the inner wall surface of the non-conductive cylinder. In some embodiments, the first conductive layer may be a gold plating layer, a silver plating layer, a copper plating layer, or the like. It can be understood that the outer conductor unit 11 is not limited to a cylindrical shape, and may also be in a square cylindrical shape, an elliptical cylindrical shape, or other suitable shapes.
  • the inner conductor unit 12 may include a conductor post 121 , a first conductor disk 123 located on the top of the conductor post 121 , and a probe device 122 with one end embedded in the conductor post 121 The other end of the probe device 122 is inserted into the receiving seat 20 to act on the aerosol generating matrix 40.
  • the conductor post 121 is connected to the outer conductor unit 11 to form good ohmic contact with the outer conductor unit 11 .
  • the first conductor disk 123 is used to increase its own inductance and capacitance, thereby further reducing the overall size of the aerosol generating device 1 .
  • the probe device 122 forms a good ohmic contact with the conductor post 121 so that the microwave can be transmitted to the probe device 122 via the conductor post 121 .
  • the probe device 122 is specially configured in terms of shape and layout to promote a more even distribution of the microwave field in the receiving seat 20 , thereby achieving more precise control of the aerosol-generating matrix 40 in the receiving seat 20 .
  • the uniform microwave heating effect further improves the utilization rate of the aerosol-generating substrate 40.
  • the conductor post 121 is cylindrical, is placed in the outer conductor unit 11 , and extends along the axial direction of the outer conductor unit 11 .
  • the axis of the conductor post 121 coincides with the axis of the outer conductor unit 11 .
  • one end of the conductor post 121 close to the first end wall 112 of the outer conductor unit 11 is fixedly connected to the inner wall surface of the first end wall 112 of the outer conductor unit 11 , forming a fixed end of the conductor post 121 .
  • An end of the conductor post 121 away from the first end wall 112 extends toward the first opening 110 of the outer conductor unit 11 to form a free end of the conductor post 121 , and the free end of the conductor post 121 can be connected to the first conductor plate 123 .
  • the conductor post 121 can be made of conductive materials such as metal, preferably aluminum alloy or copper as the conductive material. In some other embodiments, the conductor post 121 can also be formed by coating a second conductive layer on the outer wall of a cylinder made of non-conductive material.
  • the second conductive layer is a metal-plated film layer, such as a gold-plated layer or a silver-plated layer. layer, copper plating layer, etc.
  • the conductor post 121 is in the shape of a cylinder. Of course, it can also be in the shape of a square column, an elliptical column, a stepped column, an irregular column, or other shapes.
  • the first conductor disk 123 is connected to an end of the conductor post 121 away from the first end wall 112 , that is, connected to the top of the conductor post 121 , and the first conductor disk 123 and the conductor post 121 form a good connection. Ohmic contact.
  • the diameter of the first conductor disk 123 is larger than the diameter of the conductor post 121 .
  • the bottom of the first conductor plate 123 is attached and fixedly connected to the top of the conductor post 121 .
  • the above-mentioned connection method may be welding, bonding, screwing or integral molding.
  • the first conductor plate 123 can be made of conductive materials such as metal, preferably aluminum alloy or copper as the conductive material. In some other embodiments, the first conductor plate 123 can also be formed by coating an outer wall surface made of non-conductive material with a third conductive layer.
  • the third conductive layer is a metal-plated film layer, such as a gold-plated layer or a silver-plated layer. , copper plating layer, etc.
  • the first conductor disk 123 and the conductor post 121 are made of the same material, that is, they are made of the same conductive material, or they are made of the same non-conductive material and coated with a conductive layer of the same material, that is, they are made of the third conductive layer.
  • the first conductor disk 123 is in the shape of a disk. Specifically, the first conductor disk 123 is in the shape of a cylinder with a diameter greater than its axial length. Of course, it can also be in the shape of a square column, an elliptical column, a stepped column, an irregular column, or other shapes. The shape and size of the first conductor disk 123 are confirmed based on simulation to meet the requirement of reducing the cavity height.
  • the inner conductor unit 12 further includes at least one second conductor disk 124 in ohmic contact with the conductor post 121 .
  • the at least one second conductor disk 124 is disposed below the first conductor disk 123 .
  • at least one second conductor disk 124 is annular and coaxially surrounds the outer peripheral wall of the conductor post 121 .
  • the second conductor plate 124 can be made of conductive materials such as metal, preferably aluminum alloy or copper as the conductive material. In some other embodiments, the second conductor plate 124 can also be formed by coating an outer wall surface made of non-conductive material with a sixth conductive layer.
  • the sixth conductive layer is a metal-plated film layer, such as a gold-plated layer or a silver-plated layer. , copper plating layer, etc.
  • the first conductor disk 123, the second conductor disk 124 and the conductor post 121 are made of the same material, that is, they are made of the same conductive material, or they are made of the same non-conductive material and coated with the sixth conductive layer of the same material. .
  • the second conductor disk 124 has an annular disk structure.
  • it can also be in the form of an annular square columnar structure, an annular elliptical columnar structure, an annular stepped columnar structure, an annular irregular columnar structure, or other shapes; specifically, confirm the shape and size of the second conductor disk 124 according to simulation, so as to Meet the requirement to reduce the height of the cavity.
  • the second conductor disk 124 When the number of the second conductor disk 124 is one, the second conductor disk 124 is arranged at intervals below the first conductor disk 123 , and the outer diameters of the second conductor disk 124 and the first conductor disk 123 may be the same or different. When the number of the second conductor disks 124 is multiple, the plurality of second conductor disks 124 are located below the first conductor disk 123 and are evenly spaced along the axial direction of the conductor column 121 and arranged on the outer peripheral wall of the conductor column 121 , adjacent to the first conductor disk 123 .
  • the distance between the second conductor disk 124 of a conductor disk 123 and the first conductor disk 123 is equal to the distance between two adjacent second conductor disks 124; the outer diameter between the plurality of second conductor disks 124 can be Identical or different, the outer diameter of the first conductor disk 123 and the outer diameters of the plurality of second conductor disks 124 may be partially the same, completely different, or completely different. Among them, the specific sizes of the first conductor disk 123 and the second conductor disk 124 can be determined through simulation and experiment.
  • the frequency will shift.
  • the frequency shift will become smaller; but when the thickness of the first conductor disk 123 or the first conductor disk 123 and the second conductor disk 124 reaches a certain level, the frequency shift will become relatively small.
  • the diameter of the first conductor disk 123 or the first conductor disk 123 and the second conductor disk 124 has a great influence on the frequency.
  • the diameter of the first conductor disk 123 or the first conductor disk 123 and the second conductor disk 124 The larger the value, the lower the resonant frequency, which is more conducive to reducing the axial length of the outer conductor unit 11 .
  • the inner conductor unit 12 further includes a penetration channel 1211 that axially penetrates the conductor post 121 and the first conductor plate 123 .
  • the penetration channel 1211 can be used for the probe device 122 to be inserted and/or penetrated.
  • the penetration channel 1211 is in the shape of a right cylinder and is formed axially through the central axis of the conductor post 121 and the first conductor disk 123 .
  • an end of the hollow probe 1221 of the probe device 122 close to the first conductor disk 123 is inserted into the through channel 1211 to embed the probe device 122 on the conductor post 121 .
  • the penetration channel 1211 is in the corresponding position of the conductor post 121 or the first conductor disk 123 .
  • the wall surface also needs to be coated with a third conductive layer so that the hollow probe 1221 can form good ohmic contact with the first conductor disk 123 or the first conductor disk 123 and the conductor post 121 .
  • the probe device 122 in some embodiments may include a conductive and elongated hollow probe 1221 and a temperature measurement component 1222 disposed in the hollow probe 1221 .
  • the hollow probe 1221 may be in ohmic contact with the first conductor disk 123, or the conductor post 121 and the first conductor disk 123.
  • one end of the hollow probe 1221 close to the first conductor plate 123 is inserted into the through channel 1211 from the top of the first conductor plate 123, passes through the first conductor plate 123, and is then disposed in the corresponding conductor in the through channel 1211.
  • the position of the post 121 is such that the corresponding outer peripheral surface of the hollow probe 1221 is connected to the first conductor disk 123 and the conductor post 121 to form a good ohmic contact.
  • the hollow probe 1221, the first conductor disk 123, and the conductor post 121 are arranged coaxially.
  • the temperature measurement component 1222 is used to monitor the temperature inside the aerosol-generating matrix 40 when the aerosol-generating matrix 40 is inserted into the hollow probe 1221 .
  • the hollow probe 1221 needs to be externally conductive and form good ohmic contact with the first conductor disk 123; at the same time, the higher the conductivity of the outer surface of the hollow probe 1221, the easier the microwave conduction, and it can also avoid The hollow probe 1221 consumes the microwaves through wall current loss, causing itself to heat up.
  • the hollow probe 1221 has a hollow structure, which includes a conductive second side wall 1223, a conductive second end wall 1224, and a second opening 1225.
  • the second side wall 1223 may be cylindrical in some embodiments; the second end wall 1224 is closed at an end of the second side wall 1223 away from the first conductor plate 123 to form a closed end of the hollow probe 1221 .
  • the second opening 1225 is formed at an end of the second side wall 1223 close to the first conductor plate 123 to form an open end of the hollow probe 1221; the second opening 1225 is used for the connecting wire 1228 of the temperature measurement component 1222 to pass through.
  • the second side wall 1223, the second end wall 1224 and the second opening 1225 together form a hollow channel 1226 with an opening, and the temperature measuring component 1222 is received in the hollow channel 1226.
  • the top of the hollow probe 1221 that is, the end far away from the first conductor disk 123, the shape of the end can be a flat top, a sphere, an ellipsoid, a cone, a truncated cone, etc.; preferably , the top of the hollow probe 1221 is truncated.
  • the end of the second side wall 1223 adjacent to the second end wall 1224 extends along the direction of the second end wall 1224 to be connected to the outer peripheral edge of the second end wall 1224; wherein the second end wall 1224 is The diameter of the planar structure is smaller than the maximum diameter of the end of the second side wall 1223 adjacent to the second end wall 1224 .
  • the connection between the end of the second side wall 1223 adjacent to the second end wall 1224 and the second end wall 1224 is a smooth connection.
  • the local field strength of the microwave field can be enhanced to increase the atomization speed of the atomized aerosol generating substrate 40; the best effect is achieved when the top of the hollow probe 1221 is in the shape of a truncated cone. good.
  • the hollow probe 1221 can be made of conductive materials such as metal, preferably stainless steel, aluminum alloy or copper as the conductive material.
  • the hollow probe 1221 can also be made of non-conductive material, but it needs to be coated with a fourth conductive layer on its outer wall.
  • the fourth conductive layer is a metal-plated film layer, such as a gold-plated layer, Silver layer, copper plating layer, etc.
  • the cross-section of the hollow probe 1221 is circular, of course, it may also be square, elliptical, triangular, etc.
  • the temperature measuring component 1222 may be a temperature sensor, such as a temperature measuring thermocouple.
  • the temperature measurement component 1222 may include a temperature measurement probe 1227 and a connecting wire 1228 electrically connected to the temperature measurement probe 1227 .
  • the temperature measurement probe 1227 is located in an end of the hollow probe 1221 away from the first conductor plate 123, and can be connected to the control device ( (not shown) is electrically connected, and then feeds back the temperature inside the aerosol generating matrix 40 to the control device.
  • the receiving seat 20 may include a receiving part 21 and a fixing part 22 integrally connected with the receiving part 21 .
  • the receiving part 21 is used to receive the aerosol generating matrix 40; the fixing part 22 is used to axially seal the first opening 110 of the outer conductor unit 11, and allows the receiving part 21 to extend into the receiving part 21 and connect with the inner conductor unit. 12 phases connected.
  • the receiving seat 20 may be made of a low dielectric loss, high temperature resistant material, for example, one or more of plastic, ceramic, glass, alumina, zirconia, and silicon oxide.
  • polytetrafluoroethylene PEEK, polyether ether ketone PTFE, and PPSU polyphenylsulfone resin are preferred; among ceramic materials, glass, quartz glass, alumina, and zirconium oxide are preferred.
  • the loss tangent of the material of the receiving seat 20 is preferably less than 0.1.
  • the receiving base 20 may include a plurality of longitudinal positioning ribs 23 and a plurality of longitudinal supporting ribs 25 .
  • These positioning ribs 23 are evenly spaced in the circumferential direction of the walls of the receiving cavity 210 and/or the first through hole 220 .
  • Each positioning rib 23 extends in a direction parallel to the axis of the receiving base 20 .
  • These support ribs 25 are evenly spaced and radially distributed on the bottom surface of the receiving cavity 210 .
  • the positioning ribs 23 can be used to clamp the aerosol generating matrix 40 inserted into the receiving cavity 210 and/or the first through hole 220.
  • a longitudinally extending first air inlet is formed between each two adjacent positioning ribs 23.
  • the support ribs 25 are used to support the aerosol generating matrix 40 in one direction, and form a number of radial second air inlet channels in the other direction. These second air inlet channels are respectively connected with these first air inlet channels to facilitate ambient air to be sucked into the bottom of the aerosol generating matrix 40 and then enter the aerosol generating matrix 40 to take away the aerosol generated by microwave heating.
  • the receiving portion 21 may be cylindrical in some embodiments, and its outer diameter may be smaller than the inner diameter of the outer conductor unit 11 .
  • the receiving portion 21 may include an axial receiving cavity 210 for receiving the aerosol generating matrix 40 .
  • the fixing part 22 can be annular and coaxially connected with the receiving part 21 .
  • the fixing portion 22 can be coaxially blocked in the first opening 110 of the outer conductor unit 11 to coaxially fix the receiving portion 21 in the microwave resonator 10 .
  • the fixing part 22 includes an axial first through hole 220 that communicates the receiving chamber 210 with the environment, so that the aerosol generating matrix 40 can be placed into the receiving chamber 210 through the first through hole 220 .
  • the receiving part 21 may be cylindrical in some embodiments, and includes a flat third bottom wall 211 and a cylindrical third side wall 212 surrounding the edge of the third bottom wall 211.
  • the outer diameter of the third side wall 212 is is smaller than the inner diameter of the outer conductor unit 11 .
  • the third bottom wall 211 just abuts the top of the first conductor plate 123 .
  • the receiving portion 21 further includes a second through hole 26 provided in the third bottom wall 211 .
  • the second through hole 26 is formed axially through the third bottom wall 211; preferably, the second through hole 26 is provided in the middle of the third bottom wall 211.
  • the microwave feeding device 30 may be a coaxial connector in some embodiments, and may be connected to a microwave source (not shown) provided outside the outer conductor unit 11 to feed microwaves into the cavity. body.
  • FIG. 5 shows the aerosol generation device 1 according to Embodiment 1 of the present invention.
  • the microwave feed device 30 may include an inner conductor 31, an outer conductor 33, and a conductor between the inner conductor 31 and the outer conductor 33. dielectric layer 32 between them.
  • the microwave feed device 30 When the microwave feed device 30 is installed on the microwave resonator 10, its inner conductor 31 is in ohmic contact with the inner wall surface of the outer conductor unit 11 and/or the outer surface of the conductor post 121 of the inner conductor unit 12, and its outer conductor 33 is in ohmic contact with the outer surface.
  • the surface of the conductor unit 11 is in ohmic contact to feed microwaves into the microwave resonator 10 .
  • the inner conductor 31 of the microwave feed device 30 is in a straight shape.
  • the inner conductor 31 is in ohmic contact with the surface of the conductor post 121 and is in ohmic contact with the conductor post 121.
  • the axes of 121 are perpendicular to each other.
  • FIG. 7 shows another aerosol generating device 1 in Embodiment 2 of the present invention. It has basically the same structure as the above-mentioned aerosol generating device 1. The difference between the two is that a second microwave feeding device 30a is used instead of the above-mentioned aerosol. The microwave feeding device 30 of the generating device 1 is generated.
  • the second microwave feeding device 30a may be a coaxial connector, which may include a second inner conductor 31a, a second outer conductor 33a, and a second inner conductor 31a and a second outer conductor 33a between the second inner conductor 31a and the second outer conductor 33a.
  • second dielectric layer 32a When the second microwave feeding device 30a is installed on the microwave resonator 10, its second inner conductor 31a is in ohmic contact with the inner wall surface of the outer conductor unit 11, and its second outer conductor 33a is in ohmic contact with the surface of the outer conductor unit 11, To feed microwaves into the microwave resonator 10 .
  • the second inner conductor 31a of the second microwave feeding device 30a is L-shaped in this embodiment, and may include a first section 311a perpendicular to the axis of the microwave resonator 10 and a second section parallel to the axis of the microwave resonator 10 312a, the second section 312a is in ohmic contact with the first end wall 112 of the outer conductor unit 11.
  • the inner conductor 31 and/or the second inner conductor 31a may be made of conductive materials such as metal in some embodiments, preferably aluminum or copper as the conductive material.
  • the inner conductor 31 and/or the second inner conductor 31a can also be made of non-conductive material, but it needs to be coated with a fifth conductive layer on its outer wall surface.
  • the fifth conductive layer is a metallized film. layers, such as gold plating, silver plating, copper plating, etc.
  • the inner conductor 31 and/or the second inner conductor 31a may be a coupling ring.
  • the outside of the coupling ring has a coaxial structure and may be connected to a microwave source to feed microwaves into the cavity.
  • the resonant frequency can reach a range of 2.4-2.5 GHz.
  • Figure 9 shows a resonance frequency diagram of the aerosol generating device 1 in Embodiment 3.
  • the difference between the aerosol generating device 1 in this embodiment and the aerosol generating device 1 in Embodiment 1 described above is that in Embodiment 3
  • the first conductor disk 123 is not provided in the outer conductor unit 11 of the aerosol generating device 1 .
  • the resonant frequency of the aerosol generating device 1 is 2.9375GHz, and S11 is -3.77db.
  • you want to lower the resonant frequency you need to increase the height of the resonant cavity 13 .
  • Figure 10 shows the resonant frequency diagram of the aerosol generating device 1 in Embodiment 1. It can be seen that by arranging the first conductor disk 123 in the outer conductor unit 11 , the resonant frequency is 2.4375GHz, S11 is -27.75db, and the frequency There is a significant reduction.
  • the axial length of the outer conductor unit 11 or its resonant cavity 13 can be successfully reduced to less than 25 mm while ensuring that the resonant frequency is between 2.4-2.5 GHz.
  • Figure 11 shows a resonance frequency diagram of the aerosol generating device 1 in Embodiment 1-1.
  • the difference between the aerosol generating device 1 in this embodiment and the aerosol generating device 1 in Embodiment 1 described above is that
  • the diameter of the first conductor disk 123 in 1-1 is limited to 10 mm, and the inner diameter of the outer conductor unit 11 is limited to 10.6 mm.
  • the resonant frequency is 2.4375GHz and S11 is -27.75db .
  • Figure 12 shows a resonance frequency diagram of the aerosol generating device 1 in Embodiment 1-2.
  • the difference between the aerosol generating device 1 in this embodiment and the aerosol generating device 1 in Embodiment 1-1 described above is that,
  • the diameter of the first conductor disk 123 in Embodiment 1-2 is limited to 8 mm, and the inner diameter of the outer conductor unit 11 is limited to 10.6 mm.
  • the resonant frequency is 2.87GHz and S11 is -8.02db .
  • Figure 13 shows a resonance frequency diagram of the aerosol generating device 1 in Embodiment 1-3.
  • the difference between the aerosol generating device 1 in this embodiment and the aerosol generating device 1 in Embodiment 1-1 described above is that,
  • the diameter of the first conductor disk 123 in Embodiment 1-3 is limited to 10.4 mm, and the inner diameter of the outer conductor unit 11 is limited to 10.6 mm.
  • the resonant frequency is 2.16GHz and S11 is -13.01db .
  • Figure 14 shows the microwave field distribution diagram of the partial structure of the probe device 122 above the first conductor disk 123 in the aerosol generating device 1 in Embodiment 4.
  • the aerosol generating device 1 and The difference between the aerosol generating device 1 of the above-mentioned Embodiment 1 is that the top of the hollow probe 1221 in the aerosol generating device 1 of Embodiment 4 has a flat-top structure .
  • the microwave source power is set to 1w.
  • the strongest electric field of the microwave field is approximately 40385V/m.
  • Figure 15 shows the microwave field distribution diagram of the partial structure of the probe device 122 above the first conductor disk 123 in the aerosol generation device 1 in Embodiment 1.
  • the top of the hollow probe 1221 in this embodiment is in the shape of Cone-shaped structure.
  • the microwave source power is also set to 1w, and the strongest electric field of the microwave field reaches about 104540V/m. At the same time, the microwave field is more focused on the top of the hollow probe 1221 .
  • the shape of the top of the hollow probe 1221 has a strong influence on the microwave field distribution. It can be understood that when the top of the hollow probe 1221 is pointed, the field strength of the microwave field is greater and the heating speed is faster; at the same time, the distribution of the microwave field can also be changed.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种气溶胶产生装置(1),其包括微波谐振器(10);微波谐振器(10)包括用于界定谐振腔(13)的外导体单元(11)以及设置于该外导体单元(11)中的内导体单元(12),外导体单元(11)具有一个开口端(110)和一个封闭端(112),内导体单元(12)一端连接于外导体单元(11)的封闭端(112)、一端朝外导体单元(11)的开口端(110)延伸;内导体单元(12)包括导体柱(121),导体柱(121)包括一个连接于外导体单元(11)封闭端(112)的固定端和一个朝外导体单元(11)开口端(110)延伸的自由端;内导体单元(12)还包括与导体柱(121)欧姆接触的第一导体盘(123);第一导体盘(123)设于自由端;其可有效降低谐振腔(13)的高度。

Description

气溶胶产生装置 技术领域
本发明涉及电子雾化领域,更具体地说,涉及一种气溶胶产生装置。
背景技术
加热不燃烧(Heat Not Burning,HNB)装置,是一种加热装置加上气溶胶产生基质(经过处理的植物叶类制品)的组合设备。外部加热装置通过高温加热到气溶胶产生基质可以产生气溶胶但是却不足以燃烧的温度,能在不燃烧的前提下,让气溶胶产生基质产生用户所需要的气溶胶。
目前市场上采用微波加热装置,作为加热气溶胶生成基质的设备,其微波一般从一端馈入,然后在谐振器内进行谐振。相关技术中的同轴微波加热腔体,由于λ/4波长原理的限制,腔体的高度一般在30mm以上,如何缩小腔体高度是相关业界想要攻克的技术问题。
目前微波加热的腔体主要基于λ/4同轴谐振腔进行设计。在相关技术中,是通过在腔体内添加高介电材料的方法,实现了同轴谐振腔高度的减小。然而,在该种技术方案当中,所选高介电材料虽然介电损耗较小(小于0.001),但是其位置一般处于强场区,在微波加热植物叶类的介质的同时,高介电材料也不可避免的会被加热。这会带来一些问题,一方面进入腔体的能量被高介电材料吸收,导致加热气溶胶产生基质的能量减少,降低了气溶胶产生基质的升温速度;另一方面高介电材料有明显温升,而其与腔体接触,会导致腔体有明显温升,进而带来散热问题。
发明内容
本发明要解决的技术问题在于,针对相关技术的缺陷,提供一种改进的气溶胶产生装置。
本发明解决其技术问题所采用的技术方案是:本发明构造一种气溶胶产生装置,包括微波谐振器;所述微波谐振器包括用于界定谐振腔的外导体单元以及设置于该外导体单元中的内导体单元,所述外导体单元具有一个开口端和一个封闭端,所述内导体单元一端连接于所述外导体单元的封闭端、一端朝所述外导体单元的开口端延伸;
所述内导体单元包括导体柱,所述导体柱包括一个连接于所述外导体单元
封闭端的固定端和一个朝所述外导体单元开口端延伸的自由端;
所述内导体单元还包括与所述导体柱欧姆接触的第一导体盘;所述第一导体盘设于所述自由端。
优选地,所述第一导体盘固定于所述自由端端壁。
优选地,所述第一导体盘与所述导体柱一体成型。
优选地,所述第一导体盘与所述导体柱共轴。
优选地,所述第一导体盘与所述导体柱采用金属材料制成,
或者,所述第一导体盘的表面设有第三导电层,以及所述导体柱的表面设
有第二导电层。
优选地,所述内导体单元还包括呈环形的至少一第二导体盘,所述至少一第二导体盘共轴地环绕于所述导体柱的外周壁,并与所述导体柱欧姆接触。
优选地,所述至少一第二导体盘沿所述导体柱的轴向间隔排布在所述第一导体盘的下方。
优选地,所述第一导体盘呈圆盘形。
优选地,所述第一导体盘的直径大于所述导体柱的直径。
优选地,所述内导体单元还包括可导电的探针装置;所述探针装置与所述第一导体盘欧姆接触。
优选地,所述内导体单元还包括轴向贯穿所述导体柱和第一导体盘的穿设通道;所述探针装置靠近所述第一导体盘的一端插入所述穿设通道,并与所述导体柱以及所述第一导体盘欧姆接触。
   优选地,所述探针装置包括可导电且纵长的中空探针以及设于所述中空探针内的测温组件;
所述中空探针靠近所述第一导体盘的一端依次插入所述第一导体盘和所述导体柱,且所述中空探针的外壁面与所述第一导体盘和/或所述导体柱欧姆接触。
优选地,所述中空探针远离所述导体柱的端部的形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
优选地,所述中空探针包括可导电的第二侧壁以及可导电的第二端壁;
所述第二侧壁远离第一导体盘的一端向所述第二端壁方向延伸,以与所述第二端壁连接。
优选地,所述第二侧壁远离所述第一导体盘的一端的最大直径大于所述第二端壁的直径。
优选地,所述第二侧壁远离第一导体盘的一端与所述第二端壁之间平滑连接。
优选地,所述中空探针还包括沿其轴向延伸的中空通道;所述测温组件收容于所述中空通道中。
优选地,所述微波谐振器为四分之一波长型同轴线谐振器。
优选地,所述气溶胶产生装置还包括用于装载气溶胶生成基质的收容座;所述收容座包括设置于所述谐振腔中、以收容气溶胶生成基质的收容部;
所述收容部的底部贴合于所述第一导体盘的顶部。
本发明还构造一种气溶胶产生装置,包括四分之一波长型同轴线谐振器;所述同轴线谐振器包括谐振腔、位于所述谐振腔内的内导体单元;
所述内导体单元包括靠近所述同轴线谐振器短路端的导体柱;
所述内导体单元还包括与所述导体柱欧姆接触的第一导体盘;所述第一导体盘设于所述导体柱的顶部。
优选地,所述第一导体盘呈圆盘状,其共轴地固定于所述导体柱的顶部。
优选地,所述第一导体盘与所述导体柱一体成型。
优选地,所述第一导体盘的外径大于所述导体柱的直径。
优选地,所述气溶胶产生装置还包括安装于所述同轴线谐振器的开路端的收容座;
所述收容座包括用于收容气溶胶生成基质的收容部,所述收容部位于所述同轴线谐振器的谐振腔中;
所述内导体单元还包括靠近所述开路端的探针装置,所述探针装置包括可导电的中空探针;所述中空探针与所述第一导体盘欧姆接触,且所述中空探针的一端伸入所述收容部内以作用于气溶胶生成基质。
优选地,所述中空探针远离所述导体柱的一端伸入至所述收容部内;所述中空探针靠近所述导体柱的一端插入所述第一导体盘和所述导体柱,且所述中空探针的外壁面与所述第一导体盘和所述导体柱连接。
优选地,所述中空探针远离所述导体柱的端部形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
优选地,所述内导体单元还包括呈环形的至少一第二导体盘,所述至少一第二导体盘共轴地环绕于所述导体柱的外周壁,并与所述导体柱欧姆接触。
优选地,所述至少一第二导体盘沿所述导体柱的轴向间隔排布在所述第一导体盘的下方。
实施本发明的气溶胶产生装置,具有以下有益效果:通过在谐振腔中位于内导体的顶部增设第一导体盘结构,可有效降低谐振腔的高度;避免相关技术中带来的加热气溶胶产生基质的能量减少,降低气溶胶产生基质的升温速度、散热问题等副作用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中的气溶胶产生装置与气溶胶生成基质配合的立体结构示意图;
图2是本发明一些实施例中的气溶胶产生装置的立体结构示意图;
图3是图2所示气溶胶产生装置的纵向剖面结构示意图;
图4是图2所示气溶胶产生装置的立体分解结构示意图;
图5是图4所示气溶胶产生装置在分解状态下的纵向剖面结构示意图;
图6是本发明气溶胶产生装置中的探针装置的纵向剖面结构示意图;
图7是本发明另一些实施例中气溶胶产生装置的立体结构示意图;
图8是本发明再一些实施例中气溶胶产生装置的立体结构示意图;
图9是本发明的气溶胶产生装置在没有设置第一导体盘的状态下的谐振频率图;
图10是本发明的气溶胶产生装置在设置第一导体盘的状态下的谐振频率图;
图11是本发明的气溶胶产生装置在其第一导体盘的直径限定为10mm,且其外导体单元的内径限定为10.6mm的状态下的谐振频率图;
图12是本发明的气溶胶产生装置在其第一导体盘的直径限定为8mm,且其外导体单元的内径限定为10.6mm的状态下的谐振频率图;
图13是本发明的气溶胶产生装置在其第一导体盘的直径限定为10.4mm,且其外导体单元的内径限定为10.6mm的状态下的谐振频率图;
图14是本发明气溶胶产生装置中 顶部呈平顶结构的中空探针的微波场分布图;
图15是本发明气溶胶产生装置中 顶部呈圆台形结构的中空探针的微波场分布图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1至图6示出了本发明实施例1中的气溶胶产生装置1,该气溶胶产生装置1可利用微波加热气溶胶生成基质40,以雾化产生气溶胶,从而供使用者吸食。在一些实施例中,该气溶胶生成基质40为诸如经过处理的植物叶类制品等固态气溶胶生成基质。可以理解地,在另一些实施例中,该气溶胶生成基质40也可以为液态气溶胶生成基质。
再如图2-图6所示,该气溶胶产生装置1在一些实施例中可包括微波谐振器10、收容座20以及微波馈入装置30。微波谐振器10在一些实施例中可呈圆柱状,其可包括一个让微波于其内持续振荡的谐振腔13。收容座20用于装载气溶胶生成基质40,其固定地或可拆卸地安装于微波谐振器10上,以让其内的气溶胶生成基质40暴露于谐振腔13内的微波场中,被微波加热雾化。微波馈入装置30连接于微波谐振器10上,用于将微波发生装置(未图示)产生的微波馈入谐振腔13中。可以理解地,微波谐振器10并不局限于圆柱状,其也可呈方柱、椭圆柱状等其他形状。
微波谐振器10在一些实施例中可为四分之一波长型同轴线谐振器,其可包括用于实现电磁屏蔽的呈筒状的外导体单元11、设置于该外导体单元11内的内导体单元12以及介于该内导体单元12的外壁面和外导体单元11的内侧壁面之间的介质(例如,空气),外导体单元11和内导体单元12一道界定出上述的谐振腔13。
内导体单元12的第一端与外导体单元11的第一端壁112欧姆接触,形成该微波谐振器10的短路端A。内导体单元12的第二端向外导体单元11的第一开口110延伸,并不与外导体单元11直接欧姆接触,形成该微波谐振器10的开路端B。收容座20安装(例如,可拆卸或不可拆卸地嵌置)于该微波谐振器10的开路端B,并与内导体单元12的第二端连接。在一些实施例中,内导体单元12的轴线与外导体单元11的轴线相互重合或平行,优选地,两者相互重合。
外导体单元11在一些实施例中可包括可导电的第一侧壁111、可导电的第一端壁112、以及第一开口110。第一侧壁111在一些实施例中可呈圆筒状,其包括第一端以及与该第一端相对的第二端。第一端壁112封闭于该第一侧壁111的第一端上,形成外导体单元11的一个封闭端。第一开口110形成于第一侧壁111的第二端上,形成外导体单元11的一个开口端,用于供收容座20嵌置于其中。外导体单元11的第一侧壁111靠近第一端壁112处可设置一个径向贯通的馈入孔1110,以供微波馈入装置30安装于其中。
外导体单元11在一些实施例中可采用可导电的金属材料一体制成,其材质可为铝合金、铜、金、银、不锈钢等导电金属。可以理解地,外导体单元11并不局限于采用导电材料一体制成,其也可以通过在非导电筒体的内壁面镀覆第一导电层的方式实现。该第一导电层在一些实施例可以是镀金层、镀银层、镀铜层等等。再可以理解地,外导体单元11并不局限于圆筒状,其也可以呈方筒状、椭圆筒状等其他适合的形状。
如图3-图6所示,内导体单元12在一些实施例中可包括导体柱121、位于导体柱121顶部的第一导体盘123、以及一端嵌置于导体柱121中的探针装置122;该探针装置122另一端插入于收容座20中,以作用于气溶胶生成基质40。导体柱121连接于外导体单元11,以与外导体单元11形成良好的欧姆接触。第一导体盘123用于增加自身电感以及电容,从而使得气溶胶产生装置1的整体尺寸进一步地缩小。探针装置122与导体柱121形成良好的欧姆接触,让微波能够经由导体柱121传导给探针装置122。在一些实施例中,探针装置122在形状和布局等方面被特别地配置,用于促进微波场更均匀地分布于收容座20,从而实现对收容座20中的气溶胶生成基质40的更均匀的微波加热效果,进而提升了气溶胶生成基质40的利用率。
再如图4、图5所示,导体柱121呈圆柱状,置于外导体单元11内,且沿外导体单元11的轴向延伸。优选导体柱121的轴线与外导体单元11的轴线重合设置。进一步地,导体柱121中靠近外导体单元11的第一端壁112的一端,固定连接于外导体单元11的第一端壁112的内壁面上,形成导体柱121的一个固定端。导体柱121远离第一端壁112的一端,朝外导体单元11的第一开口110延伸,形成导体柱121的一个自由端,该导体柱121的自由端可与第一导体盘123连接。
在一些实施例中,导体柱121可采用金属等导电材料制成,优选铝合金或者铜作为导电材料。在其他一些实施例中,导体柱121也可以通过在非导电材料制成的圆柱体的外壁面涂覆第二导电层形成,该第二导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。此外,可以理解地,在一些实施例中,导体柱121呈圆柱状,当然,其也可以呈方柱状、椭圆柱状、阶梯柱状、不规则柱状等其他形状。
如图4-图5所示,第一导体盘123连接于导体柱121远离第一端壁112的一端,即连接于导体柱121的顶部,且第一导体盘123与导体柱121形成良好的欧姆接触。第一导体盘123的直径大于导体柱121的直径。在一些实施例中,第一导体盘123的底部贴合固定连接于导体柱121的顶部。上述的连接方式可以是焊接、粘接、螺接或者一体成型的方式。
在一些实施例中,第一导体盘123可采用金属等导电材料制成,优选铝合金或者铜作为导电材料。在其他一些实施例中,第一导体盘123也可以通过在非导电材料制成的外壁面涂覆第三导电层形成,该第三导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。优选第一导体盘123与导体柱121采用同一种材料制成,即采用同一种导电材料制成,或是采用同一种非导电材料且涂覆相同材料的导电层,即制成第三导电层与第二导电层的材料相同。此外,在一些实施例中,第一导体盘123呈圆盘状,具体地,第一导体盘123呈直径大于其轴向长度的圆柱状。当然,其也可以呈方柱状、椭圆柱状、阶梯柱状、不规则柱状等其他形状,具体根据仿真确认第一导体盘123的形状以及尺寸大小,以满足降低腔体高度的要求。
如图8所示,内导体单元12在一些实施例中还包括与导体柱121欧姆接触的至少一第二导体盘124,该至少一第二导体盘124设于第一导体盘123的下方。具体地,至少一第二导体盘124呈环形,共轴地环绕于导体柱121的外周壁。
在一些实施例中,第二导体盘124可采用金属等导电材料制成,优选铝合金或者铜作为导电材料。在其他一些实施例中,第二导体盘124也可以通过在非导电材料制成的外壁面涂覆第六导电层形成,该第六导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。优选第一导体盘123、第二导体盘124与导体柱121采用同一种材料制成,即采用同一种导电材料制成,或是采用同一种非导电材料且涂覆相同材料的第六导电层。此外,在一些实施例中,第二导体盘124呈环形的圆盘结构。当然,其也可以呈环形的方柱结构、环形的椭圆柱状结构、环形的阶梯柱状结构、环形的不规则柱状结构等其他形状;具体根据仿真确认第二导体盘124的形状以及尺寸大小,以满足降低腔体高度的要求。
当第二导体盘124的数量为一个时,第二导体盘124间隔排布在第一导体盘123的下方,第二导体盘124与第一导体盘123的外径可以相同或不相同。当第二导体盘124的数量为多个时,多个第二导体盘124位于第一导体盘123的下方、沿导体柱121的轴向均匀间隔排布在导体柱121的外周壁,邻近第一导体盘123的第二导体盘124、与第一导体盘123之间的间距与相邻两个第二导体盘124之间的间距相等;多个第二导体盘124之间的外径可以相同或不相同,第一导体盘123的外径与多个第二导体盘124之间的外径可以部分相同、完全相同或者完全不相同。当中,第一导体盘123、第二导体盘124各自 具体的尺寸可通过仿真及实验确定。
可以理解地,气溶胶产生装置1对气溶胶生成基质40的 加热过程中,频率会发生偏移,当第一导体盘123、或第一导体盘123和第二导体盘124的 厚度越大,频率的偏移会变得越小;但当第一导体盘123、或第一导体盘123和第二导体盘124的 厚度达到一定程度时,频率的变小幅度会变得相对特别小。另外,第一导体盘123、或第一导体盘123和第二导体盘124的 直径对频率的影响很大,当第一导体盘123、或第一导体盘123和第二导体盘124的 直径越大,谐振频率越低,越有利于降低外导体单元11的 轴向长度。在工程应用中,为了便于控制成本及尺寸,优选仅在导体柱121的顶部安装第一导体盘123
如图5所示,内导体单元12还包括轴向贯穿导体柱121和第一导体盘123的穿设通道1211,该穿设通道1211可用于供探针装置122插入和/或穿设。具体地,该穿设通道1211呈直圆柱状,沿导体柱121和第一导体盘123的中轴线轴向贯穿成形。在本实施例中,探针装置122的中空探针1221的靠近第一导体盘123的一端通过插入穿设通道1211,以将探针装置122嵌置于导体柱121上。
需要说明的是,当导体柱121或第一导体盘123采用非导电材料+涂覆第三导电层的方式制成时,穿设通道1211在对应导体柱121或第一导体盘123位置的内壁面也需要涂覆上第三导电层,以使中空探针1221与第一导体盘123、或第一导体盘123和导体柱121形成良好的欧姆接触。再如图3-图6所示,探针装置122在一些实施例中可包括可导电且纵长的中空探针1221、设于中空探针1221内的测温组件1222。该中空探针1221可与第一导体盘123、或导体柱121和第一导体盘123欧姆接触。在另一些实施例中,中空探针1221靠近第一导体盘123的一端从第一导体盘123的顶部插入穿设通道1211,穿过第一导体盘123后设于穿设通道1211中对应导体柱121的位置,使得中空探针1221相应的外周面与第一导体盘123、导体柱121连接,形成良好的欧姆接触。可选地,中空探针1221、第一导体盘123、导体柱121共轴设置。另外,测温组件1222用于在气溶胶生成基质40插入中空探针1221时,监测气溶胶生成基质40内部的温度。
需要说明的是,中空探针1221需要外部导电,并和第一导体盘123形成良好的欧姆接触;同时,中空探针1221的外表面的导电率越高,微波传导越为容易,还可以避免中空探针1221通过壁电流损耗消耗掉微波,导致自身发热。
进一步地,中空探针1221呈中空结构,其包括可导电的第二侧壁1223、可导电的第二端壁1224、以及第二开口1225。第二侧壁1223在一些实施例中可呈圆筒状;第二端壁1224封闭于该第二侧壁1223的远离第一导体盘123的一端,形成中空探针1221的一个封闭端。第二开口1225形成于第二侧壁1223的靠近第一导体盘123的一端,形成中空探针1221的一个开口端;第二开口1225用于供测温组件1222的连接线1228穿设。第二侧壁1223、第二端壁1224以及第二开口1225共同形成带一开口的中空通道1226,测温组件1222收容于该中空通道1226中。
中空探针1221的远离第一导体盘123的一端向收容座20延伸,且插入收容座20内。在一些实施例中,中空探针1221的顶部,即其远离第一导体盘123的一端端部,该端部的形状可以是平顶、球形、椭球形、圆锥形、圆台形等;优选地,中空探针1221的顶部为圆台形。在一些实施例中,第二侧壁1223中邻近第二端壁1224的端部沿第二端壁1224方向延伸,以连接于第二端壁1224的外周边缘;其中,第二端壁1224呈平面结构,其直径小于第二侧壁1223中邻近第二端壁1224的端部的最大直径。在一些实施例中,第二侧壁1223中邻近第二端壁1224的端部与第二端壁1224之间的连接呈平滑连接。
可以理解地,通过优化中空探针1221的顶部的形状,可以增强微波场局部场强提升雾化气溶胶生成基质40的雾化速度;其中当中空探针1221的顶部为圆台形时,效果最佳。
在一些实施例中,中空探针1221可采用金属等导电材料制成,优选不锈钢、铝合金或者铜作为导电材料。在其他一些实施例中,中空探针1221也可以由非导电材料制成,但需要在其外壁面涂覆第四导电层形成,该第四导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。此外,在一些实施例中,中空探针1221的横截面呈圆形,当然,其也可以呈方形、椭圆形、三角形等等。
进一步地,测温组件1222可为温度传感器,比如测温热电偶。在一些实施例中,测温组件1222可包括测温探头1227以及与测温探头1227电连接的连接线1228。该测温探头1227设于中空探针1221远离第一导体盘123的一端内,其可通过设于穿设通道1211和中空通道1226的连接线1228与该气溶胶产生装置1中的控制装置(未图示)电连接,进而向控制装置反馈气溶胶生成基质40内部的温度。
再如图5所示,收容座20在一些实施例中可包括收容部21以及与该收容部21一体连接的固定部22。收容部21用于收容气溶胶生成基质40;固定部22用于轴向封堵于外导体单元11的第一开口110上,并让收容部21伸入到收容部21内,与内导体单元12相连接。收容座20在一些实施例中可采用低 介电损耗的耐高温材料,例如,为塑料、陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合。另外,在塑料材料中,优选地为 聚四氟乙烯PEEK、 聚醚醚酮PTFE、PPSU聚亚苯基砜树脂;在陶瓷材料中,优选地为玻璃、石英玻璃、氧化铝、氧化锆。收容座20的材质的损耗角正切优选地小于0.1。
收容座20在一些实施例中可包括若干个纵长的定位筋23和若干纵长的支撑筋25。这些定位筋23间隔均匀地设置于收容腔210和/或第一通孔220的壁面周向上。每一定位筋23均沿着平行于收容座20的轴线的方向延伸。这些支撑筋25均匀间隔地呈放射状分布于收容腔210的底面上。定位筋23一个方面可用于夹紧插入收容腔210和/或第一通孔220的气溶胶生成基质40,另一个方面每相邻两定位筋23之间均形成一个纵向延伸的第一进气通道。支撑筋25一个方面用于支撑气溶胶生成基质40,另一个方向形成若干放射状第二进气通道。这些第二进气通道分别与这些第一进气通道相连通,以方便环境空气被吸入到气溶胶生成基质40的底部,再进入气溶胶生成基质40中带走被微波加热产生的气溶胶。
该收容部21在一些实施例中可呈圆筒状,且其外径可小于外导体单元11的内径。收容部21可包括一个轴向的收容腔210,该收容腔210用于收容气溶胶生成基质40。该固定部22可呈环形,与收容部21共轴地连接一起。固定部22可共轴地封堵于外导体单元11的第一开口110中,以将收容部21共轴地固定于微波谐振器10中。固定部22包括一个将收容腔210与环境相连通的轴向的第一通孔220,令得气溶胶生成基质40可以经由该第一通孔220放入收容腔210。
收容部21在一些实施例中可呈圆筒状,其包括平坦的第三底壁211以及围设在第三底壁211周缘的筒状的第三侧壁212,第三侧壁212外径小于外导体单元11的内径。在一些实施例中,在收容座20装配于外导体单元11时,第三底壁211刚好抵接第一导体盘123的顶部。
在该实施例中,收容部21还包括设于第三底壁211中的第二通孔26。具体地,第二通孔26沿第三底壁211轴向贯穿成形;优选第二通孔26设于第三底壁211的中部。可以理解地,探针装置122的中空探针1221的顶部,即其远离第一导体盘123的一端穿过该第二通孔26,插入至收容座20中;且由于中空探针1221的底端嵌置于内导体单元12中,使得中空探针1221的顶部可悬空于收容座20的收容腔210中。
再如图5所示,微波馈入装置30在一些实施例中可为同轴连接器,可与设于外导体单元11外部的微波源(未图示)相连接,以将微波馈入腔体。
具体地,图5示出了本发明实施例1的气溶胶产生装置1,微波馈入装置30在该实施例中可包括内导体31、外导体33以及介于内导体31和外导体33之间的介质层32。微波馈入装置30安装于微波谐振器10上时,其内导体31与外导体单元11的内壁面和/或内导体单元12的导体柱121的外表面欧姆接触,且其外导体33与外导体单元11的表面欧姆接触,以向微波谐振器10内馈入微波。
在该实施例中,微波馈入装置30的内导体31呈一字型,微波馈入装置30安装于微波谐振器10上时,内导体31与导体柱121的表面欧姆接触,且与导体柱121的轴线相垂直。
图7示出了本发明实施例2中的另一气溶胶产生装置1,其与上述气溶胶产生装置1的结构基本相同,两者的区别在于用第二微波馈入装置30a替代了上述气溶胶产生装置1的微波馈入装置30。
如图7所示,第二微波馈入装置30a可为同轴连接器,其可包括第二内导体31a、第二外导体33a以及介于第二内导体31a和第二外导体33a之间的第二介质层32a。第二微波馈入装置30a安装于微波谐振器10上时,其第二内导体31a与外导体单元11的内壁面欧姆接触,且其第二外导体33a与外导体单元11的表面欧姆接触,以向微波谐振器10内馈入微波。
第二微波馈入装置30a的第二内导体31a在该实施例中呈L型,其可包括一个垂直于微波谐振器10轴线的第一段311a和平行于微波谐振器10轴线的第二段312a,第二段312a与外导体单元11的第一端壁112欧姆接触。
进一步地,内导体31和/或第二内导体31a在一些实施例中可采用金属等导电材料制成,优选铝或者铜作为导电材料。在其他一些实施例中,内导体31和/或第二内导体31a也可以由非导电材料制成,但需要在其外壁面涂覆第五导电层形成,该第五导电层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。此外,在一些实施例中,内导体31和/或第二内导体31a可以是耦合环, 耦合环的外部呈同轴结构,可与微波源相连接,以将微波馈入腔体。
可以理解地,结合上述对于微波谐振器10及其谐振腔13的设计,在气溶胶生成基质40装于气溶胶产生装置1时,谐振频率可达到在2.4-2.5GHz的范围区间内。
以下结合实验数据,如图9-图15所示,具体证明第一导体盘123以及中空探针1221顶部呈圆台形在本气溶胶产生装置1中的作用:
需要说明的是,以下实验数据采用控制变量法,以是否存在第一导体盘123、第一导体盘123的尺寸、中空探针1221顶部的形状作为自变量,气溶胶产生装置1的其他结构不变。
图9示出了实施例3中的气溶胶产生装置1的谐振频率图,在该实施例中的气溶胶产生装置1与上述实施例1的气溶胶产生装置1的区别在于,实施例3中的气溶胶产生装置1的 外导体单元11内没有设置第一导体盘123。如图9所示,在没有设置第一导体盘123的情况下,气溶胶产生装置1的谐振频率为2.9375GHz,S11为-3.77db。此时若要降低谐振频率,则需要增加谐振腔13的高度。
图10示出了实施例1中的气溶胶产生装置1的谐振频率图, 可以看到,通过在外导体单元11内设置第一导体盘123, 谐振频率为2.4375GHz,S11为-27.75db,频率有明显的降低。外导体单元11或其谐振腔13 的轴向长度可成功降低到25mm以下,同时保证谐振频率在2.4-2.5GHz之间。
图11示出了实施例1-1中的气溶胶产生装置1的谐振频率图,在该实施例中的气溶胶产生装置1与上述实施例1的气溶胶产生装置1的区别在于,实施例1-1中的第一导体盘123的直径限定为10mm,且外导体单元11的内径限定为10.6mm。如图11所示,在实施例1-1中, 谐振频率为2.4375GHz,S11为-27.75db
图12示出了实施例1-2中的气溶胶产生装置1的谐振频率图,在该实施例中的气溶胶产生装置1与上述实施例1-1的气溶胶产生装置1的区别在于,实施例1-2中的第一导体盘123的直径限定为8mm,且外导体单元11的内径限定为10.6mm。如图12所示,在实施例1-2中, 谐振频率为2.87GHz,S11为-8.02db
图13示出了实施例1-3中的气溶胶产生装置1的谐振频率图,在该实施例中的气溶胶产生装置1与上述实施例1-1的气溶胶产生装置1的区别在于,实施例1-3中的第一导体盘123的直径限定为10.4mm,且外导体单元11的内径限定为10.6mm。如图13所示,在实施例1-3中, 谐振频率为2.16GHz,S11为-13.01db
综上,通过实施例1-1、1-2、1-3对应的谐振频率图各自的对比,可以看出,第一导体盘123与外导体单元11的第一侧壁111的内壁面之间的距离,对于谐振频率及馈入频率存在较大影响。可以理解的是,第一导体盘123与第一侧壁111的内壁面之间的距离越小,谐振频率越低。
图14示出了实施例4中的气溶胶产生装置1中,其探针装置122在第一导体盘123上方的部分结构的微波场分布图,在该实施例中的气溶胶产生装置1与上述实施例1的气溶胶产生装置1的区别在于,实施例4气溶胶产生装置1中的 中空探针1221的顶部为平顶结构。如图14所示, 设置微波源功率为1w,中空探针1221的顶部为平顶结构的情况下, 微波场最强电场约为40385V/m。
图15示出了实施例1中的气溶胶产生装置1中,其探针装置122在第一导体盘123上方的部分结构的微波场分布图,该实施例中的 中空探针1221的顶部呈圆台形结构。如图15所示,同样 设置微波源功率为1w,微波场最强电场达到约104540V/m,同时微波场更加聚焦于 中空探针1221的顶部
综上,通过实施例4、实施例1对应的微波场分布图的对比,可以看出, 中空探针1221顶部的形状对于微波场分布有较强影响。可以理解地是,当 中空探针1221顶部越尖时,微波场的场强越大,加热速度越快;同时,还可以改变微波场的分布。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (28)

  1. 一种气溶胶产生装置,包括微波谐振器(10);所述微波谐振器(10)包括用于界定谐振腔(13)的外导体单元(11)以及设置于该外导体单元(12)中的内导体单元(12),所述外导体单元(11)具有一个开口端和一个封闭端,所述内导体单元(12)一端连接于所述外导体单元(11)的封闭端、一端朝所述外导体单元(11)的开口端延伸;
    所述内导体单元(12)包括导体柱(121),所述导体柱(121)包括一个
    连接于所述外导体单元(11)封闭端的固定端和一个朝所述外导体单元(11)开口端延伸的自由端;
    其特征在于,所述内导体单元(12)还包括与所述导体柱(121)欧姆接触的第一导体盘(123);所述第一导体盘(123)设于所述自由端。
  2. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)固定于所述自由端端壁。
  3. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)与所述导体柱(121)一体成型。
  4. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)与所述导体柱(121)共轴。
  5. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)与所述导体柱(121)采用金属材料制成;
    或者,所述第一导体盘(123)的表面设有第三导电层,以及所述导体
    柱(121)的表面设有第二导电层。
  6. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括呈环形的至少一第二导体盘(124),所述至少一第二导体盘(124)共轴地环绕于所述导体柱(121)的外周壁,并与所述导体柱(121)欧姆接触。
  7.  根据权利要求6所述的气溶胶产生装置,其特征在于,所述至少一第二导体盘(124)沿所述导体柱(121)的轴向间隔排布在所述第一导体盘(123)的下方。
  8. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)呈圆盘形。
  9. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)的直径大于所述导体柱(121)的直径。
  10. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括可导电的探针装置(122);所述探针装置(122)与所述第一导体盘(123)欧姆接触。
  11. 根据权利要求10所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括轴向贯穿所述导体柱(121)和第一导体盘(123)的穿设通道(1211);
    所述探针装置(122)靠近所述第一导体盘(123)的一端插入所述穿设通道(1211),并与所述导体柱(121)以及所述第一导体盘(123)欧姆接触。
  12. 根据权利要求10所述的气溶胶产生装置,其特征在于,所述探针装置(122)包括可导电且纵长的中空探针(1221)以及设于所述中空探针(1221)内的测温组件(1222);
    所述中空探针(1221)靠近所述第一导体盘(123)的一端依次插入所述第一导体盘(123)和所述导体柱(121),且所述中空探针(1221)的外壁面与所述第一导体盘(123)和/或所述导体柱(121)欧姆接触。
  13. 根据权利要求12所述的气溶胶产生装置,其特征在于,所述中空探针(1221)远离所述导体柱(121)的端部的形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
  14. 根据权利要求12所述的气溶胶产生装置,其特征在于,所述中空探针(1221)包括可导电的第二侧壁(1223)以及可导电的第二端壁(1224);
    所述第二侧壁(1223)远离第一导体盘(123)的一端向所述第二端壁(1224)方向延伸,以与所述第二端壁(1224)连接。
  15. 根据权利要求14所述的气溶胶产生装置,其特征在于,所述第二侧壁(1223)远离所述第一导体盘(123)的一端的最大直径大于所述第二端壁(1224)的直径。
  16. 根据权利要求14所述的气溶胶产生装置,其特征在于,所述第二侧壁(1223)远离第一导体盘(123)的一端与所述第二端壁(1224)之间平滑连接。
  17. 根据权利要求15所述的气溶胶产生装置,其特征在于,所述中空探针(1221)还包括沿其轴向延伸的中空通道(1226);所述测温组件(1222)收容于所述中空通道(1226)中。
  18. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述微波谐振器(10)为四分之一波长型同轴线谐振器。
  19. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述气溶胶产生装置还包括用于装载气溶胶生成基质(40)的收容座(20);所述收容座(20)包括设置于所述谐振腔(13)中、以收容气溶胶生成基质的收容部(21);
    所述收容部(21)的底部贴合于所述第一导体盘(123)的顶部。
  20. 一种气溶胶产生装置,包括四分之一波长型同轴线谐振器;所述同轴线谐振器包括谐振腔(13)、位于所述谐振腔(13)内的内导体单元(12);
    所述内导体单元(12)包括靠近所述同轴线谐振器短路端(A)的导体柱(121);
    其特征在于,所述内导体单元(12)还包括与所述导体柱(121)欧姆接触的第一导体盘(123);所述第一导体盘(123)设于所述导体柱(121)的顶部。
  21. 根据权利要求20所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)呈圆盘状,其共轴地固定于所述导体柱(121)的顶部。
  22.  根据权利要求20所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)与所述导体柱(121)一体成型。
  23. 根据权利要求20所述的气溶胶产生装置,其特征在于,所述第一导体盘(123)的外径大于所述导体柱(121)的直径。
  24. 根据权利要求20所述的气溶胶产生装置,其特征在于,所述气溶胶产生装置还包括安装于所述同轴线谐振器(10)的开路端(B)的收容座(20);
    所述收容座(20)包括用于收容气溶胶生成基质(40)的收容部(21),所述收容部(21)位于所述同轴线谐振器(10)的谐振腔(13)中;
    所述内导体单元(12)还包括靠近所述开路端(B)的探针装置(122),所述探针装置(122)包括可导电的中空探针(1221);所述中空探针(1221)与所述第一导体盘(123)欧姆接触,且所述中空探针(1221)的一端伸入所述收容部(21)内以作用于气溶胶生成基质(40)。
  25. 根据权利要求24所述的气溶胶产生装置,其特征在于,所述中空探针远离所述导体柱(121)的一端伸入至所述收容部(21)内;所述中空探针靠近所述导体柱(121)的一端插入所述第一导体盘(123)和所述导体柱(121),且所述中空探针的外壁面与所述第一导体盘(123)和所述导体柱(121)连接。
  26. 根据权利要求24所述的气溶胶产生装置,其特征在于,所述中空探针远离所述导体柱(121)的端部形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
  27.  根据权利要求24所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括呈环形的至少一第二导体盘(124),所述至少一第二导体盘(124)共轴地环绕于所述导体柱(121)的外周壁,并与所述导体柱(121)欧姆接触。
  28.  根据权利要求27所述的气溶胶产生装置,其特征在于,所述至少一第二导体盘(124)沿所述导体柱(121)的轴向间隔排布在所述第一导体盘(123)的下方。
PCT/CN2023/078536 2022-05-18 2023-02-27 气溶胶产生装置 WO2023221596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210542549.8 2022-05-18
CN202210542549.8A CN114886160A (zh) 2022-05-18 2022-05-18 气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023221596A1 true WO2023221596A1 (zh) 2023-11-23

Family

ID=82723295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078536 WO2023221596A1 (zh) 2022-05-18 2023-02-27 气溶胶产生装置

Country Status (2)

Country Link
CN (1) CN114886160A (zh)
WO (1) WO2023221596A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置
CN117617589A (zh) * 2022-08-15 2024-03-01 深圳麦时科技有限公司 微波馈入装置、微波加热器及气溶胶产生装置
WO2024050737A1 (zh) * 2022-09-07 2024-03-14 深圳麦时科技有限公司 气溶胶产生装置及其微波加热装置
WO2024092582A1 (zh) * 2022-11-02 2024-05-10 思摩尔国际控股有限公司 气溶胶生成装置及其微波加热组件
WO2024092580A1 (zh) * 2022-11-02 2024-05-10 思摩尔国际控股有限公司 气溶胶产生装置及其微波加热组件
WO2024092583A1 (zh) * 2022-11-02 2024-05-10 思摩尔国际控股有限公司 气溶胶产生装置及其微波加热组件
WO2024092581A1 (zh) * 2022-11-02 2024-05-10 思摩尔国际控股有限公司 气溶胶产生装置及其微波加热组件
CN117981911A (zh) * 2022-11-07 2024-05-07 思摩尔国际控股有限公司 气溶胶产生装置及其微波加热组件
CN117981919A (zh) * 2022-11-07 2024-05-07 思摩尔国际控股有限公司 微波加热组件及气溶胶生成装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059815A (en) * 1975-07-31 1977-11-22 Matsushita Electric Industrial Co., Limited Coaxial cavity resonator
CN1311906A (zh) * 1998-08-12 2001-09-05 奥根公司 同轴空腔谐振器
EP1903631A1 (en) * 2006-09-22 2008-03-26 MT S.r.l. Coaxial cavity resonator
CN111602854A (zh) * 2019-04-01 2020-09-01 深圳市艾维普思科技有限公司 电子烟的导电组件、加工工艺、加工模具及电子烟
KR102178416B1 (ko) * 2019-05-17 2020-11-13 주식회사 이엠텍 마이크로웨이브 가열장치
CN112512351A (zh) * 2019-06-18 2021-03-16 韩国烟草人参公社 通过微波生成气溶胶的气溶胶生成装置及其方法
CN113598425A (zh) * 2021-07-30 2021-11-05 深圳麦克韦尔科技有限公司 调味部件及电子雾化装置
US20210401044A1 (en) * 2019-03-13 2021-12-30 Changzhou Patent Electronic Technology Co., LTD Cartridge, battery device and electronic cigarette
CN114209096A (zh) * 2021-12-30 2022-03-22 深圳麦时科技有限公司 雾化装置及微波加热组件
CN216165164U (zh) * 2021-10-20 2022-04-05 深圳麦克韦尔科技有限公司 气溶胶固定装置和气溶胶产生装置
CN114401565A (zh) * 2021-12-22 2022-04-26 深圳麦时科技有限公司 气溶胶产生装置及其微波加热装置
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059815A (en) * 1975-07-31 1977-11-22 Matsushita Electric Industrial Co., Limited Coaxial cavity resonator
CN1311906A (zh) * 1998-08-12 2001-09-05 奥根公司 同轴空腔谐振器
EP1903631A1 (en) * 2006-09-22 2008-03-26 MT S.r.l. Coaxial cavity resonator
US20210401044A1 (en) * 2019-03-13 2021-12-30 Changzhou Patent Electronic Technology Co., LTD Cartridge, battery device and electronic cigarette
CN111602854A (zh) * 2019-04-01 2020-09-01 深圳市艾维普思科技有限公司 电子烟的导电组件、加工工艺、加工模具及电子烟
KR102178416B1 (ko) * 2019-05-17 2020-11-13 주식회사 이엠텍 마이크로웨이브 가열장치
CN112512351A (zh) * 2019-06-18 2021-03-16 韩国烟草人参公社 通过微波生成气溶胶的气溶胶生成装置及其方法
CN113598425A (zh) * 2021-07-30 2021-11-05 深圳麦克韦尔科技有限公司 调味部件及电子雾化装置
CN216165164U (zh) * 2021-10-20 2022-04-05 深圳麦克韦尔科技有限公司 气溶胶固定装置和气溶胶产生装置
CN114401565A (zh) * 2021-12-22 2022-04-26 深圳麦时科技有限公司 气溶胶产生装置及其微波加热装置
CN114209096A (zh) * 2021-12-30 2022-03-22 深圳麦时科技有限公司 雾化装置及微波加热组件
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Also Published As

Publication number Publication date
CN114886160A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2023221596A1 (zh) 气溶胶产生装置
JP5421551B2 (ja) プラズマ処理装置及びプラズマ処理方法
CA2221624C (en) Microwave-driven plasma spraying apparatus and method for spraying
CN114747803A (zh) 气溶胶产生装置及其制造方法
CN105816240B (zh) 用于微波消融的天线组件及采用其的微波消融针
KR101995099B1 (ko) 플라즈마 처리 장치
CN216165164U (zh) 气溶胶固定装置和气溶胶产生装置
JP2010056063A (ja) 低電力携帯用マイクロ波プラズマ発生器
CN113766689B (zh) 一种微波加热结构、方法及系统
JP5360966B2 (ja) 液中プラズマ発生装置および液中プラズマ発生方法
CN114747804A (zh) 气溶胶产生装置
CN108201468A (zh) 一种带天线组件的微波消融针
CN114711467A (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
CN217743173U (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
EP1437033A2 (en) Microwave heating apparatus
CN218474089U (zh) 气溶胶产生装置
TW200809973A (en) Microwave introducing apparatus and plasma processing apparatus
CN218605113U (zh) 气溶胶产生装置
WO2024050737A1 (zh) 气溶胶产生装置及其微波加热装置
WO2024036935A1 (zh) 微波馈入装置、微波加热器及气溶胶产生装置
WO2023065946A1 (zh) 气溶胶固定装置和气溶胶产生装置
WO2024031982A1 (zh) 微波加热器及气溶胶产生装置
WO2024092583A1 (zh) 气溶胶产生装置及其微波加热组件
CN117694610A (zh) 气溶胶产生装置及其微波加热装置
JP6971812B2 (ja) マイクロ波処理装置、マイクロ波処理方法、加熱処理方法及び化学反応方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806556

Country of ref document: EP

Kind code of ref document: A1