WO2024036935A1 - 微波馈入装置、微波加热器及气溶胶产生装置 - Google Patents

微波馈入装置、微波加热器及气溶胶产生装置 Download PDF

Info

Publication number
WO2024036935A1
WO2024036935A1 PCT/CN2023/080902 CN2023080902W WO2024036935A1 WO 2024036935 A1 WO2024036935 A1 WO 2024036935A1 CN 2023080902 W CN2023080902 W CN 2023080902W WO 2024036935 A1 WO2024036935 A1 WO 2024036935A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
outer conductor
feed
feeding
conductor
Prior art date
Application number
PCT/CN2023/080902
Other languages
English (en)
French (fr)
Inventor
蓝永海
梁峰
杜靖
邓洋
李东建
卜桂华
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024036935A1 publication Critical patent/WO2024036935A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present invention relates to the field of electronic atomization, and in particular to a microwave feed device, a microwave heater and an aerosol generating device.
  • the aerosol generation device uses microwave heating.
  • a microwave feed device and its feed part are designed.
  • the structure of the feed part affects the effect of microwave heating, and the feed method determines the installation method of the cavity.
  • the technical problem to be solved by the present invention is to provide an improved microwave feed device, microwave heater and aerosol generating device.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a microwave feed device for use in a microwave heater;
  • the microwave feed device includes an outer conductor, an inner conductor provided in the outer conductor, and an intermediate conductor. a dielectric layer between the outer conductor and the inner conductor;
  • the inner conductor includes a main body portion accommodated in the outer conductor and a feed-in portion located outside the outer conductor; the feed-in portion includes a first end and a second end, and the first end is connected to the main body portion. , the second end is connected to the outer conductor.
  • the second end is integrally coupled to the end surface of the outer conductor.
  • the first end is integrally combined with the main body part.
  • the feed portion is a curved rod-shaped structure.
  • the feed portion includes a U-shape, a V-shape or an arc shape.
  • the feed portion includes a first feed section extending axially along the main body, a second feed section connected to the outer conductor, and a second feed section connecting the first feed section and the second feed section. the third feed section between;
  • the first feeding section and the second feeding section are parallel to each other, and the third feeding section is perpendicular to the first feeding section.
  • the lengths of the first feeding section and the second feeding section are equal.
  • the feed portion has a uniform diameter.
  • the microwave feeding device is a coaxial connector.
  • the outer conductor is cylindrical
  • the inner conductor is cylindrical
  • the outer conductor and the inner conductor are coaxial.
  • the length of the first feeding section and the second feeding section is between 2.6-2.8 mm.
  • the length of the third feeding section is between 0.7-0.9mm.
  • the present invention also constructs a microwave heater for use in an aerosol generating device, which includes a cylindrical outer conductor unit, an inner conductor unit axially arranged in the outer conductor, and the above-mentioned microwave feed device;
  • the outer conductor unit is provided with a feed hole, the microwave feed device is installed in the feed hole, and the outer conductor of the microwave feed device is in ohmic contact with the outer conductor unit.
  • the feed portion of the microwave feed device is located between the outer conductor unit and the inner conductor unit.
  • the outer peripheral wall surface of the outer conductor is in ohmic contact with the inner wall surface of the feed hole.
  • the aperture of the feed hole is adapted to the outer diameter of the outer conductor.
  • the outer conductor unit includes an open end and a closed end opposite to the open end, and the feed hole is formed on the closed end;
  • the feed hole is formed on a side wall of the outer conductor unit.
  • the plane of the feed portion is perpendicular to the peripheral surface of the feed hole.
  • the microwave heater includes a longitudinal axis
  • the plane of the feed-in part is parallel to the longitudinal axis, or the longitudinal axis is partially included in the plane of the feed-in part.
  • the present invention also constructs an aerosol generating device, including the above-mentioned microwave heater.
  • the microwave feed device in the present invention can be used as an independent component, and its inner conductor does not need to form an installation relationship with the outer conductor unit or the inner conductor unit; the microwave feed device not only has a simple structure and is easy to install, It can also maintain excellent electrical performance and solve the performance degradation problem caused by the ohmic contact between the inner conductor and the outer conductor unit or the inner conductor unit of the microwave feed device in the related art.
  • Figure 1 is a schematic three-dimensional structural diagram of a microwave heater in some embodiments of the present invention.
  • FIG. 2 is a schematic structural diagram of the longitudinal section of the microwave heater shown in Figure 1;
  • FIG 3 is a schematic structural diagram of the longitudinal section of the microwave heater shown in Figure 2 with the receiving seat omitted;
  • Figure 4 is a schematic three-dimensional structural diagram of a microwave feed device in some embodiments of the present invention.
  • FIG. 5 is a schematic longitudinal cross-sectional structural diagram of the microwave feed device shown in Figure 4.
  • Figure 6 is a schematic longitudinal cross-sectional structural diagram of a microwave heater in other embodiments of the present invention.
  • Figure 7 is a diagram of experimental data measured when the aerosol generating device limits the feed portion to a first size in some embodiments of the present invention.
  • Figure 8 is a graph of experimental data measured when the aerosol generating device limits the feed portion to a second size in some embodiments of the present invention.
  • aerosol generating device 100 microwave heater 1; receiving seat 2; microwave feed device 3; outer conductor unit 11; inner conductor unit 12; heating cavity 111; open end 112; closed end 113; conductor side wall 114 ; Conductor end wall 115; Feeding hole 116; Conductor post 121; Conductor plate 122; Probe device 123; Probe 1231; Receiving part 21; Fixing part 22; Receiving cavity 211; Positioning rib 212; Outer conductor 31; Inner conductor 32; outer conductor side wall 311; Segment 3225; second aerosol generating device 100a; second outer conductor unit 11a; second conductor side wall 114a; second conductor end wall 115a; second feed hole 116a.
  • Figures 1 to 5 show an aerosol generating device 100 in some embodiments of the present invention.
  • the aerosol generating device 100 can use microwaves to heat an aerosol generating substrate to atomize it to generate an aerosol for the user to inhale or inhale.
  • the aerosol-generating substrate is a solid aerosol-generating substrate such as a processed plant leaf product. It can be understood that in other embodiments, the aerosol-generating matrix may also be a liquid aerosol-generating matrix.
  • the aerosol generating device 100 may include a microwave heater 1 in some embodiments.
  • the microwave heater 1 can be a quarter-wavelength coaxial resonator, which is roughly cylindrical in shape and includes a heating cavity 111 , a receiving seat 2 and a microwave feeding device 3 .
  • the heating cavity 111 serves as a place where microwaves continue to oscillate.
  • the microwave feeding device 3 is used to feed the microwave generated by the microwave generating device (not shown) into the heating cavity 111 .
  • the receiving seat 2 is used to load the aerosol-generating substrate, which is fixedly or detachably installed on the microwave heater 1, so that the aerosol-generating substrate inside the aerosol-generating substrate is exposed to the microwave field in the heating chamber 111 and is heated by the microwave mist. change.
  • the microwave heater 1 is not limited to a cylindrical shape, and may also be in a square column, an elliptical column or other shapes.
  • the microwave heater 1 also includes a cylindrical outer conductor unit 11 for electromagnetic shielding, a longitudinal inner conductor unit 12 disposed in the outer conductor unit 11 to guide waves, and The medium (for example, air) between the outer wall surface of the inner conductor unit 12 and the inner wall surface of the outer conductor unit 11; the outer conductor unit 11 and the inner conductor unit 12 together define the above-mentioned heating cavity 111.
  • the outer conductor unit 11 has an open end 112 and a closed end 113 opposite to the open end 112; the first end of the inner conductor unit 12 is in ohmic contact with the end wall of the closed end 113, forming a short-circuit end of the microwave heater 1.
  • the second end of the inner conductor unit 12 extends toward the open end 112 of the outer conductor unit 11 and is not in direct ohmic contact with the outer conductor unit 11 , forming an open end of the microwave heater 1 .
  • the receiving seat 2 is installed (for example, detachably or non-detachably embedded) on the open end of the microwave heater 1 .
  • the axis of the inner conductor unit 12 and the axis of the outer conductor unit 11 coincide with or are parallel to each other. Preferably, the two coincide with each other.
  • Outer conductor unit 11 may in some embodiments include conductive conductor side walls 114 and conductive conductor end walls 115 .
  • the conductor sidewall 114 may be cylindrical in some embodiments and includes two opposite ends.
  • the conductor end wall 115 is closed on the first end of the conductor side wall 114 to form the above-mentioned closed end 113 .
  • the second end of the conductor side wall 114 has an open structure, forming the above-mentioned open end 112 for the receiving seat 2 to be embedded therein.
  • a radially penetrating feed hole 116 may be provided on the conductor side wall 114 of the outer conductor unit 11 close to the conductor end wall 115 for the microwave feed device 3 to be installed therein.
  • the diameter of the feed hole 116 is adapted to the outer diameter of the outer conductor 31 of the microwave feed device 3 .
  • the outer conductor unit 11 can be integrally made of conductive metal material, and its material can include at least one of aluminum, copper, gold, silver, and stainless steel; preferably aluminum alloy or copper. It can be understood that the outer conductor unit 11 is not limited to being integrally made of conductive material. It can also be realized by plating a conductive coating on the inner wall surface of the non-conductive cylinder. Materials used to make the conductive coating may include gold, silver, copper, aluminum, conductive metal oxides or conductive polymers; where conductive metal oxides may include ITO, AZO, AGZO and FTO materials. Preferably the conductive coating is a silver coating or a gold coating.
  • the inner conductor unit 12 may include a conductor post 121 , a conductor disk 122 located above the conductor post 121 , and a probe device 123 embedded in the conductor disk 122 and/or the conductor post 121 .
  • the conductor post 121 is cylindrical and includes two opposite ends. Its end (bottom end) away from the open end 112 is coaxially connected to the conductor end wall 115 of the outer conductor unit 11 and is close to the open end 112 One end (top end) extends toward the open end 112 of the outer conductor unit 11 .
  • the diameter of the conductor post 121 is smaller than the inner diameter of the outer conductor unit 11 .
  • the conductor column 121 is not limited to a cylindrical shape, and may also be in a square columnar shape, an elliptical columnar shape, a stepped columnar shape, an irregular columnar shape, or other shapes.
  • the conductor post 121 may be integrally made of conductive metal material, preferably aluminum alloy or copper. It can be understood that the conductor post 121 is not limited to being integrally made of conductive material. It can also be realized by plating a conductive coating on the outer surface of a non-conductive body. The conductive coating is preferably plated with silver coating or gold coating.
  • the conductor disk 122 is disk-shaped, has a diameter larger than the diameter of the conductor post 121 , and is disposed on the top of the conductor post 121 .
  • the conductor disk 122 can be integrally combined with the conductor post 121 , or the conductor disk 122 and the conductor post 121 can form good ohmic contact. It can be understood that the conductor disk 122 is used to increase its own inductance and capacitance, and to reduce the resonant frequency, which is beneficial to further reducing the size of the heating cavity 111 .
  • the probe device 123 is an independent structure (that is, the probe device 123 is not integrally connected to the conductor disk 122 or the conductor post 121), and can be extracted from/inserted into the conductor disk 122 and/or the conductor post 122 from the top of the conductor disk 122. 121, and forms ohmic contact with the conductor disk 122 and/or the conductor post 121.
  • the probe device 123 can adjust the microwave field distribution and microwave feed frequency, and can also allow microwaves to be transmitted to the probe device 123 through the conductor post 121 .
  • the probe device 123 may include a longitudinal probe 1231; one end of the probe 1231 is inserted from the top of the conductor post 121 and coaxially embedded in the conductor post 121 and/or the conductor disk 122, Forming good ohmic contact with the conductor post 121 and/or the conductor disk 122; the other end of the probe 1231 extends upward into the receiving cavity 211 of the receiving base 2, so that the aerosol generating matrix provided in the receiving cavity 211 can be sleeved therein in.
  • the shape of one end of the probe 1231 that extends into the receiving cavity 211 may include a plane, a sphere, an ellipsoid, a cone, or a truncated cone in some embodiments; the top shape is preferably a truncated cone to enhance the local field strength, thereby increasing the The atomization speed of the aerosol-generating medium.
  • the probe 1231 can be integrally made of conductive metal material, preferably stainless steel, aluminum alloy or copper. It can be understood that the probe 1231 is not limited to being integrally made of conductive material. It can also be realized by plating a conductive coating on the outer surface of a non-conductive body.
  • the conductive coating may include gold, silver, copper, aluminum, conductive metal oxides, or conductive polymers; wherein the conductive metal oxides include ITO, AZO, AGZO, and FTO materials; silver coating or gold coating is preferably plated.
  • probe 1231 is a hollow structure.
  • the probe device 123 also includes a temperature measuring element (not shown) provided in the probe 1231.
  • the temperature measuring element is used to monitor the internal temperature of the aerosol generating matrix provided in the receiving chamber 211 to facilitate temperature control.
  • the receiving seat 2 may include a receiving part 21 and a fixing part 22 integrally connected with the receiving part 21 .
  • the receiving part 21 is used to receive the aerosol-generating matrix; the fixing part 22 is used to axially seal the open end 112 of the outer conductor unit 11, and allows the receiving part 21 to extend into the heating cavity 111 and communicate with the inner conductor unit 12. connect.
  • the receiving base 2 may be made of low dielectric loss material, for example, one or more of plastic, microwave transparent ceramics, glass, alumina, zirconia, and silicon oxide.
  • plastic materials PI, PEEK or PTFE are preferred.
  • the receiving portion 21 may be cylindrical in some embodiments, and its outer diameter may be smaller than the inner diameter of the outer conductor unit 11 .
  • the receiving portion 21 may include an axial receiving cavity 211 for receiving the aerosol-generating matrix.
  • the fixing part 22 can be annular and coaxially connected with the receiving part 21 .
  • the fixing part 22 can be coaxially blocked in the opening of the outer conductor unit 11 so that the receiving part 21 is coaxially disposed in the heating cavity 111 .
  • the fixing part 22 includes an axial through hole that communicates the receiving chamber 211 with the external environment, so that the aerosol-generating matrix can be placed into the receiving chamber 211 through the through hole.
  • the receiving seat 2 may include a plurality of longitudinal positioning ribs 212 . These positioning ribs 212 are evenly spaced in the circumferential direction of the wall surface of the receiving cavity 211 and/or the through hole. Each positioning rib 212 extends in a direction parallel to the axis of the receiving base 2 . On the one hand, the positioning ribs 212 can be used to clamp the aerosol-generating matrix inserted into the receiving cavity 211 and/or through holes. On the other hand, a longitudinally extending air inlet channel is formed between each two adjacent positioning ribs 212 to facilitate ambient air. It is inhaled to the bottom of the aerosol-generating matrix, and then enters the aerosol-generating matrix to take away the aerosol generated by microwave heating.
  • the microwave feed device 3 can be a coaxial connector in some embodiments, which is inserted from the feed hole 116 located on the peripheral side of the outer conductor unit 11 to be installed on the outer conductor unit 11 .
  • the microwave feeding device 3 may include a hollow outer conductor 31 , an inner conductor 32 provided within the outer conductor 31 , and a dielectric layer between the inner conductor 32 and the outer conductor 31 .
  • the outer conductor 31 may include a cylindrical outer conductor side wall 311, and the outer conductor side wall 311 is provided with outer conductor end surfaces 312 located at both axial ends.
  • an outer conductor end surface 312 faces the heating cavity 111.
  • a part of the structure of the inner conductor 32 is coaxially disposed in the side wall 311 of the outer conductor, and the tail end of the inner conductor 32 is connected to the outer conductor 31 .
  • the inner conductor 32 may include a main body portion 321 located within the outer conductor 31 and a feed portion 322 located outside the outer conductor 31 .
  • the main body part 321 is a linear rod-shaped structure, coaxially disposed in the outer conductor side wall 311, and can be connected to a microwave generating device.
  • the feed-in part 322 is a curved rod-shaped structure, which includes a first end 3221 and a second end 3222; the first end 3221 of the feed-in part 322 is close to the main body part 321 and is integrated with the main body part 321, and the second end of the feed-in part 322 is The end 3222 is integrally coupled to the outer conductor end surface 312 facing the heating chamber 111 .
  • the feed portion 322 forms a loop with the main body portion 321 and the outer conductor 31; and the entire loop serves as a structural whole, so that there is no ohmic contact resistance when strong current flows. Low loss; it can also reduce installation contact points and improve reliability.
  • the microwave feed device 3 When the microwave feed device 3 is installed on the outer conductor unit 11, the outer peripheral wall surface of the outer conductor 31 is in ohmic contact with the inner wall surface of the feed hole 116; the feed portion 322 is located between the outer conductor unit 11 and the inner conductor unit 12 and is suspended. Within the outer conductor unit 11 , that is, it is not in direct contact with the inner conductor unit 12 or the outer conductor unit 11 .
  • the plane of the feed-in portion 322 is perpendicular to the peripheral surface of the feed hole 116 of the outer conductor unit 11, and the plane of the feed-in portion 322 is parallel to the longitudinal axis of the outer conductor unit 11 (it can also be that the longitudinal axis of the outer conductor unit 11 is partially included in the (in the plane where the feeding part 322 is located).
  • the feed portion 322 has a U-shaped structure, which includes one end (the first end 3221 of the feed portion 322 ) connected to the first feed section 3223 of the main body 321 , and one end (the second end 3222 of the feed portion 322 ).
  • the second feed section 3224 connected to the outer conductor 31 and the third feed section 3225 connected between the first feed section 3223 and the second feed section 3224;
  • the first feed section 3223 is along the axis of the main body 321 extends in the direction and is parallel to the second feed section 3224; the length of the first feed section 3223 is equal to the length of the second feed section 3224.
  • the third feed section 3225 is perpendicular to the first feed section 3223.
  • the shape of the feed portion 322 can also be other shapes, such as V-shaped, arc-shaped, etc.
  • the shape of the feed portion 322 is preferably a U-shaped structure. The size of the path formed by the shape of the feeding portion 322 determines different feeding efficiencies.
  • the feed portion 322 can be integrally made of conductive metal material, preferably metal aluminum or copper. It can be understood that the feed portion 322 is not limited to being integrally made of conductive material. It can also be realized by plating a conductive coating on the outer surface of a non-conductive body. Conductive coatings may include gold coatings or silver coatings.
  • Figure 7 shows experimental data in some embodiments of the aerosol generating device of the present invention, in which the feed portion 322 is U-shaped, its first feed section 3223 and second feed section 3224 are 2.8mm long, and its third feed section 322 is U-shaped.
  • the length of the entry section 3225 is 0.8mm.
  • the S11 curve of the aerosol generation device is between -12.2 ⁇ -12.4, and the operating frequency is 2.4125GHz.
  • Figure 8 shows the experimental data of some embodiments of the aerosol generating device of the present invention, in which the feed portion 322 is U-shaped, its first feed section 3223 and second feed section 3224 are 2.6mm long, and its third feed section 322 is U-shaped.
  • the length of the entry section 3225 is 0.8mm.
  • the S11 curve of the aerosol generation device is between -16.8 ⁇ -17.5, and the operating frequency is still 2.4125GHz.
  • the feeding efficiency is higher, but there is no change in the working efficiency. That is, the feeding efficiency can be optimized when adjusting the size of the feeding part 322 .
  • the microwave feed device 3 of the present invention can also satisfy the resonance frequency of the cavity between 2.4-2.5 GHz.
  • the present invention avoids the ohmic contact between the feed portion 322 and the outer conductor unit 11 or the inner conductor unit 12, thereby improving the electrical performance and reliability (the contact between the feed portion 322 and the outer conductor unit 11 or the inner conductor unit 12 is improved).
  • the contact point of 12 and the nearby wall current are relatively large, and there must be ohmic contact resistance; the contact will become worse after working for a period of time, resulting in a subsequent decrease in reliability); on the other hand, it is easy to manufacture and install.
  • FIG. 6 shows a second aerosol generating device 100a in other embodiments of the present invention.
  • the structure of the second aerosol generating device 100a is basically the same as that of the above-mentioned aerosol generating device 100. The difference between the two is that the second aerosol generating device 100a is used.
  • the outer conductor unit 11a replaces the outer conductor unit 11 described above.
  • the second outer conductor unit 11a may include an electrically conductive second conductor side wall 114a and a second conductor end wall 115a.
  • the second conductor sidewall 114a is cylindrical in this embodiment and includes two opposite ends.
  • the second conductor end wall 115a is closed on the first end of the second conductor side wall 114a to form a closed end 113.
  • the second end of the second conductor side wall 114a has an open structure, forming an open end 112.
  • the second outer conductor unit 11a is provided with an axially penetrating second feed hole 116a near the edge of its second conductor end wall 115a for the microwave feed device 3 to be installed therein.
  • the microwave feeding device 3 can be installed on the second outer conductor unit 11a from the bottom of the second outer conductor unit 11a. It can be understood that the microwave feeding device 3 of the present invention can also be installed on the outer conductor unit 11 from other positions.
  • the microwave feed device 3 in the present invention can be used as an independent component and directly installed on the outer conductor unit 11. Its inner conductor does not need to form an installation relationship with the outer conductor unit 11 or the inner conductor unit 12; not only the structural relationship is simplified, but also convenient It can also maintain excellent electrical performance during installation, and solves the performance degradation problem caused by the ohmic contact between the inner conductor and the outer conductor unit 11 or the inner conductor unit 12 in the related art.
  • microwave heaters 1 in the present invention only enough space is required inside the outer conductor unit 11, and the microwave feed device 3 in the present invention can also be directly applied thereon.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

微波馈入装置(3)、微波加热器(1)及气溶胶产生装置(100),其中微波馈入装置(3)包括外导体(31)、设于外导体(31)内的内导体(32)、以及介于外导体(31)与内导体(32)之间的介质层;内导体(32)包括收容于外导体(31)内的主体部(321)和位于外导体(31)外的馈入部(322);馈入部(322)包括第一端(3221)和第二端(3222),第一端(3221)连接于主体部(321),第二端(3222)连接于外导体(31);微波馈入装置(3)可作为独立的部件,无需与外导体单元(11)或者内导体单元(12)形成安装关系;装置不仅结构简单,便于安装,还能够保持较优的电性能。

Description

微波馈入装置、微波加热器及气溶胶产生装置 技术领域
本发明涉及电子雾化领域,尤其涉及微波馈入装置、微波加热器及气溶胶产生装置。
背景技术
气溶胶产生装置采用微波加热的方式,一般会设计微波馈入装置及其馈入部,馈入部的结构影响微波加热的效果,以及馈入的方式决定了腔体的安装方式。
相关技术中,馈入部的结构不便于安装,或者存在的欧姆接触会对性能产生影响。研究新的馈入部结构,消除欧姆接触,提供良好电性能并便于制造和安装成为研究的重点。
发明内容
本发明要解决的技术问题在于,提供改进后的微波馈入装置、微波加热器及气溶胶产生装置。
本发明解决其技术问题所采用的技术方案是:构造一种微波馈入装置,用于微波加热器;所述微波馈入装置包括外导体、设于所述外导体内的内导体、以及介于所述外导体与所述内导体之间的介质层;
所述内导体包括收容于所述外导体内的主体部和位于所述外导体外的馈入部;所述馈入部包括第一端和第二端,所述第一端连接于所述主体部,所述第二端连接于所述外导体。
优选地,所述第二端一体结合于所述外导体的端面上。
优选地,所述第一端一体结合于所述主体部。
优选地,所述馈入部为弯曲的杆状结构。
优选地,所述馈入部包括U形、V形或圆弧形。
优选地,所述馈入部包括沿所述主体部轴向延伸的第一馈入段、与所述外导体连接的第二馈入段以及连接所述第一馈入段与第二馈入段之间的第三馈入段;
所述第一馈入段与所述第二馈入段相互平行,所述第三馈入段垂直于所述第一馈入段。
优选地,所述第一馈入段与所述第二馈入段的长度相等。
优选地,所述馈入部的粗径均匀。
优选地,所述微波馈入装置为同轴连接器。
优选地,所述外导体呈圆筒状,所述内导体呈圆柱状,所述外导体与所述内导体共轴。
优选地,所述第一馈入段与所述第二馈入段的长度在2.6-2.8mm之间。
优选地,所述第三馈入段的长度在0.7-0.9mm之间。
本发明还构造一种微波加热器,用于气溶胶产生装置,其包括筒状的外导体单元、轴向设置于所述外导体中的内导体单元以及上述的微波馈入装置;
所述外导体单元上设有馈入孔,所述微波馈入装置安装于所述馈入孔中,且所述微波馈入装置的外导体与所述外导体单元欧姆接触。
优选地,所述微波馈入装置的馈入部位于外导体单元和内导体单元之间。
优选地,所述外导体的外周壁面与所述馈入孔的内壁面欧姆接触。
优选地,所述馈入孔的孔径与所述外导体的外径相适配。
优选地,所述外导体单元包括开口端以及与该开口端相对的封闭端,所述馈入孔形成于所述封闭端上;
或者,所述馈入孔形成于所述外导体单元的侧壁上。
优选地,所述馈入部所在平面垂直于所述馈入孔的周面。
优选地,所述微波加热器包括一纵轴线;
所述馈入部所在平面平行于所述纵轴线,或者,所述纵轴线部分含于所述馈入部所在平面中。
本发明还构造一种气溶胶产生装置,包括上述的微波加热器。
实施本发明具有以下有益效果:本发明中的微波馈入装置可作为独立的部件,其内导体无需与外导体单元或者内导体单元形成安装关系;该微波馈入装置不但结构简单,便于安装,还能够保持较优的电性能,解决了相关技术中的微波馈入装置的内导体与外导体单元或者内导体单元欧姆接触而带来的性能下降问题。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中的微波加热器的立体结构示意图;
图2是图1所示微波加热器的纵向剖面结构示意图;
图3是图2所示微波加热器略去收容座后的纵向剖面结构示意图;
图4是本发明一些实施例中的微波馈入装置的立体结构示意图;
图5是图4所示微波馈入装置的纵向剖面结构示意图;
图6是本发明另一些实施例中的微波加热器的纵向剖面结构示意图;
图7是本发明在一些实施例中气溶胶产生装置限定馈入部在第一尺寸的情况下测得的实验数据图;
图8是本发明在一些实施例中气溶胶产生装置限定馈入部在第二尺寸的情况下测得的实验数据图。
图中:气溶胶产生装置100;微波加热器1;收容座2;微波馈入装置3;外导体单元11;内导体单元12;加热腔111;开口端112;封闭端113;导体侧壁114;导体端壁115;馈入孔116;导体柱121;导体盘122;探针装置123;探针1231;收容部21;固定部22;收容腔211;定位筋212;外导体31;内导体32;外导体侧壁311;;外导体端面312;主体部321;馈入部322;第一端3221;第二端3222;第一馈入段3223;第二馈入段3224;第三馈入段3225;第二气溶胶产生装置100a;第二外导体单元11a;第二导体侧壁114a;第二导体端壁115a;第二馈入孔116a。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1至图5示出了本发明一些实施例中的气溶胶产生装置100,该气溶胶产生装置100可利用微波加热气溶胶生成基质,以雾化产生气溶胶,从而供使用者吸食或吸入。在一些实施例中,该气溶胶生成基质为诸如经过处理的植物叶类制品等固态气溶胶生成基质。可以理解地,在另一些实施例中,该气溶胶生成基质也可以为液态气溶胶生成基质。
再如图1、图2所示,该气溶胶产生装置100在一些实施例中可包括微波加热器1。该微波加热器1在一些实施例中可为四分之一波长型同轴线谐振器,大致呈圆柱状,包括一加热腔111、收容座2以及微波馈入装置3。该加热腔111作为微波持续振荡的场所。微波馈入装置3用于将微波发生装置(未图示)产生的微波馈入加热腔111中。收容座2用于装载气溶胶生成基质,其固定地或可拆卸地安装于微波加热器1上,以让其内的气溶胶生成基质暴露于加热腔111内的微波场中,被微波加热雾化。可以理解地,微波加热器1并不局限于圆柱状,其也可呈方柱、椭圆柱状等其他形状。
微波加热器1在一些实施例中还包括用于实现电磁屏蔽、呈筒状的外导体单元11,设置于该外导体单元11中以起导波作用、呈纵长的内导体单元12,以及介于该内导体单元12的外壁面和外导体单元11的内侧壁面之间的介质(例如,空气);外导体单元11和内导体单元12一道界定出上述的加热腔111。外导体单元11具有一个开口端112以及与该开口端112相对的封闭端113;内导体单元12的第一端与封闭端113的端壁欧姆接触,形成该微波加热器1的短路端。内导体单元12的第二端向外导体单元11的开口端112延伸,并不与外导体单元11直接欧姆接触,形成该微波加热器1的开路端。收容座2安装(例如,可拆卸或不可拆卸地嵌置)于该微波加热器1的开路端。在一些实施例中,内导体单元12的轴线与外导体单元11的轴线相互重合或平行,优选地,两者相互重合。
外导体单元11在一些实施例中可包括可导电的导体侧壁114和可导电的导体端壁115。导体侧壁114在一些实施例中可呈圆筒状,其包括相对设置的两端。导体端壁115封闭于该导体侧壁114的第一端上,形成上述的封闭端113。导体侧壁114的第二端为开口结构,形成上述的开口端112,可供收容座2嵌置于其中。外导体单元11的导体侧壁114靠近导体端壁115处可设置一个径向贯通的馈入孔116,以供微波馈入装置3安装于其中。该馈入孔116的孔径与微波馈入装置3的外导体31的外径相适配。
在一些实施例中,外导体单元11可采用可导电的金属材料一体制成,其材质可包括铝、铜、金、银、不锈钢中的至少一种;优选铝合金或铜。可以理解地,外导体单元11并不局限于采用导电材料一体制成,其也可以通过在非导电筒体的内壁面镀覆导电涂层的方式实现。制成导电涂层的材料可包括金、银、铜、铝、导电金属氧化物或者导电高分子;其中导电金属氧化物可包括ITO、AZO、AGZO和FTO材料。优选导电涂层为银涂层或者金涂层。
内导体单元12在一些实施例中可包括导体柱121、位于导体柱121上方的导体盘122以及嵌置于导体盘122和/或导体柱121中的探针装置123。
导体柱121在一些实施例中呈圆柱状,包括相对设置的两端,其远离开口端112的一端(底端)共轴地连接在外导体单元11的导体端壁115上,其靠近开口端112的一端(顶端)向外导体单元11的开口端112延伸。导体柱121的直径小于外导体单元11的内径。可以理解地,导体柱121并不局限于呈圆柱状,其也可以呈方柱状、椭圆柱状、阶梯柱状、不规则柱状等其他形状。
在一些实施例中,导体柱121可采用导电的金属材料一体制成,优选铝合金或铜。可以理解地,导体柱121并不局限于采用导电材料一体制成,其也可以通过在非导电体的外表面镀覆导电涂层的方式实现。导电涂层优选镀覆银涂层或者金涂层。
导体盘122在一些实施例中呈圆盘状,其直径大于导体柱121的直径,且设置在导体柱121的顶端上。该导体盘122可一体结合于导体柱121上,或者,导体盘122与导体柱121形成良好的欧姆接触。可以理解地,该导体盘122用于增加自身电感和电容,以及降低谐振频率,从而有利于加热腔111的尺寸进一步变小。
探针装置123作为独立结构(也即探针装置123与导体盘122或导体柱121非一体式连接在一起),可从导体盘122的顶端抽离/插入于导体盘122和/或导体柱121内,且与导体盘122和/或导体柱121内形成欧姆接触。该探针装置123可以调节微波场分布和微波馈入频率,还可以让微波能够经导体柱121传导至探针装置123。
在一些实施例中,探针装置123可包括纵长的探针1231;探针1231的一端从导体柱121的顶端插入,并共轴地嵌置于导体柱121和/或导体盘122中,与导体柱121和/或导体盘122形成良好的欧姆接触;探针1231的另一端向上延伸至收容座2的收容腔211中,以供设置在收容腔211中的气溶胶生成基质套设于其中。
探针1231伸入收容腔211的一端的形状在一些实施例中可包括平面、球形、椭球形、圆锥形或者圆台形;顶端形状优选圆台形,以起到增强局部场强的作用,继而提升气溶胶生成介质的雾化速度。
探针1231在一些实施例中可采用导电的金属材料一体制成,优选不锈钢、铝合金或铜。可以理解地,探针1231并不局限于采用导电材料一体制成,其也可以通过在非导电体的外表面镀覆导电涂层的方式实现。导电涂层可包括金、银、铜、铝、导电金属氧化物、或者导电高分子;其中,导电金属氧化物包括ITO、AZO、AGZO、FTO材料;优选镀覆银涂层或者金涂层。
在一些实施例中,探针1231为中空结构。探针装置123还包括设于探针1231中的测温元件(未图示),该测温元件用于监测设置在收容腔211中的气溶胶生成基质的内部温度,以方便控制温度。
再如图2、图3所示,收容座2在一些实施例中可包括收容部21以及与该收容部21一体连接的固定部22。收容部21用于收容气溶胶生成基质;固定部22用于轴向封堵于外导体单元11的开口端112上,并让收容部21伸入到加热腔111内,与内导体单元12相连接。
收容座2在一些实施例中可采用低介电损耗材料,例如,为塑料、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅中的一种或多种的复合。另外,在塑料材料中,优选地为PI、PEEK或PTFE。
该收容部21在一些实施例中可呈圆筒状,且其外径可小于外导体单元11的内径。收容部21可包括一个轴向的收容腔211,该收容腔211用于收容气溶胶生成基质。该固定部22可呈环形,与收容部21共轴地连接一起。固定部22可共轴地封堵于外导体单元11的开口中,以将收容部21共轴地设置于加热腔111中。固定部22包括一个将收容腔211与外部环境相连通的轴向的通孔,令得气溶胶生成基质可以经由该通孔放入收容腔211。
收容座2在一些实施例中可包括若干个纵长的定位筋212。这些定位筋212间隔均匀地设置于收容腔211和/或通孔的壁面周向上。每一定位筋212均沿着平行于收容座2的轴线的方向延伸。定位筋212一个方面可用于夹紧插入收容腔211和/或通孔的气溶胶生成基质,另一个方面每相邻两定位筋212之间均形成一个纵向延伸的进气通道,以方便环境空气被吸入到气溶胶生成基质的底部,再进入气溶胶生成基质中带走被微波加热产生的气溶胶。
如图4、图5所示,微波馈入装置3在一些实施例中可为同轴连接器,从位于外导体单元11周侧的馈入孔116插入,以装于外导体单元11上。微波馈入装置3可包括中空的外导体31、设于外导体31内的内导体32以及介于内导体32和外导体31之间的介质层。
外导体31在一些实施例中可包括呈圆筒状的外导体侧壁311,外导体侧壁311设有位于轴向两端的外导体端面312。在微波馈入装置3安装于外导体单元11上时,有一外导体端面312朝向加热腔111。内导体32部分结构共轴地设于外导体侧壁311内,且内导体32的尾端连接于外导体31上。
内导体32在一些实施例中可包括位于外导体31内的主体部321和位于外导体31外的馈入部322。主体部321为直线形的杆状结构,共轴地设置于外导体侧壁311内,可与微波发生装置连接。馈入部322为弯曲的杆状结构,其包括第一端3221和第二端3222;馈入部322的第一端3221靠近主体部321,且一体结合于主体部321上,馈入部322的第二端3222一体结合于朝向加热腔111的外导体端面312上。在微波馈入装置3与微波发生装置连接时,馈入部322与主体部321和外导体31一并形成环路;并且整个环路作为一个结构整体,使得强电流流过时不存在欧姆接触电阻,损耗低;同时还可以减少安装接触点,提高可靠性。
在微波馈入装置3安装于外导体单元11上时,外导体31的外周壁面与馈入孔116的内壁面欧姆接触;馈入部322位于外导体单元11和内导体单元12之间,且悬空于外导体单元11内,即不与内导体单元12或者外导体单元11直接接触。馈入部322所在平面垂直于外导体单元11的馈入孔116的周面,且馈入部322所在平面平行于外导体单元11的纵轴线(也可以是外导体单元11的纵轴线部分含于所述馈入部322所在平面中)。
在一些实施例中,馈入部322呈U形结构,其包括一端(馈入部322的第一端3221)连接于主体部321的第一馈入段3223、一端(馈入部322的第二端3222)与外导体31连接的第二馈入段3224以及连接第一馈入段3223与第二馈入段3224之间的第三馈入段3225;第一馈入段3223沿主体部321的轴向延伸,且与所述第二馈入段3224相互平行;第一馈入段3223的长度与第二馈入段3224的长度相等。第三馈入段3225垂直于第一馈入段3223。
可以理解地,馈入部322的形状除了U形结构,还可以是其他形状,比如V形、圆弧形等等。当然,馈入部322的形状优选U形结构。馈入部322的形状所形成的路径大小决定不同的馈入效率。
馈入部322在一些实施例中可采用导电的金属材料一体制成,优选金属铝或铜。可以理解地,馈入部322并不局限于采用导电材料一体制成,其也可以通过在非导电体的外表面镀覆导电涂层的方式实现。导电涂层可包括金涂层或银涂层。
以下结合实验数据,如图7、图8所示,具体证明本发明中微波馈入装置3装于外导体单元11时的作用:
图7示出了本发明气溶胶产生装置在一些实施例中的实验数据,其中馈入部322呈U形,其第一馈入段3223和第二馈入段3224长2.8mm,其第三馈入段3225长0.8mm,此时气溶胶生成装置的S11曲线在-12.2~-12.4之间,工作频率为2.4125GHz。
图8示出了本发明气溶胶产生装置在一些实施例中的实验数据,其中馈入部322呈U形,其第一馈入段3223和第二馈入段3224长2.6mm,其第三馈入段3225长0.8mm,此时气溶胶生成装置的S11曲线在-16.8~-17.5之间,工作频率仍为2.4125GHz。
可以看出,在馈入部322的第一馈入段3223和第二馈入段3224长2.6mm时,馈入效率更高,但对于工作效率没有什么变化。即在调整馈入部322的尺寸大小时可以优化馈入效率。
同时,也可以看出本发明的微波馈入装置3也可以满足腔体的谐振频率在2.4-2.5GHz之间。相较于相关技术中,本发明一方面避免了馈入部322与外导体单元11或内导体单元12的欧姆接触,提高了电性能和可靠性(馈入部322与外导体单元11或内导体单元12的接触点以及附近壁电流比较大,必然存在欧姆接触电阻;在工作一段时间后接触会变差,导致可靠性跟随下降);另一方面便于制造和安装。
再一同参阅图6,图6示出了本发明另一些实施例中的第二气溶胶产生装置100a,其与上述的气溶胶产生装置100的结构基本相同,两者的区别在于:采用第二外导体单元11a替代了上述的外导体单元11。
如图所示,该第二外导体单元11a可包括可导电的第二导体侧壁114a和第二导体端壁115a。第二导体侧壁114a在该实施例中呈圆筒状,包括相对设置的两端。第二导体端壁115a封闭于该第二导体侧壁114a的第一端上,形成封闭端113。第二导体侧壁114a的第二端为开口结构,形成开口端112。第二外导体单元11a在其第二导体端壁115a靠近边缘处设置一个轴向贯通的第二馈入孔116a,以供微波馈入装置3安装于其中。
在该实施例中,微波馈入装置3可从第二外导体单元11a的底部装于第二外导体单元11a上。可以理解地,本发明的微波馈入装置3还可以从其他位置装于外导体单元11上。
综上,本发明中的微波馈入装置3可作为独立的部件,直接安装在外导体单元11上,其内导体无需与外导体单元11或者内导体单元12形成安装关系;不但结构关系简化,便于安装,还能够保持较优的电性能,解决了相关技术中的内导体与外导体单元11或者内导体单元12欧姆接触而带来的性能下降问题。
本发明中对于其他微波加热器1,只需要外导体单元11内部存在足够的空间,本发明中的微波馈入装置3亦可直接应用于其上。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (20)

  1. 一种微波馈入装置,用于微波加热器;所述微波馈入装置包括外导体、设于所述外导体内的内导体、以及介于所述外导体与所述内导体之间的介质层;其特征在于,
    所述内导体包括收容于所述外导体内的主体部和位于所述外导体外的馈入部;所述馈入部包括第一端和第二端,所述第一端连接于所述主体部,所述第二端连接于所述外导体。
  2. 根据权利要求1所述的微波馈入装置,其特征在于,所述第二端一体结合于所述外导体的端面上。
  3. 根据权利要求1所述的微波馈入装置,其特征在于,所述第一端一体结合于所述主体部。
  4. 根据权利要求1所述的微波馈入装置,其特征在于,所述馈入部为弯曲的杆状结构。
  5. 根据权利要求1所述的微波馈入装置,其特征在于,所述馈入部包括U形、V形或圆弧形。
  6. 根据权利要求1所述的微波馈入装置,其特征在于,所述馈入部包括沿所述主体部轴向延伸的第一馈入段、与所述外导体连接的第二馈入段以及连接所述第一馈入段与第二馈入段之间的第三馈入段;
    所述第一馈入段与所述第二馈入段相互平行,所述第三馈入段垂直于所述第一馈入段。
  7. 根据权利要求6所述的微波馈入装置,其特征在于,所述第一馈入段与所述第二馈入段的长度相等。
  8. 根据权利要求2所述的微波馈入装置,其特征在于,所述馈入部的粗径均匀。
  9. 根据权利要求1所述的微波馈入装置,其特征在于,所述微波馈入装置为同轴连接器。
  10. 根据权利要求1所述的微波馈入装置,其特征在于,所述外导体呈圆筒状,所述内导体呈圆柱状,所述外导体与所述内导体共轴。
  11. 根据权利要求6所述的微波馈入装置,其特征在于,所述第一馈入段与所述第二馈入段的长度在2.6-2.8mm之间。
  12. 根据权利要求6所述的微波馈入装置,其特征在于,所述第三馈入段的长度在0.7-0.9mm之间。
  13. 一种微波加热器,用于气溶胶产生装置,其特征在于,其包括筒状的外导体单元、轴向设置于所述外导体中的内导体单元以及权利要求1至12任一项所述的微波馈入装置;
    所述外导体单元上设有馈入孔;所述微波馈入装置安装于所述馈入孔中,且所述微波馈入装置的所述外导体与所述外导体单元欧姆接触。
  14. 根据权利要求13所述的微波加热器,其特征在于,所述微波馈入装置的所述馈入部位于所述外导体单元和所述内导体单元之间。
  15. 根据权利要求13所述的微波加热器,其特征在于,所述外导体的外周壁面与所述馈入孔的内壁面欧姆接触。
  16. 根据权利要求13所述的微波加热器,其特征在于,所述馈入孔的孔径与所述外导体的外径相适配。
  17. 根据权利要求13所述的微波加热器,其特征在于,所述外导体单元包括开口端以及与该开口端相对的封闭端,所述馈入孔形成于所述封闭端上;
    或者,所述馈入孔形成于所述外导体单元的侧壁上。
  18. 根据权利要求13所述的微波加热器,其特征在于,所述馈入部所在平面垂直于所述馈入孔的周面。
  19. 根据权利要求13所述的微波加热器,其特征在于,所述微波加热器包括一纵轴线;
    所述馈入部所在平面平行于所述纵轴线,或者,所述纵轴线部分含于所述馈入部所在平面中。
  20. 一种气溶胶产生装置,其特征在于,包括权利要求13至19任一项所述的微波加热器。
PCT/CN2023/080902 2022-08-15 2023-03-10 微波馈入装置、微波加热器及气溶胶产生装置 WO2024036935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210981634.4A CN117617589A (zh) 2022-08-15 2022-08-15 微波馈入装置、微波加热器及气溶胶产生装置
CN202210981634.4 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036935A1 true WO2024036935A1 (zh) 2024-02-22

Family

ID=89940510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080902 WO2024036935A1 (zh) 2022-08-15 2023-03-10 微波馈入装置、微波加热器及气溶胶产生装置

Country Status (2)

Country Link
CN (1) CN117617589A (zh)
WO (1) WO2024036935A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045868A (ko) * 2018-10-23 2020-05-06 주식회사 이엠텍 무선 rf 주파수를 이용한 마이크로웨이브 발열 방식 미세 입자 발생 장치
EP3960008A1 (en) * 2020-08-25 2022-03-02 Shenzhen Eigate Technology Co., Ltd. Electronic cigarette
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045868A (ko) * 2018-10-23 2020-05-06 주식회사 이엠텍 무선 rf 주파수를 이용한 마이크로웨이브 발열 방식 미세 입자 발생 장치
EP3960008A1 (en) * 2020-08-25 2022-03-02 Shenzhen Eigate Technology Co., Ltd. Electronic cigarette
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Also Published As

Publication number Publication date
CN117617589A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2023221596A1 (zh) 气溶胶产生装置
EP3466364B1 (en) Antenna assembly for microwave ablation and microwave ablation needle using same
CN114747803A (zh) 气溶胶产生装置及其制造方法
WO2023124523A1 (zh) 雾化装置及微波加热组件
JP2010056063A (ja) 低電力携帯用マイクロ波プラズマ発生器
CN216165164U (zh) 气溶胶固定装置和气溶胶产生装置
CN114747804A (zh) 气溶胶产生装置
JP5360966B2 (ja) 液中プラズマ発生装置および液中プラズマ発生方法
WO2024036935A1 (zh) 微波馈入装置、微波加热器及气溶胶产生装置
JP2024000501A (ja) エアロゾル発生装置及びその加熱モジュール
WO2022247556A1 (zh) 加热组件和电子雾化器
EP4287768A1 (en) Electromagnetic heating coil, heating assembly, and electronic atomizing device
WO2024016341A1 (zh) 气溶胶产生装置
WO2024093332A1 (zh) 气溶胶产生装置及其微波加热组件
CN218474089U (zh) 气溶胶产生装置
WO2023065946A1 (zh) 气溶胶固定装置和气溶胶产生装置
WO2024113327A1 (zh) 气溶胶生成装置及其微波加热组件
WO2024092583A1 (zh) 气溶胶产生装置及其微波加热组件
WO2024098454A1 (zh) 微波加热组件及气溶胶生成装置
CN117981914A (zh) 气溶胶产生装置及其微波加热组件
CN218605113U (zh) 气溶胶产生装置
WO2024050737A1 (zh) 气溶胶产生装置及其微波加热装置
WO2024098455A1 (zh) 气溶胶产生装置及其微波加热组件
CN118120972A (zh) 气溶胶生成装置及其微波加热组件
WO2024113185A1 (zh) 气溶胶生成装置及其微波加热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853852

Country of ref document: EP

Kind code of ref document: A1