WO2023218851A1 - ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法 - Google Patents

ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法 Download PDF

Info

Publication number
WO2023218851A1
WO2023218851A1 PCT/JP2023/014954 JP2023014954W WO2023218851A1 WO 2023218851 A1 WO2023218851 A1 WO 2023218851A1 JP 2023014954 W JP2023014954 W JP 2023014954W WO 2023218851 A1 WO2023218851 A1 WO 2023218851A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyarylene sulfide
sulfide resin
component
parts
Prior art date
Application number
PCT/JP2023/014954
Other languages
English (en)
French (fr)
Inventor
一輝 男庭
文明 阿部
智道 神田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023543158A priority Critical patent/JPWO2023218851A1/ja
Publication of WO2023218851A1 publication Critical patent/WO2023218851A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to polyarylene sulfide resin compositions, polyarylene sulfide resin molded articles, and methods for producing them.
  • PAS polyarylene sulfide
  • PPS polyphenylene sulfide
  • Patent Document 1 a resin composition in which dielectric loss is reduced by blending low dielectric glass fibers and an alkoxysilane compound with PPS resin has been disclosed (see Patent Document 1).
  • the resin composition has an insufficient reduction in dielectric constant, and no study has been made regarding the dielectric loss tangent.
  • Patent Document 2 a resin composition containing a PPS resin, low dielectric glass fiber, and ethylene copolymer is disclosed (see Patent Document 2).
  • the problem to be solved by the present invention is to provide a PAS resin molded product that has both excellent dielectric properties and mechanical properties, a PAS resin composition that can provide the molded product, and a method for producing them. .
  • the present inventors found that by including at least an island phase of a cyclic olefin polymer in the continuous phase of PAS resin and further using glass fiber, the PAS resin molded product The present inventors have discovered that it is possible to suppress deterioration of mechanical properties while reducing dielectric constant and dielectric loss tangent, and have completed the present invention.
  • the PAS resin composition of the present disclosure is A PAS resin composition comprising a PAS resin (A), a cyclic olefin polymer (B), and a glass fiber (C), It is characterized by forming a sea-island structure in which island phases containing the cyclic olefin polymer (B) are dispersed in the continuous phase containing the PAS resin (A).
  • the molded article of the present disclosure is obtained by melt-molding the PAS resin composition described above.
  • the millimeter-wave radar radome and high-frequency antenna member of the present disclosure are made of the molded product described above.
  • the method for producing the PAS resin composition of the present disclosure includes: A PAS resin mixture comprising a step of blending a PAS resin (A), a cyclic olefin polymer (B), and a glass fiber (C) and melting and kneading the mixture at a temperature range equal to or higher than the melting point of the PAS resin (A).
  • a manufacturing method, It is characterized by forming a sea-island structure in which island phases containing the cyclic olefin polymer (B) are dispersed in the continuous phase containing the PAS resin (A).
  • a PAS resin molded article containing a PAS resin (A), a cyclic olefin polymer (B), and a glass fiber (C) and having both excellent dielectric properties and mechanical properties, and the molded article It is possible to provide PAS resin compositions that can provide PAS resin compositions and methods for producing them.
  • the PAS resin composition according to the present embodiment is a PAS resin composition formed by blending a PAS resin (A), a cyclic olefin polymer (B), and a glass fiber (C).
  • This PAS resin composition is characterized in that it forms a sea-island structure in which island phases containing the cyclic olefin polymer (B) are dispersed in a continuous phase containing (A). This will be explained below.
  • PAS resin (A) contains PAS resin (A) (hereinafter abbreviated as "component (A)") as an essential component.
  • component (A) has a resin structure in which the repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, it has the following general formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
  • the trifunctional structural moiety represented by formula (2) preferably ranges from 0.001 to 3 mol%, particularly from 0.01 to 1 mol%, based on the total number of moles with other structural moieties. It is preferable that
  • R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical properties of the component (A).
  • examples include those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4).
  • the structure in which the sulfur atom is bonded to the aromatic ring in the repeating unit at the para position represented by the above general formula (3) is particularly important for the heat resistance and crystallinity of the component (A).
  • component (A) includes not only the structural moieties represented by the general formulas (1) and (2), but also the following structural formulas (5) to (8).
  • the structural moiety represented by the above may be contained in an amount of 30 mol% or less of the total of the structural moieties represented by the general formula (1) and the general formula (2).
  • the content of the structural moieties represented by the above general formulas (5) to (8) is 10 mol % or less from the viewpoint of the heat resistance and mechanical properties of the component (A).
  • the bonding mode thereof may be either a random copolymer or a block copolymer. good.
  • the component (A) may have a naphthyl sulfide bond or the like in its molecular structure, but it is preferably 3 mol% or less, particularly 1 It is preferably less than mol%.
  • the physical properties of the component (A) are not particularly limited as long as they do not impair the effects of the present invention, but are as follows.
  • the weight average molecular weight of the component (A) is not particularly limited as long as it does not impair the effects of the present invention, but its upper limit is preferably 40,000 or less from the viewpoint of excellent crystallization, and more preferably 30,000 or less. ,000 or less is more preferable.
  • the lower limit is preferably in the range of 10,000 or more from the viewpoint of mechanical properties and formability, more preferably in the range of 12,500 or more, and further preferably in the range of 15,000 or more. is preferred.
  • the weight average molecular weight of component (A) in the present disclosure is the weight average molecular weight measured using gel permeation chromatography under the following measurement conditions.
  • Calibration uses six types of monodisperse polystyrene.
  • Equipment Ultra-high temperature polymer molecular weight distribution measuring device (“SSC-7000” manufactured by Senshu Kagaku Co., Ltd.) Column: UT-805L (manufactured by Showa Denko Co., Ltd.) Column temperature: 210°C Solvent: 1-chloronaphthalene Measurement method: UV detector (360nm)
  • melt viscosity The melt viscosity of the component (A) is not particularly limited, but it is preferable that the melt viscosity (V6) measured at 300° C. be 1 Pa ⁇ s or more because it provides a good balance between fluidity and mechanical properties. And, it is preferably in the range of 1000 Pa ⁇ s or less, more preferably in the range of 500 Pa ⁇ s or less, and still more preferably in the range of 200 Pa ⁇ s or less.
  • the non-Newtonian index of the component (A) is not particularly limited, but is preferably in the range of 0.90 or more and 2.00 or less.
  • the non-Newtonian exponent (N value) is determined using a capillograph under the conditions of melting point +20°C, ratio of orifice length (L) to orifice diameter (D), and shear rate (SR ) and shear stress (SS) were measured and calculated using the following formula. The closer the non-Newtonian index (N value) is to 1, the more linear the structure is, and the higher the non-Newtonian index (N value) is, the more branched the structure is.
  • SR shear rate (sec -1 )
  • SS shear stress (dynes/cm 2 )
  • K is a constant.
  • the method for producing component (A) is not particularly limited, but for example, (Production method 1) a dihalogeno aromatic compound is added in the presence of sulfur and soda carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization component is added.
  • (Production method 2) A method of polymerizing a dihalogeno aromatic compound in a polar solvent in the presence of a sulfidating agent, etc., by adding a polyhalogeno aromatic compound or other copolymerization component if necessary, (Production method 3) A method in which p-chlorothiophenol is self-condensed by adding other copolymerization components if necessary, (Production method 4) A method in which a diiodo aromatic compound and an elemental sulfur are combined with a carboxy group, an amino group, etc. Examples include a method in which melt polymerization is carried out under reduced pressure in the presence of a polymerization inhibitor that may have a functional group.
  • the method (manufacturing method 2) is preferred because it is versatile.
  • an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfidating agent is introduced into a heated mixture containing an organic polar solvent and a dihalogeno aromatic compound at a rate that allows water to be removed from the reaction mixture, and the dihalogeno aromatic compound is The aromatic compound and the sulfidating agent are added and reacted with the polyhalogeno aromatic compound as necessary, and the amount of water in the reaction system is adjusted to 0.02 to 0.5 mol per mol of the organic polar solvent.
  • a method for producing PAS resin by controlling the range of For example, a polyhalogeno aromatic compound or other copolymerization component is added, and an alkali metal hydrosulfide and an alkali metal salt of an organic acid are added in an amount of 0.01 to 0.9 mol per mol of the sulfur source. Particularly preferred are those obtained by a method in which the reaction is carried out while controlling the amount of water in the reaction system within a range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet).
  • dihalogeno aromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenylsulfone, 4,4'-dihalodiphenylsulfoxide, 4,4'-dihalodiphenylsulfide, and each of the above compounds
  • polyhalogeno aromatic compounds include 1,2,3-trifluor
  • the method for post-treatment of the reaction mixture containing component (A) obtained in the polymerization step is not particularly limited, but for example, (Post-treatment 1)
  • the reaction mixture is first treated as it is or treated with an acid.
  • the solvent is distilled off under reduced pressure or normal pressure, and the solid after solvent distillation is mixed with water, reaction solvent (or an organic solvent with equivalent solubility for low-molecular polymers), or acetone. , methyl ethyl ketone, alcohol, etc.
  • Post-treatment 5 After the polymerization reaction is completed, the reaction mixture is filtered, and if necessary, washed with a reaction solvent once or twice or more, and further washed with water and filtered. and a drying method.
  • the reactivity, crystallization rate, sodium content, etc. of component (A) can be controlled by adding an acid or base during the water washing step to adjust the pH.
  • the pH after the hot water washing step can be controlled to be in the range of 6.5 to 11.5, more preferably in the range of 6.5 to 8.5.
  • component (A) may be dried in vacuum, in air or in an inert gas such as nitrogen. It may be performed in an atmosphere.
  • the PAS resin composition according to the present embodiment contains a cyclic olefin polymer (B) (hereinafter abbreviated as "component (B)”) as an essential component.
  • component (B) must be a polymer obtained by polymerizing a monomer or oligomer containing a cyclic olefin skeleton. By blending the component (B), a PSA resin composition with reduced dielectric constant and dielectric loss tangent can be obtained.
  • the component (B) is a polymer obtained by polymerizing a monomer or oligomer containing a cyclic olefin skeleton, it may be a homopolymer or a copolymer, and may contain a linear olefin or a branched olefin. , random, block, alternating and graft copolymers.
  • Examples of the component (B) include cycloolefin polymers and cycloolefin copolymers. These compounds can be used alone or in combination of two or more.
  • oligomer in the present disclosure refers to a compound having 2 to 20 repeating units (a mixture of dimers to decamers).
  • cyclic olefin skeleton examples include compounds such as a norbornene skeleton, dicyclopentadiene skeleton, and tetracyclododecene skeleton, and derivatives of the above compounds. These compounds can be used alone or in combination of two or more. Further, among these, a dicyclopentadiene skeleton is preferable from the viewpoint of obtaining an even lower dielectric constant and dielectric loss tangent.
  • commercially available products of the component (B) include, for example, "ZEONEX (registered trademark) 480", “ZEONEX (registered trademark) 480R”, “ZEONEX (registered trademark) E48R”, and “ZEONEX (registered trademark)” manufactured by Zeon Corporation.
  • TOPAS (registered trademark) 5013F-04 “TOPAS (registered trademark) 5013L-10”, “TOPAS (registered trademark) 6013F-04”, “TOPAS (registered trademark) 6013M- 07”, “TOPAS (registered trademark) 6015S-04”, “TOPAS (registered trademark) 8007F-04”, “TOPAS (registered trademark) 8007F-600”, “TOPAS (registered trademark) 8007S-04”, “TOPAS ( Examples include “ARTON (registered trademark) 8007 It will be done.
  • the glass transition point of the component (B) used in this embodiment is not particularly limited as long as the effects of the present invention are achieved, but the temperature of the dielectric constant and dielectric loss tangent of the resulting PAS resin composition and molded product is From the viewpoint of reducing dependence, the temperature is preferably in the range of 100°C or higher, more preferably 110°C or higher, even more preferably 120°C or higher, and preferably 250°C or lower.
  • the weight average molecular weight (Mw) of the component (B) used in the present embodiment is not particularly limited as long as the effects of the present invention can be achieved, but is preferably 10,000 or more, preferably 1,000, 000 or less, more preferably 500,000 or less. Within this range, the resulting resin composition has excellent moldability.
  • the weight average molecular weight is a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • the blending ratio of the component (B) is not particularly limited as long as the effects of the present invention are achieved, but it is possible to suppress the deterioration of mechanical properties while reducing the dielectric constant and dielectric loss tangent of the resulting PAS resin composition.
  • the amount is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, particularly preferably 40 parts by mass or less, based on 100 parts by mass of component (A). Further, the amount is preferably 0.1 parts by mass or more, more preferably 5 parts by mass or more, particularly preferably 8 parts by mass or more.
  • the PAS resin composition according to the present embodiment contains glass fiber (C) (hereinafter abbreviated as "component (C)”) as an essential component.
  • component (C) glass fiber
  • those known to those skilled in the art can be used, and the fiber diameter, fiber length, aspect ratio, etc. can be adjusted as appropriate depending on the use of the molded product.
  • a PAS resin composition having excellent moldability and mechanical properties of the resulting PAS molded product can be obtained.
  • the composition of the glass constituting the component (C) is not particularly limited, it is preferable to use low dielectric glass fibers from the viewpoint of further reducing the dielectric constant and dielectric loss tangent.
  • the low dielectric glass fiber is a glass fiber with a lower dielectric constant and dielectric loss tangent than general E-glass, and is produced using a manufacturing method that reduces the boron oxide ratio in the glass fiber component (Japanese Patent Publication No. 6-39338). Publication No.) etc. have been disclosed.
  • the dielectric constant is preferably 5.5 or less, more preferably 5.0 or less.
  • the dielectric loss tangent is preferably 0.003 or less, more preferably 0.002 or less.
  • the component (C) may be treated with a surface treatment agent or a sizing agent.
  • a surface treatment agent or a sizing agent examples include silane compounds, titanate compounds, acrylic resins, urethane resins, polyether resins, and epoxy resins having functional groups such as amino groups, epoxy groups, isocyanate groups, and vinyl groups.
  • Examples include at least one polymer selected from the group, and those containing urethane resin are particularly preferred from the viewpoint of suppressing excessive fibrillation during processing.
  • the surface treatment agent or sizing agent contains a urethane resin, its content is not particularly limited, but is preferably in the range of 35% by mass or less, more preferably in the range of 20% by mass or less.
  • the blending ratio of the component (C) is not particularly limited as long as the effects of the present invention can be achieved, but from the viewpoint of obtaining better mechanical properties, the proportion of the component (A) relative to 100 parts by mass of the component (A) is The amount is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 30 parts by mass or more. Further, from the viewpoint of reducing the dielectric constant and dielectric loss tangent, the amount is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and even more preferably 80 parts by mass or less.
  • the PAS resin composition according to the present embodiment may optionally contain a silane coupling agent ( D) (hereinafter abbreviated as "component (D)”) can be blended.
  • component (D) is not particularly limited as long as it does not impair the effects of the present invention, but silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group, are preferred. It is mentioned as.
  • epoxy group-containing alkoxy such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, etc.
  • Silane compound ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane, ⁇ - Isocyanato group-containing alkoxysilane compounds such as isocyanatopropylethyldiethoxysilane, ⁇ -isocyanatopropyltrichlorosilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrichlorosilane, etc.
  • Examples include amino group-containing alkoxysilane compounds such as methoxysilane and ⁇ -aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as ⁇ -hydroxypropyltrimethoxysilane and ⁇ -hydroxypropyltriethoxysilane. These compounds can be used alone or in combination of two or more.
  • the blending ratio of the component (D) is not particularly limited as long as the effects of the present invention can be achieved, but the blending ratio is such that it has excellent moldability and mold releasability, and the mechanical properties of the resulting molded product.
  • the amount is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, based on 100 parts by mass of component (A).
  • the amount is preferably 3 parts by mass or less, and more preferably 1 part by mass or less.
  • the PAS resin composition according to the present embodiment may optionally contain high-quality materials for the purpose of further improving mechanical properties and dielectric properties.
  • At least one thermoplastic resin (E) selected from the group consisting of density polyethylene resin, ultra-high molecular weight polyethylene resin, and fluororesin (hereinafter abbreviated as "component (E)") can be blended.
  • the component (E) can be used alone or in combination of two or more.
  • the high-density polyethylene resin is not particularly limited as long as it has a specific gravity of 0.94 or more, and any known material may be used, and a linear one or one having a branched structure in the structure may be used. can.
  • the ultra-high molecular weight polyethylene resin is not particularly limited as long as it has a molecular weight of 500,000 or more, and known materials can be used, and it may be linear or have a branched structure in its structure, and It may have a modifying group.
  • Examples of the modifying group include a carboxyl group, a carboxyl metal salt, an amino group, a hydroxyl group, a silanol group, an alkoxy group, a hydroxyl group, an acid anhydride group, an epoxy group, an isocyanate group, a mercapto group, an oxazoline group, a sulfonic acid group, etc. Can be mentioned. Among these, carboxyl groups and hydroxyl groups are preferred, and carboxyl groups are particularly preferred.
  • Examples of the compound containing the modifying group include compounds such as unsaturated carboxylic acids or derivatives thereof, hydroxyl group-containing ethylenically unsaturated compounds, amino group-containing ethylenically unsaturated compounds, and vinyl group-containing organosilicon compounds.
  • unsaturated carboxylic acids or derivatives thereof and hydroxyl group-containing ethylenically unsaturated compounds are preferred, and unsaturated carboxylic acids or derivatives thereof are particularly preferred.
  • Examples of the unsaturated carboxylic acids or derivatives thereof include unsaturated compounds having one or more carboxyl groups, esters of compounds having carboxyl groups and alkyl alcohols, unsaturated compounds having one or more anhydrous carboxyl groups, etc. can.
  • Examples of the unsaturated group include a vinyl group, a vinylene group, and an unsaturated cyclic hydrocarbon group.
  • Known compounds can be used as these compounds, and there are no particular limitations.
  • Specific compounds include, for example, acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, endocis-bicyclo[2,2,1]hept-5-ene-2 , 3-dicarboxylic acid, or derivatives thereof, such as acid halides, amides, imides, anhydrides, esters, and the like.
  • Specific examples of such derivatives include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.
  • maleic anhydride and acrylic acid are preferred, and maleic anhydride is particularly preferred because of its high reactivity.
  • the fluororesin is not particularly limited as long as it is a synthetic resin containing fluorine in its structure, but examples include polytetrafluoroethylene resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, polyfluoroethylene resin, perfluoroalkoxy fluororesin, etc. It will be done.
  • polytetrafluoroethylene resin is preferable because it has excellent heat resistance and can be expected to further reduce the dielectric constant and dielectric loss tangent.
  • commercial products of the component (E) include, for example, high-density polyethylene resins such as "Luwax AH 3", “Luwax AH 6", “Luwax OA 2", and “Luwax OA 5" manufactured by BASF, and Mitsui Chemicals' "HIWAX (registered trademark) 100P", “HIWAX (registered trademark) 200P”, “HIWAX (registered trademark) 400P”, “HIWAX (registered trademark) 800P", manufactured by BYK Corporation, “CERAFLOUR 950", etc.
  • high-density polyethylene resins such as "Luwax AH 3", “Luwax AH 6", “Luwax OA 2", and “Luwax OA 5" manufactured by BASF
  • Mitsui Chemicals' HIWAX (registered trademark) 100P
  • HIWAX (registered trademark) 200P
  • HIWAX (registered trademark) 400P
  • Ultra-high molecular weight polyethylene resins include “Lubmer (registered trademark) LY1040” manufactured by Mitsui Chemicals, Inc., and examples of fluororesins include “Polyflon L-5" and “Polyflon L-5F” manufactured by Daikin Industries, Ltd. ", “Polyflon L-5F", Kitamura Co., Ltd. "KT-300M”, “KT-400M”, “KT-600M”, “KTL-450A”, “KTL-450”, “KTL-620”, “ Examples include “KTL-610", “KTL-500F", and "Fluon+ (registered trademark) EA-2000" manufactured by AGC Corporation.
  • component (E) is not an essential component, but when blended, the blending amount is not particularly limited as long as it does not impair the effects of the present invention.
  • the amount ranges from preferably 1 part by weight or more, more preferably 5 parts by weight or more, to 25 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of component (A). This range is preferable because the resin composition has good moldability, particularly mold releasability, improves the mechanical properties of the molded product, and reduces the dielectric constant and dielectric loss tangent.
  • the PAS resin composition according to the present embodiment may contain a thermoplastic elastomer as an optional component except for the component (E).
  • a thermoplastic elastomer examples include polyolefin elastomers, fluorine elastomers, and silicone elastomers, and among these, polyolefin elastomers are preferred.
  • the blending amount of these thermoplastic elastomers is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass, based on 100 parts by mass of component (A).
  • the range is below 100 yen. Within this range, a molded article with excellent moldability and mechanical properties, particularly impact resistance, can be obtained.
  • the polyolefin elastomer may be a homopolymer of ⁇ -olefin, a copolymer of two or more ⁇ -olefins, or a copolymer of one or more ⁇ -olefins and a vinyl polymerizable compound having a functional group.
  • examples of the ⁇ -olefin include ⁇ -olefins having a carbon atom number ranging from 2 to 8, such as ethylene, propylene, and 1-butene.
  • vinyl polymerizable compounds having the functional group examples include vinyl acetate; ⁇ , ⁇ -unsaturated carboxylic acids such as (meth)acrylic acid; Alkyl esters of unsaturated carboxylic acids; metal salts of ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, zinc, etc.); ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers; Glycidyl esters of ⁇ -unsaturated carboxylic acids; ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid; derivatives of the ⁇ , ⁇ -unsaturated dicarboxylic acids (monoesters, diesters, acid anhydrides, etc.); ), etc., or two or more thereof.
  • the above-mentioned thermoplastic elastomers may be used alone or in combination of two
  • the PAS resin composition according to the present embodiment may contain fillers other than the component (C) (hereinafter sometimes referred to as other fillers) as optional components, if necessary.
  • these other fillers known and commonly used materials can be used as long as they do not impair the effects of the present invention, and include fillers in various shapes such as granular, plate-like, and fibrous fillers.
  • Fillers such as calcium, glass beads, zeolites, milled fibers, calcium sulfate, etc. can also be used.
  • the content of the other filler is not particularly limited, but from the viewpoint of better mechanical properties and dimensional stability, it is preferably 5 parts by mass or more based on 100 parts by mass of component (A). , more preferably 10 parts by weight or more, and even more preferably 20 parts by weight or more.
  • the amount is 350 parts by mass or less, and 300 parts by mass based on 100 parts by mass of the component (A). It is more preferably at most 250 parts by mass, particularly preferably at most 250 parts by mass.
  • the PAS resin composition according to the present embodiment may further contain polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone, as appropriate depending on the application.
  • a synthetic resin (hereinafter simply referred to as synthetic resin) can be blended as an optional component.
  • the synthetic resin is not an essential component, but if it is blended, the blending ratio is not particularly limited as long as it does not impair the effects of the present invention, and it varies depending on the purpose of the invention, so it cannot be generalized.
  • the proportion of the synthetic resin blended into the resin composition according to the present embodiment is, for example, in the range of 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the component (A). Examples include degrees of range.
  • the ratio of component (A) to the total of component (A) and synthetic resin is preferably in the range of (100/115) or more, more preferably (100/105) or more, based on mass. is within the range of
  • the PAS resin composition according to the present embodiment also includes a colorant, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, a blowing agent, a flame retardant, a flame retardant aid, Known and commonly used additives such as rust preventive agents and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms including stearic acid and montanic acid, polyolefin waxes such as polyethylene, etc.) are added as necessary. It may be added as an optional component.
  • rust preventive agents and mold release agents metal salts and esters of fatty acids having 18 to 30 carbon atoms including stearic acid and montanic acid, polyolefin waxes such as polyethylene, etc.
  • additives are not essential components, and, for example, are preferably 0.01 parts by mass or more, and preferably 1000 parts by mass or less, and more preferably 100 parts by mass, based on 100 parts by mass of component (A). It may be used in a range of not more than 10 parts by mass, more preferably not more than 10 parts by mass, depending on the purpose and application so as not to impair the effects of the present invention.
  • the PAS resin composition according to the present embodiment has a sea-island structure in which an island phase containing at least the component (B) is dispersed in a continuous phase containing the component (A).
  • the average dispersion diameter of the component (B) is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, from the viewpoint of suppressing a decrease in mechanical strength, and from the viewpoint of maintaining a low dielectric loss tangent by reducing the surface area of the sea-island phase interface. Therefore, the thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more.
  • the method for measuring the average dispersion diameter will be described in detail in Examples.
  • the method for producing a PAS resin composition according to the present embodiment includes blending the (A) component, the (B) component, and the (C) component, and heating the composition at a temperature in a temperature range equal to or higher than the melting point of the (A) component.
  • a method for producing a PAS resin mixture comprising a step of melting and kneading, the method comprising a sea-island structure in which island phases containing the component (B) and having an average dispersion diameter of 10 ⁇ m or less are dispersed in the continuous phase containing the component (A). It is characterized by forming. The details will be explained below.
  • the method for producing a PAS resin composition according to the present embodiment includes the step of blending the above essential components and melting and kneading them at a temperature range equal to or higher than the melting point of the component (A). More specifically, the PAS resin composition according to the present embodiment is formed by blending each essential component and other optional components as necessary.
  • the method for producing the resin composition according to the present embodiment is not particularly limited, but includes a method of blending essential components and optional components as necessary, and melt-kneading the mixture. Examples include a method of uniformly dry mixing using a Henschel mixer or the like, and then charging the mixture into a twin-screw extruder and melt-kneading it.
  • Melt kneading is carried out in a temperature range in which the resin temperature is equal to or higher than the melting point of the component (A), preferably in a temperature range in which the melting point is +10°C or higher, more preferably at least the melting point +15°C, and still more preferably at least the melting point +20°C. This can be carried out by heating to a temperature in the range from 100° C. to 100° C., more preferably 50° C. below the melting point.
  • the melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity, for example, a discharge rate of the resin component in the range of 5 to 500 (kg/hr) and a screw rotation speed of 50 to 500 (rpm). It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately.
  • component (C) which is an essential component among the above-mentioned components, is introduced into the twin-screw kneading extruder from a side feeder into the extruder.
  • the position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
  • the PAS resin composition according to the present embodiment obtained by melt-kneading in this manner is a molten mixture containing the above-mentioned essential components, optional components added as necessary, and components derived from these components. Therefore, the PAS resin composition according to the present embodiment has a morphology in which the component (A) forms a continuous phase, and the component (B) and optional components form a dispersed phase. In this case, the average dispersed diameter of the dispersed phase containing the component (B) is preferably 10 ⁇ m or less.
  • the PAS resin composition according to the present embodiment is produced by a known method, for example, by extruding the molten resin composition into a strand shape, and then processing it into pellets, chips, granules, powder, etc. After that, it is preferable to perform preliminary drying at a temperature range of 100 to 150°C, if necessary.
  • the molded article according to this embodiment is formed by melt-molding a PAS resin composition.
  • the method for manufacturing a molded article according to the present embodiment includes a step of melt-molding the PAS resin composition. Therefore, the molded article according to this embodiment has a morphology in which the component (A) forms a continuous phase and the component (B) and optional components are dispersed.
  • the PAS resin composition has such a morphology, a molded article with excellent mechanical properties and dielectric properties can be obtained.
  • the molded product according to the present embodiment is characterized in that the dielectric constant at a frequency of 10 GHz measured using the coaxial resonance method is 3.30 or less, and the dielectric loss tangent is 0.0040 or less.
  • the dielectric constant is 3.30 or less and the dielectric loss tangent is 0.0040 or less at the frequency, the molded product is recognized to have excellent dielectric properties.
  • the relative permittivity and dielectric loss tangent can be measured by the coaxial resonance method, for example, by the method described in Examples.
  • the molded article according to the present embodiment has a sea-island structure in which island phases containing the component (B) are dispersed in a continuous phase containing the component (A).
  • the dispersed diameter of the component (B) is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less. Note that the measurement of the dispersion diameter can be performed by the method described in Examples.
  • the tensile properties of the molded product according to this embodiment are not particularly limited, but from the viewpoint of providing sufficient mechanical strength, the tensile strength is preferably 120 MPa or more, more preferably 140 MPa or more, and 160 MPa or more. It is particularly preferable that there be. Similarly, the tensile modulus is preferably 8 GPa or more, more preferably 9 GPa or more, and particularly preferably 10 GPa or more. The method for evaluating tensile properties will be described in detail in Examples.
  • the bending properties of the molded product according to this embodiment are not particularly limited, but from the viewpoint of providing sufficient mechanical strength, the bending strength is preferably 180 MPa or more, more preferably 200 MPa or more, and 220 MPa or more. It is particularly preferable that there be. Similarly, the bending elastic modulus is preferably 8 GPa or more, more preferably 9 GPa or more, and particularly preferably 10 GPa or more. Note that the method for evaluating bending properties will be described in detail in Examples.
  • the impact resistance properties of the molded product according to this embodiment are not particularly limited, but from the viewpoint of providing sufficient impact strength, it is preferable that the Charpy impact strength with notches is 8 kJ/cm 2 or more, and 9 kJ/cm 2 or more. It is more preferable that it is, and it is especially preferable that it is 10 kJ/cm 2 or more.
  • the Charpy impact strength without a notch is preferably 30 kJ/cm 2 or more, more preferably 35 kJ/cm 2 or more, particularly preferably 38 kJ/cm 2 or more. Note that the method for evaluating impact resistance properties will be described in detail in Examples.
  • the PAS resin composition according to the present embodiment can be used for various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for injection molding. suitable for the purpose.
  • various molding conditions are not particularly limited, and molding can be performed by a general method.
  • the resin temperature is in a temperature range above the melting point of the component (A), preferably in a temperature range above the melting point +10°C, more preferably in a temperature range from melting point +10°C to melting point +100°C, even more preferably
  • the resin composition may be injected into a mold through the resin discharge port and molded.
  • the mold temperature may be set within a known temperature range, for example, room temperature (23°C) to 300°C, preferably 130 to 190°C.
  • the method for manufacturing a molded article according to the present embodiment may include a step of subjecting the molded article to an annealing treatment.
  • the optimum conditions for the annealing treatment are selected depending on the purpose or shape of the molded product, but the annealing temperature is in a temperature range above the glass transition temperature of the component (A), preferably in a temperature range above the glass transition temperature +10°C.
  • the temperature range is more preferably 30° C. or higher than the glass transition temperature. On the other hand, it is preferably in a range of 260°C or less, more preferably in a range of 240°C or less.
  • the annealing time is not particularly limited, it is preferably in a range of 0.5 hours or more, and more preferably in a range of 1 hour or more. On the other hand, the duration is preferably 10 hours or less, and more preferably 8 hours or less. This range is preferable because not only the distortion of the resulting molded product is reduced and the crystallinity of the resin is improved, but also the chemical resistance is further improved.
  • the annealing treatment may be performed in air, it is preferably performed in an inert gas such as nitrogen gas.
  • the application of the PAS resin molded product according to this embodiment is not particularly limited and can be used in various products, but the relative dielectric constant and dielectric loss tangent in the high frequency band are low, and the dielectric loss of electromagnetic waves is reduced. Since it can be reduced, it is suitable for, for example, millimeter wave radar members, high frequency antenna members, etc. In addition to this, the following ordinary resin molded products can also be used.
  • protection and support members for box-shaped electric/electronic component integrated modules multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, Oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, Electrical and electronic parts such as parabolic antennas and computer-related parts; VTR parts, television parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio, laser discs, compact discs, DVD discs, and Blu-ray discs.
  • Household and office electrical appliances such as audio/video equipment parts such as disks, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and plumbing equipment parts such as water heaters, bath water quantity and temperature sensors, etc.
  • Product parts Office computer-related parts, telephone-related parts, facsimile-related parts, copying machine-related parts, cleaning jigs, motor parts, lighters, typewriters, etc.
  • Machine-related parts microscopes, binoculars, cameras, watches
  • Optical equipment and precision machinery related parts such as alternator terminals, alternator connectors, brush holders, slip rings, IC regulators, potentiometer bases for light dimmers, relay blocks, inhibitor switches, various valves such as exhaust gas valves, and fuel related parts.
  • Various exhaust and intake system pipes air intake nozzle snorkel, intake manifold, engine cooling water joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crank Shaft position sensor,
  • Examples 1 to 15 and Comparative Examples 1 to 5 Each material was blended according to the composition components and blending amounts listed in Tables 1 to 3. After that, these compounded materials were put into a vented twin-screw extruder "TEX-30 ⁇ " manufactured by Japan Steel Works, Ltd., and melted and kneaded at a resin component discharge rate of 30 kg/hr, a screw rotation speed of 200 rpm, and a set resin temperature of 320°C. Pellets of the resin composition were obtained. Glass fiber, component (C), was fed from a side feeder (S/T ratio 0.5), and other materials were uniformly mixed in advance in a tumbler and fed from a top feeder. After drying the obtained resin composition pellets in a gear oven at 140° C. for 2 hours, various molded products were produced by injection molding, and the following tests were conducted.
  • a test piece was prepared by cutting out the central part of the ISO TYPE-1A dumbbell prepared in the same manner as in (2) into a bar shape with a length of 80 mm, width of 10 mm, and thickness of 4 mm, and a test piece with a notch cut out.
  • a Charpy impact test was conducted to measure the impact strength (kJ/mm 2 ) in accordance with ISO179-1/1eA and ISO179-1/1eU. The results are shown in Tables 1 to 3.
  • ⁇ (B) Component b-1 “ZEONOR (registered trademark) 1420R” manufactured by Zeon Corporation, glass transition point 136°C b-2: “APEL (registered trademark) APL6015T” manufactured by Mitsui Chemicals, Inc., glass transition point 145°C
  • ⁇ (C) Component c-1 "ECS339AK-3" manufactured by CPIC, average fiber length 3 mm, average fiber diameter 13 ⁇ m c-2: “DCS03T-187H” manufactured by Nippon Electric Glass Co., Ltd., average fiber length 3.5 mm, average fiber diameter 10 ⁇ m c-3: "CS03T-725H” manufactured by Nippon Electric Glass Co., Ltd., average fiber length 3 mm, average fiber diameter 10 ⁇ m
  • ⁇ (E) Component e-1 “Luwax AH-6” manufactured by BASF e-2: “Lyubmer (registered trademark) LY1040” manufactured by Mitsui Chemicals, Inc. e-3: “KTL-610” manufactured by Kitamura Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

優れた誘電特性と機械的特性を両立したポリアリーレンスルフィド樹脂成形品、当該成形品を提供可能なポリアリーレンスルフィド樹脂組成物及びそれらの製造方法を提供すること。さらに詳しくは、ポリアリーレンスルフィド樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合してなるポリアリーレンスルフィド樹脂組成物であって、前記ポリアリーレンスルフィド樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成する、ポリアリーレンスルフィド樹脂組成物、成形品、それらの製造方法。

Description

ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
 本発明は、ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂成形品及びそれらの製造方法に関する。
 近年、生産性、成形性に優れ、かつ高耐熱性を有するエンジニアリングプラスチックが開発され、軽量でもあることから金属材料に代わる材料として電気、電子機器や自動車用等の部材として幅広く使用されている。特にポリフェニレンサルファイド(以下、PPSと略記する。)樹脂に代表されるポリアリーレンスルフィド(以下、PASと略記する。)樹脂は、耐熱性に優れつつ、かつ、機械的特性、耐薬品性、成形加工性、寸法安定性にも優れるため、各種自動車部品、電気電子用部品、水廻り部品などの分野で、広範に利用されている。
 一方、近年、電気通信の分野では、通信容量の増加に対処するため、伝送周波数の高周波化による伝送容量の大輻な向上が求められている。これに伴い、ミリ波やサブミリ波といった高周波数帯域において誘電損失の少ない材料の開発が行われている。PAS樹脂をこれらの用途に用いる場合には、材料設計によって誘電率と誘電正接がどちらも小さくなるように材料を設計して、誘電損失を低減することが不可欠である。
 例えば、PPS樹脂に低誘電ガラス繊維及びアルコキシシラン化合物を配合して、誘電損失を低減した樹脂組成物が開示されている(特許文献1参照)。しかしながら、当該樹脂組成物は誘電率の低下が不十分であり、また、誘電正接に関する検討がされていなかった。また、PPS樹脂と低誘電ガラス繊維とエチレン共重合体とを配合した樹脂組成物が開示されている(特許文献2参照)。
特開2019-131685号公報 特開2020-079364号公報
 しかしながら、これらの方法でPAS樹脂成形品の低誘電率と低誘電正接は十分ではなく、更なる改善が求められていた。また、低誘電率と低誘電正接を実現しようとすると、機械的特性が低下するという不都合があった。
 そこで、本発明が解決しようとする課題は、優れた誘電特性と機械的特性を両立したPAS樹脂成形品、当該成形品を提供可能なPAS樹脂組成物及びそれらの製造方法を提供することにある。
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、少なくともPAS樹脂の連続相中に環状オレフィン系重合体の島相を含み、さらにガラス繊維を用いることで、PAS樹脂成形品の誘電率と誘電正接とを低減しながら、機械的特性の低下を抑制できることを見出し、本発明を完成するに至った。
 すなわち、本開示のPAS樹脂組成物は、
 PAS樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合してなるPAS樹脂組成物であって、
 前記PAS樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成することを特徴とする。上記構成を具えることで、誘電率と誘電正接とを低減しながら、機械的特性の低下を抑制できる。
 本開示の成形品は、前記記載のPAS樹脂組成物を溶融成形してなる。
 本開示のミリ波レーダー用レドーム及び高周波アンテナ用部材は、前記記載の成形品からなる。
 本開示のPAS樹脂組成物の製造方法は、
 PAS樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合し、PAS樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有するPAS樹脂混合物の製造方法であって、
 前記PAS樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成することを特徴とする。
 本発明によれば、PAS樹脂(A)と環状オレフィン系重合体(B)と、ガラス繊維(C)とを含み、優れた誘電特性と機械的特性を両立したPAS樹脂成形品、当該成形品を提供可能なPAS樹脂組成物及びそれらの製造方法を提供することができる。
 本実施形態に係るPAS樹脂組成物は、PAS樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合してなるPAS樹脂組成物であって、前記PAS樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成することを特徴とするPAS樹脂組成物である。以下、説明する。
<PAS樹脂(A)>
 本実施形態に係るPAS樹脂組成物は必須成分としてPAS樹脂(A)(以下、「(A)成分」と略記する。)を配合してなる。前記(A)成分としては、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure JPOXMLDOC01-appb-C000002
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001~3モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。
 ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記(A)成分の機械的特性の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記(A)成分の耐熱性や結晶性の面で好ましい。
 また、前記(A)成分は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8)
Figure JPOXMLDOC01-appb-C000004
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本開示では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、前記(A)成分の耐熱性、機械的特性の点から好ましい。前記(A)成分中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
 また、前記(A)成分は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。
 また、前記(A)成分の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。
(重量平均分子量)
 前記(A)成分の重量平均分子量は、本発明の効果を損なわなければ特に限定されるものではないが、その上限は、結晶化に優れる点から40,000以下であることが好ましく、さらに30,000以下の範囲であることがより好ましい。一方、下限は、機械的特性及び成形性の観点から10,000以上の範囲であることが好ましく、さらに12,500以上の範囲であることがより好ましく、さらに15,000以上の範囲であることが好ましい。なお、本開示の(A)成分の重量平均分子量は、下記の測定条件によりゲル浸透クロマトグラフィーを用いて測定される重量平均分子量のことである。校正は6種類の単分散ポリスチレンを用いる。
 装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC-7000」)
 カラム:UT-805L(昭和電工株式会社製)
 カラム温度:210℃
 溶媒:1-クロロナフタレン
 測定方法:UV検出器(360nm)
(溶融粘度)
 前記(A)成分の溶融粘度は特に限定されないが、流動性及び機械的特性のバランスが良好となることから、300℃で測定した溶融粘度(V6)が、好ましくは1Pa・s以上の範囲であり、そして、好ましくは1000Pa・s以下の範囲、より好ましくは500Pa・s以下の範囲であり、さらに好ましくは200Pa・s以下の範囲である。ただし、溶融粘度(V6)の測定は、PAS樹脂を島津製作所製フローテスター、CFT-500Dを用いて行い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した溶融粘度の測定値とする。
(非ニュートン指数)
 前記(A)成分の非ニュートン指数は特に限定されないが、0.90以上から2.00以下の範囲以下の範囲であることが好ましい。ただし、本開示において非ニュートン指数(N値)は、キャピログラフを用いて融点+20℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度(SR)及び剪断応力(SS)を測定し、下記式を用いて算出した値である。非ニュートン指数(N値)が1に近いほど線状に近い構造であり、非ニュートン指数(N値)が高いほど分岐が進んだ構造であることを示す。
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]
(製造方法)
 前記(A)成分の製造方法としては特に限定されないが、例えば(製造法1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、(製造法4)ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法、等が挙げられる。これらの方法のなかでも、(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりPAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
 重合工程により得られた(A)成分を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(後処理1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸又は塩基を加えた後、減圧下又は常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法、或いは、(後処理2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPAS樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、PAS樹脂や無機塩等の固体状生成物を沈降させ、これらを濾別、水洗、乾燥する方法、或いは、(後処理3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法、(後処理4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸又は塩基を加えて処理し、乾燥をする方法、(後処理5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回又は2回以上洗浄し、更に水洗浄、濾過及び乾燥する方法、等が挙げられる。いずれの後処理方法においても、水洗工程の際に酸や塩基を添加してpH調整をすることによって、(A)成分の反応性や結晶化速度、ナトリウム含有量等を制御することができ、熱水洗工程後のpHが6.5~11.5の範囲、より好ましくは6.5~8.5の範囲となるように制御することができる。
 なお、上記(後処理1)~(後処理5)に例示したような後処理方法において、(A)成分の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。
<環状オレフィン系重合体(B)>
 本実施形態に係るPAS樹脂組成物は環状オレフィン系重合体(B)(「以下、(B)成分」と略記する。)を必須成分として配合してなる。前記(B)成分としては、環状オレフィン骨格を含むモノマーやオリゴマーを重合して得られる重合体であることを必須とする。前記(B)成分を配合することによって、誘電率と誘電正接が共に低減されたPSA樹脂組成物が得られる。
前記(B)成分は、環状オレフィン骨格を含むモノマーやオリゴマーを重合して得られる重合体であることから、ホモポリマーでもコポリマーでも良く、直鎖状オレフィンや分岐鎖状オレフィンを含んでいても良く、ランダム、ブロック、交互及びグラフト共重合体のいずれでも良い。前記(B)成分としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー等が挙げられる。これらの化合物は、単独で用いることも2種以上を併用することもできる。
 なお、本開示におけるオリゴマーとは、繰り返し単位2~20(2量体~20量体の混合物)を有する化合物を示す。
前記環状オレフィン骨格としては、ノルボルネン骨格、ジシクロペンタジエン骨格、テトラシクロドデセン骨格等の化合物、前記化合物の誘導体などが挙げられる。これらの化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でもより一層低い誘電率と誘電正接を得られる観点から、ジシクロペンタジエン骨格が好ましい。
 また、前記(B)成分の市販品としては、例えば、日本ゼオン株式会社製「ZEONEX(登録商標) 480」、「ZEONEX(登録商標) 480R」、「ZEONEX(登録商標) E48R」、「ZEONEX(登録商標) F52R」、「ZEONEX(登録商標) 330R」、「ZEONEX(登録商標) RS420」、「ZEONEX(登録商標) C2420」、「ZEONOR(登録商標) 1020R」、「ZEONOR(登録商標) 1060R」、「ZEONOR(登録商標) 1410R」、「ZEONOR(登録商標) 1420R」、「ZEONOR(登録商標) 1430R」、三井化学株式会社製「APEL(登録商標) APL5014CL」、「APEL(登録商標) APL5014CL(04)」、「APEL(登録商標) APL5014KL」、「APEL(登録商標) APL5015AL」、「APEL(登録商標) APL5016SL」、「APEL(登録商標) APL5013VH」、「APEL(登録商標) APL5014XH」、「APEL(登録商標) APL5014BH」、「APEL(登録商標) APL5014DP」、「APEL(登録商標) APL6509T」、「APEL(登録商標) APL6011T」、「APEL(登録商標) APL6013T」、「APEL(登録商標) APL6015T」、ポリプラスチックス株式会社製「TOPAS(登録商標) 5013F-04」、「TOPAS(登録商標) 5013L-10」、「TOPAS(登録商標) 6013F-04」、「TOPAS(登録商標) 6013M-07」、「TOPAS(登録商標) 6015S-04」、「TOPAS(登録商標) 8007F-04」、「TOPAS(登録商標) 8007F-600」、「TOPAS(登録商標) 8007S-04」、「TOPAS(登録商標) 8007X10」、「TOPAS(登録商標) 9506F-500」、JSR株式会社製「ARTON(登録商標) F3500」、「ARTON(登録商標) D4000」、「ARTON(登録商標) FBX80」等が挙げられる。
 本実施形態に用いる前記(B)成分のガラス転移点は、本発明の効果を奏する範囲において特に限定されるものではないが、得られるPAS樹脂組成物及び成形品の誘電率と誘電正接の温度依存性を低減できる観点から、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上から、好ましくは250℃以下の範囲である。
 本実施形態に用いる前記(B)成分の重量平均分子量(Mw)は、本発明の効果を奏する範囲において特に限定されるものではないが、好ましくは10,000以上から、好ましくは1,000,000以下、より好ましくは500,000以下の範囲である。かかる範囲において、得られる樹脂組成物が成形性に優れる。なお、前記重量平均分子量は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定される標準ポリスチレン換算値である。
 前記(B)成分の配合割合は、本発明の効果を奏する範囲において特に限定されるものではないが、得られるPAS樹脂組成物の誘電率や誘電正接を低減しながら機械的特性の低下を抑制可能なPAS樹脂組成物が得られる観点から、前記(A)成分100質量部に対して、60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下が特に好ましい。また、好ましくは0.1質量部以上、より好ましくは5質量部以上、特に好ましくは8質量部以上の範囲である。
<ガラス繊維(C)>
 本実施形態に係るPAS樹脂組成物はガラス繊維(C)(「以下、(C)成分」と略記する。)を必須成分として配合してなる。前記(C)成分は当業者に公知のものが使用可能であり、その繊維径、繊維長及びアスペクト比等は成形品の用途などに応じて適宜調整可能である。前記(C)成分を配合することで、成形性及び得られるPAS成形品の機械的特性に優れるPAS樹脂組成物が得られる。
 また、前記(C)成分を構成するガラスの組成は特に限定されないが、誘電率と誘電正接の更なる低減が可能である観点から、低誘電ガラス繊維を用いることが好ましい。前記低誘電ガラス繊維とは、一般的なEガラスに比べて比誘電率と誘電正接を低減させたガラス繊維であり、ガラス繊維成分中の酸化ホウ素比率を低減した製造方法(特公平6-39338号公報)等が開示されている。PAS樹脂組成物の比誘電率を低減させる観点から、比誘電率が5.5以下であることが好ましく、5.0以下であることがより好ましい。また、PAS樹脂組成物の誘電正接を低減させる観点から、誘電正接が0.003以下であることが好ましく、0.002以下であることがより好ましい。
 また、前記(C)成分は、表面処理剤や集束剤で加工されたものを用いることもできる。これによりPAS樹脂との接着力を向上させることができることから好ましい。前記表面処理剤又は集束剤としては、例えば、アミノ基、エポキシ基、イソシアネート基、ビニル基等の官能基を有するシラン化合物、チタネート化合物、アクリル樹脂、ウレタン樹脂、ポリエーテル樹脂及びエポキシ樹脂等からなる群から選ばれる少なくとも1種のポリマー等が挙げられ、特にウレタン樹脂を含むものであることが加工時の過剰な解繊を抑制する観点から好ましい。前記表面処理剤又は集束剤がウレタン樹脂を含む場合、その含有量について特に限定はされないが、35質量%以下の範囲であることが好ましく、20質量%以下の範囲であることがより好ましい。
 前記(C)成分の配合割合は、本発明の効果を奏する範囲において特に限定されるものではないが、より優れた機械的特性を得る観点から、前記(A)成分100質量部に対して、10質量部以上が好ましく、20量部以上がより好ましく、30質量部以上の範囲がさらに好ましい。また、誘電率や誘電正接を低減する観点から、100質量部以下が好ましく、90量部以下がより好ましく、80質量部以下の範囲がさらに好ましい。
<シランカップリング剤(D)>
 本実施形態に係るPAS樹脂組成物は、前記(A)成分、前記(B)成分、前記(C)成分以外に、必要に応じて、機械的特性を向上させる目的で、シランカップリング剤(D)(「以下、(D)成分」と略記する。)を配合することができる。前記(D)成分としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基又は水酸基を有するシランカップリング剤が好ましいものとして挙げられる。
 前記(D)成分としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。これらの化合物は、単独で用いることも2種以上を併用することもできる。
 また、前記(D)成分の市販品としては、例えば、信越化学工業株式会社製「KBM-402」、「KBM-403」、「KBE-402」、「KBE-403」、「KBM-4803」、「KBM-903」、「KBE-903」、「KBM-573」、「KBM-602」、「KBM-603」、「KBM-6803」、「KBE-9007N」、「X-12-981S」、「X-12-984S」、「X-12-972F」、「X-12-1159L」、ダウ・ケミカル社製「XIAMETER(登録商標) OFS-6011 Silane」、「XIAMETER(登録商標) OFS-6020 Silane」、「XIAMETER(登録商標) OFS-6040 Silane」等が挙げられる。
 前記(D)成分の配合割合は、本発明の効果を奏する範囲において特に限定されるものではないが、優れた成形性や金型離型性を有し、かつ得られる成形品の機械的特性が向上する観点から、前記(A)成分100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましい。また、アルコキシ基やその加水分解物等の極性基により誘電率と誘電正接が増大する観点から、3質量部以下が好ましく、1質量部以下がより好ましい。
<熱可塑性樹脂(E)>
 本実施形態に係るPAS樹脂組成物は、前記(A)成分、前記(B)成分、前記(C)成分以外に、必要に応じて、機械的特性と誘電特性をさらに向上させる目的で、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、及びフッ素樹脂からなる群から選ばれる少なくとも1つの熱可塑性樹脂(E)(「以下、(E)成分」と略記する。)を配合することができる。前記(E)成分は、単独で用いることも2種以上を併用することもできる。
 前記高密度ポリエチレン樹脂は比重0.94以上のポリエチレン樹脂であれば特に限定されず、公知の材料を用いることができ、直鎖状のものや、構造中に分岐構造を有するものを用いることができる。
 前記超高分子量ポリエチレン樹脂は分子量50万以上のポリエチレン樹脂であれば特に限定されず、公知の材料を用いることができ、直鎖状でも構造中に分岐構造を有していても良く、また、変性基を有していても良い。
 前記変性基としては、例えば、カルボキシル基、カルボキシル金属塩、アミノ基、水酸基、シラノール基、アルコキシ基、水酸基、酸無水物基、エポキシ基、イソシアネート基、メルカプト基、オキサゾリン基、スルホン酸基等が挙げられる。中でも、カルボキシル基及び水酸基が好ましく、カルボキシル基が特に好ましい。
 前記変性基を含有する化合物としては、例えば、不飽和カルボン酸又はその誘導体、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、ビニル基含有有機ケイ素化合物などの化合物が挙げられる。中でも、不飽和カルボン酸又はその誘導体、水酸基含有エチレン性不飽和化合物が好ましく、不飽和カルボン酸又はその誘導体が特に好ましい。
 前記不飽和カルボン酸又はその誘導体としては、例えば、カルボキシル基を1以上有する不飽和化合物、カルボキシル基を有する化合物とアルキルアルコールとのエステル、無水カルボキシル基を1以上有する不飽和化合物等を挙げることができる。不飽和基としては、ビニル基、ビニレン基、不飽和環状炭化水素基などを挙げることができる。これらの化合物は公知のものが使用でき、特に制限はない。具体的な化合物としては、例えばアクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、エンドシス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸等の不飽和カルボン酸又はその誘導体、例えば酸ハライド、アミド、イミド、無水物、エステル等が挙げられる。かかる誘導体の具体例としては、例えば塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエート等が挙げられる。中でも、無水マレイン酸及びアクリル酸が好ましく、無水マレイン酸は反応性が高いため特に好ましい。これらの不飽和カルボン酸及び/又はその誘導体は、単独で使用することも、2種以上を併用することもできる。
 前記フッ素樹脂は構造中にフッ素を含む合成樹脂であれば特に限定されないが、例えば、ポリテトラフルオロエチレン樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリフッ化エチレン樹脂、ペルフルオロアルコキシフッ素樹脂等が挙げられる。特に、優れた耐熱性を有し、かつ、より誘電率と誘電正接の低減が期待できる観点から、ポリテトラフルオロエチレン樹脂が好ましい。
 また、前記(E)成分の市販品としては、例えば、高密度ポリエチレン樹脂としてはBASF社製「Luwax AH 3」、「Luwax AH 6」、「Luwax OA 2」、「Luwax OA 5」、三井化学株式会社製「ハイワックス(登録商標) 100P」、「ハイワックス(登録商標) 200P」、「ハイワックス(登録商標) 400P」「ハイワックス(登録商標) 800P」、BYK社製「CERAFLOUR 950」等が挙げられ、超高分子量ポリエチレン樹脂としては三井化学株式会社製「リュブマー(登録商標) LY1040」等が挙げられ、フッ素樹脂としてはダイキン工業株式会社製「ポリフロン L-5」、「ポリフロン L-5F」、「ポリフロン L-5F」、株式会社喜多村製「KT-300M」、「KT-400M」、「KT-600M」、「KTL-450A」、「KTL-450」、「KTL-620」、「KTL-610」、「KTL-500F」、AGC株式会社製「Fluon+(登録商標) EA-2000」等が挙げられる。
 本開示において前記(E)成分は必須成分ではないが、配合する場合、その配合量は本発明の効果を損ねなければ特に限定されない。例えば、前記(A)成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上から、好ましくは25質量部以下、より好ましくは20質量部以下までの範囲である。かかる範囲において、樹脂組成物が良好な成形性、特に離型性を有し、かつ成形品の機械的特性が向上するとともに誘電率と誘電正接が低減するため好ましい。
<その他の成分>
 本実施形態に係るPAS樹脂組成物は、前記(E)成分を除く熱可塑性エラストマーを任意成分として配合することができる。当該熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらの熱可塑性エラストマーの配合量は、前記(A)成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、成形性および機械的特性、特に、耐衝撃性に優れた成形品が得られる。
 例えば、前記ポリオレフィン系エラストマーとしては、α-オレフィンの単独重合体、又は2以上のα-オレフィンの共重合体、1又は2以上のα-オレフィンと、官能基を有するビニル重合性化合物との共重合体が挙げられ、この際、前記α-オレフィンとしては、エチレン、プロピレン、1-ブテン等の炭素原子数が2以上から8以下までの範囲のα-オレフィンが挙げられる。また、前記官能基としては、カルボキシ基、酸無水物基(-C(=O)OC(=O)-)、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、オキサゾリン基等が挙げられる。そして、前記官能基を有するビニル重合性化合物としては、酢酸ビニル;(メタ)アクリル酸等のα,β-不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のα,β-不飽和カルボン酸のアルキルエステル;アイオノマー等のα,β-不飽和カルボン酸の金属塩(金属としてはナトリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、亜鉛等);グリシジルメタクリレート等のα,β-不飽和カルボン酸のグリシジルエステル等;マレイン酸、フマル酸、イタコン酸等のα,β-不飽和ジカルボン酸;前記α,β-不飽和ジカルボン酸の誘導体(モノエステル、ジエステル、酸無水物)等の1種又は2種以上が挙げられる。上述の熱可塑性エラストマーは、単独で用いても、2種以上を組み合わせて用いてもよい。
 本実施形態に係るPAS樹脂組成物は、必要に応じて、前記(C)成分以外の充填剤(以下、他の充填剤ということがある)を任意成分として配合することができる。これら他の充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、粒状や板状、繊維状のものなど、さまざまな形状の充填剤等が挙げられる。例えば、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、ガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の充填剤も使用できる。前記他の充填剤の含有量は、特に限定はされないが、より優れた機械的特性や寸法安定性の観点から、前記(A)成分100質量部に対して5質量部以上であることが好ましく、10量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。また、より優れた樹脂組成物の流動性や加工性、成形品表面の平滑性を得る観点から、前記(A)成分100質量部に対して350質量部以下であることがより好ましく、300質量部以下であることがさらに好ましく、250質量部以下であることが特に好ましい。
 更に、本実施形態に係るPAS樹脂組成物は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリールエーテルケトン樹脂、ポリアリレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂(以下、単に合成樹脂という)を任意成分として配合することができる。本開示において前記合成樹脂は必須成分ではないが、配合する場合、その配合の割合は本発明の効果を損ねなければ特に限定されるものではなく、また、それぞれの目的に応じて異なり、一概に規定することはできないが、本実施形態に係る樹脂組成物中に配合する合成樹脂の割合として、例えば前記(A)成分100質量部に対し5質量部以上の範囲であり、15質量部以下の範囲の程度が挙げられる。換言すれば、(A)成分と合成樹脂との合計に対して(A)成分の割合は質量基準で、好ましくは(100/115)以上の範囲であり、より好ましくは(100/105)以上の範囲である。
 また、本実施形態に係るPAS樹脂組成物は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、及び離型剤(ステアリン酸やモンタン酸を含む炭素原子数18~30の脂肪酸の金属塩やエステル、ポリエチレン等のポリオレフィン系ワックスなど)等の公知慣用の添加剤を必要に応じ、任意成分として配合してもよい。これらの添加剤は必須成分ではなく、例えば、前記(A)成分100質量部に対して、好ましくは0.01質量部以上の範囲であり、そして、好ましくは1000質量部以下、より好ましくは100質量部以下、さらに好ましくは10質量部以下の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。
 本実施形態に係るPAS樹脂組成物は、前記(A)成分を含む連続相中に、少なくとも前記(B)成分を含む島相が分散した海島構造を有する。前記(B)成分の平均分散径としては、機械強度の低下を抑制できる観点から、10μm以下が好ましく、5μm以下がより好ましく、海島相界面の表面積の低減することで低い誘電正接を維持できる観点から、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上が特に好ましい。なお、前記平均分散径の測定方法は、実施例にて詳述する。
<PAS樹脂組成物の製造方法>
 本実施形態に係るPAS樹脂組成物の製造方法は、前記(A)成分と、前記(B)成分と、前記(C)成分とを配合し、前記(A)成分の融点以上の温度範囲で溶融混錬する工程を有するPAS樹脂混合物の製造方法であって、前記(A)成分を含む連続相中に、前記(B)成分を含む平均分散径10μm以下の島相が分散した海島構造を形成することを特徴とする。以下、詳述する。
 本実施形態に係るPAS樹脂組成物の製造方法は、上記必須成分を配合し、前記(A)成分の融点以上の温度範囲で溶融混錬する工程を有する。より詳しくは、本実施形態に係るPAS樹脂組成物は、各必須成分、及び、必要に応じてその他の任意成分を配合してなる。本実施形態に係る樹脂組成物を製造する方法としては、特に限定されないが、必須成分と必要に応じて任意成分を配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラー又はヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる。
 溶融混錬は、樹脂温度が前記(A)成分の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは該融点+15℃以上、さらに好ましくは該融点+20℃以上から、好ましくは該融点+100℃以下、より好ましくは該融点+50℃以下までの範囲の温度に加熱して行うことができる。
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、前記成分のうち、必須成分の(C)成分は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。
 このように溶融混練して得られる本実施形態に係るPAS樹脂組成物は、前記必須成分と、必要に応じて加える任意成分及びそれらの由来成分を含む溶融混合物である。このため、本実施形態に係るPAS樹脂組成物は、前記(A)成分が連続相を形成し、前記(B)成分や任意成分が分散相を形成したモルフォロジーを有する。その際、前記(B)成分を含む分散相の平均分散径は10μm以下が好ましい。本実施形態に係るPAS樹脂組成物は、該溶融混練後に、公知の方法、例えば、溶融状態の樹脂組成物をストランド状に押出成形した後、ペレット、チップ、顆粒、粉末などの形態に加工してから、必要に応じて100~150℃の温度範囲で予備乾燥を施すことが好ましい。
<成形品、成形品の製造方法>
 本実施形態に係る成形品はPAS樹脂組成物を溶融成形してなる。また、本実施形態に係る成形品の製造方法は、前記PAS樹脂組成物を溶融成形する工程を有する。このため、本実施形態に係る成形品は、前記(A)成分が連続相を形成し、前記(B)成分や任意成分が分散されたモルフォロジーを有する。PAS樹脂組成物が、かかるモルフォロジーを有することにより、機械的特性及び誘電特性に優れた成形品が得られる。
 本実施形態に係る成形品は、同軸共振法を用いて測定した周波数10GHzにおける比誘電率が3.30以下であり、誘電正接が0.0040以下であることを特徴とする。当該周波数において比誘電率が3.30以下かつ誘電正接が0.0040以下であると、当該成形品は優れた誘電特性を有すると認められる。なお、同軸共振法による比誘電率及び誘電正接の測定は、例えば、実施例に記載の方法で行うことができる。
 本実施形態に係る成形品は、前記(A)成分を含む連続相中に、前記前記(B)成分を含む島相が分散した海島構造を有する。前記(B)成分の分散径は、10μm以下が好ましく、5μm以下がより好ましく、2μm以下がさらに好ましい。なお、前記分散径の測定は、実施例に記載の方法で行うことができる。
 本実施形態に係る成形品の引張特性は、特に限定されないが、十分な機械強度を備える観点から、引張強さが120MPa以上であることが好ましく、140MPa以上であることがより好ましく、160MPa以上であることが特に好ましい。同様に引張弾性率が8GPa以上であることが好ましく、9GPa以上であることがより好ましく、10GPa以上であることが特に好ましい。なお、引張特性の評価方法については、実施例にて詳述する。
 本実施形態に係る成形品の曲げ特性は、特に限定されないが、十分な機械強度を備える観点から、曲げ強さが180MPa以上であることが好ましく、200MPa以上であることがより好ましく、220MPa以上であることが特に好ましい。同様に曲げ弾性率が8GPa以上であることが好ましく、9GPa以上であることがより好ましく、10GPa以上であることが特に好ましい。なお、曲げ特性の評価方法については、実施例にて詳述する。
 本実施形態に係る成形品の耐衝撃特性は、特に限定されないが、十分な衝撃強度を備える観点から、ノッチ付きにおけるシャルピー衝撃強度が8kJ/cm以上であることが好ましく、9kJ/cm以上であることがより好ましく、10kJ/cm以上であることが特に好ましい。同様にノッチ無しにおけるシャルピー衝撃強度がが30kJ/cm以上であることが好ましく、35kJ/cm以上であることがより好ましく、38kJ/cm以上であることが特に好ましい。なお、耐衝撃特性の評価方法については、実施例にて詳述する。
 本実施形態に係るPAS樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度が前記(A)成分の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20℃~融点+50℃の温度範囲で前記PAS樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)~300℃、好ましくは130~190℃に設定すればよい。
 本実施形態に係る成形品の製造方法は、前記成形品にアニール処理する工程を有してもよい。アニール処理は、成形品の用途あるいは形状等により最適な条件が選ばれるが、アニール温度は前記(A)成分のガラス転移温度以上の温度範囲、好ましくは該ガラス転移温度+10℃以上の温度範囲であり、より好ましくは該ガラス転移温度+30℃以上の温度範囲である。一方、260℃以下の範囲であることが好ましく、240℃以下の範囲であることがより好ましい。アニール時間は特に限定されないが、0.5時間以上の範囲であることが好ましく、1時間以上の範囲であることがより好ましい。一方、10時間以下の範囲であることが好ましく、8時間以下の範囲であることがより好ましい。かかる範囲において、得られる成形品のひずみが低減し、かつ、樹脂の結晶性が向上するだけでなく、耐薬品性がさらに向上するため好ましい。アニール処理は空気中で行ってもよいが、窒素ガス等の不活性ガス中で行うことが好ましい。
 本実施形態に係るPAS樹脂成形品の用途としては、特に限定されるものではなく各種製品として用いることが可能であるが、高周波数帯域における比誘電率と誘電正接が低く、電磁波の誘電損失を低減できることから、例えば、ミリ波レーダー用部材、高周波アンテナ用部材等に好適である。また、この他にも、以下のような通常の樹脂成形品とすることもできる。例えば箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体又はモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディマ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、温度センサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイル及びそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品が挙げられ、その他各種用途にも適用可能である。
 以下、実施例、比較例を用いて説明するが、本発明はこれら実施例に限定されるものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。
<実施例1~15及び比較例1~5>
 表1~3に記載する組成成分及び配合量にしたがい、各材料を配合した。その後、株式会社日本製鋼所製ベント付2軸押出機「TEX-30α」にこれら配合材料を投入し、樹脂成分吐出量30kg/hr、スクリュー回転数200rpm、設定樹脂温度320℃で溶融混練して樹脂組成物のペレットを得た。(C)成分であるガラス繊維はサイドフィーダー(S/T比0.5)から投入し、それ以外の材料はタンブラーで予め均一に混合しトップフィーダーから投入した。得られた樹脂組成物のペレットを140℃ギヤオーブンで2時間乾燥した後、射出成形することで各種成形品を作製し、下記の試験を行った。
<評価>
(1)(B)成分の平均分散径の測定
 得られたペレットを凍結破断した後、クロロホルムに浸漬して(B)成分を溶解し、除去した。その後、ペレットを乾燥させてから、破断面を日本電子株式会社製走査電子顕微鏡「JSM-IT300」を用いて倍率10,000倍で観察した。(B)成分が除去されて形成された穴部の直径を測定し、20個の穴部の直径の数平均を(B)成分の平均分散径(μm)とした。(A)成分と(B)成分が形成する相構造、及び、(B)成分の分散径を表1~3に示す。
(2)引張特性の測定
 得られた樹脂組成物のペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、金型温度140℃に温調したISO Type-1Aダンベル片成形用金型を用いて射出成形を行い、ISO Type-1Aダンベル片を得た。得られたダンベル片をISO 527-1および2に準拠した方法で、引張強さ(MPa)と引張弾性率(GPa)を測定した。結果を表1~3に示す。
(3)曲げ特性の測定
 (2)と同様に作製したISO TYPE-1Aダンベルを用いて、ISO 178に準拠して曲げ強さ(MPa)と曲げ弾性率(GPa)を測定した。結果を表1~3に示す。
(4)耐衝撃特性の測定
 (2)と同様に作製したISO TYPE-1Aダンベルの中央部分を長さ80mm、幅10mm、厚さ4mmの棒状に切り出した試験片とノッチ加工した試験片を各々用意し、ISO179-1/1eA及びISO179-1/1eUに準拠して、シャルピー衝撃試験を行い衝撃強度(kJ/mm)を測定した。結果を表1~3に示す。
(5)比誘電率と誘電正接の測定
 得られたペレットをシリンダー温度320℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、金型温度150℃に温調した成形用金型を用いて射出成形を行い、寸法13cm×1.3cm×2mmの樹脂板を得た。得られた板を、#1000番の耐水研磨紙を設置した卓上研磨機を用いて水研ぎすることで樹脂板表面を平滑に整えた。超音波洗浄機により樹脂板表面の研磨くずを除去した後、ギヤオーブンを用いて120℃で2時間乾燥し、デシケーター内で放冷することで試験片を得た。測定にはAET株式会社製開放型同軸共振機を使用し、室温(23℃)で周波数10GHzにおける誘電率と誘電正接を測定した。石英ガラス板及びテフロン(登録商標)製樹脂板を標準サンプルとして校正し、同一試験片内5点の平均値を値として用いた。結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
・(A)成分
PPS樹脂
a-1:直鎖型、溶融粘度(V6)62Pa・s
a-2:架橋型、溶融粘度(V6)120Pa・s
・(B)成分
b-1:日本ゼオン株式会社製 「ZEONOR(登録商標) 1420R」、ガラス転移点136℃
b-2:三井化学株式会社製 「APEL(登録商標) APL6015T」、ガラス転移点145℃
・(C)成分
c-1:CPIC社製 「ECS339AK-3」、平均繊維長3mm、平均繊維径13μm
c-2:日本電気硝子株式会社製 「DCS03T-187H」、平均繊維長3.5mm、平均繊維径10μm
c-3:日本電気硝子株式会社製 「CS03T-725H」、平均繊維長3mm、平均繊維径10μm
・(D)成分
d-1:ダウ・ケミカル社製 「XIAMETER(登録商標) OFS-6040」
・(E)成分
e-1:BASF社製 「Luwax AH-6」
e-2:三井化学株式会社製 「リュブマー(登録商標) LY1040」
e-3:株式会社喜多村製 「KTL-610」
 表1~3から、実施例の樹脂組成物から得られた成形品は比較例と対比して、低誘電率と低誘電正接と高い機械的特性をバランスよく有することが認められた。また、(E)成分である熱可塑性樹脂を含む場合、さらに耐衝撃性に優れることが認められた。

Claims (13)

  1.  ポリアリーレンスルフィド樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合してなるポリアリーレンスルフィド樹脂組成物であって、
     前記ポリアリーレンスルフィド樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成する、ポリアリーレンスルフィド樹脂組成物。
  2.  前記環状オレフィン系重合体(B)の配合量が、ポリアリーレンスルフィド樹脂(A)100質量部に対して0.1~50質量部である、請求項1記載のポリアリーレンスルフィド樹脂組成物。
  3.  さらに、シランカップリング剤(D)を配合してなる、請求項1又は2記載のポリアリーレンスルフィド樹脂組成物。
  4.  さらに、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、及びフッ素樹脂からなる群から選ばれる少なくとも1つの熱可塑性樹脂(E)を配合してなる、請求項1又は2のいずれか一項記載のポリアリーレンスルフィド樹脂組成物。
  5.  請求項1又は2のいずれか一項記載の樹脂組成物を溶融成形してなる成形品。
  6.  比誘電率が3.30以下かつ誘電正接が0.0040以下であることを特徴とする、請求項5記載の成形品。
    (ただし、同軸共振法を用いて測定した周波数10GHzにおける値とする。)
  7.  請求項5又は6記載の成形品からなる、ミリ波レーダー用レドーム及び高周波アンテナ用部材。
  8.  ポリアリーレンスルフィド樹脂(A)と、環状オレフィン系重合体(B)と、ガラス繊維(C)とを配合し、ポリアリーレンスルフィド樹脂(A)の融点以上の温度範囲で溶融混錬する工程を有するポリアリーレンスルフィド樹脂混合物の製造方法であって、
     前記ポリアリーレンスルフィド樹脂(A)を含む連続相中に、前記環状オレフィン系重合体(B)を含む島相が分散した海島構造を形成する、ポリアリーレンスルフィド樹脂組成物の製造方法。
  9.  前記環状オレフィン系重合体(B)の配合量が、ポリアリーレンスルフィド樹脂(A)100質量部に対して0.1~50質量部である、請求項8記載のポリアリーレンスルフィド樹脂組成物の製造方法。
  10.  さらに、シランカップリング剤(D)を配合する、請求項8又は9記載のポリアリーレンスルフィド樹脂組成物の製造方法。
  11.  さらに、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、及びフッ素樹脂からなる群から選ばれる少なくとも1つの熱可塑性樹脂(E)を配合する、請求項8又は9のいずれか一項記載のポリアリーレンスルフィド樹脂組成物の製造方法。
  12.  請求項8又は9記載の製造方法でポリアリーレンスルフィド樹脂組成物を製造する工程、得られたポリアリーレンスルフィド樹脂組成物を溶融成形する工程を有する、成形品の製造方法。
  13.  比誘電率が3.30以下かつ誘電正接が0.0040以下であることを特徴とする、請求項12記載の成形品の製造方法。(ただし、同軸共振法を用いて測定した周波数10GHzにおける値とする。)
PCT/JP2023/014954 2022-05-12 2023-04-13 ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法 WO2023218851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543158A JPWO2023218851A1 (ja) 2022-05-12 2023-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022078738 2022-05-12
JP2022-078738 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023218851A1 true WO2023218851A1 (ja) 2023-11-16

Family

ID=88730166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014954 WO2023218851A1 (ja) 2022-05-12 2023-04-13 ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法

Country Status (2)

Country Link
JP (1) JPWO2023218851A1 (ja)
WO (1) WO2023218851A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306287A (ja) * 1993-02-23 1994-11-01 Japan Synthetic Rubber Co Ltd 耐熱難燃樹脂組成物
JPH06345965A (ja) * 1993-06-04 1994-12-20 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH08337720A (ja) * 1995-04-12 1996-12-24 Japan Synthetic Rubber Co Ltd 熱可塑性耐熱樹脂組成物
JPH1112466A (ja) * 1997-06-20 1999-01-19 Jsr Corp 熱可塑性樹脂組成物
JP2004149648A (ja) * 2002-10-30 2004-05-27 Polyplastics Co ポリアリーレンサルファイド樹脂組成物及び成形品
WO2017131028A1 (ja) * 2016-01-26 2017-08-03 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306287A (ja) * 1993-02-23 1994-11-01 Japan Synthetic Rubber Co Ltd 耐熱難燃樹脂組成物
JPH06345965A (ja) * 1993-06-04 1994-12-20 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH08337720A (ja) * 1995-04-12 1996-12-24 Japan Synthetic Rubber Co Ltd 熱可塑性耐熱樹脂組成物
JPH1112466A (ja) * 1997-06-20 1999-01-19 Jsr Corp 熱可塑性樹脂組成物
JP2004149648A (ja) * 2002-10-30 2004-05-27 Polyplastics Co ポリアリーレンサルファイド樹脂組成物及び成形品
WO2017131028A1 (ja) * 2016-01-26 2017-08-03 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびその製造方法

Also Published As

Publication number Publication date
JPWO2023218851A1 (ja) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6809083B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP6624204B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
WO2013141364A1 (ja) ポリアリーレンスルフィド樹脂組成物および成形体
JP6797360B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
JP7136381B1 (ja) ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂組成物の製造方法、成形品、成形品の製造方法
JP7136372B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7024932B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP2017066344A (ja) ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
WO2023218851A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
JP6876261B2 (ja) 樹脂組成物およびその成形体
JP7136394B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7453635B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7311051B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
JP7107466B1 (ja) ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂組成物の製造方法、成形品、成形品の製造方法
WO2020080289A1 (ja) 樹脂組成物およびその成形体
JP7334873B1 (ja) ポリアリーレンスルフィド樹脂混合物、樹脂組成物及び成形品ならびにそれらの製造方法
WO2023218850A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7070811B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
US12054591B2 (en) Poly(arylene sulfide) resin composition, molded article, composite molded article, and methods respectively for producing said products
WO2022215395A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
JP7298796B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
JP2017088878A (ja) ポリアリーレンスルフィド樹脂組成物および成形品
WO2023157412A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
WO2024004389A1 (ja) ギヤ機構、ロボット用アーム機構、及びロボット
WO2024080093A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023543158

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803333

Country of ref document: EP

Kind code of ref document: A1