WO2024092582A1 - 气溶胶生成装置及其微波加热组件 - Google Patents
气溶胶生成装置及其微波加热组件 Download PDFInfo
- Publication number
- WO2024092582A1 WO2024092582A1 PCT/CN2022/129370 CN2022129370W WO2024092582A1 WO 2024092582 A1 WO2024092582 A1 WO 2024092582A1 CN 2022129370 W CN2022129370 W CN 2022129370W WO 2024092582 A1 WO2024092582 A1 WO 2024092582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave heating
- heating assembly
- assembly according
- conductor unit
- probe
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 83
- 239000000443 aerosol Substances 0.000 title claims abstract description 46
- 239000004020 conductor Substances 0.000 claims abstract description 181
- 239000000523 sample Substances 0.000 claims description 60
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000007769 metal material Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
Definitions
- the invention relates to the technical field of aerosol generation, and in particular to an aerosol generating device and a microwave heating component thereof.
- the aerosol generating device forms a microwave interaction zone in the microwave heating component, and transmits microwave energy to the aerosol generating matrix.
- the microwave energy distribution field determines the microwave heating effect.
- the microwave energy heats the aerosol generating matrix according to its inherent distribution.
- the energy utilization efficiency is low or the energy is too dispersed, which may cause the aerosol generating matrix to emit small amount of smoke or slow speed.
- the technical problem to be solved by the present invention is to provide an improved aerosol generating device and a microwave heating component thereof.
- a microwave heating component for an aerosol generating device comprising:
- An outer conductor unit comprising a closed end, an open end opposite to the closed end, and a heating cavity formed between the closed end and the open end;
- the outer conductor unit comprises a body section near the closed end and a constricted section near the open end for focusing microwaves, wherein the constricted section is axially connected to the body section;
- the inner conductor unit is arranged in the heating cavity.
- the necking section includes a first necking section with a truncated cone-shaped inner cavity, the first necking section includes a first end close to the opening end and a second end away from the opening end, and the inner diameter of the first end is smaller than the inner diameter of the second end.
- the second end is directly connected to an end of the body segment close to the open end.
- the inner cavity of the body segment is cylindrical, and the inner diameter of the second end is comparable to the inner diameter of the body segment.
- the necking section further includes a second necking section with a cylindrical inner cavity, the second necking section is axially connected to the first end of the first necking section, and the inner diameter of the second necking section is equivalent to the inner diameter of the first end.
- the inner cavity of the main body segment is cylindrical
- the necking segment includes a third necking segment having a cylindrical inner cavity, and the inner diameter of the third necking segment is smaller than the inner diameter of the main body segment.
- an end of the third necked section away from the opening end is directly connected to an end of the main body section close to the opening end.
- the outer conductor unit includes a first conductor barrel and a second conductor barrel, the first conductor barrel includes another open end; the second conductor barrel is axially embedded in the other open end and is in ohmic contact with the first conductor barrel to form the necked section.
- the inner diameter of the second conductor tube is smaller than the inner diameter of the first conductor tube.
- the outer diameter of the second conductor tube is comparable to the inner diameter of the first conductor tube.
- the maximum inner diameter of the necked section is less than or equal to 9.6 mm.
- the inner conductor unit is disposed inside the outer conductor unit, one end of which is connected to the closed end, and the other end of which extends toward the open end.
- the microwave heating assembly further comprises a probe device, wherein the probe device is coaxially arranged with the outer conductor unit; and the heating cavity surrounds the probe device.
- the probe device is in a longitudinal shape, one end of which is fixed to the inner conductor unit and ohmically connected to the inner conductor unit, and the other end of which extends toward the open end.
- the probe device includes a longitudinally long probe, a bottom end of the probe is connected to a surface of the inner conductor unit opposite to the opening end, and a top end of the probe extends toward the opening end.
- the probe device includes a longitudinally long probe, the bottom end of the probe is embedded in the inner conductor unit near the closed end, and the top end of the probe extends toward the open end.
- a mounting hole for mounting the probe device is provided in the inner conductor unit, and the mounting hole passes through the heating cavity along the axial direction of the outer conductor unit.
- the shape of the tip of the probe includes a plane, a sphere, an ellipsoid, a cone, or a truncated cone.
- the probe is a hollow structure, and the probe device further includes a temperature measuring element, and the temperature measuring element is disposed inside the probe.
- the inner conductor unit includes an inner conductor column, which is coaxially arranged with the outer conductor unit; one end of the inner conductor column is connected to the closed end, and the other end extends toward the open end.
- the inner conductor unit further includes an inner conductor disk, the inner conductor disk is connected to the inner conductor column, and an outer diameter of the inner conductor disk is larger than an outer diameter of the inner conductor column and smaller than an inner diameter of the outer conductor unit.
- the microwave heating assembly further comprises a receiving seat, wherein the receiving seat is connected to the open end and comprises a receiving portion for loading an aerosol generating product, wherein the receiving portion is disposed in the heating cavity.
- the receiving portion includes a bottom wall directly opposite to the opening end, the bottom wall is provided with a through hole, and the probe device extends into the receiving portion through the through hole.
- the present invention also constructs an aerosol generating device, which comprises the microwave heating component mentioned above.
- the aerosol generating device further comprises a microwave feeding unit connected to the microwave heating assembly, one end of the microwave feeding unit is inserted into the outer conductor unit from the outer peripheral wall of the outer conductor unit and is in ohmic contact with the inner conductor unit.
- the microwave feeding unit includes an inner conductor, an outer conductor, and a dielectric layer between the inner conductor and the outer conductor.
- the inner conductor is in a straight line shape and is in ohmic contact with the inner conductor unit in a manner perpendicular to the axis of the inner conductor unit.
- the present invention adjusts the heating cavity structure of the outer conductor unit of the microwave heating assembly to adjust its energy field distribution, so that the energy is focused in the upper half of the heating cavity, which is conducive to the rapid generation and discharge of aerosols.
- FIG1 is a cross-sectional view of an aerosol generating device according to an embodiment of the present invention.
- FIG2 is an exploded view of the embodiment shown in FIG1 ;
- FIG3 is a cross-sectional view of another embodiment of the aerosol generating device of the present invention.
- FIG4 is an exploded view of the embodiment shown in FIG3 ;
- FIG5 is a cross-sectional view of another embodiment of the aerosol generating device of the present invention.
- FIG6 is an exploded view of the embodiment shown in FIG5 ;
- FIG7 is an energy distribution diagram obtained by testing the case where the outer conductor unit does not include a constricted section as a comparative experiment
- FIG8 is an energy distribution diagram obtained by testing the embodiment shown in FIG1 ;
- FIG9 is an energy distribution diagram obtained by testing the embodiment shown in FIG3 ;
- FIG. 10 is an energy distribution diagram obtained by testing the embodiment shown in FIG. 5 .
- the terms such as “installed”, “connected”, “connected”, “fixed”, “set” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- installed can be a fixed connection, a detachable connection, or an integral one
- it can be a mechanical connection or an electrical connection
- it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- an element When an element is referred to as being “on” or “under” another element, the element can be “directly” or “indirectly” located on the other element, or there may be one or more intermediate elements.
- the aerosol generating device 10 can use microwaves to heat an aerosol generating article 20 to generate aerosol for inhalation by a user.
- the aerosol generating device includes a microwave heating component 1, which may be substantially cylindrical and includes an outer conductor unit 11 and an inner conductor unit 12.
- the outer conductor unit 11 is used in the microwave heating component, defines a heating cavity 111, and includes a constricted section 112 for focusing microwaves.
- the inner conductor unit 12 is disposed in the heating cavity 111 for microwave matching.
- the aerosol generating device further includes a microwave feeding unit 2 and a microwave generating device (not shown), and the microwave feeding unit 2 is used to feed the microwave generated by the microwave generating device (not shown) into the heating cavity 111.
- One end of the microwave feeding unit 2 is inserted into the outer conductor unit 11 from the outer peripheral wall of the outer conductor unit 11, and is in ohmic contact with the inner conductor unit 12.
- the microwave feeding unit 2 includes an inner conductor 21, an outer conductor 22, and a dielectric layer 23 between the inner conductor 21 and the outer conductor 22.
- the inner conductor 21 is in a straight line shape and is in ohmic contact with the inner conductor unit 12 in a manner perpendicular to the axis of the inner conductor unit 12. It can be understood that the inner conductor 21 can be L-shaped and connected to the microwave heating assembly 1.
- the microwave feeding unit 2 is made of metal material. Preferably, it can be made of metal aluminum or copper. Further, its outer surface can be plated with silver or gold coating.
- the microwave generating device is used to generate microwaves, and the microwave feeding unit 2 is used to feed the microwaves generated by the microwave generating device into the microwave heating component 1.
- the microwave heating component 1 can form a microwave field after the microwave is fed in, and the microwave field can act on the aerosol generating product 20 to achieve microwave heating.
- the resonant frequency can be controlled between 2.4-2.5GHz.
- the constricted section 112 of the outer conductor unit 11 of the present invention can focus the microwaves, thereby adjusting the energy field distribution of the heating cavity 111, so that the energy is focused on the upper half of the aerosol generating product 20, which is conducive to the rapid generation of aerosols.
- the outer conductor unit 11 has a closed end 1101 and an open end 1102, and a heating cavity formed between the closed end 1101 and the open end 1102.
- the outer conductor unit 11 includes a body section 110 near the closed end 1101 and a constricted section 112 near the open end 1102 for focusing microwaves, and the constricted section 112 is axially connected to the body section 110.
- the constricted section 112 is in a contracted shape relative to the body section 110, and the constricted section 112 and the body section 110 can adopt a conical transition, and the inner diameter of the constricted section 112 is gradually reduced relative to the inner diameter of the body section 110.
- the inner conductor unit 12 is connected to the closed end 1101, and the narrowed section 112 is arranged near the open end 1102.
- the outer conductor unit 11 includes a conductive side portion and a bottom portion connected to the side portion, the side portion is cylindrical, and the top end of the side portion is an open structure, which forms the open end 1102 of the outer conductor unit 11.
- the bottom portion is closed to the bottom end of the side portion, forming the closed end 1101 of the outer conductor unit 11.
- a feeding hole 113 is provided at one end of the side portion close to the bottom, and the feeding hole 113 is used for the microwave feeding unit 2 to be installed therein; the feeding hole 113 is arranged to extend radially outward along the side portion and is connected to the heating cavity 111.
- the outer conductor unit 11 is made of a metal material, or may be made of a non-metallic material with a conductive coating plated on the outer surface.
- the constricted section 112 may be extended along the inner wall of the outer conductor unit 11 toward the central axis of the outer conductor unit 11, and may be integrally formed with the inner wall of the outer conductor unit 11. In some embodiments, the constricted section 112 may be connected to the open end 1102 and extend into the outer conductor unit 11, and the constricted section 112 at least partially surrounds the probe device 13, so that the focused microwaves are conducive to heat concentration.
- the inner conductor unit 12 is disposed in the outer conductor unit 11, one end of which is connected to the closed end 1101, forming the short-circuit end of the microwave heating assembly 1; the other end thereof extends to the open end 1102, and does not contact the outer conductor unit 11, forming the open-circuit end of the microwave heating assembly 1.
- the inner conductor unit 12 includes an inner conductor post 121, the inner conductor post 121 is in ohmic contact with the outer conductor unit 11, the inner conductor post 121 is coaxially arranged with the outer conductor unit 11, and has the same central axis as the outer conductor unit 11.
- a through hole 1103 is provided at the bottom of the outer conductor unit 11, and one end of the inner conductor post 121 can be inserted into the through hole 1103 and is in ohmic contact with the outer conductor unit 11.
- the inner conductor post 121 can be made of a metal material, or can be made of a non-metallic material with a conductive coating plated on the outer surface.
- the inner conductor post 121 is made of aluminum alloy or copper.
- the outer surface of the inner conductor post 121 may be plated with a silver or gold coating.
- the inner conductor unit 12 further includes an inner conductor disc 122, which is connected to the inner conductor post 121, and the outer diameter of the inner conductor disc 122 is larger than the outer diameter of the inner conductor post 121, and smaller than the inner diameter of the outer conductor unit 11.
- the inner conductor disc 122 can be sleeved outside the inner conductor post 121 near the open end 1102, and the two can be integrally formed or in ohmic contact.
- the inner conductor disc 122 can be made of a metal material, or can be made of a non-metallic material with a conductive coating plated on the outer surface.
- the inner conductor disc 122 can be made of aluminum alloy or copper.
- the microwave heating assembly 1 also includes a probe device 13, which is coaxially arranged with the outer conductor unit 11; the probe device 13 is longitudinally shaped, one end of which is fixed to the inner conductor unit 12 and ohmically connected to the inner conductor unit 12, and the other end extends toward the open end 1102; and the heating cavity 111 surrounds the probe device 13.
- the probe device 13 includes a longitudinal probe 131, the bottom end of the probe 131 is embedded in the inner conductor unit 12 near the closed end 1101, and the top end of the probe 131 extends toward the open end 1102.
- the probe 131 can be fixed on the side of the inner conductor unit 12 near the closed end 1101.
- the inner conductor unit 12 is provided with a mounting hole 120 for mounting the probe device 13, and the mounting hole 120 penetrates along the axial direction of the outer conductor unit 11 to the surface of the inner conductor unit 12 opposite to the open end 1102.
- the bottom end of the probe 131 can be embedded in the bottom end of the mounting hole 120.
- the bottom end of the probe 131 can be connected to the surface of the inner conductor unit 12 opposite to the open end 1102.
- the probe 131 is in ohmic contact with the inner conductor unit 12.
- the shape of the top of the probe 131 includes a plane, a sphere, an ellipsoid, a cone or a truncated cone.
- the shape of the top of the probe 131 is a conical trapezoid, which can enhance the local field strength, thereby increasing the heating speed of the atomized medium.
- the probe 131 is a hollow structure, and the probe device 13 also includes a temperature measuring element (not shown), which is arranged inside the probe 131. The temperature measuring element is connected to an external temperature control and temperature measurement circuit, and can be used to detect the temperature of the aerosol production product to facilitate temperature control.
- the probe 131 can be made of a metal material, or can be made of a non-metal material with a metal coating plated on it.
- the probe 131 can be made of stainless steel, aluminum alloy, copper, etc.
- the probe 131 can be plated with a silver or gold coating on the outside.
- the microwave heating assembly 1 further includes a receiving seat 14, which is connected to the open end 1102 and includes a receiving portion 141 for loading the aerosol generating product 20 and can provide an airway.
- the receiving portion 141 is arranged in the outer conductor unit 11 and is located above the inner conductor unit 12.
- a limiting portion 142 is provided above the receiving seat 14, and the limiting portion 142 extends radially outward along the outer wall of the receiving seat 14.
- the receiving seat 14 is installed in the outer conductor from the open end 1102, and the limiting portion 142 abuts on the end surface of the open end 1102 to limit the downward movement of the receiving seat 14.
- the receiving seat 14 can be made of a high temperature resistant material with low dielectric loss.
- it can be made of a polymer material, and the polymer material includes polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), etc.
- PTFE polytetrafluoroethylene
- PEEK polyetheretherketone
- it can be made of a ceramic material, and the ceramic material includes glass, quartz glass, aluminum oxide, zirconium oxide, etc.
- the receiving portion 141 includes a bottom wall directly opposite to the opening end and a side wall surrounding the bottom wall.
- a through hole 1411 is provided on the bottom wall of the receiving portion 141, and the probe device 13 extends into the receiving portion 141 through the through hole 1411.
- the probe 131 can extend into the aerosol production product located in the receiving portion 141 through the through hole 1411 to heat the aerosol production product.
- the constricted section 112 includes a first constricted section 1121 with a truncated cone-shaped inner cavity, the first constricted section 1121 includes a first end close to the opening end 1102 and a second end away from the opening end 1102, and the inner diameter of the first end is smaller than the inner diameter of the second end.
- the second end is directly connected to an end of the body section 110 close to the opening end 1102.
- the inner cavity of the body section 110 is cylindrical, and the inner diameter of the second end is equivalent to the inner diameter of the body section 110. The inner diameter of the first constricted section 1121 gradually decreases from the first end to the second end.
- the tapered section 112 also includes a second tapered section 1122 with a cylindrical inner cavity.
- the second tapered section 1122 is axially connected to the first end of the first tapered section 1121, and the inner diameter of the second tapered section 1122 is equivalent to the inner diameter of the first end.
- the inner cavity of the body section 110 is cylindrical, and the constricted section 112 includes a third constricted section 1123 having a cylindrical inner cavity, and the inner diameter of the third constricted section 1123 is smaller than the inner diameter of the body section 110.
- an end of the third constricted section 1123 away from the open end 1102 is directly connected to an end of the body section 110 close to the open end 1102.
- the third constricted section 1123 may be an integral structure with the body section 110.
- the outer conductor unit 11 includes a first conductor barrel and a second conductor barrel, the first conductor barrel includes another open end; the second conductor barrel is axially embedded in the other open end and is in ohmic contact with the first conductor barrel to form a constricted section 112.
- the second conductor barrel is detachably installed in the first conductor barrel.
- the inner diameter of the second conductor barrel is smaller than the inner diameter of the first conductor barrel.
- the outer diameter of the second conductor barrel is equivalent to the inner diameter of the first conductor barrel.
- FIG7 shows an energy distribution diagram of an embodiment as a comparative test, in which the outer conductor unit 11 does not include a necking section 112.
- the energy around the necking section 112 is significantly reduced in the lower half of the aerosol generating product, and the energy is significantly concentrated in the upper half of the aerosol generating product.
- the present invention adjusts the heating cavity structure of the outer conductor unit of the microwave heating assembly to adjust its energy field distribution, so that the energy can be mainly focused on the upper half of the aerosol generating product 20.
- the microwave heating assembly 1 has a receiving seat 14, and the outer diameter of the receiving seat 14 can be 9 mm.
- the outer conductor unit 11 can reduce the maximum inner diameter of the outer conductor unit 11 from 12.8 mm to 9.6 mm through the structural design of the necking section 112, that is, the inner diameter of the necking section 112 is 9.6 mm.
- the microwave heating assembly 1 does not have a receiving seat 14.
- the maximum inner diameter of the outer conductor unit 11 can be reduced to 7.2 mm, that is, the inner diameter of the constriction section 112 is 7.2 mm, so that the inner wall of the upper half of the outer conductor unit 11 is closer to the aerosol generating product 20, thereby making the energy more concentrated.
- the outer conductor unit 11 is designed with the structure of the constriction section 112, so that the energy is concentrated in the upper half of the aerosol generating product 20, and the energy absorption ratio of the upper half is increased from 61% to 69%.
Landscapes
- Constitution Of High-Frequency Heating (AREA)
Abstract
一种气溶胶生成装置(10)及其微波加热组件(1),包括外导体单元(11),其包括一个封闭端(1101)、一个与封闭端(1101)相对的开口端(1102)以及一个形成于封闭端(1101)和开口端(1102)之间的加热腔(111);外导体单元(11)包括靠近封闭端(1101)的本体段(110)以及靠近开口端(1102)的用于聚焦微波的缩口段(112),缩口段(112)与本体段(110)轴向相连接;以及内导体单元(12),设置于加热腔(111)中。气溶胶生成装置(10)包括微波加热组件(1)。通过调整微波加热组件(1)的外导体单元(11)的加热腔(111)结构,从而调整其能量场分布,使得能量在加热腔(111)上半区域聚焦,有利于快速生成并排出气溶胶。
Description
本发明涉及气溶胶生成技术领域,尤其涉及一种气溶胶生成装置及其微波加热组件。
在相关技术中,气溶胶生成装置在微波加热组件内形成微波互作用区,通过微波能量传递给气溶胶生成基质,在这个过程中,微波能量分布场决定着微波加热效果。
当采用具有探针结构的微波加热组件加热时,微波能量按固有的分布加热气溶胶生成基质,能量利用效率不高或能量过于分散,可能会导致气溶胶生成基质出烟量小或速度慢。
本发明要解决的技术问题在于,提供一种改进的气溶胶生成装置及其微波加热组件。
本发明解决其技术问题所采用的技术方案是:构造一种微波加热组件,用于气溶胶生成装置,包括:
外导体单元,其包括一个封闭端、一个与所述封闭端相对的开口端以及一个形成于所述封闭端和所述开口端之间的加热腔;该外导体单元包括靠近所述封闭端的本体段以及靠近所述开口端的用于聚焦微波的缩口段,所述缩口段与所述本体段轴向相连接;以及
内导体单元,设置于所述加热腔中。
在一些实施例中,所述缩口段包括内腔呈圆台状的第一缩口段,所述第一缩口段包括靠近所述开口端的第一端和远离所述开口端的第二端,所述第一端的内径小于所述第二端的内径。
在一些实施例中,所述第二端与所述本体段靠近所述开口端的一端直接相连接。
在一些实施例中,所述本体段的内腔呈圆柱状,且所述第二端的内径与所述本体段的内径相当。
在一些实施例中,所述缩口段还包括内腔呈圆柱状的第二缩口段,所述第二缩口段沿轴向连接于所述第一缩口段的所述第一端,所述第二缩口段的内径与所述第一端的内径相当。
在一些实施例中,所述本体段的内腔呈圆柱状,所述缩口段包括内腔呈圆柱状的第三缩口段,所述第三缩口段的内径小于所述本体段的内径。
在一些实施例中,所述第三缩口段远离所述开口端的一端与所述本体段靠近所述开口端的一端直接相连接。
在一些实施例中,所述外导体单元包括第一导体筒以及第二导体筒,所述第一导体筒包括一个另一开口端;所述第二导体筒沿轴向嵌入所述另一开口端中,并与所述第一导体筒欧姆接触,以形成所述缩口段。
在一些实施例中,所述第二导体筒内径小于所述第一导体筒内径。
在一些实施例中,所述第二导体筒外径与所述第一导体筒内径相当。
在一些实施例中,所述缩口段的最大内径小于或等于9.6mm。
在一些实施例中,所述内导体单元设置在所述外导体单元内,其一端连接于所述封闭端,其另一端向所述开口端延伸。
在一些实施例中,所述微波加热组件还包括探针装置,所述探针装置与所述外导体单元共轴设置;所述加热腔环绕于所述探针装置。
在一些实施例中,所述探针装置呈纵长形,其一端固定于所述内导体单元并与所述内导体单元欧姆连接,另一端朝向所述开口端延伸。
在一些实施例中,所述探针装置包括纵长的探针,所述探针的底端连接于所述内导体单元与所述开口端相对的表面上,所述探针的顶端向所述开口端延伸。
在一些实施例中,所述探针装置包括纵长的探针,所述探针的底端嵌置于所述内导体单元靠近所述封闭端处,所述探针的顶端向所述开口端延伸。
在一些实施例中,所述内导体单元中设有供所述探针装置安装的安装孔,所述安装孔沿所述外导体单元的轴向贯通至所述加热腔。
在一些实施例中,所述探针的顶端形状包括平面、球形、椭球形、圆锥形或者圆台形。
在一些实施例中,所述探针为中空结构,所述探针装置还包括测温元件,所述测温元件设置于所述探针的内部。
在一些实施例中,所述内导体单元包括内导体柱,所述内导体柱与所述外导体单元共轴设置;所述内导体柱一端连接于所述封闭端,另一端向所述开口端延伸。
在一些实施例中,所述内导体单元还包括内导体盘,所述内导体盘与所述内导体柱相连接,所述内导体盘的外径大于所述内导体柱的外径,且小于所述外导体单元的内径。
在一些实施例中,所述微波加热组件还包括收容座,所述收容座连接于所述开口端上,其包括用于装载气溶胶生成制品的收容部,所述收容部设置于所述加热腔内。
在一些实施例中,所述收容部包括与所述开口端正对的底壁,所述底壁上设有通孔,所述探针装置通过所述通孔伸入至所述收容部中。
本发明还构造了一种气溶胶生成装置,包括上述的微波加热组件。
在一些实施例中,所述气溶胶生成装置还包括连接于所述微波加热组件上的微波馈入单元,所述微波馈入单元的一端从所述外导体单元外周壁插入至所述外导体单元内,且与所述内导体单元欧姆接触。
在一些实施例中,所述微波馈入单元包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元的轴线的方式,与所述内导体单元欧姆接触。
实施本发明具有以下有益效果:本发明通过调整微波加热组件的外导体单元的加热腔结构,从而调整其能量场分布,使得能量在加热腔上半区域聚焦,有利于快速生成并排出气溶胶。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的气溶胶生成装置一个实施例的剖视图;
图2是图1所示实施例的爆炸图;
图3是本发明的气溶胶生成装置另一个实施例的剖视图;
图4是图3所示实施例的爆炸图;
图5是本发明的气溶胶生成装置又一个实施例的剖视图;
图6是图5所示实施例的爆炸图;
图7是作为对比实验,外导体单元不包括缩口段情况下测试获得的能量分布图;
图8是图1所示实施例的测试获得的能量分布图;
图9是图3所示实施例的测试获得的能量分布图;
图10是图5所示实施例的测试获得的能量分布图。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
一同参阅图1至图6,图示出了本发明一些实施例中的气溶胶生成装置10,该气溶胶生成装置10可利用微波加热气溶胶生成制品20,以雾化产生气溶胶,从而供使用者吸食。
如图1所示,气溶胶生成装置在一些实施例中包括微波加热组件1,微波加热组件1可呈大致呈圆柱状,其包括外导体单元11以及内导体单元12。该外导体单元11用于微波加热组件,其界定有一个加热腔111,并包括一个用于聚焦微波的缩口段112。该内导体单元12设置于加热腔111中,用于微波匹配。
再如图3和图5所示,在一些实施例中,气溶胶生成装置还包括微波馈入单元2和微波发生装置(未图示),微波馈入单元2用于将微波发生装置(未图示)产生的微波馈入加热腔111中。微波馈入单元2的一端从外导体单元11外周壁插入至外导体单元11内,且与内导体单元12欧姆接触。微波馈入单元2在一些实施例中包括内导体21、外导体22以及介于内导体21和外导体22之间的介质层23,内导体21呈一字型,并沿着垂直于内导体单元12的轴线的方式,与内导体单元12欧姆接触。可理解地,内导体21可以呈L字型,且与微波加热组件1相连接。微波馈入单元2采用金属材料制成。优选地,其可以由金属铝或铜制成。进一步地,其外表面可以镀有银或金涂层。
微波发生装置用于产生微波,微波馈入单元2用于将微波发生装置生成的微波馈入微波加热组件1中,微波加热组件1可以在微波馈入后形成一个微波场,该微波场可作用于气溶胶生成制品20,对其实现微波加热。将气溶胶生成制品20装入至加热腔111中后,可控制谐振频率在2.4-2.5GHz之间。本发明外导体单元11的缩口段112可使微波聚焦,从而调整加热腔111能量场分布,使得能量往气溶胶生成制品20的上半区域聚焦,有利于快速生成气溶胶。
如图2所示,在一些实施例中,外导体单元11具有一个封闭端1101和一个开口端1102,以及一个形成于封闭端1101和开口端1102之间的加热腔。该外导体单元11包括靠近封闭端1101的本体段110以及靠近开口端1102的用于聚焦微波的缩口段112,缩口段112与本体段110轴向相连接。该缩口段112相对于本体段110呈收缩形态,缩口段112与本体段110可以采用锥形过渡,缩口段112的内径相对于本体段110的内径逐渐缩小。
内导体单元12与封闭端1101之间相连接,缩口段112临近开口端1102设置。该外导体单元11包括可导电的侧部以及与侧部连接的底部,侧部呈圆筒状,侧部的顶端为开口结构,其形成外导体单元11的开口端1102。底部封闭于侧部的底端,形成外导体单元11的封闭端1101。侧部靠近底部的一端开设有馈入孔113,该馈入孔113用于供微波馈入单元2安装于其中;馈入孔113沿侧部径向向外延伸设置,并与加热腔111相连通。在一些实施例中,外导体单元11采用金属材料制成,或者可以是在非金属材料外表面镀有导电涂层制成。
缩口段112在一些实施例中可沿外导体单元11的内壁向外导体单元11的中心轴线延伸设置,并与外导体单元11的内壁一体成型。缩口段112在一些实施例中可以连接于开口端1102处,并伸入至外导体单元11中,缩口段112至少部分环绕于探针装置13,使其聚焦微波利于热量的集中。
结合图1和图2,在一些实施例中,内导体单元12设置在外导体单元11内,其一端连接于封闭端1101,形成该微波加热组件1的短路端;其另一端向开口端1102延伸,并不与外导体单元11接触,形成该微波加热组件1的开路端。内导体单元12在一些实施例中包括内导体柱121,内导体柱121与外导体单元11之间欧姆接触,内导体柱121与外导体单元11共轴设置,其与外导体单元11具有相同的中心轴线。在一些实施例中,外导体单元11底部设有穿孔1103,内导体柱121其中一端可穿设于该穿孔1103中,并与外导体单元11欧姆接触。在一些实施例中,内导体柱121可以由金属材料制成,或者可以是在非金属材料外表面镀有导电涂层制成。优选地,内导体柱121采用铝合金或铜制成。进一步地,可在内导体柱121外表面镀有银或者金涂层。
如图2所示,在一些实施例中,内导体单元12还包括内导体盘122,内导体盘122与内导体柱121相连接,内导体盘122的外径大于内导体柱121的外径,且小于外导体单元11的内径。在一些实施例中,内导体盘122可套设与内导体柱121靠近开口端1102一侧外,且两者之间可以为一体成型或欧姆接触。在一些实施例中,内导体盘122可以由金属材料制成,或者可以是在非金属材料外表面镀有导电涂层制成。优选地,内导体盘122可以采用铝合金或者铜。
如图3至图6所示,在一些实施例中,微波加热组件1还包括探针装置13,探针装置13与外导体单元11共轴设置;探针装置13呈纵长形,其一端固定于内导体单元12并与内导体单元12欧姆连接,另一端朝向开口端1102延伸;且加热腔111环绕于探针装置13。
再结合图2,在一些实施例中,探针装置13包括纵长的探针131,探针131的底端嵌置于内导体单元12靠近封闭端1101处,探针131的顶端向开口端1102延伸。在一些实施例中,探针131可以固定于内导体单元12靠近封闭端1101一侧上。内导体单元12中设有供探针装置13安装的安装孔120,安装孔120沿外导体单元11的轴向贯通至内导体单元12的与开口端1102相对的表面上。探针131的底端可以嵌置于安装孔120的底端。在一些实施例中,探针131的底端可以连接于内导体单元12与开口端1102相对的表面上。探针131与内导体单元12欧姆接触。
在一些实施例中,探针131的顶端形状包括平面、球形、椭球形、圆锥形或者圆台形。优选地,探针131的顶端形状为圆锥梯形,这样可以起到增强局部场强的作用,从而提升雾化介质加热速度。在一些实施例中,探针131为中空结构,探针装置13还包括测温元件(未图示),测温元件设置于探针131的内部。测温元件与外部控温测温电路相连接,可用于检测气溶胶生产制品的温度,以方便控制温度。
在一些实施例中,探针131可以由金属材料制成,也可以是在非金属材料外镀金属涂层制成。优选地,探针131可以采用不锈钢、铝合金或者铜等材料制成。更进一步,可以在探针131外部镀有银或者金涂层。
再如图1所示,在一些实施例中,微波加热组件1还包括收容座14,收容座14连接于开口端1102上,其包括用于装载气溶胶生成制品20的收容部141,并可提供气道。收容部141设置于外导体单元11内,并位于内导体单元12上方。在一些实施例中,收容座14上方设有限位部142,限位部142沿收容座14外壁径向向外延伸,收容座14从开口端1102安装于外导体内,该限位部142抵接于开口端1102端面上,以限制收容座14向下移动。收容座14可以由低介电损耗的耐高温材料制成。在一些实施例中,可以是由高分子材料制成,该高分子材料包括聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)等。在一些实施例中,可以是由陶瓷材料制成,该陶瓷材料包括玻璃、石英玻璃、氧化铝、氧化锆等。
如图2所示,在一些实施例中,收容部141包括与开口端正对的底壁以及环设于底壁的侧壁。收容部141的底壁上设有通孔1411,探针装置13通过通孔1411伸入至收容部141中。当气溶胶生产制品置于收容部141中,探针131可通过通孔1411伸入至位于收容部141的气溶胶生产制品中,以加热气溶胶生产制品。
如图3和图4所示,在一些实施例中,缩口段112包括内腔呈圆台状的第一缩口段1121,第一缩口段1121包括靠近开口端1102的第一端和远离开口端1102的第二端,第一端的内径小于第二端的内径。在一些实施例中,第二端与本体段110靠近开口端1102的一端直接相连接。在一些实施例中,本体段110的内腔呈圆柱状,且第二端的内径与本体段110的内径相当。第一缩口段1121的内径自第一端向第二端逐渐减小。
如图5和图6所示,缩口段112在一些实施例中还包括内腔呈圆柱状的第二缩口段1122,第二缩口段1122沿轴向连接于第一缩口段1121的第一端,第二缩口段1122的内径与第一端的内径相当。
如图1和图2所示,在一些实施例中,本体段110的内腔呈圆柱状,缩口段112包括内腔呈圆柱状的第三缩口段1123,第三缩口段1123的内径小于本体段110的内径。在一些实施例中,第三缩口段1123远离开口端1102的一端与本体段110靠近开口端1102的一端直接相连接。在一些实施例中,第三缩口段1123可与本体段110为一体结构。
在一些实施例中,外导体单元11包括第一导体筒以及第二导体筒,第一导体筒包括一个另一开口端;第二导体筒沿轴向嵌入另一开口端中,并与第一导体筒欧姆接触,以形成缩口段112。第二导体筒可拆卸安装于第一导体筒中。在一些实施例中,第二导体筒内径小于第一导体筒内径。在一些实施例中,第二导体筒外径与第一导体筒内径相当。
图7示出作为对比试验的实施例的能量分布图,该实施例中外导体单元11不包括缩口段112。一同参阅图8至图10,通过将图8至图10分别与图7对比可知,图8、图9、图10所示实施例中位于缩口段112周边的能量在气溶胶生成制品的下半区域明显减小,能量向气溶胶生成制品的上半区域集中明显。本发明通过调整微波加热组件的外导体单元的加热腔结构,从而调整其能量场分布,可使能量主要聚焦在气溶胶生成制品20的上半区域。在一些实施例中,微波加热组件1具有收容座14,收容座14的外径可以为9mm,外导体单元11通过缩口段112的结构设计,可使外导体单元11的最大内径由12.8mm缩小为9.6mm,即缩口段112的内径为9.6mm。外导体单元11的内径尺寸越小,气溶胶生成效果越好,当然这里通过在开口端1102处设置缩口段112,可使得能量更集中于外导体单元11上半区域。在一些实施例中,微波加热组件1中没有设置收容座14,此时外导体单元11的最大内径可以缩小到7.2mm,即缩口段112的内径为7.2mm,使得外导体单元11上半区域的内壁更靠近于气溶胶生成制品20,从而使得能量更集中。与传统外导体单元11内径不变的情况相比,外导体单元11通过缩口段112的结构设计,使得能量向气溶胶生成制品20上半区域集中,上半段能量吸收占比有61%提升到69%。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。
Claims (26)
- 一种微波加热组件,用于气溶胶生成装置,其特征在于,包括:外导体单元,其包括一个封闭端、一个与所述封闭端相对的开口端以及一个形成于所述封闭端和所述开口端之间的加热腔;该外导体单元包括靠近所述封闭端的本体段以及靠近所述开口端的缩口段;以及内导体单元,设置于所述加热腔中。
- 根据权利要求1所述的微波加热组件,其特征在于,所述缩口段包括内腔呈圆台状的第一缩口段,所述第一缩口段包括靠近所述开口端的第一端和远离所述开口端的第二端,所述第一端的内径小于所述第二端的内径。
- 根据权利要求2所述的微波加热组件,其特征在于,所述第二端与所述本体段靠近所述开口端的一端直接相连接。
- 根据权利要求2所述的微波加热组件,其特征在于,所述本体段的内腔呈圆柱状,且所述第二端的内径与所述本体段的内径相当。
- 根据权利要求2所述的微波加热组件,其特征在于,所述缩口段还包括内腔呈圆柱状的第二缩口段,所述第二缩口段沿轴向连接于所述第一缩口段的所述第一端,所述第二缩口段的内径与所述第一端的内径相当。
- 根据权利要求1所述的微波加热组件,其特征在于,所述本体段的内腔呈圆柱状,所述缩口段包括内腔呈圆柱状的第三缩口段,所述第三缩口段的内径小于所述本体段的内径。
- 根据权利要求6所述的微波加热组件,其特征在于,所述第三缩口段远离所述开口端的一端与所述本体段靠近所述开口端的一端直接相连接。
- 根据权利要求1所述的微波加热组件,其特征在于,所述外导体单元包括第一导体筒以及第二导体筒,所述第一导体筒包括一个另一开口端;所述第二导体筒沿轴向嵌入所述另一开口端中,并与所述第一导体筒欧姆接触,以形成所述缩口段。
- 根据权利要求8所述的微波加热组件,其特征在于,所述第二导体筒内径小于所述第一导体筒内径。
- 根据权利要求8所述的微波加热组件,其特征在于,所述第二导体筒外径与所述第一导体筒内径相当。
- 根据权利要求1所述的微波加热组件,其特征在于,所述缩口段的最大内径小于或等于9.6mm。
- 根据权利要求1所述的微波加热组件,其特征在于,所述内导体单元设置在所述外导体单元内,其一端连接于所述封闭端,其另一端向所述开口端延伸。
- 根据权利要求1所述的微波加热组件,其特征在于,所述微波加热组件还包括探针装置,所述探针装置与所述外导体单元共轴设置;所述加热腔环绕于所述探针装置。
- 根据权利要求13所述的微波加热组件,其特征在于,所述探针装置呈纵长形,其一端固定于所述内导体单元并与所述内导体单元欧姆连接,另一端朝向所述开口端延伸。
- 根据权利要求14所述的微波加热组件,其特征在于,所述探针装置包括纵长的探针,所述探针的底端连接于所述内导体单元与所述开口端相对的表面上,所述探针的顶端向所述开口端延伸。
- 根据权利要求14所述的微波加热组件,其特征在于,所述探针装置包括纵长的探针,所述探针的底端嵌置于所述内导体单元靠近所述封闭端处,所述探针的顶端向所述开口端延伸。
- 根据权利要求16所述的微波加热组件,其特征在于,所述内导体单元中设有供所述探针装置安装的安装孔,所述安装孔沿所述外导体单元的轴向贯通至所述加热腔。
- 根据权利要求15或16所述的微波加热组件,其特征在于,所述探针的顶端形状包括平面、球形、椭球形、圆锥形或者圆台形。
- 根据权利要求15或16所述的微波加热组件,其特征在于,所述探针为中空结构,所述探针装置还包括测温元件,所述测温元件设置于所述探针的内部。
- 根据权利要求1所述的微波加热组件,其特征在于,所述内导体单元包括内导体柱,所述内导体柱与所述外导体单元共轴设置;所述内导体柱一端连接于所述封闭端,另一端向所述开口端延伸。
- 根据权利要求1所述的微波加热组件,其特征在于,所述内导体单元还包括内导体盘,所述内导体盘与所述内导体柱相连接,所述内导体盘的外径大于所述内导体柱的外径,且小于所述外导体单元的内径。
- 根据权利要求13所述的微波加热组件,其特征在于,所述微波加热组件还包括收容座,所述收容座连接于所述开口端上,其包括用于装载气溶胶生成制品的收容部,所述收容部设置于所述加热腔内。
- 根据权利要求22所述的微波加热组件,其特征在于,所述收容部包括与所述开口端正对的底壁,所述底壁上设有通孔,所述探针装置通过所述通孔伸入至所述收容部中。
- 一种气溶胶生成装置,其特征在于,包括权利要求1至23任一项所述的微波加热组件。
- 根据权利要求24所述的气溶胶生成装置,其特征在于,所述气溶胶生成装置还包括连接于所述微波加热组件上的微波馈入单元,所述微波馈入单元的一端从所述外导体单元外周壁插入至所述外导体单元内,且与所述内导体单元欧姆接触。
- 根据权利要求24所述的气溶胶生成装置,其特征在于,所述微波馈入单元包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元的轴线的方式,与所述内导体单元欧姆接触。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/129370 WO2024092582A1 (zh) | 2022-11-02 | 2022-11-02 | 气溶胶生成装置及其微波加热组件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/129370 WO2024092582A1 (zh) | 2022-11-02 | 2022-11-02 | 气溶胶生成装置及其微波加热组件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024092582A1 true WO2024092582A1 (zh) | 2024-05-10 |
Family
ID=90929200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/129370 WO2024092582A1 (zh) | 2022-11-02 | 2022-11-02 | 气溶胶生成装置及其微波加热组件 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024092582A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180296267A1 (en) * | 2015-12-07 | 2018-10-18 | Creo Medical Limited | Electrosurgical instrument for radiating microwave energy and dispensing liquid at a treatment site |
CN111465161A (zh) * | 2020-03-18 | 2020-07-28 | 苏州迈微能等离子科技有限公司 | 一种常压自点火式微波等离子炬及微波等离子发生系统 |
CN113729285A (zh) * | 2021-08-30 | 2021-12-03 | 深圳市虎电固态新能源科技有限公司 | 一种微波加热电子烟 |
CN216165164U (zh) * | 2021-10-20 | 2022-04-05 | 深圳麦克韦尔科技有限公司 | 气溶胶固定装置和气溶胶产生装置 |
US20220132927A1 (en) * | 2019-06-18 | 2022-05-05 | Kt&G Corporation | Aerosol-generating device for generating aerosol through microwaves and method thereof |
CN114711467A (zh) * | 2022-03-04 | 2022-07-08 | 深圳麦克韦尔科技有限公司 | 微波加热组件及气溶胶产生装置和气溶胶生成系统 |
CN114831341A (zh) * | 2022-01-20 | 2022-08-02 | 深圳麦时科技有限公司 | 雾化装置及用于微波雾化器具的微波加热组件 |
CN114886160A (zh) * | 2022-05-18 | 2022-08-12 | 深圳麦时科技有限公司 | 气溶胶产生装置 |
CN217161108U (zh) * | 2022-03-21 | 2022-08-12 | 深圳麦克韦尔科技有限公司 | 气溶胶产生装置 |
-
2022
- 2022-11-02 WO PCT/CN2022/129370 patent/WO2024092582A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180296267A1 (en) * | 2015-12-07 | 2018-10-18 | Creo Medical Limited | Electrosurgical instrument for radiating microwave energy and dispensing liquid at a treatment site |
US20220132927A1 (en) * | 2019-06-18 | 2022-05-05 | Kt&G Corporation | Aerosol-generating device for generating aerosol through microwaves and method thereof |
CN111465161A (zh) * | 2020-03-18 | 2020-07-28 | 苏州迈微能等离子科技有限公司 | 一种常压自点火式微波等离子炬及微波等离子发生系统 |
CN113729285A (zh) * | 2021-08-30 | 2021-12-03 | 深圳市虎电固态新能源科技有限公司 | 一种微波加热电子烟 |
CN216165164U (zh) * | 2021-10-20 | 2022-04-05 | 深圳麦克韦尔科技有限公司 | 气溶胶固定装置和气溶胶产生装置 |
CN114831341A (zh) * | 2022-01-20 | 2022-08-02 | 深圳麦时科技有限公司 | 雾化装置及用于微波雾化器具的微波加热组件 |
CN114711467A (zh) * | 2022-03-04 | 2022-07-08 | 深圳麦克韦尔科技有限公司 | 微波加热组件及气溶胶产生装置和气溶胶生成系统 |
CN217161108U (zh) * | 2022-03-21 | 2022-08-12 | 深圳麦克韦尔科技有限公司 | 气溶胶产生装置 |
CN114886160A (zh) * | 2022-05-18 | 2022-08-12 | 深圳麦时科技有限公司 | 气溶胶产生装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023221596A1 (zh) | 气溶胶产生装置 | |
EP3466364B1 (en) | Antenna assembly for microwave ablation and microwave ablation needle using same | |
US3387110A (en) | Apparatus for uniform feeding of powder into a plasma spray gun | |
US5973289A (en) | Microwave-driven plasma spraying apparatus and method for spraying | |
JP2922223B2 (ja) | マイクロ波プラズマ発生装置 | |
JPH0219600B2 (zh) | ||
JPH05190103A (ja) | マイクロ波エネルギーを結合するための装置 | |
US20200306716A1 (en) | Durable auto-ignition device for plasma reactor | |
WO2024092582A1 (zh) | 气溶胶生成装置及其微波加热组件 | |
US5049843A (en) | Strip-line for propagating microwave energy | |
WO2023202196A1 (zh) | 雾化装置及其雾化芯 | |
CN109202072A (zh) | 一种同轴送粉的电子枪装置 | |
CN108878248A (zh) | 等离子体处理装置 | |
CN114845454A (zh) | 一种微波耦合等离子体与高温火焰融合激发源 | |
CN117981915A (zh) | 气溶胶生成装置及其微波加热组件 | |
NO851357L (no) | Fremgangsmaate og innretning for frembringelse av en plasmastroem med en oppvarmet og utvidet plasmastraale | |
WO2024113327A1 (zh) | 气溶胶生成装置及其微波加热组件 | |
WO2024036935A1 (zh) | 微波馈入装置、微波加热器及气溶胶产生装置 | |
WO2024092583A1 (zh) | 气溶胶产生装置及其微波加热组件 | |
JP2021064508A (ja) | プラズマ処理装置 | |
US20140251541A1 (en) | Plasma processing apparatus | |
CN107995767A (zh) | 一种高效稳定的电弧等离子体源 | |
WO2024145844A1 (zh) | 气溶胶产生装置及其微波加热组件 | |
CN108767392A (zh) | 一种标准波导及微波等离子体装置 | |
CN118120972A (zh) | 气溶胶生成装置及其微波加热组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22963896 Country of ref document: EP Kind code of ref document: A1 |