WO2023221417A1 - 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料 - Google Patents

一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料 Download PDF

Info

Publication number
WO2023221417A1
WO2023221417A1 PCT/CN2022/130630 CN2022130630W WO2023221417A1 WO 2023221417 A1 WO2023221417 A1 WO 2023221417A1 CN 2022130630 W CN2022130630 W CN 2022130630W WO 2023221417 A1 WO2023221417 A1 WO 2023221417A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
coating material
purity
component
liquid crystal
Prior art date
Application number
PCT/CN2022/130630
Other languages
English (en)
French (fr)
Inventor
文宏福
李培林
Original Assignee
广东欧莱高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧莱高新材料股份有限公司 filed Critical 广东欧莱高新材料股份有限公司
Publication of WO2023221417A1 publication Critical patent/WO2023221417A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to the technical field of high-purity target materials for display devices, and in particular, to a high-purity multi-component alloy sputtering coating material used for high-generation high-definition liquid crystal displays.
  • Copper and aluminum are commonly used materials for conductive lead connectors in integrated circuits.
  • a single copper or aluminum film has poor corrosion resistance, poor connection performance, and poor stability. It needs to be used in conjunction with other films to form a multi-layer film structure to improve the process performance of the device. and stability.
  • Titanium and molybdenum are both commonly used metals for coating with copper to form a multi-layer film structure of Ti/Cu/Ti or Mo/Cu/Cu.
  • the purpose of the present invention is to provide a high-purity multi-element alloy sputtering coating material for high-generation high-definition liquid crystal display, which can effectively block the diffusion of copper atoms on the top layer, has good adhesion, is resistant to high temperatures and high humidity, The etching effect is good.
  • the technical solution adopted by the present invention is: a high-purity multi-element alloy sputtering coating material for high-generation high-definition liquid crystal display, which is composed of Mo, Ti, Ni, Cu and inevitable trace impurity elements. , its atomic percentage is: 18 ⁇ Ti ⁇ 28at%, 20 ⁇ Ni ⁇ 30at%, 0.3 ⁇ Cu ⁇ 6at%, the balance is Mo, the crystal structure of the multi-element alloy sputtering coating material is at least mixed and distributed with MoTiNiCu alloy , MoTiCu alloy and MoNiCu alloy are multi-component alloy mixtures that do not contain oxide island structure chains at the grain boundaries.
  • the C content in the crystal structure is less than 50 ppm and the oxygen content is less than 700 ppm.
  • Cu in the multi-component alloy mixture is concentrated in the multi-component alloy. of grain boundaries.
  • the multi-element alloy sputtering coating material contains Mo 42 Ti 25 Ni 28 Cu 5 in terms of atomic percentage.
  • the multi-element alloy sputtering coating material contains Mo 42 Ti 28 Ni 25 Cu 5 in terms of atomic percentage.
  • the multi-element alloy sputtering coating material contains Mo 47 Ti 20 Ni 30 Cu 3 in terms of atomic percentage.
  • the multi-component alloy sputtering coating material of the present invention has uniform composition, no segregation and cracking, and a purity of more than 99.99%, that is, a high-purity target material with a purity of 4N, 5N and 6N. , fully meets the current high-generation high-definition LCD industry’s requirements for high-purity sputtering materials.
  • the MoTiNiCu alloy film layer formed by sputtering the multi-component alloy sputter coating material of the present invention has a dense and smooth film surface.
  • the MoTiNiCu alloy film layer has no columnar crystal structure.
  • the MoTiNiCu alloy film layer does not have channels that are conducive to the downward diffusion of copper atoms in the upper layer.
  • MoTiNiCu The alloy film not only has good adhesion, but also can effectively block the diffusion of copper atoms on the top layer. It also has strong resistance to high temperatures and humidity, has good etching effects, and can fully meet the needs of the 8K ultra-high-definition display process.
  • Figure 1 is a C-SCAN detection chart of the multi-component alloy sputter coating material of the present invention.
  • Figure 2 is a metallographic diagram of Mo 42 Ti 28 Ni 25 Cu 5 of the present invention.
  • Figure 3 is a gas impurity element detection chart of Mo 42 Ti 28 Ni 25 Cu 5 of the present invention.
  • Figure 4 is an AFM roughness detection chart of the MoTiNiCu alloy film layer of Mo 42 Ti 28 Ni 25 Cu 5 of the present invention.
  • Figure 5 is an EDS scanning detection chart of the bottom area of the Mo 42 Ti 28 Ni 25 Cu 5 alloy coating of the present invention.
  • Figure 6a is a TEM high-resolution film layer diagram of the MoTiNiCu alloy film layer of Mo 42 Ti 28 Ni 25 Cu 5 of the present invention.
  • Figure 6b is the Fourier transform diagram of Figure 6a.
  • Figure 8 is an SEM image of the molybdenum-titanium alloy film layer formed on sample #3 in the comparative example.
  • Figure 9 is a schematic diagram of the microstructure of the molybdenum-titanium alloy film layer formed on sample 3# in the comparative example.
  • High-purity molybdenum powder uses micron-level low-oxygen content high-purity molybdenum powder with oxygen content ⁇ 1000ppm, particle size specification 3-7um, and purity greater than 99.95%.
  • Titanium hydride powder is selected from low oxygen content titanium hydride powder with an oxygen content of ⁇ 1200ppm, a particle size of 8-20um, and a purity of greater than 99.9%.
  • Pretreatment use a vacuum powder filling machine to put the mixed ball mill powder jar into the cavity of the hot press furnace mold, fill the cavity with argon gas, protect the mixed ball mill powder with argon gas, and then evacuate the cavity to make
  • the pressure in the cavity is reduced to 200Pa
  • the pressure in the cavity is reduced to the set value and the temperature and pressure in the cavity are raised.
  • the temperature in the cavity is raised to 350°C. While the temperature is rising, the pressure in the cavity is simultaneously raised to 18MPa.
  • the cavity is evacuated for the second time after the constant temperature and pressure reaches the set time, so that the pressure in the cavity is reduced to 1.6*10-3Pa.
  • the temperature and pressure are increased. , raise the temperature in the cavity to 1050°C and the pressure to 25MPa at a heating rate of 1.5°C/min, and finally treat it at a constant temperature and pressure of 1050°C and a pressure of 25MPa for 4 hours, and perform hot-pressing sintering to hydrogenate the interior.
  • the titanium powder effectively dehydrogenates and quickly deoxidizes the green body and other impurities, ensuring that the product has high purity. At the same time, it is sintered and densified to prepare a high-density molybdenum alloy billet.
  • the 1# sample pure Mo target, the 2# sample Mo 65 Ti 35 at% target, the 3# sample Mo 50 Ti 30 Ni 20 target, and the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target were respectively prepared through the above process. and 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target. Then six kinds of alloy targets were combined with high-purity copper targets for magnetron sputtering coating on several 200*200mm glass substrates.
  • the glass substrates were substrate materials covered with silicon nitride, and the film structure of the sputtering coating was They are: the bottom layer is a molybdenum alloy layer with a film thickness of 35 ⁇ 5nm, the 1-6# samples in the middle are film layers formed by a sputtering coating process, and the top layer is a copper layer with a thickness of 500 ⁇ 10nm. Finally, the coating samples of six materials were tested and compared for adhesion comparison, high temperature and humidity resistance comparison, resistivity comparison, diffusivity comparison and etching comparison. The experimental data comparison is shown in Table 1.
  • the thin film samples of the 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target, the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and the 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target of the present invention have the lowest sheet resistance, 4 #Sample Mo 42 Ti 28 Ni 25 Cu 5 target, 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target also have the lowest resistance change rates, which are 15.4% and 17.1 respectively. % and 16.6%, the resistance change rate is far less than the industry required value of 25%, and the stability is good.
  • the 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target, the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and the 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target of the present invention all exhibit dense and smooth amorphous state.
  • the formed MoTiNiCu alloy film shows an amorphous state.
  • the MoTiNiCu alloy film has a good blocking effect on the copper on the top layer.
  • the bottom layer of the alloy coating is Regional EDS scanning inspection, as shown in Figure 5, no copper components were found in the bottom layer, and no signs of copper diffusion were found in the base layer, indicating that the molybdenum alloy layer completely blocked the diffusion of copper in the upper layer.
  • the adhesive tape method is used to test the adhesion test.
  • the film bonding strength is measured in the test environment of 25°C ⁇ 1 hour and 350°C ⁇ 1 hour respectively. Among them,
  • the Cu 0.15at% hundred-grid knife test film layer peeled off more.
  • the above six films were placed in a test environment with a temperature of 85°C and a humidity of 85% for 100 hours and 300 hours respectively, and then visually confirmed whether there was any discoloration on the surface of the film.
  • the 1-2# sample changed color
  • the 3# sample Mo 50 Ti 30 Ni 20 did not change color
  • the 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target and the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target of the present invention Neither the target nor the 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target changed color, and the high temperature and humidity resistance was good.
  • the 1# sample pure molybdenum is etched too fast, the 2# sample Mo 65 Ti 35 has film residue, the 3# sample Mo 50 Ti 30 Ni 20 has a small amount of film residue on the substrate, and the 4# sample Mo 42 Ti 28 of the present invention There is no film residue on the substrate of Ni 25 Cu 5 target, 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target, and the etching effect is ideal.
  • test comparison shows that the 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target, the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and the 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target of the present invention have the best overall performance. good.
  • Lower gas impurity content helps ensure higher purity, density and uniformity of the film layer.
  • the industry's general requirements for film layers are: C content less than 100ppm, oxygen content less than 800ppm.
  • the C content of the present invention is far less than 100 ppm, and the oxygen content is far less than 800 ppm.
  • the C content of the 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target is 38ppm and the oxygen content is 620ppm, as shown in Figure 3.
  • the C content of the 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target is 41ppm and the oxygen content is 592ppm.
  • the C content of the 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target is 33ppm and the oxygen content is 585ppm.
  • the molybdenum-titanium alloy film layer includes metal islands 2 composed of the metal element Ti or Ni. and the oxide island chain 1 composed of oxide particles 3 surrounding the metal island 2.
  • the alloy film layer formed by sputtering will form a columnar crystal structure.
  • the alloy film layer has channels that are conducive to the downward diffusion of copper atoms in the upper layer. As shown in Figure 8.
  • the structure of the multi-element alloy sputtering coating material of the present invention includes a rotating target and a planar target with a length of not less than 2800 mm, and is a large-size multi-element molybdenum alloy sputtering coating material.
  • the multi-element alloy sputtering coating material of the present invention includes Mo 42 Ti 25 Ni 28 Cu 5 , Mo 42 Ti 28 Ni 25 Cu 5 and Mo 47 Ti 20 Ni 30 Cu 3 in terms of atomic percentage, that is, the above-mentioned 4# sample Mo 42 Ti 28 Ni 25 Cu 5 target, 5# sample Mo 42 Ti 25 Ni 28 Cu 5 target and 6# sample Mo 47 Ti 20 Ni 30 Cu 3 target.
  • the multi-element alloy sputtering coating material of the present invention is composed of Mo, Ti, Ni, Cu and inevitable trace impurity elements. Its atomic percentage is: 18 ⁇ Ti ⁇ 28at%, 20 ⁇ Ni ⁇ 30at%, 0.3 ⁇ Cu ⁇ 6at%, the balance is Mo.
  • the crystal structure of the multi-element alloy sputtering coating material is a multi-element alloy mixture with at least mixed distribution of MoTiNiCu alloy, MoTiCu alloy and MoNiCu alloy at the grain boundary and does not contain oxide island structure chains, As shown in Figures 1 and 2, the large-size target is internally densified and has no pore crack defects.
  • the C content in the crystal structure is less than 50 ppm and the oxygen content is less than 700 ppm.
  • Cu in the multi-element alloy mixture accumulates at the grain boundaries of the multi-element alloy.
  • Adding a certain amount of copper in the present invention can not only improve the adhesion of the film layer, but also reduce the copper atom concentration gradient at the contact surface between the film layer and the copper layer, effectively reducing the diffusion tendency of the copper layer.
  • the amount of copper added also needs to be controlled within a certain range. Excessive copper content will affect the oxidation resistance of the film.
  • the atomic percentage of copper is controlled at 0.3-6at%. The film formed by this ratio can effectively It blocks the high-temperature diffusion of copper, and the film layer formed by sputtering has high adhesion to the upper and lower substrates, meeting the requirements of subsequent etching and other processes.
  • Cu is later alloyed through the design of the production process, so that Cu is mainly gathered at the grain boundaries of the multi-component alloy.
  • 90-99.9% of Cu is gathered in MoTiNiCu alloy, MoTiCu alloy respectively.
  • the grain boundaries of the alloy and the MoNiCu alloy form a copper boundary wall structure composed of Cu and inevitable trace impurity elements surrounding the multi-component alloy.
  • the copper boundary wall structure surrounds the periphery of the multi-component alloy.
  • the copper boundary wall replaces the original oxide island structure chain.
  • the multi-element alloy sputtering coating material of the present invention has uniform composition, no segregation and cracking, a purity of more than 99.99%, and a relative density of more than 99.5% of the theoretical value, fully meeting the current high-generation high-definition liquid crystal display industry's requirements for high-purity sputtering materials.
  • the multi-element alloy sputtering coating material of the present invention is shown in Figure 2.
  • the grain size is fine and evenly distributed. Most areas have been alloyed. Due to the extremely low oxygen content, there are almost no oxide particles, and the periphery of the multi-element alloy is basically non-existent. There are black oxide particles, and there are no black oxide island-like structural chains formed by oxide particles. If there are oxides, they will appear in the form of black chains because the oxides do not reflect light.
  • titanium and nickel are used to adjust the etching performance and morphology and improve the adaptability of the thin film manufacturing process.
  • Nickel and copper are used to adjust the interfacial bonding force and interlayer stress of the multilayer film, inhibit the diffusion of atoms in the copper film layer in the multilayer film structure, and improve the stability of the device.
  • Molybdenum is used to stabilize the lattice structure of the alloy structure.
  • the formula of the quaternary alloy has been precisely designed and has good plasticity, which is beneficial to the subsequent processing of large-size rotating targets and large-size flat targets, and improves the yield rate. Large size refers to a length greater than 2800mm.
  • the amount of titanium added cannot be too high. Exceeding 28% will easily lead to saturation of oxidation resistance. Excessing 28% titanium, especially exceeding 30%, will cause the etching property of the film to decrease, causing etching residue.
  • the titanium content is controlled within 28at%.
  • the multi-component alloy mixture is composed of MoTiNiCu alloy with a proportion of more than 90%, a ternary alloy with a proportion of 1-10%, and inevitable trace amounts of binary alloys and impurity elements.
  • the ternary alloy is an alloy composed of three elements of Mo, Ti, Ni and Cu.
  • the ternary alloy includes MoTiCu alloy, MoNiCu alloy, TiNiCu alloy and MoTiNi alloy. According to the volume ratio of the components, the MoTiNi alloy is in the ternary alloy. The proportion of the alloy is less than 3%.
  • MoTiNiCu alloy accounts for the largest proportion in the multi-element alloy mixture.
  • the main component of the multi-element alloy mixture is MoTiNiCu alloy.
  • the multi-element alloy mixture includes a small amount of ternary alloy, and the ternary alloy is mainly an alloy containing copper.
  • the multi-element alloy mixture cannot To avoid containing only trace amounts of binary alloys, elemental elements and impurity elements, binary alloys are alloys composed of two elements among Mo, Ti, Ni and Cu.
  • the purity of the multi-component alloy sputter coating material of the present invention is greater than 99.99%.
  • the MoTiNiCu alloy film layer formed by sputtering the multi-component alloy sputter coating material has an amorphous structure.
  • the MoTiNiCu alloy film layer has a dense and smooth film surface and effectively avoids the formation of convenience Copper diffusion channel, the purity of the MoTiNiCu alloy film is greater than 99.99%, the average surface roughness of the MoTiNiCu alloy film is less than 0.9nm, as shown in Figure 4, the average surface roughness of the alloy film is 0.81nm, and the film is dense It is very smooth, and the resistance change rate of the film surface is less than 20%.
  • the length of the multi-element alloy sputtering coating material of the present invention is not less than 2800mm and the warpage is less than 1mm.
  • the MoTiNiCu alloy film layer of the multi-element alloy sputtering coating material of the present invention does not have a columnar crystal structure.
  • the MoTiNiCu alloy film layer does not have a channel that is conducive to the downward diffusion of copper atoms in the upper layer.
  • the MoTiNiCu alloy film layer not only has good adhesion, but also can effectively block the top layer. Copper atoms diffuse, and it also has strong resistance to high temperatures and humidity, and has good etching effects, which can fully meet the needs of the 8K ultra-high-definition display process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,是由Mo、Ti、Ni、Cu以及不可避免的微量杂质元素组成,其原子百分含量为:18≤Ti≤28at%,20≤Ni≤30at%,0.3≤Cu≤6at%,多元合金溅射镀膜材料的晶体结构是至少混合分布有MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界处不存在氧化物岛状结构链的多元合金的混合物,Cu分别聚集在MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界。本发明成分均匀,无偏析开裂,是纯度达到99.99%以上的用于显示器件的高纯度靶材,完全满足目前高世代高清液晶显示行业对高纯溅射材料的要求。

Description

一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料 技术领域
本发明涉及用于显示器件的高纯度靶材料技术领域,尤其是涉及一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料。
背景技术
铜与铝是集成电路常用导电引线接头等材料,单一的铜或铝薄膜,耐蚀性差、连接性能差、稳定性差,需要与其他薄膜配合使用,形成多层膜结构,以提高器件的工艺性能和稳定性。钛和钼都是常用的与铜配合镀膜的金属,形成Ti/Cu/Ti或Mo/Cu/Cu的多层膜结构。
在过去的十几年中,发展出了一些主要成分为钼的钼基合金,解决了某一方面的问题,但是还有很大的优化空间。比如多层膜材质差异导致的薄膜应力和薄膜结合力问题,比如简单合金刻蚀匹配和形貌问题等,无法满足目前高世代高清液晶显示行业对高纯度靶材的要求,急需更优良的金属材料来实现最佳匹配。
发明内容
为解决上述技术问题,本发明的目的是提供一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,有效阻挡顶层铜原子扩散,附着力较好,耐高温,耐高湿,蚀刻效果良好。
为了实现上述目的,本发明所采用的技术方案是:一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,是由Mo、Ti、Ni、Cu以及不可避免的微量杂质元素组成,其原子百分含量为:18≤Ti≤28at%,20≤Ni≤30at%,0.3≤Cu≤6at%,余量为Mo,多元合金溅射镀膜材料的晶体结构是至少混合分布有MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界处且不含有氧化物岛状结构链的多元合金混合物,其中,晶体结构中的C含量小于50ppm、氧含量小于700ppm,多元合金混合物中的Cu聚集在多元合金的晶界。
具体的,所述多元合金溅射镀膜材料按原子百分含量为Mo 42Ti 25Ni 28Cu 5
具体的,所述多元合金溅射镀膜材料按原子百分含量为Mo 42Ti 28Ni 25Cu 5
具体的,所述多元合金溅射镀膜材料按原子百分含量为Mo 47Ti 20Ni 30Cu 3
本发明和现有技术相比所具有的优点是:本发明的多元合金溅射镀膜材料成分均匀,无偏析开裂,纯度达到99.99%以上,即纯度达到4N、5N和6N纯度的高纯度靶材,完全满足目前高世代高清液晶显示行业对高纯溅射材料的要求。
本发明的多元合金溅射镀膜材料溅射形成的MoTiNiCu合金膜层具有致密光滑的薄膜表面, MoTiNiCu合金膜层没有柱状晶结构,MoTiNiCu合金膜层不存在利于上层铜原子向下扩散的通道,MoTiNiCu合金膜层不仅附着力较好,并且能有效阻挡顶层铜原子扩散,同时还具有较强耐高温高湿特性,蚀刻效果良好,完全可满足8K超高清显示制程需求。
附图说明
图1为本发明的多元合金溅射镀膜材料的C-SCAN检测图。
图2为本发明的Mo 42Ti 28Ni 25Cu 5的金相图。
图3为本发明的Mo 42Ti 28Ni 25Cu 5的气体杂质元素检测图。
图4为本发明的Mo 42Ti 28Ni 25Cu 5的MoTiNiCu合金膜层的AFM粗糙度检测图。
图5为本发明的Mo 42Ti 28Ni 25Cu 5的合金镀膜底层区域EDS扫描检测图。
图6a为本发明的Mo 42Ti 28Ni 25Cu 5的MoTiNiCu合金膜层的TEM高分辨率膜层图。
图6b为图6a的傅里叶转变图谱。
图7a为Cu=0.3at%的百格刀测试膜层。
图7b为Cu=0.15at%百格刀测试膜层。
图8为对比实施例中的3#样品形成的钼钛合金膜层的SEM图。
图9为对比实施例中的样品3#样品形成的钼钛合金膜层的微观结构示意图。
具体实施方式
实施例(镀膜样品制备及测试对比)
S1.采用微米级低氧含量的高纯钼粉、低氧含量的氢化钛粉和低氧含量的Ni 90Cu 10合金粉末制取Mo 42Ti 28Ni 25Cu 5at%的混合粉末,其中,
高纯钼粉选用氧含量≤1000ppm、粒度规格为3-7um、纯度大于99.95%的微米级低氧含量的高纯钼粉,
氢化钛粉选用氧含量≤1200ppm的、粒度规格为8-20um的、纯度大于99.9%的低氧含量氢化钛粉,
通过雾化造粒得到的氧含量≤2000ppm的、粒度规格为20-40um的原子百分含量为Ni 90Cu 10at%的Ni 90Cu 10合金粉末,
将三种粉按原子百分含量(原子百分比例)混成Mo 42Ti 28Ni 25Cu 5at%的混合粉末,投入到机械球磨设备,向机械球磨设备添加液氮后进行机械球磨混合处理,球料比为4:1,转速为200转/分钟,氩气保护球磨10小时,得到混合球磨粉末。
S2.预处理,用真空灌粉机将混合球磨粉末罐装入热压炉模具的腔体内,向腔体充入氩气,通过氩气保护混合球磨粉末,然后对腔体进行抽真空,使腔体内的压力降低到200Pa后,在腔 体内的压力降低至设定值之后开始升温升压,将腔体内的温度升温至350℃,在升温的同时将腔体内的压力同步提升到18MPa,最后以350℃的温度以及18MPa的压力恒压处理2小时;
烧结处理,在恒温恒压达到设定时间后第二次对腔体进行抽真空,使腔体内的压力降低到1.6*10-3Pa,在腔体内的压力降低至设定值之后开始升温升压,以1.5℃/min的升温速度将腔体内的温度提升至1050℃,压力提升至25MPa,最后以1050℃的温度以及25MPa的压力恒温恒压处理4小时,进行热压烧结,使内部的氢化钛粉有效脱氢,并使坯体迅速脱氧等杂质,确保产品具有较高的纯度,同时烧结致密化,制备出相高密度的钼合金坯锭。
S3.将钼合金坯锭在950℃的温度环境中真空退火处理2小时,真空退火处理后再通过机加工切片,制成350mm*100mm*6mm的钼钛镍铜合金板材。
S4.将钼钛镍铜合金板材与铜背板焊合绑定,经C-SCAN检验合格后,得到多元合金溅射镀膜材料4#样品Mo 42Ti 28Ni 25Cu 5靶。
同理,通过上述工艺分别制备了1#样品纯Mo靶、2#样品Mo 65Ti 35at%靶、3#样品Mo 50Ti 30Ni 20靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶。然后将六种合金靶材配合高纯铜靶分别在若干200*200mm玻璃基片上进行磁控溅射镀膜,其中,玻璃基片为覆有氮化硅的基板材料,溅射镀膜的膜层结构为:底层均为膜厚35±5nm的钼合金层、中间分别为的1-6#样品通过溅射镀膜工艺形成的膜层、顶层均为厚度为500±10nm的铜层。最后将六种材质镀膜样品进行附着力对比、高温耐湿对比、电阻率对比、扩散性对比和蚀刻对比等检测对比,实验数据对比如表1所示。
Figure PCTCN2022130630-appb-000001
表1
1、电阻变化率测试对比:
用薄膜电阻仪分别测试各样品在25℃、150℃和350℃下方块电阻变化。其中,1-3#样品的方块电阻相对较大,1-3#样品的电阻变化率都超过行业要求值,行业要求值是电阻变化率小于 25%。
本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶的薄膜样品的方块电阻最低,4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶的电阻变化率也最低,分别为15.4%、17.1%和16.6%,电阻变化率远小于行业要求值25%,且稳定性好。
2、膜层结构对比:
采用SEM分别对六种膜层结构进行检测,发现1-3#样品均会形成柱状晶体化,且晶界较多,而晶界过多则会形成有利于铜的扩散的便利通道,图8所示。
本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶均表现出致密光滑的非晶态,图6a和图6b所示,形成的MoTiNiCu合金膜层显示为非晶态,MoTiNiCu合金膜层对顶层的铜的很好的阻挡效果,同时为证实有效阻挡铜扩散性,通过对合金镀膜底层区域EDS扫描检测,图5所示,底层未发现任何含铜成分,基层未发现任何铜扩散迹象,说明钼合金层完全阻挡住了上层铜的扩散。
3、附着力检测对比
如图示5:采用百格刀胶带法测试附着力检测,按标准ASTM D3359-97,分别在25℃×1小时和350℃×1小时的测试环境下进行薄膜结合强度,其中,
1-3#样品的常温附着力不理想,部分脱落。
本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶均无脱落。
图7a所示,Cu=0.3at%百格刀测试膜层无脱落。
图7b所示,Cu=0.15at%百格刀测试膜层脱落较多。
4、高温耐湿性检测对比
高温耐湿性检测,将上述六种薄膜在温度为85℃和湿度为85%的测试环境下分别放置100小时及300小时后,通过目视确认薄膜表面有无变色。其中,1-2#样品变色,3#样品Mo 50Ti 30Ni 20未变色,而本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶均未变色,高温耐湿性较好。
5、蚀刻性检测对比
将样品浸渍于Cu蚀刻液内,然后用纯水清洗基板,再使之干燥,最后用光学显微镜观察基板上是否残留有金属薄膜。其中,
1#样品纯钼蚀刻过快,2#样品Mo 65Ti 35有膜层残渣,3#样品Mo 50Ti 30Ni 20的基板上有少量膜层残渣,而本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶的基板上均无膜层残留,蚀刻效果较理想。
综上检测对比,本发明的4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶的综合性能最佳。
较低的气体杂质含量有利于确保膜层具有较高的纯度、致密性和均匀性。行业对膜层一般要求是:C含量小于100ppm,氧含量小于800ppm。本发明的C含量远小于100ppm、氧含量远小于800ppm。
4#样品Mo 42Ti 28Ni 25Cu 5靶的C含量为38ppm、氧含量为620ppm,图3所示。
5#样品Mo 42Ti 25Ni 28Cu 5靶的C含量为41ppm、氧含量为592ppm。
6#样品Mo 47Ti 20Ni 30Cu 3靶的C含量为33ppm、氧含量为585ppm。
在结构方面存在较大的差异,1#样品纯Mo靶、2#样品Mo 65Ti 35at%靶、3#样品Mo 50Ti 30Ni 20靶的金属孤岛2的边界均存在较多体现为黑色的氧化物颗粒3,在金属孤岛2的外围形成由氧化物颗粒3组成的氧化物岛状结构链,图9所示,钼钛合金膜层中包括由金属元素Ti或Ni组成的金属孤岛2以及由氧化物颗粒3组成的包围在金属孤岛2的外围的氧化物岛链1,溅射形成的合金膜层均会形成柱状晶结构,合金膜层存在利于上层铜原子向下扩散的通道,图8所示。
本发明的多元合金溅射镀膜材料在结构方面包括长度不小于2800mm的旋转靶和平面靶,是一种大尺寸多元钼合金溅射镀膜材料。本发明的多元合金溅射镀膜材料,按原子百分含量包括Mo 42Ti 25Ni 28Cu 5、Mo 42Ti 28Ni 25Cu 5和Mo 47Ti 20Ni 30Cu 3,即上述4#样品Mo 42Ti 28Ni 25Cu 5靶、5#样品Mo 42Ti 25Ni 28Cu 5靶和6#样品Mo 47Ti 20Ni 30Cu 3靶。本发明的多元合金溅射镀膜材料是由Mo、Ti、Ni、Cu以及不可避免的微量杂质元素组成,其原子百分含量为:18≤Ti≤28at%,20≤Ni≤30at%,0.3≤Cu≤6at%,余量为Mo,多元合金溅射镀膜材料的晶体结构是至少混合分布有MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界处且不含有氧化物岛状结构链的多元合金混合物,图1和2所示,大规格靶材内部致密化,无气孔裂纹缺陷,其中,晶体结构中的C含量小于50ppm、氧含量小于700ppm,多元合金混合物中的Cu聚集在多元合金的晶界。本发明加入一定量的铜,不但能够提升膜层粘附性,而且能够降低膜层与铜层的接触面的铜原子浓度梯度,有效降低铜层的扩散趋势。同时铜的添加量也需控制一定范围,铜的含量过高会影响膜层的耐氧化特性,优选的,铜的原子百分含量控制在0.3-6at%,该配比所形成膜层能够有效阻挡铜高温扩散,溅射形成的膜层与上下基底的粘附性较高,满足后续蚀刻等工艺要求。另外,在形成的晶体结构中,通过生产工艺的设计使Cu在后合金化,进而使Cu主要聚集在多元合金的晶界,较佳的,90-99.9%的Cu分别聚集在MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界,在多元合金的外围形成一包围多元合金的由Cu以及不可避免的微量的杂质元素组成的铜界壁结构,铜界壁结构包围在多元合金的外围,铜界壁结构代替了原有的氧化物岛状结构链。本发明的多元合金溅射镀膜材料成分均匀,无偏析开裂,纯度达到99.99%以上,相对密度达到理论值的99.5%以上,完全满足目前高世代高清液晶显示行业对高纯溅射材料的要求。
本发明的多元合金溅射镀膜材料如图2所示,晶粒度细小且分布均匀,大部分区域已合金化,因氧含量极低,几乎不存在氧化物颗粒,多元合金的外围基本不存在黑色的氧化物颗粒,更不存在由氧化物颗粒形成的黑色的氧化物岛状结构链,若有存在氧化物则会因氧化物不反光而呈现黑色链状。
其中,钛和镍用于调节蚀刻性能和形貌,提高薄膜制程工艺适应性的作用。镍和铜用于调节多层膜界面结合力和层间应力,并抑制多层膜结构中铜薄膜层原子扩散,提高器件的稳定性。钼用于稳定合金组织的晶格结构。四元合金的配方经过精密设计,具有良好的塑性,有利于后续大尺寸旋转靶、大尺寸平面靶的产品加工,提高成材率,大尺寸是指长度大于2800mm。
钛的添加量不能过高,超过28%容易导致耐氧化性饱和,钛超过28%特别是在超过30%以后会导致膜层蚀刻性会下降,引发蚀刻残留。优选的,钛的含量控制在28at%以内。
另外,镍的含量超过30%会形成大量的脆性较大的Mo-Ni相,靶材脆性增大,不利于后续制备加工,同时,过高镍的含量会有镍磁性残留,影响靶材溅射寿命。
多元合金混合物按组分体积占比是由占比大于90%的MoTiNiCu合金、占比为1-10%的三元合金、不可避免的微量的二元合金及杂质元素组成。其中,三元合金是由Mo、Ti、Ni和Cu中的三个元素组成的合金,三元合金包括MoTiCu合金、MoNiCu合金、TiNiCu合金和MoTiNi合金,按组分体积占比MoTiNi合金在三元合金中的占比小于3%,通过对各元素的投放比例的控制、生产工艺中的高温高压处理以及长时间的保温保压处理促使全部元素合金化,使其全部转变成四元合金和三元合金,多元合金混合物中MoTiNiCu合金的占比最大,多元合金混合物的主要成分为MoTiNiCu合金,多元合金混合物包括少量的三元合金,且三元合金主要是含铜的合金,多元合金混合物中不可避免地仅含有微量的二元合金、元素单质和杂质元素,二元合金是由Mo、Ti、Ni和Cu中的两个元素组成的合金。
本发明的多元合金溅射镀膜材料的纯度大于99.99%,多元合金溅射镀膜材料溅射形成的MoTiNiCu合金膜层为非晶态结构,MoTiNiCu合金膜层具有致密光滑的薄膜表面且有效避免形成便利铜扩散的通道,MoTiNiCu合金膜层的纯度大于99.99%,MoTiNiCu合金膜层的薄膜表面平均粗糙度为小于0.9nm,图4所示,合金膜层的表面平均粗糙度为0.81nm,膜层致密非常光滑,薄膜表面的电阻变化率小于20%,本发明的多元合金溅射镀膜材料的长度不小于2800mm且翘曲度小于1mm。本发明的多元合金溅射镀膜材料的MoTiNiCu合金膜层没有柱状晶结构,MoTiNiCu合金膜层不存在利于上层铜原子向下扩散的通道,MoTiNiCu合金膜层不仅附着力较好,并且能有效阻挡顶层铜原子扩散,同时还具有较强耐高温高湿特性,蚀刻效果良好,完全可满足8K超高清显示制程需求。

Claims (10)

  1. 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:多元合金溅射镀膜材料是由Mo、Ti、Ni、Cu以及不可避免的微量杂质元素组成,其原子百分含量为:18≤Ti≤28at%,20≤Ni≤30at%,0.3≤Cu≤6at%,余量为Mo,多元合金溅射镀膜材料的晶体结构是至少混合分布有MoTiNiCu合金、MoTiCu合金和MoNiCu合金的晶界处且不含有氧化物岛状结构链的多元合金混合物,其中,晶体结构中的C含量小于50ppm、氧含量小于700ppm,多元合金混合物中的Cu聚集在多元合金的晶界。
  2. 根据权利要求1所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述多元合金混合物按组分体积占比是由占比大于90%的所述MoTiNiCu合金、占比为1-10%的三元合金、不可避免的微量的二元合金及杂质元素组成。
  3. 根据权利要求2所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述三元合金是由Mo、Ti、Ni和Cu中的三个元素组成的合金,三元合金包括MoTiCu合金、MoNiCu合金、TiNiCu合金和MoTiNi合金,按组分体积占比MoTiNi合金在三元合金中的占比小于3%;所述二元合金是由Mo、Ti、Ni和Cu中的两个元素组成的合金。
  4. 根据权利要求1所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:在所述多元合金的外围形成一包围多元合金的由Cu以及不可避免的微量的杂质元素组成的铜界壁结构。
  5. 根据权利要求1所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述多元合金溅射镀膜材料的纯度大于99.99%,多元合金溅射镀膜材料溅射形成的MoTiNiCu合金膜层为非晶态结构,MoTiNiCu合金膜层具有致密光滑的薄膜表面且有效避免形成便利铜扩散的通道。
  6. 根据权利要求5所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述MoTiNiCu合金膜层的纯度大于99.99%,MoTiNiCu合金膜层的所述薄膜表面平均粗糙度为小于0.9nm,薄膜表面的电阻变化率小于20%。
  7. 根据权利要求1所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述多元合金溅射镀膜材料的长度不小于2800mm且翘曲度小于1mm。
  8. 根据权利要求1至7任意一项所述的一种用于高世代高清液晶显示的高纯多元合 金溅射镀膜材料,其特征在于:所述多元合金溅射镀膜材料按原子百分含量为Mo 42Ti 25Ni 28Cu 5
  9. 根据权利要求1至7任意一项所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述多元合金溅射镀膜材料按原子百分含量为Mo 42Ti 28Ni 25Cu 5
  10. 根据权利要求1至7任意一项所述的一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料,其特征在于:所述多元合金溅射镀膜材料按原子百分含量为Mo 47Ti 20Ni 30Cu 3
PCT/CN2022/130630 2022-05-17 2022-11-08 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料 WO2023221417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210536229.1 2022-05-17
CN202210536229.1A CN114921761B (zh) 2022-05-17 2022-05-17 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料

Publications (1)

Publication Number Publication Date
WO2023221417A1 true WO2023221417A1 (zh) 2023-11-23

Family

ID=82807915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130630 WO2023221417A1 (zh) 2022-05-17 2022-11-08 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料

Country Status (2)

Country Link
CN (1) CN114921761B (zh)
WO (1) WO2023221417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921761B (zh) * 2022-05-17 2023-01-17 广东欧莱高新材料股份有限公司 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029862A (ja) * 2003-07-10 2005-02-03 Hitachi Metals Ltd 薄膜形成用スパッタリングターゲット
CN102953036A (zh) * 2011-08-22 2013-03-06 日立金属株式会社 电子部件用层叠配线膜和被覆层形成用溅射靶材
CN103990802A (zh) * 2013-02-15 2014-08-20 日立金属株式会社 Mo合金溅射靶材的制造方法以及Mo合金溅射靶材
CN110670032A (zh) * 2019-10-29 2020-01-10 金堆城钼业股份有限公司 一种钼镍铜多元合金溅射靶材及其制备方法
CN114921761A (zh) * 2022-05-17 2022-08-19 广东欧莱高新材料股份有限公司 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料
CN114959397A (zh) * 2022-04-28 2022-08-30 长沙惠科光电有限公司 合金靶材及其制备方法、应用、阵列基板
CN115161603A (zh) * 2022-05-17 2022-10-11 广东欧莱高新材料股份有限公司 高世代高清液晶显示用高纯多元合金旋转溅射靶的生产工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496518B2 (ja) * 2002-08-19 2010-07-07 日立金属株式会社 薄膜配線
US8449818B2 (en) * 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
CN103237910B (zh) * 2010-10-13 2015-06-24 大连理工大学 低电阻率高热稳定性的Cu-Ni-Mo合金薄膜及其制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029862A (ja) * 2003-07-10 2005-02-03 Hitachi Metals Ltd 薄膜形成用スパッタリングターゲット
CN102953036A (zh) * 2011-08-22 2013-03-06 日立金属株式会社 电子部件用层叠配线膜和被覆层形成用溅射靶材
CN103990802A (zh) * 2013-02-15 2014-08-20 日立金属株式会社 Mo合金溅射靶材的制造方法以及Mo合金溅射靶材
CN110670032A (zh) * 2019-10-29 2020-01-10 金堆城钼业股份有限公司 一种钼镍铜多元合金溅射靶材及其制备方法
CN114959397A (zh) * 2022-04-28 2022-08-30 长沙惠科光电有限公司 合金靶材及其制备方法、应用、阵列基板
CN114921761A (zh) * 2022-05-17 2022-08-19 广东欧莱高新材料股份有限公司 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料
CN115161603A (zh) * 2022-05-17 2022-10-11 广东欧莱高新材料股份有限公司 高世代高清液晶显示用高纯多元合金旋转溅射靶的生产工艺

Also Published As

Publication number Publication date
CN114921761A (zh) 2022-08-19
CN114921761B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
US10515787B2 (en) Oxide sintered body and sputtering target, and method for producing same
JPWO2011010529A1 (ja) Cu−Ga合金焼結体スパッタリングターゲット、同ターゲットの製造方法、Cu−Ga合金焼結体ターゲットから作製された光吸収層及び同光吸収層を用いたCIGS系太陽電池
TWI452161B (zh) 含氧之銅合金膜的製造方法
TW200540282A (en) Sputter target material and method of producing the same
JP5958822B2 (ja) Mo合金スパッタリングターゲット材の製造方法およびMo合金スパッタリングターゲット材
US20120205242A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
TW201504188A (zh) 複合氧化物燒結體、非晶質複合氧化膜之製造方法、非晶質複合氧化膜、結晶質複合氧化膜之製造方法及結晶質複合氧化膜
KR101613001B1 (ko) Mo 합금 스퍼터링 타깃재의 제조 방법 및 Mo 합금 스퍼터링 타깃재
WO2023221417A1 (zh) 一种用于高世代高清液晶显示的高纯多元合金溅射镀膜材料
WO2009055678A1 (en) Refractory metal-doped sputtering targets
TWI572725B (zh) MoTi靶材的製造方法
US20130168241A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
CN115161603B (zh) 高世代高清液晶显示用高纯多元合金旋转溅射靶的生产工艺
JP2015007280A (ja) Cu−Mn合金膜およびCu−Mn合金スパッタリングターゲット材ならびにCu−Mn合金膜の成膜方法
JP4904934B2 (ja) 酸化亜鉛系透明導電膜及びそれを用いた液晶ディスプレイ並びに酸化亜鉛系スパッタリングターゲット
TW201942402A (zh) 矽化鎢靶部件及其製造方法,以及矽化鎢膜的製造方法
JP2017193477A (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
TW201720943A (zh) 濺鍍靶材
JP4702126B2 (ja) 酸化亜鉛系透明導電膜及びそれを用いた液晶ディスプレイ並びに酸化亜鉛系スパッタリングターゲット
JP5622079B2 (ja) スパッタリングターゲット
JP2018059185A (ja) スパッタリングターゲット材
JP4524577B2 (ja) 透明導電膜およびスパッタリングターゲット
TW201739723A (zh) 氧化物燒結體及濺鍍靶材以及它們的製造方法
TW201529862A (zh) 銦膜、供形成銦膜之銦濺鍍靶及其製造方法
JP2007280756A (ja) 酸化亜鉛系透明導電膜及びそれを用いた液晶ディスプレイ並びに酸化亜鉛系スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942438

Country of ref document: EP

Kind code of ref document: A1