WO2024016341A1 - 气溶胶产生装置 - Google Patents

气溶胶产生装置 Download PDF

Info

Publication number
WO2024016341A1
WO2024016341A1 PCT/CN2022/107476 CN2022107476W WO2024016341A1 WO 2024016341 A1 WO2024016341 A1 WO 2024016341A1 CN 2022107476 W CN2022107476 W CN 2022107476W WO 2024016341 A1 WO2024016341 A1 WO 2024016341A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol generating
conductor
generating device
conductor unit
inner conductor
Prior art date
Application number
PCT/CN2022/107476
Other languages
English (en)
French (fr)
Inventor
杜靖
梁峰
邓洋
李东建
蓝永海
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Priority to PCT/CN2022/107476 priority Critical patent/WO2024016341A1/zh
Publication of WO2024016341A1 publication Critical patent/WO2024016341A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present invention relates to the field of electronic atomization, and in particular to an aerosol generating device.
  • the aerosol generating device is provided with a receiving seat that extends into the heating chamber.
  • the receiving seat is located in the microwave field and is used to receive part of the structure of the aerosol generating matrix that extends into the heating chamber.
  • the receiving seat when microwaves heat the aerosol-generating matrix, the receiving seat will absorb part of the microwaves, reducing the energy of the heating medium and affecting the microwave heating effect.
  • the dielectric constant of the receiving seat is generally larger than that of the aerosol-generating matrix, which compresses the heating area of the microwave, causing the carbonized area of the aerosol-generating matrix to be relatively concentrated near the probe, resulting in a low carbonization rate of the medium.
  • the present invention aims at at least one of the above technical defects and provides an improved aerosol generating device.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an aerosol generating device for heating an aerosol generating substrate, and the aerosol generating substrate includes a first end surface extending into the aerosol generating device;
  • the aerosol generating device includes a microwave heater; the microwave heater includes an outer conductor unit and an inner conductor unit disposed in the outer conductor unit;
  • the outer conductor unit is used to define a heating cavity, and the outer conductor unit has an open end and a closed end;
  • the inner conductor unit has one end connected to the closed end and one end extending toward the open end; the inner conductor unit includes a fixed end connected to the closed end and a free end extending toward the open end;
  • the inner conductor unit includes a surface for abutting the first end surface, and the surface is configured such that when the surface abuts the first end surface, the surface abuts the first end surface.
  • An air intake gap is formed between one end faces.
  • the surface includes at least one protruding portion protruding toward the open end, and the surface forms the air inlet gap with the first end surface via the at least one protruding portion.
  • the surface includes at least one groove recessed toward the closed end, and the surface forms the air inlet gap with the first end surface through the at least one groove.
  • the at least one protruding portion partially coincides with the projection of the first end surface on the surface; or the at least one protruding portion is included in the projection of the first end surface on the surface. middle.
  • the at least one groove coincides with the respective projections of the first end surface on the surface.
  • the protruding portion is made of conductive material.
  • the at least one raised portion is integrally formed with the surface.
  • the at least one protruding portion includes at least two protruding portions, and the at least two protruding portions are annularly spaced around a center point of the surface.
  • the at least one groove includes at least two grooves, and the at least two grooves are annularly spaced around a center point of the surface.
  • the inner conductor unit includes a conductor post, the conductor post includes a first end facing the open end and a second end serving as the fixed end; an end surface of the first end serves as the surface.
  • the inner conductor unit includes a conductor post and a conductor disk
  • the conductor post includes a first end extending toward the open end and a second end serving as the fixed end;
  • the conductor disk is disposed on the first end, and the conductor disk includes a disk surface facing the open end; the disk surface serves as the surface.
  • the microwave heater is configured to: form a microwave field in the heating cavity when microwaves are fed into the heating cavity;
  • the aerosol-generating device further includes a fixed seat for the aerosol-generating matrix to be worn and abutting against the peripheral surface of the aerosol-generating matrix when the aerosol-generating matrix is worn;
  • the fixed seat is installed on the open end and is located away from the microwave field.
  • the fixing seat includes a cylindrical fixing body and a hollow channel provided in the fixing body;
  • the fixed main body includes an outer body portion located outside the outer conductor unit, and an inner body portion integrally connected with the outer body portion and located inside the outer conductor unit; the inner body portion is located away from the outer conductor unit.
  • Microwave field settings are provided.
  • the area of the surface is smaller than the area of the first end surface
  • the surface abuts part of the first end surface.
  • the inner conductor unit further includes a conductive probe device; one end of the probe device close to the surface is inserted into the surface to make ohmic contact with the conductor post; the probe device is far away from the surface One end extends toward the open end for insertion of the aerosol-generating matrix.
  • the inner conductor unit further includes a conductive probe device
  • One end of the probe device close to the surface is inserted into the conductor post and the conductor disk, and is in ohmic contact with the conductor post and/or conductor disk; the end of the probe device away from the surface is directed toward the opening. The end is extended to insert into the aerosol-generating matrix.
  • the shape of the end of the probe device away from the surface includes a plane, a sphere, an ellipsoid, a cone or a truncated cone.
  • the microwave feed device also includes a microwave feed device connected to the microwave heater, the microwave feed device includes an inner conductor, an outer conductor and a dielectric layer between the inner conductor and the outer conductor, so The inner conductor is in a straight shape and is in ohmic contact with the inner conductor unit along an axis perpendicular to the inner conductor unit.
  • the microwave feed device includes an inner conductor, an outer conductor and a dielectric layer between the inner conductor and the outer conductor, so
  • the inner conductor includes a first section perpendicular to the axis of the inner conductor unit and a second section parallel to the axis of the inner conductor unit, the second section being in ohmic contact with the first end wall of the outer conductor unit .
  • the microwave heater is a quarter-wavelength coaxial line resonator.
  • the design of the air inlet gap also ensures that the airflow can enter from the first end surface of the aerosol-generating substrate, ensuring that the aerosol generated after the aerosol-generating substrate is heated can be inhaled or inhaled by the user.
  • Figure 1 is a schematic three-dimensional structural diagram of an aerosol generating device in some embodiments of the present invention.
  • Figure 2 is a schematic three-dimensional exploded structural view of the aerosol generating device shown in Figure 1;
  • Figure 3 is a schematic structural diagram of a longitudinal section of the aerosol generating device shown in Figure 1;
  • Figure 4 is a schematic three-dimensional structural diagram of the inner conductor unit in the aerosol generating device shown in Figure 2 with the probe device omitted;
  • Figure 5 is a schematic longitudinal cross-sectional structural view of an aerosol generating device provided with an annular conductor disk in other embodiments of the present invention.
  • Figure 6 is a schematic longitudinal cross-sectional structural diagram of an aerosol generating device using a second microwave feed device in some embodiments of the present invention.
  • Figure 7 is a schematic three-dimensional structural diagram of the aerosol-generating matrix in contact with the inner conductor unit in Embodiment 1-1 of the present invention.
  • Figure 8 is a schematic three-dimensional structural view of the aerosol-generating matrix in contact with the inner conductor unit in Examples 1-2 of the present invention.
  • Figure 9 is a schematic three-dimensional structural diagram of the aerosol-generating matrix in contact with the inner conductor unit in Examples 1-3 of the present invention.
  • Figure 10 is a schematic three-dimensional structural diagram of the aerosol-generating matrix in contact with the inner conductor unit in Examples 1-4 of the present invention.
  • Figure 11 is a schematic three-dimensional structural diagram of the aerosol-generating matrix in contact with the inner conductor unit in Examples 1-5 of the present invention.
  • Figures 1 to 9 show an aerosol generating device 100 in some embodiments of the present invention.
  • the aerosol generating device 100 can use microwaves to heat the aerosol generating substrate 200 to atomize it to generate aerosol, so that the user can inhale or Inhaled.
  • the aerosol-generating matrix 200 is a solid aerosol-generating matrix 200 such as processed plant leaf preparations. It can be understood that in other embodiments, the aerosol generating matrix 200 may also be a liquid aerosol generating matrix 200 .
  • the aerosol generating device 100 may include a microwave heater 1 , a fixing base 2 and a microwave feeding device 3 in some embodiments.
  • the microwave heater 1 may be cylindrical in some embodiments, and may include a heating cavity 13 in which microwaves are continuously oscillated.
  • the fixing base 2 can be fixedly or detachably installed on the microwave heater 1 and is used to fix the aerosol-generating matrix 200 when the aerosol-generating matrix 200 is inserted into the microwave heater 1 to prevent the aerosol-generating matrix 200 from being generated during the suction process. The position is shifted.
  • the microwave feeding device 3 is connected to the microwave heater 1 and is used to feed the microwave generated by the microwave generating device (not shown) into the heating cavity 13, so that a microwave field is formed in the heating cavity 13; the aerosol generating substrate 200 extends into Part of the structure of the heating cavity 13 can be exposed to the microwave field and heated and atomized by the microwave.
  • the microwave heater 1 is not limited to a cylindrical shape, and may also be in a square column, an elliptical column or other shapes.
  • the microwave heater 1 may include a resonator, such as a quarter-wavelength coaxial line resonator.
  • the microwave heater 1 in some embodiments may include a cylindrical outer conductor unit 11 for electromagnetic shielding, and a longitudinal inner conductor unit disposed in the outer conductor unit 11 to guide waves. 12 and the medium (for example, air) between the outer wall surface of the inner conductor unit 12 and the inner wall surface of the outer conductor unit 11.
  • the outer conductor unit 11 and the inner conductor unit 12 together define the above-mentioned heating cavity 13.
  • the first end (fixed end) of the inner conductor unit 12 is in ohmic contact with the first end wall 112 of the outer conductor unit 11 , forming the short-circuit end 1A of the microwave heater 1 .
  • the second end (free end) of the inner conductor unit 12 extends toward the opening of the outer conductor unit 11 and is not in direct ohmic contact with the outer conductor unit 11 , forming the open end 1B of the microwave heater 1 .
  • the axis of the inner conductor unit 12 and the axis of the outer conductor unit 11 coincide with or are parallel to each other. Preferably, the two coincide with each other.
  • the fixed base 2 is installed (for example, detachably or non-detachably) on the open end 1B of the microwave heater 1, and the fixed base 2 is placed away from the microwave field, so that the fixed base 2 is in a weak microwave field or non-microwave field area. , try to avoid the fixed base 2 from absorbing microwaves and affecting the heating effect of the aerosol-generating substrate.
  • the outer conductor unit 11 may include an electrically conductive first side wall 111 , an electrically conductive first end wall 112 , and a first opening 110 in some embodiments.
  • the first side wall 111 may be cylindrical in some embodiments and includes a first end and a second end opposite to the first end.
  • the first end wall 112 is closed on the first end of the first side wall 111 to form a closed end of the outer conductor unit 11 .
  • the first opening 110 is formed on the second end of the first side wall 111 to form an open end of the outer conductor unit 11 for the receiving seat to be embedded therein.
  • a radially penetrating feed hole 1110 may be provided on the first side wall 111 of the outer conductor unit 11 near the first end wall 112 for the microwave feed device 3 to be installed therein.
  • the outer conductor unit 11 can be integrally made of conductive metal material, and its material can include at least one of aluminum, copper, gold, silver, and stainless steel; preferably aluminum alloy or copper. It can be understood that the outer conductor unit 11 is not limited to being integrally made of conductive material. It can also be realized by plating the first conductive coating on the inner wall surface of the non-conductive cylinder. Materials made of the first conductive coating may include gold, silver, copper, aluminum, conductive metal oxides or conductive polymers; wherein the conductive metal oxides may include ITO, AZO, AGZO and FTO materials. Preferably the first conductive coating is a silver coating or a gold coating.
  • outer conductor unit 11 is not limited to a cylindrical shape, and may also be in a square cylindrical shape, an elliptical cylindrical shape, or other suitable shapes.
  • the inner conductor unit 12 may include a conductor post 121 , a conductor disk 123 and a probe device 122 .
  • the conductor post 121 is cylindrical and includes a bottom end adjacent to the first end wall 112 of the outer conductor unit 11 and a top end opposite to the bottom end; the bottom end serves as the first end of the inner conductor unit 12 and is against the first end wall 112 of the outer conductor unit 11 . It is connected to the first end wall 112 of the outer conductor unit 11 and makes ohmic contact with it; the end surface of the top end faces the open end of the outer conductor unit 11 .
  • the conductor disk 123 is disposed on the top of the conductor post 121 and is integrally formed with the conductor post 121 or forms good ohmic contact.
  • the diameter of the conductor disk 123 is larger than the diameter of the conductor post 121 .
  • One end of the probe device 122 is inserted from the top of the conductor disk 123 and penetrates the conductor disk 123, and is embedded inside the conductor post 121, so that the probe device 122 forms good ohmic contact with the conductor post 121 and/or the conductor disk 123; The other end of the probe device 122 is suspended in the heating chamber 13 .
  • the conductor disk 123 includes a top disk and a bottom disk.
  • the top disk is disposed toward the open end and can contact the first end surface 201 of the aerosol-generating substrate 200 when the aerosol-generating substrate 200 extends into the heating chamber 13 to play a supporting role.
  • an air inlet gap 128 is formed between the two, which is used to prevent the first end surface 201 of the aerosol generating matrix 200 from completely fitting the top disk surface, causing the airflow to be unable to pass through.
  • the first end surface 201 enters the aerosol generating matrix 200 .
  • the bottom end plate faces the top of the conductor post 121 and is connected to the conductor post 121 .
  • the top disk surface has an uneven surface structure to form an air intake gap 128 when it offsets the first end surface 201 .
  • the top disk includes a flat surface 125 and a convex surface 126 higher than the flat surface 125; the first end surface 201 can abut against the convex surface 126 when extending into the heating chamber 13, so that the first end surface 201 and the flat surface 125 are There is a certain distance between them to form an air intake gap 128. It can be understood that there is a raised portion 1261 on the top end that protrudes toward the open end.
  • the raised portion 1261 can include a convex surface 126 and a flat surface 125 on the top end surface; at the same time, the raised portion 1261 and the first end surface 201 The projections on the top disk surface partially overlap; or the protruding portion 1261 is included in the projection of the first end surface 201 on the top disk surface to ensure that the air intake gap 128 can be left.
  • the protruding portion 1261 can also prevent a large amount of heat from the aerosol-generating substrate 200 from being transferred into the heating chamber 13 during the heating process.
  • the number of the protrusions 1261 can also be more than two, and the number is not limited here. When the number of protrusions 1261 includes more than two, the plurality of protrusions 1261 may be arranged at annular intervals around the central axis of the conductor post 121.
  • the protruding portion 1261 and the conductor post 121 are integrally formed to facilitate manufacturing.
  • the shape of the protruding portion 1261 is not specifically limited here, as long as it can provide the air intake gap 128 .
  • the protruding portion 1261 is made of conductive material to change the microwave field distribution so that the microwave field intensity at the first end face 201 is greater.
  • the top disk surface includes a flat surface 125 and a concave surface 127 lower than the flat surface 125 ; the first end surface 201 can abut against the flat surface 125 when extending into the heating cavity 13 , so that the first end surface 201 can contact the flat surface 125 .
  • the groove 1271 includes a concave surface 127 and a flat surface 125 on the top disk surface; at the same time, the groove 1271 and the first end surface 201 are respectively The projections on the top disk surface partially overlap, so that the first end surface 201 can only cover part of the notch of the groove 1271 to ensure that the airflow can sequentially enter the groove 1271 and the first end surface 201 from the notch.
  • the number of grooves 1271 can be more than two, and the number is not limited here.
  • the plurality of grooves 1271 may be arranged at annular intervals around the central axis of the conductor post 121 .
  • the shape of the groove 1271 is not specifically limited here, as long as it can provide the air intake gap 128 .
  • connection portion 129 extending toward the first end wall 112 is also provided at the bottom of the conductor post 121 .
  • the connection portion 129 can be inserted through the closed end of the outer conductor unit 11 to fix the conductor post 121 to the third end of the outer conductor unit 11 . on one end wall 112.
  • the conductor post 121, the conductor disk 123, the probe device 122 and the outer conductor unit 11 are coaxially arranged.
  • the probe device 122 is an independent structure and can be extracted/inserted into the conductor plate 123 .
  • the conductor post 121 can be integrally made of conductive metal material, preferably aluminum alloy or copper. In other embodiments, the conductor post 121 may be conductive to the outer body 211, for example, the outer peripheral surface is plated with a second conductive coating, preferably a silver coating or a gold coating.
  • the conductor disk 123 can be integrally made of conductive metal material, preferably aluminum alloy or copper.
  • the conductor post 121 may be conductive to the outer body 211, for example, the outer peripheral surface is plated with a third conductive coating, preferably a silver coating or a gold coating.
  • the probe device 122 has a longitudinal rod-shaped structure as a whole. One end of the probe device 122 is inserted from the top end surface of the conductor column 121 and embedded inside the conductor column 121 to make ohmic contact with the conductor column 121; the other end of the probe device 122 is suspended in the heating chamber. 13, which can be used as the second end of the inner conductor unit 12. When the aerosol-generating substrate 200 is extended into the heating chamber 13, it can be placed around the periphery of the probe device 122. The microwave can be transmitted to the probe device 122 through the conductor column 121 and act on the aerosol-generating substrate 200 to achieve the effect of microwave heating. .
  • Figure 5 shows the inner conductor unit 12 in Embodiment 1-2.
  • This embodiment also includes an ohmic contact or integral molding with the conductor post 121.
  • the annular conductor plate 124 is disposed below the conductor plate 123 and surrounds the outer peripheral wall of the conductor post 121 .
  • the number of the annular conductor disks 124 may be one or more; when the number of the annular conductor disks 124 is one, the annular conductor disks 124 are arranged at intervals below the conductor disk 123 .
  • the plurality of annular conductor disks 124 are located below the conductor disk 123 and arranged at intervals along the axial direction of the conductor column 121 on the outer peripheral wall of the conductor column 121 .
  • the size and thickness of the conductor disk 123, the annular conductor disk 124, and/or the plurality of annular conductor disks 124 may be different, and may be adjusted according to actual conditions.
  • Figure 9 shows the inner conductor unit 12 in Embodiment 1-3.
  • the difference between this embodiment and Embodiment 1-1 is that the conductor disk 123 is canceled at the top of the conductor column 121 and is replaced by The top end surface of the conductive post 121 abuts the first end surface 201 .
  • the bottom end of the conductor post 121 is in contact with the first end wall 112 of the outer conductor unit 11 , and the top end of the conductor post 121 is set toward the open end, so that it can contact the air when the aerosol generating matrix 200 extends into the heating chamber 13 .
  • the sol generates the first end surface 201 of the matrix 200 .
  • the top end surface of the conductor post 121 has an uneven surface structure.
  • the conductor disk 123 is designed to increase its own inductance and capacitance, thereby further reducing the overall size of the aerosol generating device 100 . Microwave heating can also be achieved without conductor disk 123 .
  • One end of the probe device 122 is centrally inserted into the top end surface of the conductor post 121 and embedded inside the conductor post 121 so that the probe device 122 and the conductor post 121 form good ohmic contact; the other end of the probe device 122 Suspended in the heating chamber 13.
  • Figure 10 shows the inner conductor unit 12 in Embodiment 1-4.
  • the difference between this embodiment and Embodiment 1-3 is that the top end surface of the conductor post 121 has a planar structure. It can be understood that when the diameter of the top of the conductor post 121 is smaller than the diameter of the first end surface 201 , the protruding portion 1261 or the groove 1271 may not be provided; the top end surface of the conductor post 121 can be directly used as a surface that abuts the first end surface 201 . The top end of the conductor post 121 and the first end surface 201 form a downward step, thereby forming an air inlet gap 128 .
  • Figure 11 shows the inner conductor unit 12 in Embodiment 1-5.
  • the difference between this embodiment and Embodiment 1-4 is that the respective central axes of the conductor column 121 and the aerosol generating matrix 200 are not located at the same position. straight line. It can be understood that the first end surface 201 is partially offset from the top end surface of the conductor post 121 to form a downward step, thereby forming the air inlet gap 128 .
  • the inner conductor unit 12 is configured to contact the aerosol generating matrix 200; at the same time, by providing the protrusions 1261 and/or grooves 1271, the inner conductor unit 12 is configured to contact the aerosol generating matrix 200.
  • the diameter of the surface is smaller than that of the first end face 201 , the setting surface and the first end face 201 are partially staggered, etc., to prevent the first end face 201 from being completely covered, thereby forming the air inlet gap 128 .
  • the probe device 122 in some embodiments may include a longitudinally elongated probe 1221 with a solid structure; the probe 1221 is used to adjust the microwave field distribution and the optimal microwave feed frequency.
  • the outer surface of the probe 1221 can be electrically conductive, its bottom end is embedded in the conductor post 121 and/or the conductor disk 123 to form good ohmic contact with the conductor post 121 and/or the conductor disk 123, and its top end is suspended in the heating cavity. 13, and the shape of the top can be flat top, spherical, ellipsoid, conical, truncated cone, etc.
  • the local field strength of the microwave field can be enhanced and the atomization speed of the atomized aerosol generating matrix 200 can be increased; when the top of the hollow probe 1221 is a truncated cone, the effect is optimal.
  • the probe 1221 has a hollow structure, and a temperature measurement component is provided inside the probe 1221.
  • the temperature measurement component is used to monitor the aerosol generation matrix 200 when the aerosol generation matrix 200 is inserted into the hollow probe 1221. internal temperature.
  • the temperature measuring component may be a temperature sensor, such as a temperature measuring thermocouple.
  • the probe 1221 can be made of conductive materials such as metal, preferably stainless steel, aluminum alloy or copper as the conductive material.
  • the probe 1221 can also be a non-conductive material surface (high temperature resistant plastic, ceramic, etc.) coated with a fourth conductive coating; the material of the fourth conductive coating can include gold, silver, copper, aluminum, Conductive metal oxides or conductive polymers; wherein the conductive metal oxides include ITO, AZO, AGZO, and FTO materials; preferably, the fourth conductive coating is gold or silver.
  • the fixed base 2 may include a fixed main body 21 and a hollow channel 22 provided in the fixed main body 21 .
  • the fixed body 21 is disposed at the open end of the outer conductor unit 11 and is disposed away from the microwave field.
  • Table 1 shows the resonant frequency changes at different temperatures of an aerosol generating device 100 provided with a receiving part (the receiving part is made of Peek material) in the related art, and The absorption of microwaves by the aerosol-generating matrix 200 at different temperatures;
  • Table 2 shows the changes in the resonant frequency of the aerosol-generating device 100 at different temperatures after the fixing base 2 is set away from the microwave field in the present invention, and at different temperatures. Absorption of microwaves by the aerosol-generating matrix 200.
  • the fixed body 21 may include an outer body part 211 provided outside the outer conductor unit 11 and an inner body part 212 integrally connected with the outer body part 211 and provided inside the outer conductor unit 11; the outer body part 211 and the inner body part 212 Each has a cylindrical shape, and the outer diameter of the outer body 211 is larger than the outer diameter of the inner body 212 , so that a step is formed between the outer body 211 and the inner body 212 .
  • the outer diameter of the inner body 212 is smaller than the inner diameter of the outer conductor unit 11, and it can be embedded in the outer conductor unit 11 to install the fixing base 2 on the open end of the outer conductor unit 11; and the step can abut against the outer conductor unit 11 The open end prevents the fixing base 2 from being excessively embedded in the outer conductor unit 11.
  • the hollow channel 22 can be formed through the axial direction of the fixed body 21 and communicate with the heating chamber 13; the aerosol generating matrix 200 can extend into the heating chamber 13 through the hollow channel 22.
  • the fixed base 2 also includes a plurality of longitudinal positioning ribs 213 .
  • the positioning ribs 213 are evenly spaced in the axial direction of the wall of the hollow channel 22 .
  • Each positioning rib 213 extends in a direction parallel to the axis of the fixed base 2 . It can be understood that, on the one hand, these positioning ribs 213 can be used to clamp the aerosol generating matrix 200 passing through the hollow channel 22, and on the other hand, a longitudinally extending air inlet can be formed between each two adjacent positioning ribs 213.
  • a channel is provided to facilitate the ambient air located outside the outer conductor unit 11 to be sucked into the bottom of the aerosol generating matrix 200 and then enter the aerosol generating matrix 200 to take away the aerosol generated by microwave heating.
  • the material of the fixing base 2 may include polymer materials, ceramic materials, metal or glass materials.
  • Polymer materials include polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), ppsu, pc, ABS, pp materials; ceramic materials include alumina and zirconia.
  • the fixed base 2 is preferably made of a polymer material with low cost and low thermal conductivity.
  • the microwave feeding device 3 can be a coaxial connector in some embodiments, and can be connected to a microwave source (not shown) provided outside the outer conductor unit 11 to feed microwaves into the cavity. body.
  • FIG. 3 shows a microwave feeding device 3 in some embodiments, which includes an inner conductor 31 , an outer conductor 33 and a dielectric layer 32 between the inner conductor 31 and the outer conductor 33 .
  • the microwave feed device 3 When the microwave feed device 3 is installed on the microwave heater 1, its inner conductor 31 is in ohmic contact with the inner wall surface of the outer conductor unit 11 and/or the outer surface of the conductor column 121 of the inner conductor unit 12, and its outer conductor 33 is in ohmic contact with the outer surface.
  • the surface of the conductor unit 11 is in ohmic contact to feed microwaves into the microwave heater 1 .
  • the inner conductor 31 of the microwave feed device 3 is in a straight shape.
  • the inner conductor 31 is in ohmic contact with the surface of the conductor post 121 and is in ohmic contact with the conductor post 121.
  • the axes of 121 are perpendicular to each other.
  • FIG. 6 shows a microwave feeding device 3 in other embodiments, which has basically the same structure as the above-mentioned aerosol generating device 100. The difference between the two is that a second microwave feeding device 3a is used instead of the above-mentioned microwave feeding device 3a. Enter device 3.
  • the second microwave feeding device 3a may be a coaxial connector, which may include a second inner conductor 31a, a second outer conductor 33a and between the second inner conductor 31a and the second outer conductor 33a. second dielectric layer 32a.
  • the second microwave feed device 3a When the second microwave feed device 3a is installed on the microwave heater 1, its second inner conductor 31a is in ohmic contact with the inner wall surface of the outer conductor unit 11, and its second outer conductor 33a is in ohmic contact with the surface of the outer conductor unit 11, To feed microwaves into the microwave heater 1.
  • the second inner conductor 31a of the second microwave feeding device 3a is L-shaped in this embodiment, and may include a first section 311a perpendicular to the axis of the microwave heater and a second section 312a parallel to the axis of the microwave heater.
  • the second section 312a is in ohmic contact with the first end wall 112 of the outer conductor unit 11 .
  • the inner conductor 31 and/or the second inner conductor 31a may be made of conductive materials such as metal in some embodiments, preferably aluminum or copper as the conductive material.
  • the inner conductor 31 and/or the second inner conductor 31a can also be made of non-conductive material, but it needs to be coated with a fifth conductive coating on its outer wall surface. The fifth conductive coating is plated.
  • Metal film layers such as gold plating, silver plating, copper plating, etc.
  • the inner conductor 31 and/or the second inner conductor 31a can be a coupling ring, and the outer body 211 of the coupling ring has a coaxial structure and can be connected to a microwave source to feed microwaves into the cavity. .
  • the resonant frequency can reach a range of 2.4-2.5 GHz.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种气溶胶产生装置(100),其用于加热气溶胶生成基质(200);气溶胶产生装置(100)包括微波加热器(1);微波加热器(1)包括用于界定加热腔(13)的外导体单元(11)以及设置于该外导体单元(11)中的内导体单元(12),外导体单元(11)具有一个开口端和一个封闭端,内导体单元(12)一端连接于封闭端、一端朝开口端延伸;内导体单元(12)包括一个连接于封闭端的固定端和一个朝开口端延伸的自由端;内导体单元(12)包括一个用于与第一端面(201)相抵的表面,表面被配置成:在表面与第一端面(201)相抵时,表面与第一端面(201)之间形成有进气间隙(128);使得馈入至加热腔(13)内的微波能量能够高效地被气溶胶生成基质(200)吸收,气溶胶生成基质(200)的碳化效果得到明显的提升。

Description

气溶胶产生装置 技术领域
本发明涉及电子雾化领域,尤其涉及一种气溶胶产生装置。
背景技术
相关技术中,气溶胶产生装置设有伸入加热腔内的收容座,该收容座设于微波场中,用于收容气溶胶生成基质中伸入加热腔的部分结构。
然而,在微波加热气溶胶生成基质,收容座会吸收部分微波,减少加热介质的能量,以及影响微波加热效果。同时,收容座的介电常数一般比气溶胶生成基质的大,因此会压缩微波的加热区域,导致气溶胶生成基质的碳化区域会相对集中于探针附近,导致介质碳化率较低。
发明内容
本发明针对上述至少一个技术缺陷,提供一种改进后的气溶胶产生装置。
本发明解决其技术问题所采用的技术方案是:构造一种气溶胶产生装置,用于加热气溶胶生成基质,所述气溶胶生成基质包括伸入所述气溶胶产生装置的第一端面;
所述气溶胶产生装置包括微波加热器;所述微波加热器包括外导体单元以及设置于该外导体单元中的内导体单元;
所述外导体单元用于界定出一个加热腔,且所述外导体单元具有一个开口 端和一个封闭端;
所述内导体单元一端连接于所述封闭端、一端朝所述开口端延伸;所述内导体单元包括一个连接于所述封闭端的固定端和一个朝所述开口端延伸的自由端;
其特征在于,所述内导体单元包括一个用于与所述第一端面相抵的表面,所述表面被配置成:在所述表面与所述第一端面相抵时,所述表面与所述第一端面之间形成有进气间隙。
优选地,所述表面包括向所述开口端方向凸起的至少一个凸起部,所述表面借由所述至少一个凸起部与所述第一端面形成所述进气间隙。
优选地,所述表面包括向所述封闭端方向凹陷的至少一个凹槽,所述表面借由所述至少一个凹槽与所述第一端面形成所述进气间隙。
优选地,所述至少一个凸起部与所述第一端面分别在所述表面上的投影部分重合;或者;所述至少一个凸起部含于所述第一端面在所述表面上的投影中。
优选地,所述至少一个凹槽与所述第一端面分别在所述表面上的投影部分重合。
优选地,所述凸起部采用导电材料制成。
优选地,所述至少一个凸起部与所述表面一体成型。
优选地,所述至少一凸起部包括至少两个凸起部,所述至少两个凸起部绕所述表面的中心点环形间隔排布。
优选地,所述至少一凹槽包括至少两个凹槽,所述至少两个凹槽绕所述表面的中心点环形间隔排布。
优选地,所述内导体单元包括导体柱,所述导体柱包括朝向所述开口端的第一端以及作为所述固定端的第二端;所述第一端的端面作为所述表面。
优选地,所述内导体单元包括导体柱和导体盘;
所述导体柱包括向所述开口端延伸的第一端以及作为所述固定端的第二端;
所述导体盘设于所述第一端上,且所述导体盘包括朝向所述开口端的盘面;所述盘面作为所述表面。
优选地,所述微波加热器被配置成:在微波馈入所述加热腔时,在所述加热腔中形成微波场;
所述气溶胶产生装置还包括供所述气溶胶生成基质穿设、且在穿设时抵接所述气溶胶生成基质周面的固定座;
所述固定座装于所述开口端,且远离所述微波场设置。
优选地,所述固定座包括呈筒状的固定主体、以及设于所述固定主体的中空通道;
所述固定主体包括设于所述外导体单元外的外体部、以及与所述外体部一体连接、且设于所述外导体单元内的内体部;所述内体部远离所述微波场设置。
优选地,所述表面的面积小于所述第一端面的面积;
和/或,所述表面抵接部分所述第一端面。
优选地,所述内导体单元还包括可导电的探针装置;所述探针装置靠近所述表面的一端插入所述表面以与所述导体柱欧姆接触;所述探针装置远离所述表面的一端向所述开口端延伸,以供所述气溶胶生成基质插入。
优选地,所述内导体单元还包括可导电的探针装置;
所述探针装置靠近所述表面的一端插入所述导体柱和导体盘内,且与所述导体柱和/或导体盘欧姆接触;所述探针装置远离所述表面的一端向所述开口端延伸,以插入所述气溶胶生成基质。
优选地,所述探针装置远离所述表面的一端的形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
优选地,还包括连接于所述微波加热器上的微波馈入装置,所述微波馈入装置包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元的轴线的方式,与所述内导体单元欧姆接触。
优选地,还包括连接于所述微波加热器上的微波馈入装置,所述微波馈入装置包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体包括一个垂直于所述内导体单元轴线的第一段和一个平行于所述内导体单元轴线的第二段,所述第二段与所述外导体单元的第一端壁欧姆接触。
优选地,所述微波加热器为四分之一波长型同轴线谐振器。
实施本发明具有以下有益效果:通过采用内导体单元的一个表面抵接气溶胶生成基质,使得馈入至加热腔内的微波能量能够高效地被气溶胶生成基质吸收,气溶胶生成基质的碳化效果得到明显的提升;
同时,进气间隙的设计也保证了气流能够从气溶胶生成基质的第一端面进入,确保气溶胶生成基质加热后产生的气溶胶可以被用户所吸食或吸入。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中的气溶胶产生装置的立体结构示意图;
图2是图1所示气溶胶产生装置的立体分解结构示意图;
图3是图1所示气溶胶产生装置的纵向剖面结构示意图;
图4是图2所示气溶胶产生装置中内导体单元略去探针装置后的立体结构 示意图;
图5是本发明另一些实施例中设有环形导体盘的气溶胶产生装置的纵向剖面结构示意图;
图6是本发明再一些实施例中采用第二微波馈入装置的气溶胶产生装置的纵向剖面结构示意图;
图7是本发明中气溶胶生成基质抵接实施例1-1中的内导体单元的立体结构示意图;
图8是本发明中气溶胶生成基质抵接实施例1-2中的内导体单元的立体结构示意图;
图9是本发明中气溶胶生成基质抵接实施例1-3中的内导体单元的立体结构示意图;
图10是本发明中气溶胶生成基质抵接实施例1-4中的内导体单元的立体结构示意图;
图11是本发明中气溶胶生成基质抵接实施例1-5中的内导体单元的立体结构示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1至图9示出了本发明一些实施例中的气溶胶产生装置100,该气溶胶产生装置100可利用微波加热气溶胶生成基质200,以雾化产生气溶胶,从而供使用者吸食或吸入。在一些实施例中,该气溶胶生成基质200为诸如经过处理的植物叶类制品等固态气溶胶生成基质200。可以理解地,在另一些实施例中,该气溶胶生成基质200也可以为液态气溶胶生成基质200。
再如图1至图3所示,该气溶胶产生装置100在一些实施例中可包括微波加热器1、固定座2以及微波馈入装置3。微波加热器1在一些实施例中可呈 圆柱状,其可包括一个让微波于其内持续振荡的加热腔13。固定座2可固定地或可拆卸地安装于微波加热器1上,用于在气溶胶生成基质200插入微波加热器1时固定气溶胶生成基质200,防止在抽吸过程中气溶胶生成基质200的位置发生偏移。微波馈入装置3连接于微波加热器1上,用于将微波发生装置(未图示)产生的微波馈入加热腔13中,使得加热腔13中形成微波场;气溶胶生成基质200伸入加热腔13的部分结构可暴露于微波场中,被微波加热雾化。
可以理解地,微波加热器1并不局限于圆柱状,其也可呈方柱、椭圆柱状等其他形状。
在一些实施例中,微波加热器1可包括谐振器,比如四分之一波长型同轴线谐振器。
参阅图2-图4所示,微波加热器1在一些实施例中可包括用于实现电磁屏蔽的筒状外导体单元11、设置于该外导体单元11中以导波的纵长内导体单元12以及介于该内导体单元12的外壁面和外导体单元11的内侧壁面之间的介质(例如,空气),外导体单元11和内导体单元12一道界定出上述的加热腔13。
内导体单元12的第一端(固定端)与外导体单元11的第一端壁112欧姆接触,形成该微波加热器1的短路端1A。内导体单元12的第二端(自由端)向外导体单元11的开口延伸,并不与外导体单元11直接欧姆接触,形成该微波加热器1的开路端1B。在一些实施例中,内导体单元12的轴线与外导体单元11的轴线相互重合或平行,优选地,两者相互重合。
固定座2安装(例如,可拆卸或不可拆卸地)于该微波加热器1的开路端1B,并且,将该固定座2远离微波场设置,使得固定座2处于弱微波场或者 非微波场区域,尽可能地避免固定座2吸收微波,影响气溶胶生成基质的加热效果。
外导体单元11在一些实施例中可包括可导电的第一侧壁111、可导电的第一端壁112、以及第一开口110。第一侧壁111在一些实施例中可呈圆筒状,其包括第一端以及与该第一端相对的第二端。第一端壁112封闭于该第一侧壁111的第一端上,形成外导体单元11的一个封闭端。第一开口110形成于第一侧壁111的第二端上,形成外导体单元11的一个开口端,用于供收容座嵌置于其中。外导体单元11的第一侧壁111靠近第一端壁112处可设置一个径向贯通的馈入孔1110,以供微波馈入装置3安装于其中。
外导体单元11在一些实施例中可采用可导电的金属材料一体制成,其材质可包括铝、铜、金、银、不锈钢中的至少一种;优选铝合金或铜。可以理解地,外导体单元11并不局限于采用导电材料一体制成,其也可以通过在非导电筒体的内壁面镀覆第一导电涂层的方式实现。制成第一导电涂层的材料可包括金、银、铜、铝、导电金属氧化物或者导电高分子;其中导电金属氧化物可包括ITO、AZO、AGZO和FTO材料。优选第一导电涂层为银涂层或者金涂层。
另外,外导体单元11并不局限于圆筒状,其也可以呈方筒状、椭圆筒状等其他适合的形状。
如图3、图4以及图7所示,内导体单元12在实施例1-1中,可包括导体柱121、导体盘123和探针装置122。
其中,该导体柱121呈圆柱形,其包括邻近外导体单元11的第一端壁112的底端、以及与底端相背的顶端;该底端作为内导体单元12的第一端,抵接于外导体单元11的第一端壁112上并与其欧姆接触;该顶端的端面朝向外导 体单元11的开口端。
导体盘123设于导体柱121的顶端,与导体柱121一体成型或者形成良好的欧姆接触。导体盘123的直径大于导体柱121的直径。探针装置122的一端从该导体盘123的顶端插入并贯穿导体盘123,嵌置于导体柱121的内部,使得探针装置122与导体柱121和/或导体盘123形成良好的欧姆接触;该探针装置122的另一端悬空于加热腔13中。
导体盘123包括顶端盘面以及底端盘面。顶端盘面朝向开口端设置,可在气溶胶生成基质200伸入加热腔13时抵接气溶胶生成基质200的第一端面201,起到支撑作用。同时,在该顶端盘面与第一端面201相抵时,该两者之间形成有进气间隙128,用于防止气溶胶生成基质200的第一端面201完全贴合于顶端盘面,导致气流无法从该第一端面201进入至气溶胶生成基质200中。底端盘面朝向导体柱121的顶端,并与导体柱121连接。
顶端盘面呈高低不平的面结构,以与第一端面201相抵时形成进气间隙128。在一些实施例中,顶端盘面包括平面125、以及高出于平面125高度的凸面126;第一端面201在伸入加热腔13时可抵接于凸面126,使得第一端面201与平面125之间留有一定的间距,形成进气间隙128。可以理解地,在顶端上设有向开口端方向凸起的一个凸起部1261,该凸起部1261可将顶端盘面包括有凸面126和平面125;同时,凸起部1261与第一端面201分别在顶端盘面上的投影部分重合;或者;凸起部1261含于第一端面201在顶端盘面上的投影中,以确保可以留有进气间隙128。此外,该凸起部1261还可以防止在加热过程当中,气溶胶生成基质200的热量会大量传递给加热腔13内。当然,凸起部1261的数量还可以是两个以上,在这不作数量的限定。在凸起部1261的数量包括两个以上时,多个凸起部1261可以绕导体柱121的中轴线环 形间隔排布。
可选地,凸起部1261与导体柱121一体成型,以方便制造。
凸起部1261的形状在这不做具体限定,只要能够提供进气间隙128即可。
凸起部1261采用导电材料制成,以能改变微波场分布,使得位于第一端面201的微波场强较大。
在另一些实施例中,如图8所示,顶端盘面包括平面125、以及低于平面125高度的凹面127;第一端面201在伸入加热腔13时可抵接于平面125,使得第一端面201与凹面127之间留有一定的间距,形成进气间隙128。可以理解地,在导体盘123的顶端上设有向封闭端方向凹陷的一个凹槽1271,该凹槽1271将顶端盘面包括有凹面127和平面125;同时,凹槽1271与第一端面201分别在顶端盘面上的投影部分重合,使得第一端面201只能覆盖凹槽1271的部分槽口,以确保气流可以从槽口依次进入凹槽1271内和第一端面201。当然,凹槽1271的数量还可以是两个以上,在这不作数量的限定。在凹槽1271的数量包括两个以上时,多个凹槽1271可以绕导体柱121的中轴线环形间隔排布。凹槽1271的形状在这不做具体限定,只要能够提供进气间隙128即可。
在导体柱121的底部还设有向第一端壁112方向延伸的连接部129,该连接部129可穿设于外导体单元11的封闭端,从而将导体柱121固定在外导体单元11的第一端壁112上。
在一些实施例中,该导体柱121、导体盘123、探针装置122以及外导体单元11共轴设置。探针装置122作为独立的结构,可抽离/插入导体盘123中。
导体柱121可采用可导电的金属材料一体制成,优选铝合金或铜。在另一些实施例中,导体柱121可以是外体部211导电,比如在外周面镀覆第二导电涂层,优选镀覆银涂层或者金涂层。
导体盘123可采用可导电的金属材料一体制成,优选铝合金或铜。在另一些实施例中,导体柱121可以是外体部211导电,比如在外周面镀覆第三导电涂层,优选镀覆银涂层或者金涂层。
探针装置122整体呈纵长的杆状结构,其一端从该导体柱121的顶端端面插入并嵌置于该导体柱121的内部,以与导体柱121欧姆接触;其另一端悬空于加热腔13中,可作为内导体单元12的第二端。气溶胶生成基质200伸入加热腔13中时可套设于探针装置122的外周,微波能够经由导体柱121传导给探针装置122,并作用于气溶胶生成基质200,实现微波加热的效果。
如图5示出了在实施例1-2中的内导体单元12,该实施例与上述的实施例1-2的区别在于,该实施例中还包括与导体柱121欧姆接触或者一体成型的环形导体盘124。
该环形导体盘124设于导体盘123的下方,且环绕在导体柱121的外周壁。环形导体盘124的数量可以是一个或者多个;在环形导体盘124的数量为一个时,环形导体盘124间隔地排布在导体盘123的下方。当环形导体盘124的数量为多个时,多个环形导体盘124位于导体盘123的下方、沿导体柱121的轴向间隔排布在导体柱121的外周壁。
导体盘123和环形导体盘124、和/或多个环形导体盘124之间的尺寸和厚度可以不一样,具体可根据实际情况进行调整。
如图9示出了在实施例1-3中的内导体单元12,该实施例与实施例1-1相比,区别在于,在导体柱121的顶端取消了导体盘123,并改为通过导体柱121的顶端端面抵接第一端面201。其中,导体柱121的底端抵接于外导体单元11的第一端壁112上,且导体柱121的顶端朝向开口端设置,可在气溶胶生成基质200伸入加热腔13时抵接气溶胶生成基质200的第一端面201。导体柱121 的顶端端面呈高低不平的面结构,具体结构可参考实施例1-1中顶端盘面的结构,在这不做具体赘述。可以理解地,导体盘123的设计是用于增加自身电感以及电容,从而使得气溶胶产生装置100的整体尺寸进一步地缩小。没有导体盘123也可以实现微波加热。
探针装置122的一端居中地插入该导体柱121的顶端端面,并嵌置于导体柱121的内部,使得探针装置122与导体柱121形成良好的欧姆接触;该探针装置122的另一端悬空于加热腔13中。
如图10示出了在实施例1-4中的内导体单元12,该实施例与实施例1-3相比,区别在于,导体柱121的顶端端面为平面结构。可以理解地,导体柱121顶端的直径小于第一端面201的直径时,可不设置凸起部1261或者凹槽1271;直接将导体柱121的顶端端面作为与第一端面201相抵的表面。导体柱121的顶端与第一端面201形成朝下的台阶,从而形成进气间隙128。
如图11示出了在实施例1-5中的内导体单元12,该实施例与实施例1-4相比,区别在于,导体柱121与气溶胶生成基质200各自的中轴线并非位于同一直线。可以理解地,第一端面201与导体柱121的顶端端面部分错开,形成朝下的台阶,从而形成进气间隙128。
综上,内导体单元12被配置为用于抵接气溶胶生成基质200;同时,通过设置凸起部1261和/或凹槽1271、设置内导体单元12中用于抵接气溶胶生成基质200的表面的直径小于第一端面201、设置表面与第一端面201部分错开设置等等的手段,避免第一端面201被完全覆盖,从而形成出进气间隙128。
如图2所示,探针装置122在一些实施例中可包括呈纵长的、且为实心结构的探针1221;探针1221用于调节微波场分布及最佳微波馈入频率。探针1221的外表面可导电设置,其底端嵌置于导体柱121和/或导体盘123中,以与导 体柱121和/或导体盘123形成良好的欧姆接触,其顶端悬空于加热腔13中,且该顶端的形状可以是平顶、球形、椭球形、圆锥形、圆台形等。
可以理解地,通过优化中空探针1221的顶部的形状,可以增强微波场局部场强,提升雾化气溶胶生成基质200的雾化速度;其中当中空探针1221的顶部为圆台形时,效果最佳。
在另一些实施例中,探针1221呈中空结构,在探针1221内设有测温组件,该测温组件用于在气溶胶生成基质200插入中空探针1221时,监测气溶胶生成基质200内部的温度。可选地,测温组件可为温度传感器,比如测温热电偶。
探针1221可采用金属等导电材料制成,优选不锈钢、铝合金或者铜作为导电材料。在其他一些实施例中,探针1221也可以是非导电材料表面(耐高温塑料、陶瓷等)镀有第四导电涂层;该第四导电涂层的材料可包括金、银、铜、铝、导电金属氧化物、或者导电高分子;其中,导电金属氧化物包括ITO、AZO、AGZO、FTO材料;优选第四导电涂层为金或银。
如图2、图3所示,固定座2在一些实施例中可包括固定主体21以及设于固定主体21内的中空通道22。
固定主体21设置在外导体单元11的开口端处,远离微波场设置。
可以理解地,一同参照表格1、表格2;表格1示出了相关技术中设有收容部(收容部采用Peek材料制成)的气溶胶产生装置100,在不同温度下的谐振频率变化,以及在不同温度下气溶胶生成基质200的吸收微波情况;表格2示出了本发明中固定座2远离微波场设置后的气溶胶产生装置100在不同温度下的谐振频率变化,以及在不同温度下气溶胶生成基质200的吸收微波情况。
可以看出,在相关技术中,收容部与气溶胶生成基质200之间存在竞争吸 收微波的关系。随着加热和抽吸过程的进行,气溶胶生成基质200的介电损耗能力变弱,而,收容部却无明显变化;因此在加热的后半程,,收容部会吸收更多的微波能量,进而降低微波加热气溶胶生成基质200的效果。因此,需要尽量确保在微波场中只存在有被加热的气溶胶生成基质200,避免存在其他损耗微波的吸波部件;从而使到进入加热腔13的微博能够充分地被气溶胶生成基质200吸收,提升气溶胶生成基质200的碳化效果。
Figure PCTCN2022107476-appb-000001
表格1
Figure PCTCN2022107476-appb-000002
表格2
固定主体21可包括设于外导体单元11外的外体部211、以及与外体部211一体连接、设于外导体单元11内的内体部212;该外体部211和内体部212分别呈圆筒状,且外体部211的外径大于内体部212的外径,使得外体部211与内体部212之间形成台阶。内体部212的外径小于外导体单元11的内径,其可嵌入于外导体单元11中,以将固定座2装于外导体单元11的开口端上;且台阶可抵接外导体单元11的开口端,避免固定座2过分嵌入在外导体单元11内。
中空通道22可沿固定主体21的轴向贯穿成形,且与加热腔13相连通;气溶胶生成基质200可通过中空通道22伸入至加热腔13中。
固定座2在一些实施例中还包括若干纵长的定位筋213。该些定位筋213间隔均匀地设置于中空通道22的壁面轴向上。每一定位筋213均沿着平行于固定座2的轴线的方向延伸。可以理解地,该些定位筋213一个方面可用于夹紧穿过中空通道22的气溶胶生成基质200,另一个方面每相邻的两定位筋213之间,均可形成一个纵向延伸的进气通道,以方便位于外导体单元11外的环境空气被吸入到气溶胶生成基质200的底部,再进入气溶胶生成基质200中,从而带走被微波加热产生的气溶胶。
制成固定座2的材质可包括高分子材料、陶瓷材料、金属或者玻璃材料。高分子材料包括聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、ppsu、pc、ABS、pp材料;陶瓷材料包括氧化铝、氧化锆。其中,固定座2优选成本低、导热系数低的高分子材料制成。
再如图2所示,微波馈入装置3在一些实施例中可为同轴连接器,可与设于外导体单元11外部的微波源(未图示)相连接,以将微波馈入腔体。
具体地,图3示出了在一些实施例中的微波馈入装置3,其包括内导体31、 外导体33以及介于内导体31和外导体33之间的介质层32。微波馈入装置3安装于微波加热器1上时,其内导体31与外导体单元11的内壁面和/或内导体单元12的导体柱121的外表面欧姆接触,且其外导体33与外导体单元11的表面欧姆接触,以向微波加热器1内馈入微波。
在该实施例中,微波馈入装置3的内导体31呈一字型,微波馈入装置3安装于微波加热器1上时,内导体31与导体柱121的表面欧姆接触,且与导体柱121的轴线相垂直。
图6示出了在另一些实施例中的微波馈入装置3,其与上述气溶胶产生装置100的结构基本相同,两者的区别在于用第二微波馈入装置3a替代了上述的微波馈入装置3。
如图6所示,第二微波馈入装置3a可为同轴连接器,其可包括第二内导体31a、第二外导体33a以及介于第二内导体31a和第二外导体33a之间的第二介质层32a。第二微波馈入装置3a安装于微波加热器1上时,其第二内导体31a与外导体单元11的内壁面欧姆接触,且其第二外导体33a与外导体单元11的表面欧姆接触,以向微波加热器1内馈入微波。
第二微波馈入装置3a的第二内导体31a在该实施例中呈L型,其可包括一个垂直于微波加热器轴线的第一段311a和平行于微波加热器轴线的第二段312a,第二段312a与外导体单元11的第一端壁112欧姆接触。
进一步地,内导体31和/或第二内导体31a在一些实施例中可采用金属等导电材料制成,优选铝或者铜作为导电材料。在其他一些实施例中,内导体31和/或第二内导体31a也可以由非导电材料制成,但需要在其外壁面涂覆第五导电涂层形成,该第五导电涂层为镀金属薄膜层,如镀金层、镀银层、镀铜层等等。此外,在一些实施例中,内导体31和/或第二内导体31a可以是耦合 环,耦合环的外体部211呈同轴结构,可与微波源相连接,以将微波馈入腔体。
可以理解地,结合上述对于微波加热器1及其加热腔13的设计,在气溶胶生成基质200装于气溶胶产生装置100时,谐振频率可达到在2.4-2.5GHz的范围区间内。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (20)

  1. 一种气溶胶产生装置,用于加热气溶胶生成基质(200),所述气溶胶生成基质(200)包括伸入所述气溶胶产生装置(100)的第一端面(201);
    所述气溶胶产生装置(100)包括微波加热器(1);所述微波加热器(1)包括外导体单元(11)以及设置于该外导体单元(11)中的内导体单元(12);
    所述外导体单元(11)用于界定出一个加热腔(13),且所述外导体单元(11)具有一个开口端和一个封闭端;
    所述内导体单元(12)一端连接于所述封闭端、一端朝所述开口端延伸;所述内导体单元(12)包括一个连接于所述封闭端的固定端和一个朝所述开口端延伸的自由端;
    其特征在于,所述内导体单元(12)包括一个用于与所述第一端面(201)相抵的表面,所述表面被配置成:在所述表面与所述第一端面(201)相抵时,所述表面与所述第一端面(201)之间形成有进气间隙(128)。
  2. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述表面包括向所述开口端方向凸起的至少一个凸起部(1261),所述表面借由所述至少一个凸起部(1261)与所述第一端面(201)形成所述进气间隙(128)。
  3. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述表面包括向所述封闭端方向凹陷的至少一个凹槽(1271),所述表面借由所述至少一个凹槽(1271)与所述第一端面(201)形成所述进气间隙(128)。
  4. 根据权利要求2所述的气溶胶产生装置,其特征在于,所述至少一个凸起部(1261)与所述第一端面(201)分别在所述表面上的投影部分重合;或者;所述至少一个凸起部(1261)含于所述第一端面(201)在所述表面上的 投影中。
  5. 根据权利要求3所述的气溶胶产生装置,其特征在于,所述至少一个凹槽(1271)与所述第一端面(201)分别在所述表面上的投影部分重合。
  6. 根据权利要求2所述的气溶胶产生装置,其特征在于,所述凸起部(1261)采用导电材料制成。
  7. 根据权利要求2所述的气溶胶产生装置,其特征在于,所述至少一个凸起部(1261)与所述表面一体成型。
  8. 根据权利要求2所述的气溶胶产生装置,其特征在于,所述至少一凸起部(1261)包括至少两个凸起部(1261),所述至少两个凸起部(1261)绕所述表面的中心点环形间隔排布。
  9. 根据权利要求3所述的气溶胶产生装置,其特征在于,所述至少一凹槽(1271)包括至少两个凹槽(1271),所述至少两个凹槽(1271)绕所述表面的中心点环形间隔排布。
  10. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述内导体单元(12)包括导体柱(121),所述导体柱(121)包括朝向所述开口端的第一端以及作为所述固定端的第二端;所述第一端的端面作为所述表面。
  11. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述内导体单元(12)包括导体柱(121)和导体盘(123);
    所述导体柱(121)包括向所述开口端延伸的第一端以及作为所述固定端的第二端;
    所述导体盘(123)设于所述第一端上,且所述导体盘(123)包括朝向所述开口端的盘面;所述盘面作为所述表面。
  12. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述微波加热 器(1)被配置成:在微波馈入所述加热腔(13)时,在所述加热腔(13)中形成微波场;
    所述气溶胶产生装置(100)还包括供所述气溶胶生成基质(200)穿设、且在穿设时抵接所述气溶胶生成基质(200)周面的固定座(2);
    所述固定座(2)装于所述开口端,且远离所述微波场设置。
  13. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述固定座(2)包括呈筒状的固定主体(21)、以及设于所述固定主体(21)的中空通道(22);
    所述固定主体(21)包括设于所述外导体单元(11)外的外体部(211)、以及与所述外体部(211)一体连接、且设于所述外导体单元(11)内的内体部(212);所述内体部(212)远离所述微波场设置。
  14. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述表面的面积小于所述第一端面(201)的面积;
    和/或,所述表面抵接部分所述第一端面(201)。
  15. 根据权利要求10所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括可导电的探针装置(122);所述探针装置(122)靠近所述表面的一端插入所述表面以与所述导体柱(121)欧姆接触;所述探针装置(122)远离所述表面的一端向所述开口端延伸,以供所述气溶胶生成基质(200)插入。
  16. 根据权利要求11所述的气溶胶产生装置,其特征在于,所述内导体单元(12)还包括可导电的探针装置(122);
    所述探针装置(122)靠近所述表面的一端插入所述导体柱(121)和导体盘(123)内,且与所述导体柱(121)和/或导体盘(123)欧姆接触;所述探针装置(122)远离所述表面的一端向所述开口端延伸,以插入所述气溶胶生 成基质(200)。
  17. 根据权利要求15或16所述的气溶胶产生装置,其特征在于,所述探针装置(122)远离所述表面的一端的形状包括呈平面形、球形、椭球形、圆锥形或者圆台形。
  18. 根据权利要求1所述的气溶胶产生装置,其特征在于,还包括连接于所述微波加热器(1)上的微波馈入装置,所述微波馈入装置包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体呈一字型,并沿着垂直于所述内导体单元(12)的轴线的方式,与所述内导体单元(12)欧姆接触。
  19. 根据权利要求1所述的气溶胶产生装置,其特征在于,还包括连接于所述微波加热器(1)上的微波馈入装置,所述微波馈入装置包括内导体、外导体以及介于所述内导体和所述外导体之间的介质层,所述内导体包括一个垂直于所述内导体单元(12)轴线的第一段(311a)和一个平行于所述内导体单元(12)轴线的第二段(312a),所述第二段(312a)与所述外导体单元(11)的第一端壁(112)欧姆接触。
  20. 根据权利要求1所述的气溶胶产生装置,其特征在于,所述微波加热器(1)为四分之一波长型同轴线谐振器。
PCT/CN2022/107476 2022-07-22 2022-07-22 气溶胶产生装置 WO2024016341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107476 WO2024016341A1 (zh) 2022-07-22 2022-07-22 气溶胶产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107476 WO2024016341A1 (zh) 2022-07-22 2022-07-22 气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2024016341A1 true WO2024016341A1 (zh) 2024-01-25

Family

ID=89616852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107476 WO2024016341A1 (zh) 2022-07-22 2022-07-22 气溶胶产生装置

Country Status (1)

Country Link
WO (1) WO2024016341A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141002A (zh) * 2019-06-19 2019-08-20 云南巴菰生物科技有限公司 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN110279151A (zh) * 2019-06-19 2019-09-27 云南巴菰生物科技有限公司 一种微波加热不燃烧烟具
WO2021110736A1 (en) * 2019-12-03 2021-06-10 Jt International S.A. An aerosol generation device having a heating chamber with a thermal guard
CN113662263A (zh) * 2021-09-14 2021-11-19 深圳麦克韦尔科技有限公司 雾化组件和气溶胶生成装置
CN114209096A (zh) * 2021-12-30 2022-03-22 深圳麦时科技有限公司 雾化装置及微波加热组件
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141002A (zh) * 2019-06-19 2019-08-20 云南巴菰生物科技有限公司 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN110279151A (zh) * 2019-06-19 2019-09-27 云南巴菰生物科技有限公司 一种微波加热不燃烧烟具
WO2021110736A1 (en) * 2019-12-03 2021-06-10 Jt International S.A. An aerosol generation device having a heating chamber with a thermal guard
CN113662263A (zh) * 2021-09-14 2021-11-19 深圳麦克韦尔科技有限公司 雾化组件和气溶胶生成装置
CN114209096A (zh) * 2021-12-30 2022-03-22 深圳麦时科技有限公司 雾化装置及微波加热组件
CN114747804A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置
CN114747803A (zh) * 2022-03-23 2022-07-15 深圳麦时科技有限公司 气溶胶产生装置及其制造方法

Similar Documents

Publication Publication Date Title
CN114886160A (zh) 气溶胶产生装置
EP3466364B1 (en) Antenna assembly for microwave ablation and microwave ablation needle using same
CN114747803A (zh) 气溶胶产生装置及其制造方法
WO2023124523A1 (zh) 雾化装置及微波加热组件
CN114711467A (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
CN217743173U (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
CN114747804A (zh) 气溶胶产生装置
WO2024016341A1 (zh) 气溶胶产生装置
CN217743148U (zh) 雾化装置及用于微波雾化器具的微波加热组件
JP2024000501A (ja) エアロゾル発生装置及びその加熱モジュール
CN218605113U (zh) 气溶胶产生装置
WO2024031982A1 (zh) 微波加热器及气溶胶产生装置
CN117461901A (zh) 气溶胶产生装置
WO2024036935A1 (zh) 微波馈入装置、微波加热器及气溶胶产生装置
CN218474089U (zh) 气溶胶产生装置
WO2023020188A1 (zh) 雾化管及雾化器
WO2024050737A1 (zh) 气溶胶产生装置及其微波加热装置
WO2024098454A1 (zh) 微波加热组件及气溶胶生成装置
WO2024093332A1 (zh) 气溶胶产生装置及其微波加热组件
WO2024092583A1 (zh) 气溶胶产生装置及其微波加热组件
CN118120972A (zh) 气溶胶生成装置及其微波加热组件
WO2024113185A1 (zh) 气溶胶生成装置及其微波加热组件
WO2023065946A1 (zh) 气溶胶固定装置和气溶胶产生装置
CN117981914A (zh) 气溶胶产生装置及其微波加热组件
WO2024098455A1 (zh) 气溶胶产生装置及其微波加热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951610

Country of ref document: EP

Kind code of ref document: A1