WO2024098454A1 - 微波加热组件及气溶胶生成装置 - Google Patents

微波加热组件及气溶胶生成装置 Download PDF

Info

Publication number
WO2024098454A1
WO2024098454A1 PCT/CN2022/133006 CN2022133006W WO2024098454A1 WO 2024098454 A1 WO2024098454 A1 WO 2024098454A1 CN 2022133006 W CN2022133006 W CN 2022133006W WO 2024098454 A1 WO2024098454 A1 WO 2024098454A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave heating
heating assembly
radiation
assembly according
conductor
Prior art date
Application number
PCT/CN2022/133006
Other languages
English (en)
French (fr)
Inventor
杜靖
梁峰
Original Assignee
思摩尔国际控股有限公司
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思摩尔国际控股有限公司, 深圳麦克韦尔科技有限公司 filed Critical 思摩尔国际控股有限公司
Publication of WO2024098454A1 publication Critical patent/WO2024098454A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present invention relates to the field of atomization technology, and in particular to a microwave heating component and an aerosol generating device.
  • the aerosol generating device can heat and atomize the aerosol generating product by microwave heating.
  • the aerosol generating device generally includes a microwave heating component, which can form a microwave interaction zone and transfer microwave energy to the aerosol generating product; in this process, the microwave energy distribution field determines the effect of microwave heating.
  • microwaves are generally fed from one end and then resonate in the atomization cavity. Since the cavity is small, the electromagnetic wave distribution in the cavity is extremely uneven, and the heating uniformity is poor.
  • the technical problem to be solved by the present invention is to provide an improved microwave heating component and an aerosol generating device.
  • a microwave heating component for use in an aerosol generating device to heat an aerosol generating product comprising:
  • an outer conductor unit in a cylindrical shape comprising a closed end, an open end opposite to the closed end, and a cavity formed between the closed end and the open end, and
  • An inner conductor unit is disposed in the cavity, one end of which is connected to the closed end of the outer conductor unit and the other end of which extends toward the open end of the outer conductor unit;
  • the inner conductor unit comprises:
  • a conductor post comprising a fixed end and a free end opposite to each other, wherein the fixed end is fixed to the outer conductor unit and is in ohmic contact with the outer conductor unit;
  • the radiation structure is combined with the free end, and includes at least one radiation element with a fan-shaped cross section.
  • the at least one radiation element is arranged corresponding to the aerosol generating product to adjust the microwave field distribution and the resonance frequency of the cavity.
  • the at least one radiating element includes two radiating elements, and the two radiating elements are arranged radially symmetrically along the axis of the conductor column.
  • the radiation element includes a body portion extending along an axis parallel to the conductor column.
  • the body parts of the two radiation elements have equal or different lengths, and the body parts of the two radiation elements have equal or different widths.
  • the curvatures of the main bodies of the two radiation elements are equal or different.
  • At least one of the two radiating elements further includes an extension portion, wherein the extension portion extends along an arc whose center falls on the axis of the conductor column.
  • the two radiation elements both include the extension portion, the main body portions of the two radiation elements are equal in length, and the extension portions respectively provided on the two radiation elements are equal in length.
  • one of the two radiating elements comprises the extension portion, and the body portions of the two radiating elements have different lengths.
  • the at least one radiation element includes two radiation elements, and the radiation structure further includes an elongated probe, and the three are spaced apart and distributed around the circumference of the aerosol generating article.
  • the lengths of the two radiating elements are equal or different, and the widths of the two radiating elements are equal or different.
  • the lengths of the two radiating elements are equal to or different from the length of the one elongated probe.
  • the at least one radiating element comprises three radiating elements, and the three radiating elements are equally spaced around the circumference of the aerosol-generating article.
  • the lengths of the three radiating elements are equal or different, and the widths of the three radiating elements are equal or different.
  • the at least one radiation element comprises four radiation elements, the four radiation elements comprise two pairs of radiation elements with unequal lengths between pairs, and the two pairs of radiation elements are alternately and evenly distributed around the circumference of the aerosol generating article.
  • the radiating structure further includes a base connected to the at least one radiating element, and the radiating structure is in ohmic contact with the free end of the conductor post via the base.
  • the radiation structure further comprises a base connected to the at least one radiation element, wherein the base is disposed on an end surface of the conductor column opposite to the aerosol generating article.
  • the base is integrally connected to the free end of the conductor column, one end of the at least one radiating element is connected to the base, and the other end extends in a direction parallel to the axis of the conductor column and away from the conductor column.
  • the inner conductor unit further includes a conductor disk, the conductor disk is connected to the free end, and an outer diameter of the conductor disk is larger than an outer diameter of the conductor column and smaller than an inner diameter of the outer conductor unit.
  • the radiating structure is connected to an end surface of the conductor disk away from the conductor column.
  • the microwave heating assembly further comprises a receiving seat, wherein the receiving seat comprises a receiving portion for receiving the aerosol generating product, the receiving portion is disposed in the cavity, and the at least one radiation element is disposed corresponding to the receiving portion.
  • the at least one radiation element extends to a side wall of the receiving portion and makes ohmic contact with the free end of the conductor post.
  • the housing portion is cylindrical, and the curvature of the at least one radiation element is equivalent to the curvature of the side wall of the housing portion.
  • the at least one radiation element is distributed on the inner side of the receiving portion and is in contact with the inner wall surface of the receiving portion.
  • the at least one radiation element is distributed on the inner side of the receiving portion and has a gap between the at least one radiation element and the inner wall surface of the receiving portion.
  • the at least one radiation element is distributed on the outside of the receiving portion and is in contact with the outer wall of the receiving portion.
  • the at least one radiation element is distributed outside the receiving portion and has a gap between the at least one radiation element and an outer wall surface of the receiving portion.
  • the at least one radiating element is at least partially embedded in a side wall of the receiving portion.
  • the radiation structure is made of a conductive material or its outer surface is plated with a conductive layer.
  • the microwave heating assembly further comprises a microwave feeding unit connected to the outer conductor unit, one end of the microwave feeding unit is inserted into the outer conductor unit from the outer peripheral wall of the outer conductor unit and is in ohmic contact with the inner conductor unit.
  • the microwave feeding unit includes an inner conductor, an outer conductor, and a dielectric layer between the inner conductor and the outer conductor.
  • the inner conductor is in a straight line shape and is in ohmic contact with the inner conductor unit in a manner perpendicular to the axis of the inner conductor unit.
  • the present invention also constructs an aerosol generating device, which comprises the microwave heating component mentioned above.
  • the inner conductor unit of the present invention includes a radiation structure, which includes at least one radiation element with a fan-shaped cross section, which is used to effectively heat the aerosol generating product, and can effectively improve the uniformity and range of the microwave field, and facilitate the improvement of the uniformity of heating the aerosol generating product.
  • the distribution of the microwave field and the resonance frequency of the cavity can be adjusted, which is conducive to the optimization of the atomization area.
  • FIG1 is a schematic structural diagram of an embodiment of a microwave heating assembly of the present invention.
  • FIG2 is an exploded view of an embodiment of a microwave heating assembly of the present invention.
  • FIG. 3 is a cross-sectional view of an embodiment of a microwave heating assembly according to the present invention, in which the radiation element is located inside the receiving portion;
  • FIG. 4 is a cross-sectional view of another embodiment of the microwave heating assembly of the present invention, in which the radiation element is located inside the receiving portion;
  • FIG. 5 is a cross-sectional view of an embodiment of the microwave heating assembly of the present invention in which the radiation element is located outside the receiving portion;
  • FIG6 is a cross-sectional view of an embodiment of the present invention in which a radiation element is embedded in a receiving portion;
  • FIG7 is a schematic structural diagram of a first embodiment of a radiation structure of the present invention.
  • FIG8 is a schematic structural diagram of a second embodiment of a radiation structure of the present invention.
  • FIG9 is a schematic structural diagram of a third embodiment of a radiation structure of the present invention.
  • FIG10 is a schematic structural diagram of a fourth embodiment of a radiation structure of the present invention.
  • FIG11 is a schematic structural diagram of a fifth embodiment of a radiation structure of the present invention.
  • FIG12 is a schematic structural diagram of a sixth embodiment of a radiation structure of the present invention.
  • FIG13 is a schematic structural diagram of a seventh embodiment of a radiation structure of the present invention.
  • FIG. 14 is a schematic structural diagram of an eighth embodiment of the radiation structure of the present invention.
  • the terms such as “installed”, “connected”, “connected”, “fixed”, “set” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral one
  • it can be a mechanical connection or an electrical connection
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • an element When an element is referred to as being “on” or “under” another element, the element can be “directly” or “indirectly” located on the other element, or there may be one or more intermediate elements.
  • the invention constructs an aerosol generating device, which can utilize microwaves to heat an aerosol generating product to generate aerosol by atomization, so as to provide aerosol for users to inhale.
  • the aerosol generating device includes a microwave heating component 10 and a microwave generating device (not shown), and the microwave heating component 10 includes an inner conductor unit 1, an outer conductor unit 2, a receiving seat 3 and a microwave feeding unit.
  • the outer conductor unit 2 has a cavity 20, and the inner conductor unit 1 is arranged in the cavity 20 of the outer conductor unit 2, and can have good ohmic contact with the outer conductor unit 2.
  • the microwave feeding unit is used to feed the microwaves generated by the microwave generating device into the outer conductor unit 2 and the inner conductor unit 1.
  • the microwave heating component 10 can form a microwave field after microwave feeding, and the microwave field can act on the aerosol generating product to achieve microwave heating thereof.
  • the microwave feeding unit can be a coupled feeding, and the coupled feeding can be in the form of electrical coupling and magnetic coupling.
  • One end of the microwave feeding unit is inserted into the outer conductor unit 2 from the outer peripheral wall of the outer conductor unit 2, and is in ohmic contact with the inner conductor unit 1.
  • one side of the microwave feeding unit is connected to the microwave generating device and connected through a coaxial connector or a microstrip line, and the other side extends into the cavity 20 and forms an ohmic contact with the cavity 20.
  • the microwave feeding unit is made of metal material, preferably, it can be made of metal aluminum or copper. Further, its outer surface can be plated with silver or gold coating.
  • the microwave feeding unit includes an inner conductor, an outer conductor, and a dielectric layer between the inner conductor and the outer conductor, and the inner conductor is in a straight line shape and is in ohmic contact with the inner conductor unit 1 along a direction perpendicular to the axis of the inner conductor unit 1.
  • the inner conductor can be L-shaped and connected to the microwave heating assembly 10.
  • the overall shape of the microwave heating component 10 is roughly cylindrical in some embodiments.
  • the microwave heating component 10 is not limited to a cylindrical shape, and may also be in other shapes such as a square column, an elliptical column, etc.
  • the outer conductor unit 2 is cylindrical, having a closed end 201 and an open end 202 opposite to the closed end 201, and can define a semi-enclosed cavity 20, the cavity 20 is located between the open end 202 and the closed end 201.
  • the cavity 20 is cylindrical, and the receiving seat 3 extends into the cavity 20.
  • the cavity 20 can be a polygonal cavity 20.
  • the outer conductor unit 2 includes a conductive side portion 21 and a bottom portion 22 connected to the side portion 21.
  • the side portion 21 is cylindrical, and the top end of the side portion 21 is an open structure, which forms the open end 202 of the outer conductor unit 2.
  • the bottom portion 22 is closed at the bottom end of the side portion 21, forming the closed end 201 of the outer conductor unit 2.
  • a feeding hole 23 is provided at one end of the side portion 21 near the bottom 22, and the feeding hole 23 is used for installing the microwave feeding unit therein; the feeding hole 23 is radially extended outward along the side portion 21 and is connected to the cavity 20.
  • the outer conductor unit 2 can be made of a metal material.
  • the outer conductor unit 2 can be made of a non-metallic material, and a conductive coating is plated on its inner or outer surface, and the material of the conductive coating can include gold, silver, conductive oxide, conductive ceramic, etc.
  • one end of the inner conductor unit 1 is connected to the closed end 201 of the outer conductor unit 2, and the inner conductor unit 1 is in ohmic contact with the closed end 201 of the outer conductor unit 2, and the other end extends toward the open end 202 of the outer conductor unit 2.
  • the inner conductor unit 1 can be made of a metal material.
  • the inner conductor unit 1 can be made of a non-metallic material, and a conductive coating is plated on its inner surface or outer surface, and the material of the conductive coating can include gold, silver, conductive oxide, conductive ceramic, etc.
  • the receiving seat 3 is used to receive the aerosol generating product, the receiving seat 3 is connected to the open end 202, and includes a receiving portion 30 for receiving the aerosol generating product, and the receiving portion 30 is disposed in the cavity 20 of the outer conductor unit 2.
  • the receiving portion 30 may be cylindrical, and includes a bottom wall 31 and a cylindrical side wall 32 disposed around the periphery of the bottom wall 31, and the outer diameter of the side wall 32 is smaller than the inner diameter of the outer conductor unit 2.
  • a receiving cavity is formed between the bottom wall 31 and the side wall 32 of the receiving portion 30, and the aerosol generating product can be received therein.
  • the receiving seat 3 further includes a plurality of longitudinal positioning ribs 33; these positioning ribs 33 are evenly spaced and arranged on the circumference of the inner wall surface of the receiving portion 30.
  • Each positioning rib 33 extends in a direction parallel to the axis of the receiving portion 30.
  • these positioning ribs 33 can be used to clamp the aerosol generating product inserted into the receiving portion 30, and in another aspect, a longitudinally extending first air inlet channel is formed between each two adjacent positioning ribs 33 to facilitate the ambient air to be inhaled into the bottom of the aerosol generating product, and then enter the aerosol generating product to take away the aerosol generated by microwave heating.
  • the receiving seat 3 further includes a plurality of longitudinal supporting ribs 34; these supporting ribs 34 are evenly spaced and radially distributed on the bottom wall 31 of the receiving portion 30. It can be understood that the supporting ribs 34 are used to support the aerosol generating product on one side, and form a plurality of radial second air inlet channels on the other side. These second air inlet channels are respectively connected to these first air inlet channels to facilitate the ambient air to be inhaled into the bottom of the aerosol generating product, and then enter the aerosol generating product to take away the aerosol generated by microwave heating.
  • the receiving seat 3 can be fixedly or detachably mounted at the open end 202 of the outer conductor unit 2.
  • the receiving portion 30 can be in the area where the microwave field is mainly formed, which is conducive to heating the aerosol generating product contained in the receiving portion 30.
  • the receiving seat 3 can be made of a low dielectric loss material.
  • the low dielectric loss material includes PEEK, PTFE, PAF, microwave transparent ceramics, glass, aluminum oxide, zirconium oxide, silicon oxide, etc.
  • the inner conductor unit 1 includes a conductor post 11 and a radiation structure 12.
  • the conductor post 11 is disposed in the cavity 20, and the outer diameter of the conductor post 11 is smaller than the inner diameter of the outer conductor unit 2. It includes a fixed end and a free end opposite to each other, and the fixed end is fixed to the outer conductor unit 2 and is in ohmic contact with the outer conductor unit 2.
  • the conductor post 11 mainly plays a role in microwave conduction.
  • the conductor post 11 can be cylindrical. It can be understood that the conductor post 11 is not limited to a cylindrical shape, but can also be a polygon or other shapes.
  • the bottom end of the conductor column 11 is further provided with an axially extending mounting portion 111, and the mounting portion 111 can be integrated with the conductor column 11.
  • the bottom 22 of the outer conductor unit 2 is provided with a mounting hole 24, through which the mounting portion 111 can be inserted.
  • the mounting portion 111 of the conductor column 11 can be installed in the mounting hole 24 located at the bottom 22 of the outer conductor unit 2 to fix the conductor column 11 on the outer conductor unit 2, so that a reliable ohmic contact is formed between the conductor column 11 and the outer conductor unit 2.
  • the inner conductor unit 1 further includes a conductor disk 112 for adjusting the feeding frequency (step impedance).
  • the conductor disk 112 is used for microwave conduction, and can also increase its own inductance and capacitance, and reduce the resonant frequency, thereby facilitating the further reduction of the size of the cavity 20.
  • the conductor disk 112 may be in the shape of a disk, and the conductor disk 112 is connected to the conductor post 11, specifically, the conductor disk is connected to the free end of the conductor post.
  • the outer diameter of the conductor disk 112 is greater than the outer diameter of the conductor post 11, and is smaller than the inner diameter of the outer conductor unit 2.
  • the conductor disk 112 may be sleeved outside the side of the conductor post 11 close to the open end 202, and the two may be integrally formed or in ohmic contact.
  • the conductor disk 112 may be made of a metal material, or may be made of a conductive coating plated on the outer surface of a non-metallic material.
  • the conductor disk 112 may be made of aluminum alloy or copper.
  • the radiation structure 12 can be combined with the free end of the conductor column 11.
  • the radiation structure 12 is located on the outside of the aerosol generating product and can be arranged along the periphery of the end surface of the conductor column 11 opposite to the receiving seat 3.
  • the radiation structure 12 is made of a conductive material or a conductive layer is plated on its outer surface.
  • the radiation structure 12 includes at least one radiation element 121 with a fan-shaped cross section, and at least one radiation element 121 is arranged corresponding to the receiving seat 3 to adjust the microwave field distribution and resonant frequency of the cavity 20. Since most aerosol generating products are cylindrical, the radiation structure 12 in the present invention matches the shape of the aerosol generating product.
  • the cross-section of the radiation element 121 of the present invention can be fan-shaped to fit the shape of the aerosol generating product, so as to effectively heat the aerosol generating product, which can greatly improve the heating uniformity and range of the aerosol generating product.
  • the radiation element 121 can also be other shapes such as a rectangular cross section, which is not specifically limited here.
  • the microwave field is generally strongest around the top of the radiation element 121 with a fan-shaped cross section. Therefore, if the radiation element 121 of the radiation structure 12 is close to the top of the aerosol generating product, the top of the aerosol generating product can be preferentially heated, thereby facilitating the rapid release of aerosol, that is, facilitating the increase of atomization speed and reducing preheating time.
  • the design of different lengths of the radiation element 121 can make the heating uniformity of the aerosol generating product better.
  • At least one radiation element 121 extends upward to the side wall 32 of the receiving portion 30 of the receiving seat 3 and makes ohmic contact with the free end of the conductor column 11.
  • the curvature of at least one radiation element 121 is equivalent to the curvature of the side wall 32 of the receiving portion 30, so that the uniformity of the microwave field is significantly improved, thereby facilitating improving the uniformity of heating the aerosol generating product.
  • At least one radiating element 121 of the radiating structure 12 may be located on the inner side of the side wall 32 of the receiving portion 30 and fit with the inner side wall of the receiving portion 30, and at least one radiating element 121 extends from the bottom wall 31 of the receiving portion 30 into the inner side wall of the receiving portion 30.
  • the surface area of the base 122 is equivalent to the surface area of the end surface of the conductor column 11 opposite to the receiving portion 30.
  • a receiving groove may be provided on the inner side wall of the receiving portion 30 for at least one radiating element 121 to be inserted and positioned, so that it can be distributed on the inner side wall of the receiving portion 30.
  • the bottom wall 31 of the receiving portion 30 may be provided with a corresponding opening 311, which allows at least one radiating element 121 to pass through and extend into the receiving portion 30, and the base 122 fits with the bottom wall 31 of the receiving portion 30.
  • At least one radiating element 121 of the radiating structure 12 may be located inside the side wall 32 of the receiving portion 30, and there is a certain gap between the radiating element 121 and the inner wall surface of the receiving portion 30.
  • the surface area of the base 122 is smaller than the surface area of the end surface opposite to the conductor post 11 and the receiving portion 30, and the radiating element 121 erected on the circumference of the base 122 extends into the receiving portion 30 through the opening 311, and the base 122 is in contact with the bottom wall 31 of the receiving portion 30.
  • At least one radiating element 121 of the radiating structure 12 may be located outside the side wall 32 of the receiving portion 30, and at least one radiating element 121 may be in contact with the outer wall surface of the receiving portion 30, or at least one radiating element 121 may be spaced apart from the outer wall surface of the receiving portion 30.
  • a receiving groove may be provided on the outer wall surface of the receiving portion 30 for the at least one radiating element 121 to be snapped into position, so that the at least one radiating element 121 may be distributed on the outer wall surface of the receiving portion 30.
  • At least one radiation element 121 is at least partially embedded in the side wall 32 of the receiving portion 30.
  • the side wall 32 of the receiving portion 30 has a certain thickness, and the side wall 32 of the receiving portion 30 may be provided with a plug hole extending upward from one end of the bottom wall 31 of the receiving portion 30 for inserting the at least one radiation element 121, and the shape and size of the plug hole may be adapted to the at least one radiation element 121.
  • the radiation structure 12 further includes a base 122 connected to at least one radiation element 121, and the radiation structure 12 is in ohmic contact with the free end of the conductor post 11 via the base 122.
  • At least one radiation element 121 is vertically arranged in the circumferential direction of the base 122 to make the microwave field more uniformly distributed around the receiving portion 30.
  • the surface area of the base 122 can be equivalent to the surface area of the end surface of the conductor post 11 opposite to the receiving portion 30, or smaller than the surface area of the end surface of the conductor post 11 opposite to the receiving portion 30.
  • the base 122 may be disposed on the end surface of the conductor post 11 opposite to the receiving portion 30, and may be in contact with the side of the receiving portion 30 facing the conductor post 11, and in ohmic contact with the end surface of the conductor post 11 opposite to the receiving portion 30; or the base 122 may be integrally formed on the end surface of the conductor post 11 opposite to the receiving portion 30.
  • the base 122 is integrally connected to the free end of the conductor post 11, and at least one radiating element 121 is connected to the base 122 at one end, and the other end extends in a direction parallel to the axis of the conductor post 11 and away from the conductor post 11.
  • the base 122 may be in other shapes such as a disc, square or polygon, and covers the end surface of the conductor post 11 opposite to the receiving portion 30. In some embodiments, the base 122 is integrally formed on the end surface of the conductor post 11 and the conductor disc 112 that are integrally connected.
  • each radiation element 121 with a fan-shaped cross section includes a main body portion 1211 .
  • the main body portion 1211 is extended along an axis parallel to the conductor column 11 , and the cross section of the main body portion 1211 is fan-shaped.
  • FIG7 is a schematic diagram of the structure of the first embodiment of the radiation structure of the present invention.
  • the number of radiation elements 121 with a fan-shaped cross section is one, and the microwave field is strongest around the radiation element 121, and decreases with increasing distance from the radiation element 121. Aerosols are preferentially generated in the region of the aerosol generating product corresponding to the radiation element 121.
  • the length and width of the radiation element 121 can be adjusted according to actual conditions, and similarly, the curvature of its cross-sectional fan can also be adjusted according to actual conditions.
  • FIG8 is a schematic diagram of the structure of the second embodiment of the radiation structure of the present invention.
  • the number of radiating elements 121 with a fan-shaped cross section is two, which can be radially symmetrically arranged along the axis of the conductor column.
  • the two radiating elements 121 can be symmetrically distributed in the circumference of the side wall 32 of the receiving portion 30.
  • the two radiating elements 121 can also be distributed in the circumference of the side wall 32 of the receiving portion 30 at intervals.
  • the lengths of the main bodies 1211 of the two radiation elements 121 may be equal or unequal, and the widths of the main bodies 1211 of the two radiation elements 121 may be equal or unequal.
  • the curvatures of the main bodies 1211 of the two radiation elements 121 may be equal or unequal. That is, the two radiation elements 121 may be of equal length and unequal width, or of equal width and unequal length, or of equal width and equal length, or of unequal width and unequal length, and the combination and adjustment may be made according to actual conditions, and are not limited here.
  • Fig. 9 is a schematic diagram of the structure of the third embodiment of the radiation structure of the present invention.
  • at least one of the two radiation elements 121 further includes an extension portion 1212, and the extension portion 1212 can extend along an arc whose center falls on the axis of the conductor column 11.
  • the extension portion can extend along at least one end of the arc, and preferably, the extension portion extends along both ends of the arc.
  • the cross section of the extension portion 1212 is fan-shaped and is larger than that of the main body 1211.
  • the extension portion 1212 is parallel to the radial upper and lower end surfaces of the conductor plate 112, and its cross section projection falls within the end surface of the conductor plate 112 opposite to the receiving seat 3.
  • one of the two radiating elements 121 includes an extension portion 1212, and the lengths of the main bodies 1211 of the two radiating elements 121 are different.
  • the extension portion 1212 can be provided on the radiating element 121 whose main body 1211 is relatively small, so as to achieve microwave field adjustment.
  • both radiating elements 121 include an extension portion 1212, and the lengths of the main bodies 1211 of the two radiating elements 121 are equal, and the lengths of the extension portions 1212 respectively provided on the two radiating elements 121 are equal.
  • the extension portion 1212 can be provided on the circumferential edge of the end surface of the conductor disk 112 away from the conductor column 11, and the curvature of the extension portion 1212 can be equivalent to the curvature of the circumferential side wall of the conductor disk 112.
  • Fig. 10 is a schematic structural diagram of a fourth embodiment of the radiation structure of the present invention, in which the radiation structure 12 includes a radiation element 121 with a fan-shaped cross section and a longitudinal probe 120, both of which are symmetrically distributed in the circumference of the side wall 32 of the receiving portion 30.
  • the length of the radiation element 121 with a fan-shaped cross section is greater than the length of the longitudinal probe.
  • FIG11 is a schematic diagram of the structure of the fifth embodiment of the radiation structure of the present invention.
  • the radiation structure 12 includes two radiation elements 121 with fan-shaped cross sections and a longitudinal probe 120.
  • the three are distributed at intervals around the side wall 32 of the receiving portion 30, and the distribution positions of the three can be adjusted according to actual conditions.
  • the lengths of the two radiation elements 121 can be equal or unequal, their widths can be equal or unequal, and their curvatures can be equal or unequal.
  • the lengths of the two radiation elements 121 and the length of the longitudinal probe 120 can be equal or unequal.
  • FIG12 is a schematic diagram of the structure of the sixth embodiment of the radiation structure of the present invention
  • FIG13 is a schematic diagram of the structure of the seventh embodiment of the radiation structure of the present invention.
  • the number of radiation elements 121 with a fan-shaped cross section is three, and the three radiation elements 121 are evenly spaced and distributed in the circumference of the side wall 32 of the receiving portion 30.
  • the lengths of the three radiation elements 121 can be equal or unequal, their widths can be equal or unequal, and their curvatures can be equal or unequal.
  • the lengths of the three radiation elements 121 are all equal.
  • the lengths of the three radiation elements 121 are all unequal.
  • the length of the radiation element can be adjusted according to actual conditions, which is not limited here.
  • FIG14 is a schematic diagram of the structure of the eighth embodiment of the radiation structure of the present invention.
  • the number of radiation elements 121 with a fan-shaped cross section is four.
  • the four radiation elements 121 include two pairs of radiation elements 121 with different lengths between pairs, and their widths and curvatures can be adjusted according to actual conditions.
  • the two pairs of radiation elements 121 are alternately and evenly distributed around the side wall 32 of the receiving portion 30.
  • the microwave field in this embodiment is strongest around a pair of radiation elements 121 with a relatively long length.
  • the four radiation elements 121 make the microwave field distribution relatively uniform.
  • the radiating element 121 with a fan-shaped cross section can be combined with an elongated probe 120, a radiating element 121 with a non-fan-shaped cross section, and the materials thereof can all be made of conductive materials or have a conductive layer coated on their outer surfaces.
  • the microwave field can be adjusted so that the microwave field distribution is relatively uniform, which is conducive to optimizing the atomization area according to the aerosol generating product.
  • the shape and distribution of the radiation structure 12 of the present invention can greatly change the microwave field distribution pattern in the cavity 20, thereby selectively heating different areas of the aerosol generating product located in the receiving portion 30, improving the uniformity of the microwave field, and effectively improving the atomization effect.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种微波加热组件(10)及气溶胶生成装置,微波加热组件(10)包括外导体单元(2)以及内导体单元(1),外导体单元(2)呈筒状,其包括一个封闭端(201)、一个与封闭端(201)相对的开口端(202)以及一个形成于封闭端(201)和开口端(202)之间的腔体(20);内导体单元(1)设置于腔体(20)中;内导体单元(1)包括导体柱(11)和辐射结构(12),导体柱(11)设置于腔体(20)内,其包括相对的固定端和自由端,固定端固定于外导体单元(2),并与外导体单元(2)欧姆接触;辐射结构(12)结合于自由端,其包括至少一个横断面呈扇形的辐射元件(121),至少一个辐射元件(121)与气溶胶生成制品对应设置。该辐射结构(12)包括至少一个横断面呈扇形的辐射元件(121),用于对气溶胶生成制品进行有效加热,可以有效提高微波场的均匀性和范围,便于提升对气溶胶生成制品加热的均匀性。

Description

微波加热组件及气溶胶生成装置 技术领域
本发明涉及雾化技术领域,尤其涉及一种微波加热组件及气溶胶生成装置。
背景技术
气溶胶生成装置可以通过微波加热的方式为气溶胶生成制品加热雾化。该气溶胶生成装置一般包括微波加热组件,该微波加热组件可形成一个微波互作用区,能够将微波能量传递给气溶胶生成制品;在这个过程中,微波能量分布场决定着微波加热的效果。
相关技术的微波加热组件,微波一般从一端馈入,然后在雾化腔体内进行谐振。由于腔体较小,因此,腔体内电磁波分布极不均匀,加热的均匀性较差。
技术问题
本发明要解决的技术问题在于,提供一种改进的微波加热组件及气溶胶生成装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种微波加热组件,用于气溶胶生成装置,对气溶胶生成制品进行加热,包括:
外导体单元,呈筒状,其包括一个封闭端、一个与所述封闭端相对的开口端以及一个形成于所述封闭端和所述开口端之间的腔体,以及
内导体单元,设置于所述腔体中,其一端连接于所述外导体单元的封闭端、一端朝所述外导体单元的开口端延伸;
所述内导体单元包括:
导体柱,其包括相对的固定端和自由端,所述固定端固定于所述外导体单元,并与所述外导体单元欧姆接触;以及
辐射结构,结合于所述自由端,其包括至少一个横断面呈扇形的辐射元件,所述至少一个辐射元件与所述气溶胶生成制品对应设置,以调节所述腔体的微波场分布和谐振频率。
在一些实施例中,所述至少一个辐射元件包括两个辐射元件,所述两个辐射元件沿所述导体柱的轴线径向对称设置。
在一些实施例中,所述辐射元件包括本体部,所述本体部沿平行于所述导体柱的轴线延伸设置。
在一些实施例中,所述两个辐射元件的所述本体部长度相等或不等,所述两个辐射元件的所述本体部的宽度相等或不等。
在一些实施例中,所述两个辐射元件的所述本体部的弧度相等或不等。
在一些实施例中,所述两个辐射元件中的至少一个还包括延伸部,所述延伸部沿一个圆心落在所述导体柱轴线的圆弧延伸。
在一些实施例中,所述两个辐射元件上均包括所述延伸部,所述两个辐射元件的所述本体部的长度相等,且分别设于所述两个辐射元件上的所述延伸部的长度相等。
在一些实施例中,所述两个辐射元件中的一个包括所述延伸部,所述两个辐射元件的所述本体部的长度不等。
在一些实施例中,所述至少一个辐射元件包括两个辐射元件,且所述辐射结构还包括一个纵长形的探针,三者间隔地分布于所述气溶胶生成制品的周向。
在一些实施例中,所述两个辐射元件的长度相等或不等,所述两个辐射元件的宽度相等或不等。
在一些实施例中,所述两个辐射元件的长度与所述一个纵长形的探针的长度相等或不等。
在一些实施例中,所述至少一个辐射元件包括三个辐射元件,所述三个辐射元件等间隔地分布于所述气溶胶生成制品的周向。
在一些实施例中,所述三个辐射元件的长度相等或不等,所述三个辐射元件的宽度相等或不等。
在一些实施例中,所述至少一个辐射元件包括四个辐射元件,所述四个辐射元件包括对与对之间长度不等的两对辐射元件,所述两对辐射元件交替地、均匀地分布于所述气溶胶生成制品的周向。
在一些实施例中,所述辐射结构还包括与所述至少一个辐射元件相连接的基部,所述辐射结构经由所述基部与所述导体柱的所述自由端欧姆接触。
在一些实施例中,所述辐射结构还包括与所述至少一个辐射元件相连接的基部,所述基部设置于所述导体柱与所述气溶胶生成制品相对的端面上。
在一些实施例中,所述基部一体连接于所述导体柱的所述自由端,所述至少一个辐射元件一端连接于所述基部,另一端沿平行于所述导体柱轴线并远离所述导体柱的方向延伸。
在一些实施例中,所述内导体单元还包括导体盘,所述导体盘连接于所述自由端,所述导体盘的外径大于所述导体柱的外径,且小于所述外导体单元的内径。
在一些实施例中,所述辐射结构连接于所述导体盘远离所述导体柱的端面上。
在一些实施例中,所述微波加热组件还包括收容座,所述收容座包括用于收容气溶胶生成制品的收容部,所述收容部设置于所述腔体内,所述至少一个辐射元件与所述收容部对应设置。
在一些实施例中,所述至少一个辐射元件延伸至所述收容部的侧壁,并与所述导体柱的所述自由端欧姆接触。
在一些实施例中,所述收容部呈圆筒状,所述至少一个辐射元件的弧度与所述收容部的侧壁的弧度相当。
在一些实施例中,所述至少一个辐射元件分布于所述收容部的内侧,并与所述收容部的内侧壁面贴合。
在一些实施例中,所述至少一个辐射元件分布于所述收容部的内侧,并与所述收容部的内侧壁面之间具有间隙。
在一些实施例中,所述至少一个辐射元件分布于所述收容部的外侧,并与所述收容部的外侧壁面贴合。
在一些实施例中,所述至少一个辐射元件分布于所述收容部的外侧,并与所述收容部的外侧壁面之间具有间隙。
在一些实施例中,所述至少一个辐射元件至少局部地嵌置于所述收容部的侧壁中。
在一些实施例中,所述辐射结构由导电材料制成或其外表面镀有导电层。
在一些实施例中,所述微波加热组件还包括连接于所述外导体单元上的微波馈入单元,所述微波馈入单元的一端从所述外导体单元外周壁插入至所述外导体单元内,且与所述内导体单元欧姆接触。
在一些实施例中,所述微波馈入单元包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元的轴线的方式,与所述内导体单元欧姆接触。
本发明还构造了一种气溶胶生成装置,包括上述的微波加热组件。
有益效果
实施本发明具有以下有益效果:本发明的内导体单元包括辐射结构,该辐射结构包括至少一个横断面呈扇形的辐射元件,用于对气溶胶生成制品进行有效加热,可以有效提高微波场的均匀性和范围,便于提升对气溶胶生成制品加热的均匀性。而且通过辐射结构的不同形状组合变化,可以起到调节微波场的分布和调节腔体谐振频率的作用,从而有利于雾化区域的优化。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明微波加热组件一种实施例的结构示意图;
图2是本发明微波加热组件一种实施例的爆炸图;
图3是本发明微波加热组件的辐射元件位于收容部内侧的一种实施例的剖视图;
图4是本发明微波加热组件的辐射元件位于收容部内侧的另一实施例的剖视图;
图5是本发明微波加热组件的辐射元件位于收容部外侧的一种实施例的剖视图;
图6是本发明辐射元件嵌置于收容部的一种实施例的剖视图;
图7为本发明的辐射结构第一实施例的结构示意图;
图8为本发明辐射结构的第二实施例的结构示意图;
图9为本发明辐射结构的第三实施例的结构示意图;
图10为本发明辐射结构的第四实施例的结构示意图;
图11为本发明辐射结构的第五实施例的结构示意图;
图12为本发明辐射结构的第六实施例的结构示意图;
图13为本发明辐射结构的第七实施例的结构示意图;
图14为本发明辐射结构的第八实施例的结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
本发明构造了一种气溶胶生成装置,该气溶胶生成装置可利用微波加热气溶胶生成制品,以雾化产生气溶胶,从而供使用者吸食。
如图1和图2所示,在一些实施例中,气溶胶生成装置包括微波加热组件10和微波发生装置(未图示),微波加热组件10包括内导体单元1、外导体单元2、收容座3和微波馈入单元。该外导体单元2带有腔体20,内导体单元1设置于外导体单元2的腔体20中,并可以与外导体单元2有良好的欧姆接触。微波馈入单元用于将微波发生装置产生的微波馈入外导体单元2及内导体单元1中,微波加热组件10可以在微波馈入后形成一个微波场,该微波场可作用于气溶胶生成制品,对其实现微波加热。
微波馈入单元可以为耦合馈入,耦合馈入的形式可以是电耦合和磁耦合。微波馈入单元的一端从外导体单元2外周壁插入至外导体单元2内,且与内导体单元1欧姆接触。在一些实施例中,微波馈入单元一侧和微波发生装置相连接并通过同轴接头或者微带线连接,另一侧伸入至腔体20,并与腔体20形成欧姆接触。微波馈入单元采用金属材料制成,优选地,其可以由金属铝或铜制成。进一步地,其外表面可以镀有银或金涂层。微波馈入单元在一些实施例中包括内导体、外导体以及介于内导体和外导体之间的介质层,内导体呈一字型,并沿着垂直于内导体单元1的轴线的方式,与内导体单元1欧姆接触。可理解地,内导体可以呈L字型,且与微波加热组件10相连接。
如图1所示,该微波加热组件10的整体形状在一些实施例中大致呈圆柱状,当然,微波加热组件10并不局限于圆柱状,其也可呈方柱、椭圆柱状等其他形状。
一同参考图2,在一些实施例中,外导体单元2呈筒状,其具有一个封闭端201和与该封闭端201相对的开口端202,并可界定出一个半封闭式的腔体20,腔体20位于开口端202和封闭端201之间该腔体20呈圆柱状,收容座3伸入至该腔体20中。在一些实施例中,该腔体20可以为形状为多边形的腔体20。该外导体单元2包括可导电的侧部21以及与侧部21连接的底部22,侧部21呈圆筒状,侧部21的顶端为开口结构,其形成外导体单元2的开口端202。底部22封闭于侧部21的底端,形成外导体单元2的封闭端201。侧部21靠近底部22的一端开设有馈入孔23,该馈入孔23用于供微波馈入单元安装于其中;馈入孔23沿侧部21径向向外延伸设置,并与腔体20相连通。在一些实施例中,外导体单元2可以采用金属材料制成。在一些实施例中,外导体单元2可以由非金属材料制成,并在其内表面或外表面镀有导电涂层,该导电涂层的材料可以包括金、银、导电氧化物、导电陶瓷等。
在一些实施例中,内导体单元1一端连接于外导体单元2的封闭端201,且内导体单元1与外导体单元2的封闭端201欧姆接触,另一端朝外导体单元2的开口端202延伸。在一些实施例中,内导体单元1可以采用金属材料制成。在一些实施例中,内导体单元1可以由非金属材料制成,并在其内表面或外表面镀有导电涂层,该导电涂层的材料可以包括金、银、导电氧化物、导电陶瓷等。
在一些实施例中,收容座3用于收容气溶胶生成制品,收容座3连接于开口端202上,并包括用于收容气溶胶生成制品的收容部30,收容部30设置于外导体单元2的腔体20内。收容部30在一些实施例中可呈圆筒状,其包括底壁31以及围设在底壁31周缘的筒状侧壁32,侧壁32外径小于外导体单元2的内径。收容部30的底壁31与侧壁32之间形成收容腔,可供气溶胶生成制品收容于其中。
如图2所示,收容座3在一些实施例中还包括若干个纵长的定位筋33;这些定位筋33间隔均匀地设置于收容部30的内侧壁面周向上。每一定位筋33均沿着平行于收容部30的轴线的方向延伸。该些定位筋33在一个方面可用于夹紧插入收容部30中的气溶胶生成制品,在另一个方面每相邻两定位筋33之间均形成一个纵向延伸的第一进气通道,以方便环境空气被吸入到气溶胶生成制品的底部,再进入气溶胶生成制品中带走被微波加热产生的气溶胶。
收容座3在一些实施例中还包括若干纵长的支撑筋34;这些支撑筋34均匀间隔地呈放射状分布于收容部30的底壁31上。可以理解地,支撑筋34一个方面用于支撑气溶胶生成制品,另一个方向形成若干放射状第二进气通道。这些第二进气通道分别与这些第一进气通道相连通,以方便环境空气被吸入到气溶胶生成制品的底部,再进入气溶胶生成制品中带走被微波加热产生的气溶胶。
在一些实施例中,收容座3可固定地或可拆卸地安装于外导体单元2的开口端202处。当收容有气溶胶生成制品的收容座3安装于外导体单元2内时,收容部30可处于微波场主要形成的区域,有利于收容于收容部30的气溶胶生成制品加热。在一些实施例中,收容座3可以由低介电损耗材料制成。该低介电损耗材料包括PEEK、PTFE、PAF、微波透明陶瓷、玻璃、氧化铝、氧化锆、氧化硅等等。
该内导体单元1在一些实施例中包括导体柱11和辐射结构12。导体柱11设置于腔体20内,且导体柱11的外径小于外导体单元2的内径。其包括相对的固定端和自由端,固定端固定于外导体单元2,并与外导体单元2欧姆接触。导体柱11主要起到微波传导作用,其在一些实施例中可呈圆柱状,其远离外导体单元2的开口端202的一端为固定端,可固定连接在外导体单元2的底部22上,其靠近开口端202的一端为自由端,向外导体单元2的开口端202延伸。在一些实施例中,内导体单元1的固定端与外导体单元2的底部22欧姆接触。在另一些实施例中,内导体单元1的固定端与外导体单元2的底部22一体连接。在一些实施例中,导体柱11可以呈圆柱状。可理解地,导体柱11并不仅限于圆柱状,还可以呈多边体状或者是其它形状。在一些实施例中,导体柱11的底端还设有一个轴向延伸的安装部111,该安装部111可以一体结合于导体柱11。外导体单元2的底部22设有安装孔24,可供该安装部111穿设于其中。导体柱11的安装部111可安装在位于外导体单元2的底部22的安装孔24中,以将导体柱11固定在外导体单元2上,使得导体柱11与外导体单元2之间形成可靠的欧姆接触。
一同参考图9至图11,在一些实施例中,内导体单元1还包括导体盘112,用于调节馈入频率(阶跃阻抗)。导体盘112用于微波传导,还可以增加自身电感和电容,以及降低谐振频率,从而利于腔体20尺寸的进一步变小。该导体盘112可呈圆盘状,导体盘112与导体柱11相连接,具体地,导体盘连接于导体柱的自由端。导体盘112的外径大于导体柱11的外径,且小于外导体单元2的内径。在一些实施例中,导体盘112可套设与导体柱11靠近开口端202一侧外,且两者之间可以为一体成型或欧姆接触。在一些实施例中,导体盘112可以由金属材料制成,或者可以是在非金属材料外表面镀有导电涂层制成。优选地,导体盘112可以采用铝合金或者铜。
辐射结构12可结合于导体柱11的自由端,该辐射结构12位于气溶胶生成制品的外侧,其可沿导体柱11与收容座3相对的端面周缘设置。在一些实施例中,辐射结构12由导电材料制成或其外表面镀有导电层。辐射结构12包括至少一个横断面呈扇形的辐射元件121,至少一个辐射元件121与收容座3对应设置,以调节腔体20的微波场分布和谐振频率。由于大部分的气溶胶生成制品为圆柱形,本发明中的辐射结构12与气溶胶生成制品的形状相匹配,故本发明的辐射元件121的横断面可均呈扇形,以贴合气溶胶生成制品的形态,从而对气溶胶生成制品进行有效加热,可以极大地提高气溶胶生成制品加热均匀性和范围。当然,辐射元件121还可以是横断面呈矩形等其他形状的,在此不作具体限制。而且,微波场一般在横断面呈扇形的辐射元件121的顶部周边最强,因此辐射结构12的辐射元件121如果接近气溶胶生成制品顶部,可实现对气溶胶生成制品顶部的优先加热,从而利于快速释放气溶胶,即有利于提升雾化速度,减少预热时间。而不同辐射元件121长度的设计,则可以使气溶胶生成制品的加热均匀性更好。
在一些实施例中,至少一个辐射元件121向上延伸至收容座3的收容部30的侧壁32,并与导体柱11的自由端欧姆接触,至少一个辐射元件121的弧度与收容部30的侧壁32的弧度相当,使微波场的均匀性得到显著提高,便于提升对气溶胶生成制品加热的均匀性。
如图3所示,在一些实施例中,辐射结构12的至少一个辐射元件121可位于收容部30的侧壁32的内侧,并与收容部30的内侧壁面贴合,至少一个辐射元件121从收容部30的底壁31伸入至收容部30的内侧壁面内。该基部122的表面积跟与导体柱11与收容部30相对的端面的表面积相当。在一些实施例中,可以在收容部30的内侧壁面设置收容槽,供至少一个辐射元件121卡入定位,使其可分布于收容部30的内侧壁面。收容部30的底壁31上可设有相应的开孔311,可供至少一个辐射元件121穿设于其中并伸入至收容部30内,且基部122与收容部30的底壁31贴合。
如图4所示,在一些实施例中,辐射结构12的至少一个辐射元件121可位于收容部30的侧壁32的内侧,并与收容部30的内侧壁面之间具有一定的间隙。该基部122的表面积小于与导体柱11与收容部30相对的端面的表面积,且立设于基部122的周向上的辐射元件121通过开孔311伸入至收容部30内,基部122与收容部30的底壁31贴合。
如图5所示,在一些实施例中,辐射结构12的至少一个辐射元件121可位于收容部30的侧壁32的外侧,至少一个辐射元件121可以与收容部30的外侧壁面贴合,或者至少一个辐射元件121与收容部30的外侧壁面间隔设置。可在收容部30的外壁面设置收容槽,供至少一个辐射元件121卡入定位,使其可分布于收容部30的外侧壁面上。
如图6所示,在一些实施例中,至少一个辐射元件121至少局部地嵌置于收容部30的侧壁32中。收容部30的侧壁32具有一定厚度,收容部30的侧壁32可以设置有由收容部30的底壁31一端向上延伸的插孔,以供至少一个辐射元件121插入,该插孔的形状大小可与至少一个辐射元件121适配。
参考图7至图14,辐射结构12在一些实施例中还包括与至少一个辐射元件121相连接的基部122,辐射结构12经由基部122与导体柱11的自由端欧姆接触。至少一个辐射元件121立设于该基部122的周向上,以使微波场更均匀地分布于收容部30的周围。该基部122的表面积可以跟导体柱11与收容部30相对的端面的表面积相当,或者小于导体柱11与收容部30相对的端面的表面积。
在一些实施例中,该基部122可设置于导体柱11与收容部30相对的端面上,且可与收容部30面向导体柱11的一面贴合,并跟导体柱11与收容部30相对的端面欧姆接触;或者基部122一体成型于导体柱11与收容部30相对的端面上。在一些实施例中,基部122一体连接于导体柱11的自由端,至少一个辐射元件121一端连接于基部122,另一端沿平行于导体柱11轴线并远离导体柱11的方向延伸。在一些实施例中,基部122可以为圆盘形、方形或多边形等其他形状,并覆盖于导体柱11与收容部30相对的端面上。在一些实施例中,基部122一体成型于一体连接的导体柱11和导体盘112的端面上。
在一些实施例中,每一横断面为扇形的辐射元件121包括本体部1211,本体部1211沿平行于导体柱11的轴线延伸设置,且本体部1211的横断面呈扇形。
图7为本发明辐射结构的第一实施例的结构示意图,在该实施例中,横断面为扇形的辐射元件121的设置数量为一个,微波场在该一个辐射元件121周围最强,随着距离辐射元件121的距离的增加而变小。辐射元件121所对应气溶胶生成制品的区域优先产生气溶胶。该一个辐射元件121的长度和宽度可以根据实际情况进行调整,同样地,其横断面扇形的弧度也可以根据实际情况进行调整。
图8为本发明辐射结构的第二实施例的结构示意图,在该实施例中,横断面为扇形的辐射元件121的设置数量为两个,其可以沿导体柱的轴线径向对称设置。在一些实施例中,该两个辐射元件121可以对称分布于收容部30的侧壁32的周向。当然,该两个辐射元件121也可以是间隔分布于收容部30的侧壁32的周向。
在一些实施例中,两个辐射元件121的本体部1211长度可以相等或不等,两个辐射元件121的本体部1211的宽度可以相等或不等。在一些实施例中,两个辐射元件121的本体部1211的弧度可以相等或不等。即该两个辐射元件121之间可以是等长不等宽的,或者是等宽不等长的,或者是等宽等长的,或者是不等宽不等长的,可根据实际情况进行组合调整,在此不作限定。
图9为本发明辐射结构的第三实施例的结构示意图,在该实施例中,两个辐射元件121中的至少一个还包括延伸部1212,延伸部1212可以沿一个圆心落在导体柱11轴线的圆弧延伸。该延伸部可以沿该圆弧的至少一端延伸,优选地,该延伸部分别沿该圆弧的两端延伸。
延伸部1212的横断面呈扇形,且该延伸部1212的横断面大于本体部1211的横断面。该延伸部1212与导体盘112的径向上下端面相平行,且其横断面投影落在导体盘112与收容座3相对的端面内。
在一些实施例中,两个辐射元件121中的一个包括延伸部1212,两个辐射元件121的本体部1211的长度不等。可以在本体部1211的长度相对较小的辐射元件121上设有延伸部1212,从而实现微波场调配。在另一些实施例中,两个辐射元件121上均包括延伸部1212,两个辐射元件121的本体部1211的长度相等,且分别设于两个辐射元件121上的延伸部1212的长度相等。在一些实施例中,延伸部1212可以设置在导体盘112远离导体柱11一侧的端面周向边缘上,并且延伸部1212的弧度可以与导体盘112的周向侧壁的弧度相当。
图10为本发明辐射结构的第四实施例的结构示意图,在该实施例中,辐射结构12包括一个横断面为扇形的辐射元件121以及一个纵长形的探针120,两者对称分布于收容部30的侧壁32的周向。该横断面为扇形的辐射元件121的长度大于该纵长形的探针的长度。
图11为本发明辐射结构的第五实施例的结构示意图,在该实施例中,辐射结构12包括两个横断面为扇形的辐射元件121以及一个纵长形的探针120,三者间隔地分布于收容部30的侧壁32的周向,且其三者的分布位置可根据实际情况进行调整。该两个辐射元件121的长度可以相等或不等,其宽度可以相等或不等,其弧度可以相等或不等。该两个辐射元件121的长度与该一个纵长形的探针120的长度可以相等或不等。
图12为本发明辐射结构的第六实施例的结构示意图,图13为本发明辐射结构的第七实施例的结构示意图,在该实施例中,横断面为扇形的辐射元件121的设置数量为三个,该三个辐射元件121等间隔地分布于收容部30的侧壁32的周向。该三个辐射元件121的长度可以相等或不等,其宽度可以相等或不等,其弧度可以相等或不等。如图12所示,在该实施例中,该三个辐射元件121的长度均相等。如图13所示,在该实施例中,该三个辐射元件121的长度均不相等。当然,在其他一些实施例中,辐射元件的长度可根据实际情况进行调整,在此不作限制。
图14为本发明辐射结构的第八实施例的结构示意图,在该实施例中,横断面为扇形的辐射元件121的设置数量为四个,该四个辐射元件121包括对与对之间长度不等的两对辐射元件121,其宽度和弧度可根据实际情况进行调整。该两对辐射元件121交替地、均匀地分布于收容部30的侧壁32的周向。该实施例中的微波场在长度相对较长的一对辐射元件121周围最强。该四个辐射元件121使得微波场分布相对均匀。
在一些实施例中,该横断面为扇形的辐射元件121可以与纵长形的探针120、横断面为非扇形的辐射元件121等元件进行组合,且其材料可以均由导电材料制成或其外表面镀有导电层。通过以上不同结构的组合,可以调配微波场,使得微波场分布相对均匀,从而有利于根据气溶胶生成制品进行雾化区域优化。
本发明的辐射结构12的形状及分布可以极大的改变腔体20内的微波场分布形态,进而对位于收容部30内的气溶胶生成制品的不同区域进行选择性的加热,微波场的均匀性得到提高,从而有效提高雾化效果。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (31)

  1. 一种微波加热组件,用于气溶胶生成装置,对气溶胶生成制品进行加热,其特征在于,包括:
    外导体单元,呈筒状,其包括一个封闭端、一个与所述封闭端相对的开口端以及一个形成于所述封闭端和所述开口端之间的腔体,以及
    内导体单元,设置于所述腔体中,其一端连接于所述外导体单元的封闭端、一端朝所述外导体单元的开口端延伸;
    所述内导体单元包括:
    导体柱,其包括相对的固定端和自由端,所述固定端固定于所述外导体单元,并与所述外导体单元欧姆接触;以及
    辐射结构,结合于所述自由端,其包括至少一个横断面呈扇形的辐射元件,所述至少一个辐射元件与所述气溶胶生成制品对应设置,以调节所述腔体的微波场分布和谐振频率。
  2. 根据权利要求1所述的微波加热组件,其特征在于,所述至少一个辐射元件包括两个辐射元件,所述两个辐射元件沿所述导体柱的轴线径向对称设置。
  3. 根据权利要求2所述的微波加热组件,其特征在于,所述辐射元件包括本体部,所述本体部沿平行于所述导体柱的轴线延伸设置。
  4. 根据权利要求3所述的微波加热组件,其特征在于,所述两个辐射元件的所述本体部长度相等或不等,所述两个辐射元件的所述本体部的宽度相等或不等。
  5. 根据权利要求3所述的微波加热组件,其特征在于,所述两个辐射元件的所述本体部的弧度相等或不等。
  6. 根据权利要求3所述的微波加热组件,其特征在于,所述两个辐射元件中的至少一个还包括延伸部,所述延伸部沿一个圆心落在所述导体柱轴线的圆弧延伸。
  7. 根据权利要求6所述的微波加热组件,其特征在于,所述两个辐射元件上均包括所述延伸部,所述两个辐射元件的所述本体部的长度相等,且分别设于所述两个辐射元件上的所述延伸部的长度相等。
  8. 根据权利要求6所述的微波加热组件,其特征在于,所述两个辐射元件中的一个包括所述延伸部,所述两个辐射元件的所述本体部的长度不等。
  9. 根据权利要求1所述的微波加热组件,其特征在于,所述至少一个辐射元件包括两个辐射元件,且所述辐射结构还包括一个纵长形的探针,三者间隔地分布于所述气溶胶生成制品的周向。
  10. 根据权利要求9所述的微波加热组件,其特征在于,所述两个辐射元件的长度相等或不等,所述两个辐射元件的宽度相等或不等。
  11. 根据权利要求9所述的微波加热组件,其特征在于,所述两个辐射元件的长度与所述一个纵长形的探针的长度相等或不等。
  12. 根据权利要求1所述的微波加热组件,其特征在于,所述至少一个辐射元件包括三个辐射元件,所述三个辐射元件等间隔地分布于所述气溶胶生成制品的周向。
  13. 根据权利要求12所述的微波加热组件,其特征在于,所述三个辐射元件的长度相等或不等,所述三个辐射元件的宽度相等或不等。
  14. 根据权利要求1所述的微波加热组件,其特征在于,所述至少一个辐射元件包括四个辐射元件,所述四个辐射元件包括对与对之间长度不等的两对辐射元件,所述两对辐射元件交替地、均匀地分布于所述气溶胶生成制品的周向。
  15. 根据权利要求1所述的微波加热组件,其特征在于,所述辐射结构还包括与所述至少一个辐射元件相连接的基部,所述辐射结构经由所述基部与所述导体柱的所述自由端欧姆接触。
  16. 根据权利要求1所述的微波加热组件,其特征在于,所述辐射结构还包括与所述至少一个辐射元件相连接的基部,所述基部设置于所述导体柱与所述气溶胶生成制品相对的端面上。
  17. 根据权利要求16所述的微波加热组件,其特征在于,所述基部一体连接于所述导体柱的所述自由端,所述至少一个辐射元件一端连接于所述基部,另一端沿平行于所述导体柱轴线并远离所述导体柱的方向延伸。
  18. 根据权利要求1所述的微波加热组件,其特征在于,所述内导体单元还包括导体盘,所述导体盘连接于所述自由端,所述导体盘的外径大于所述导体柱的外径,且小于所述外导体单元的内径。
  19. 根据权利要求18所述的微波加热组件,其特征在于,所述辐射结构连接于所述导体盘远离所述导体柱的端面上。
  20. 根据权利要求1所述的微波加热组件,其特征在于,所述微波加热组件还包括收容座,所述收容座包括用于收容气溶胶生成制品的收容部,所述收容部设置于所述腔体内,所述至少一个辐射元件与所述收容部对应设置。
  21. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件延伸至所述收容部的侧壁,并与所述导体柱的所述自由端欧姆接触。
  22. 根据权利要求20所述的微波加热组件,其特征在于,所述收容部呈圆筒状,所述至少一个辐射元件的弧度与所述收容部的侧壁的弧度相当。
  23. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件分布于所述收容部的内侧,并与所述收容部的内侧壁面贴合。
  24. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件分布于所述收容部的内侧,并与所述收容部的内侧壁面之间具有间隙。
  25. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件分布于所述收容部的外侧,并与所述收容部的外侧壁面贴合。
  26. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件分布于所述收容部的外侧,并与所述收容部的外侧壁面之间具有间隙。
  27. 根据权利要求20所述的微波加热组件,其特征在于,所述至少一个辐射元件至少局部地嵌置于所述收容部的侧壁中。
  28. 根据权利要求1所述的微波加热组件,其特征在于,所述辐射结构由导电材料制成或其外表面镀有导电层。
  29. 根据权利要求1所述的微波加热组件,其特征在于,所述微波加热组件还包括连接于所述外导体单元上的微波馈入单元,所述微波馈入单元的一端从所述外导体单元外周壁插入至所述外导体单元内,且与所述内导体单元欧姆接触。
  30. 根据权利要求29所述的微波加热组件,其特征在于,所述微波馈入单元包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元的轴线的方式,与所述内导体单元欧姆接触。
  31. 一种气溶胶生成装置,其特征在于,包括权利要求1至30任一项所述的微波加热组件。
PCT/CN2022/133006 2022-11-07 2022-11-18 微波加热组件及气溶胶生成装置 WO2024098454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211384855.XA CN117981919A (zh) 2022-11-07 2022-11-07 微波加热组件及气溶胶生成装置
CN202211384855.X 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024098454A1 true WO2024098454A1 (zh) 2024-05-16

Family

ID=90892336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133006 WO2024098454A1 (zh) 2022-11-07 2022-11-18 微波加热组件及气溶胶生成装置

Country Status (2)

Country Link
CN (1) CN117981919A (zh)
WO (1) WO2024098454A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
CN103809138A (zh) * 2012-11-08 2014-05-21 三星电子株式会社 用于磁共振成像的相控阵列rf线圈
US20140158302A1 (en) * 2012-12-10 2014-06-12 Tokyo Electron Limited Microwave radiation antenna, microwave plasma source and plasma processing apparatus
CN110191530A (zh) * 2019-05-28 2019-08-30 中国电子科技集团公司第十二研究所 一种微波辐射加热装置
WO2022128290A1 (en) * 2020-12-18 2022-06-23 Philip Morris Products S.A. Filled resonant cavity for optimized dielectric heating
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
CN103809138A (zh) * 2012-11-08 2014-05-21 三星电子株式会社 用于磁共振成像的相控阵列rf线圈
US20140158302A1 (en) * 2012-12-10 2014-06-12 Tokyo Electron Limited Microwave radiation antenna, microwave plasma source and plasma processing apparatus
CN110191530A (zh) * 2019-05-28 2019-08-30 中国电子科技集团公司第十二研究所 一种微波辐射加热装置
WO2022128290A1 (en) * 2020-12-18 2022-06-23 Philip Morris Products S.A. Filled resonant cavity for optimized dielectric heating
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法
CN114886160A (zh) * 2022-05-18 2022-08-12 深圳麦时科技有限公司 气溶胶产生装置

Also Published As

Publication number Publication date
CN117981919A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2023221596A1 (zh) 气溶胶产生装置
CN114747803A (zh) 气溶胶产生装置及其制造方法
CN216165164U (zh) 气溶胶固定装置和气溶胶产生装置
CN114747804A (zh) 气溶胶产生装置
WO2023246370A1 (zh) 气溶胶产生装置及其加热组件
EP4287769A1 (en) Electromagnetic heating coil, heating assembly, and electronic atomizing device
JP3677017B2 (ja) スロットアレイアンテナおよびプラズマ処理装置
KR20000076898A (ko) 플라스마 처리장치
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2024098454A1 (zh) 微波加热组件及气溶胶生成装置
JP3847184B2 (ja) プラズマ処理装置
EP4287768A1 (en) Electromagnetic heating coil, heating assembly, and electronic atomizing device
WO2024113185A1 (zh) 气溶胶生成装置及其微波加热组件
WO2024016341A1 (zh) 气溶胶产生装置
WO2023020188A1 (zh) 雾化管及雾化器
WO2024036935A1 (zh) 微波馈入装置、微波加热器及气溶胶产生装置
WO2024108399A1 (zh) 气溶胶生成装置及其微波加热组件
CN118104876A (zh) 气溶胶生成装置及其微波加热组件
WO2024145843A1 (zh) 气溶胶产生装置及其微波加热组件
WO2024098455A1 (zh) 气溶胶产生装置及其微波加热组件
WO2023065946A1 (zh) 气溶胶固定装置和气溶胶产生装置
CN218605113U (zh) 气溶胶产生装置
WO2024108400A1 (zh) 气溶胶产生装置
WO2024050737A1 (zh) 气溶胶产生装置及其微波加热装置
CN219556317U (zh) 气溶胶产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964921

Country of ref document: EP

Kind code of ref document: A1