WO2023216608A1 - 正极浆料、正极极片和锂电池 - Google Patents

正极浆料、正极极片和锂电池 Download PDF

Info

Publication number
WO2023216608A1
WO2023216608A1 PCT/CN2022/141259 CN2022141259W WO2023216608A1 WO 2023216608 A1 WO2023216608 A1 WO 2023216608A1 CN 2022141259 W CN2022141259 W CN 2022141259W WO 2023216608 A1 WO2023216608 A1 WO 2023216608A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
cathode
slurry according
Prior art date
Application number
PCT/CN2022/141259
Other languages
English (en)
French (fr)
Inventor
屈仁杰
Original Assignee
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门海辰储能科技股份有限公司 filed Critical 厦门海辰储能科技股份有限公司
Priority to EP22941541.9A priority Critical patent/EP4336600A1/en
Publication of WO2023216608A1 publication Critical patent/WO2023216608A1/zh
Priority to US18/531,744 priority patent/US20240105953A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the field of batteries, and specifically relates to a positive electrode slurry, a positive electrode sheet and a lithium battery.
  • one purpose of the present disclosure is to propose a positive electrode slurry, a positive electrode sheet and a lithium battery.
  • the functional additive is strongly adsorbed on the positive electrode through interactions such as ionic bonds, covalent bonds or hydrogen bonds.
  • the surface of the active material particles that is, a coating layer is formed on the surface of the positive electrode active material particles. This coating layer inhibits the strong force between the water-based binder and the positive electrode active material particles, thereby effectively improving the slurry homogenization process that easily produces gel. The problem.
  • the present disclosure provides a cathode slurry.
  • the cathode slurry includes a cathode active material, a conductive agent, an aqueous binder and a functional additive, wherein the functional additive has -NR 3+ , -SO 3 2- , -PO 4 3 At least one of - , -CO-, -O- and -NH 2 , R is an alkyl group.
  • the functional additives include one or more of the following groups: -NR 3+ , -SO 3 2- , -PO 4 3- , -CO -, -O- and -NH 2 ), during the mixing process of the cathode slurry, these functional additives are strongly adsorbed on the surface of the cathode active material particles through interactions such as ionic bonds, covalent bonds or hydrogen bonds, that is, on the cathode active material particles A coating layer is formed on the surface, which inhibits the strong interaction between the water-based binder and the positive electrode active material particles, thereby effectively improving the problem of gel formation during the slurry homogenization process.
  • the above-mentioned positive electrode slurry which includes a water-based binder and functional additives mixed with positive electrode active particles and conductive agent, is coated on the surface of the positive electrode current collector to form a positive electrode piece. Due to the special functional group structure in the functional additive, the increase in It improves the dispersion ability between the positive active material particles and the binder. At the same time, its low molecular weight can self-repair the gaps caused by solvent evaporation and reduce the shrinkage stress when the slurry is dried, making the positive electrode sheet soft while maintaining excellent bonding properties.
  • the positive electrode slurry of the present disclosure uses water as the solvent. It effectively reduces environmental pollution and eliminates health risks for workers.
  • cathode slurry according to the above embodiments of the present disclosure may also have the following additional technical features:
  • the mass ratio of the aqueous binder and the functional additive is 1: (0.02 ⁇ 0.1). This effectively improves the problem of gel formation during the homogenization process of the positive electrode slurry.
  • the aqueous binder is acrylic, acrylonitrile, methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, methacrylic acid, and acrylamide At least one of them is aggregated. This reduces costs and eliminates health risks for workers.
  • the water-based adhesive is copolymerized with butyl acrylate, acrylonitrile and acrylamide. This reduces costs and eliminates health risks for workers.
  • the functional additive has a molecular weight of 200 to 100,000. This effectively improves the problem of gel formation during the homogenization process of the positive electrode slurry.
  • the functional additive has a molecular weight of 10,000 to 30,000. This effectively improves the problem of gel formation during the homogenization process of the positive electrode slurry.
  • the functional additive includes at least one of polyamine, polyvinylpyrrolidone, and polyether. This effectively improves the problem of gel formation during the homogenization process of the positive electrode slurry.
  • the mass ratio of the cathode active material, the conductive agent and the aqueous binder and the functional additive is (94 ⁇ 98): (0.5 ⁇ 6): (2 ⁇ 5).
  • the D50 of the cathode active material is 0.2 ⁇ 1.5 ⁇ m.
  • the cathode active material includes lithium nickelate, lithium manganate, lithium cobaltate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium iron phosphate, lithium nickel cobalt aluminum oxide, and nickel cobalt manganese At least one of the lithium oxides.
  • the conductive agent includes at least one of acetylene black, Super P, carbon nanotubes, graphene, and conductive carbon fiber.
  • the present disclosure provides a positive electrode plate.
  • the positive electrode plate includes:
  • a positive electrode active material layer is formed on the surface of the positive electrode current collector, and the positive electrode active material layer is formed using the above-mentioned positive electrode slurry.
  • the cathode slurry including the water-based binder, functional additives, cathode active particles and conductive agent is coated on the surface of the cathode current collector to form a cathode plate. Due to the special functional group structure in the functional additive, the cathode active material is increased
  • the dispersion ability between the particles and the binder, and its low molecular weight can self-repair the gaps where the solvent evaporates, reducing the shrinkage stress when the slurry is dried, making the positive electrode piece soft and tough while maintaining excellent bonding properties.
  • the mechanical properties of the pole piece are improved, and problems such as floating powder and winding fragments that are easily generated when the pole piece is cut are avoided, ensuring the electrical performance of the lithium-ion battery.
  • the positive electrode slurry of the present disclosure uses water as the solvent, which effectively reduces environmental pollution. pollution and eliminate health hazards for workers.
  • the present disclosure provides a lithium battery.
  • the lithium battery includes the above-mentioned positive electrode sheet. As a result, the lithium battery has low internal resistance and excellent cycle performance.
  • the present disclosure provides a cathode slurry.
  • the cathode slurry includes a cathode active material, a conductive agent, an aqueous binder and a functional additive, wherein the functional additive has -NR 3+ , -SO 3 2- , -PO 4 3- , At least one of -CO-, -O- and -NH 2 , R is an alkyl group.
  • the functional additives include one or more of the following groups: -NR 3+ , -SO 3 2- , -PO 4 3- , - CO-, -O- and -NH 2 ), during the mixing process of the cathode slurry, these functional additives are strongly adsorbed on the surface of the cathode active material particles through interactions such as ionic bonds, covalent bonds or hydrogen bonds, that is, on the cathode active material A coating layer is formed on the surface of the particles, which inhibits the strong interaction between the water-based binder and the positive active material particles, thereby effectively improving the problem of gel formation during the slurry homogenization process.
  • the functional additives include one or more of the following groups: -NR 3+ , -SO 3 2- , -PO 4 3- , - CO-, -O- and -NH 2
  • the above-mentioned positive electrode slurry which includes a water-based binder and functional additives mixed with positive electrode active particles and conductive agent, is coated on the surface of the positive electrode current collector to form a positive electrode piece. Due to the special functional group structure in the functional additive, the increase in It improves the dispersion ability between the positive active material particles and the binder. At the same time, its low molecular weight can self-repair the gaps caused by solvent evaporation and reduce the shrinkage stress when the slurry is dried, making the positive electrode sheet soft while maintaining excellent bonding properties.
  • the properties and toughness improve the mechanical properties of the pole piece, avoid problems such as floating powder and winding fragments that are easily generated when the pole piece is cut, and ensure the electrical performance of the lithium-ion battery.
  • the positive electrode slurry of the present disclosure uses water as the solvent, which is effective It reduces environmental pollution and eliminates health risks for workers.
  • the mass ratio of the aqueous binder and the functional additive in the above-mentioned positive electrode slurry is 1: (0.02 ⁇ 0.1).
  • the above-mentioned water-based adhesive is polymerized by at least one of acrylic acid, acrylonitrile, methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, methacrylic acid and acrylamide.
  • the water-based adhesive is copolymerized with butyl acrylate, acrylonitrile and acrylamide.
  • the water-based viscous binder obtained by this combination can make the pole piece have high adhesive force and further improve the flexibility of the pole piece as the amount of soft monomer added increases.
  • the molar ratio of butyl acrylate, acrylonitrile and acrylamide in the copolymerized water-based binder is (40 ⁇ 60): (20 ⁇ 40): (10 ⁇ 30).
  • the molecular weight of the above-mentioned functional additive is 200 to 100,000, such as 10,000 to 30,000.
  • the inventor found that if the molecular weight of the functional additive is too high, the pole piece cannot effectively fill the solvent gaps when drying, and it is easy to shrink, causing the pole piece to warp or crack; and if the molecular weight of the functional additive is too low, it may form with the solvent. The evaporation is taken away and cannot play a toughening role. Therefore, by using functional additives with the above molecular weight range, the pole pieces can be toughened while avoiding warping or cracking of the pole pieces.
  • the above-mentioned functional additives include but are not limited to at least one of polyamine, polyvinylpyrrolidone and polyether.
  • the mass ratio of the sum of the cathode active material, conductive agent, aqueous binder and functional additives in the above-mentioned cathode slurry is (94 ⁇ 98): (0.5 ⁇ 6): (2 ⁇ 5) .
  • the D50 of the positive electrode active material is 0.2 ⁇ m to 1.5 ⁇ m, and the positive electrode active material includes but is not limited to lithium nickel oxide, lithium manganate, lithium cobalt oxide, lithium manganese phosphate, lithium vanadium phosphate, lithium iron phosphate, and nickel cobalt aluminum. At least one of lithium oxide and nickel cobalt manganese lithium oxide; the conductive agent includes but is not limited to at least one of acetylene black, Super P, carbon nanotubes, graphene and conductive carbon fiber.
  • the present disclosure provides a positive electrode plate.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is formed on the surface of the positive electrode current collector, and the positive electrode active material layer is formed using the above-mentioned positive electrode slurry.
  • the dispersion ability between the positive active material particles and the binder, and its low molecular weight can self-repair the gaps caused by solvent evaporation and reduce the shrinkage stress when the slurry is dried, making the positive electrode sheet flexible while maintaining excellent bonding properties.
  • toughness which improves the mechanical properties of the pole piece, avoids problems such as floating powder and winding fragments that are easily generated when the pole piece is cut, and ensures the electrical performance of the lithium-ion battery.
  • the positive electrode slurry of the present disclosure uses water as the solvent, which is effective It reduces environmental pollution and eliminates health risks for workers.
  • the present disclosure provides a lithium battery.
  • the lithium battery includes the above-mentioned positive electrode sheet. As a result, the lithium battery has low internal resistance and excellent cycle performance.
  • the positive electrode slurry includes: 96.5wt% lithium iron phosphate, 2.5wt% binder and 1wt% acetylene black, of which the D50 of lithium iron phosphate is 1.2 ⁇ m, and the binder includes water-based binder polyacrylic acid and functional additives Polyvinylpyrrolidone, and the mass ratio of polyacrylic acid and functional additive polyvinylpyrrolidone is 1:0.07, and the molecular weight distribution width of polyvinylpyrrolidone is between 12,000 and 15,000;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 96.5wt% lithium iron phosphate, 2.5wt% binder and 1wt% acetylene black, of which the D50 of lithium iron phosphate is 1.2 ⁇ m, and the binder includes water-based binder polyacrylic acid and functional additives Polyvinylpyrrolidone, and the mass ratio of polyacrylic acid and functional additive polyvinylpyrrolidone is 1:0.07, and the molecular weight distribution width of polyvinylpyrrolidone is between 20,000 and 30,000;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 96.5wt% lithium iron phosphate, 2.5wt% binder and 1wt% acetylene black, of which the D50 of lithium iron phosphate is 1.2 ⁇ m, and the binder includes water-based binder polyacrylic acid and functional additives Polyvinylpyrrolidone, and the mass ratio of polyacrylic acid and functional additive polyvinylpyrrolidone is 1:0.1, and the molecular weight distribution width of polyvinylpyrrolidone is between 12,000 and 15,000;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 96.8wt% lithium iron phosphate, 2wt% binder and 1.2wt% acetylene black, in which the D50 of lithium iron phosphate is 0.8 ⁇ m, and the binder includes water-based binder (butyl acrylate, Acrylonitrile and acrylamide copolymerized) and functional additive sodium lauroyl glutamate, and the mass ratio of water-based binder and functional additive is 1:0.07;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 96.8wt% lithium iron phosphate, 2wt% binder and 1.2wt% acetylene black, in which the D50 of lithium iron phosphate is 0.8 ⁇ m, and the binder includes water-based binder (butyl acrylate, Copolymerized acrylonitrile and acrylamide) and functional additive sodium alkyl benzene sulfonate; and the mass ratio of water-based binder and functional additive is 1:0.07;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 95.5wt% lithium iron phosphate, 2.8wt% binder and 1.7wt% acetylene black, where the D50 of lithium iron phosphate is 0.8 ⁇ m, and the binder includes a water-based binder (butyl acrylate , acrylonitrile and acrylamide copolymer) and functional additive isomer alcohol phosphate, and the mass ratio of water-based binder and functional additive is 1:0.07;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 95.5wt% lithium iron phosphate, 2.8wt% binder and 1.7wt% acetylene black, where the D50 of lithium iron phosphate is 0.8 ⁇ m, and the binder includes a water-based binder (butyl acrylate , acrylonitrile and acrylamide copolymerized) and functional additive polyether, and the mass ratio of water-based binder and functional additive is 1:0.07, and the molecular weight distribution width of functional additive is between 18,000 and 25,000;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive electrode slurry includes: 95.5wt% lithium iron phosphate, 2.8wt% binder and 1.7wt% acetylene black, where the D50 of lithium iron phosphate is 0.8 ⁇ m, and the binder includes a water-based binder (butyl acrylate , acrylonitrile and acrylamide copolymer) and functional additive diethylenetriamine, and the mass ratio of water-based binder and functional additive is 1:0.07, and the molecular weight distribution width of functional additive is 18000 ⁇ 25000;
  • the method of preparing the positive electrode sheet is as follows: coating the above-mentioned positive electrode slurry on both surfaces of the aluminum foil, and cold pressing after the coating is completed, the positive active material layer can be formed on the surface of the aluminum foil (the thickness of the double-sided coating is 240 ⁇ m);
  • Battery core preparation Use the above-mentioned positive electrode sheet as the positive electrode, graphite as the negative electrode, PP film as the separator, and the electrolyte to assemble the battery core using commercial ordinary lithium iron phosphate electrolyte.
  • the positive active material is lithium cobalt oxide
  • the conductive agent is graphene
  • the water-based binder is polymethyl acrylate
  • the rest is the same as in Example 8.
  • the positive active material is nickel cobalt manganese lithium oxide
  • the conductive agent is carbon nanotubes
  • the water-based binder is polymethacrylic acid
  • the rest is the same as in Example 8.
  • the water-based binder is polyacrylamide, and the rest is the same as in Example 8.
  • the water-based binder is a copolymer of acrylic acid and acrylonitrile, and the rest is the same as in Example 8.
  • the water-based adhesive is a copolymer of methyl acrylate and acrylamide, and the rest is the same as in Example 8.
  • the positive electrode slurry includes: 96.5wt% lithium iron phosphate, 2.5wt% binder polyacrylic acid and 1wt% acetylene black, in which the D50 of lithium iron phosphate is 1.2 ⁇ m, and the rest is the same as in Example 1.
  • the positive electrode slurry includes: 96.5wt% lithium iron phosphate, 2.5wt% binder (copolymerized with butyl acrylate, acrylonitrile and acrylamide) and 1wt% acetylene black, of which the D50 of lithium iron phosphate is 1.2 ⁇ m, and the rest are the same as in Example 1.
  • Table 1 The positive electrode slurry state, positive electrode sheet flexibility, positive electrode sheet peeling force, and cell DCR obtained in Examples 1-13 and Comparative Examples 1-2
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正极浆料、正极极片和锂电池。正极浆料包括正极活性材料、导电剂、水性粘结剂和功能添加剂,其中功能添加剂具有-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2中的至少之一,R为烷基。

Description

正极浆料、正极极片和锂电池
优先权信息
本公开请求于2022年5月11日向中国国家知识产权局提交的、专利申请号为202210512735.7、申请名称为“正极浆料、正极极片和锂电池”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开属于电池领域,具体涉及一种正极浆料、正极极片和锂电池。
背景技术
传统的锂离子电池正极材料通常采用聚偏氟乙烯作为粘合剂,需要采用有机溶剂溶解后再涂覆于集流体上,有机溶剂不仅成本高昂,其在涂布过程中伴随着有机溶剂的挥发,不仅会影响作业人员的身体健康还会造成环境污染,通常企业解决环境污染问题及为降低成本,电池厂通常会自己设置有机溶剂回收塔;虽然成本会一定程度降低,但随着电芯技术的发展,成本依然不理想。
近几年来,越来越多的研发人员试图将锂离子电池正极油性体系替换成水性体系,常见的即采用水性粘合剂,但单组份正极水性粘结剂的水性正极体系匀浆难度高,通常匀浆结束10分钟内即产生凝胶,难以进行涂布工序,且涂布的极片偏脆硬,冷压压密较低,且卷绕难度大,卷绕电芯内折容易折断,影响极片的机械性能,进而影响锂离子电池的电化学性能。
因此,现有的正极浆料有待改进。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种正极浆料、正极极片和锂电池,在正极浆料混合过程中,功能添加剂通过离子键、共价键或氢键等相互作用强力吸附于正极活性材料颗粒表面,即在正极活性材料颗粒表面形成包覆层,该包覆层抑制了水性粘结剂与正极活性材料颗粒间的强作用力,从而有效改善浆料匀浆过程易产生凝胶的问题。
在本公开的一个方面,本公开提出了一种正极浆料。根据本公开的实施例,所述正极浆料包括正极活性材料、导电剂、水性粘结剂和功能添加剂,其中,所述功能添加剂具有-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2中的至少之一,R为烷基。
由此,通过在正极浆料中添加水性粘结剂和功能添加剂(功能添加剂包含以下基团的一种或几种:-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2),在正极浆料混合过程中,这些功能添加剂通过离子键、共价键或氢键等相互作用强力吸附于正极活性材料颗粒表面,即在正极活性材料颗粒表面形成包覆层,该包覆层抑制了水性粘结剂与正极活性材料颗粒间的强作用力,从而有效改善浆料匀浆过程易产生凝胶的问题。同时将上述包括水性粘结剂和功能添加剂的粘结剂与正极活性颗粒和导电剂混合的正极浆料涂覆在正极集流体表面形成正极极片,因功能型添加剂中特殊的官能团结构,增加了正极活性材料颗粒与粘结剂之间的分散能力,同时其低分子量能自修复溶剂蒸发的空隙,降低浆料干燥时的收缩应力,使得正极极片在保持优良粘结性能的同时具有柔软性以及韧性,提高了极片的机械性能,避免了极片分切时容易产生浮粉、卷绕断片等问题,保证了锂离子电池的电性能,同时本公开的正极浆料以水为溶剂,有效降低了环境污染,消除了作业人员的健康隐患。
另外,根据本公开上述实施例的正极浆料还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述水性粘结剂和所述功能添加剂的质量比为1:(0.02~0.1)。由此,有效改善正极浆料匀浆过程易产生凝胶的问题。
在本公开的一些实施例中,所述水性粘结剂采用丙烯酸、丙烯腈、甲基丙烯酸甲酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸羟乙酯、甲基丙烯酸和丙烯酰胺中至少一种聚合而成。由此,在降低成本的同时消除了作业人员的健康隐患。
在本公开的一些实施例中,所述水性粘结剂采用丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成。由此,在降低成本的同时消除了作业人员的健康隐患。
在本公开的一些实施例中,所述功能添加剂的分子量为200~100000。由此,有效改善正极浆料匀浆过程易产生凝胶的问题。
在本公开的一些实施例中,所述功能添加剂的分子量为10000~30000。由此,有效改善正极浆料匀浆过程易产生凝胶的问题。
在本公开的一些实施例中,所述功能添加剂包括多元胺、聚乙烯吡咯烷酮和聚醚中的至少之一。由此,有效改善正极浆料匀浆过程易产生凝胶的问题。
在本公开的一些实施例中,所述正极活性材料、所述导电剂与所述水性粘结剂和所述功能添加剂总和的质量比为(94~98):(0.5~6):(2~5)。
在本公开的一些实施例中,所述正极活性材料的D50为0.2~1.5μm。
在本公开的一些实施例中,所述正极活性材料包括镍酸锂、锰酸锂、钴酸锂、磷酸锰铁锂、磷酸钒锂、磷酸铁锂、镍钴铝锂氧化物和镍钴锰锂氧化物中至少之一。
在本公开的一些实施例中,所述导电剂包括乙炔黑、Super P、碳纳米管、石墨烯和导电碳纤维中的至少之一。
在本公开的第二个方面,本公开提出了一种正极极片。根据本公开的实施例,所述正极极片包括:
正极集流体;
正极活性物质层,所述正极活性物质层形成在所述正极集流体的表面上,并且所述正极活性物质层采用上述的正极浆料形成。
由此,将包括水性粘结剂、功能添加剂、正极活性颗粒和导电剂的正极浆料涂覆在正极集流体表面形成正极极片,因功能型添加剂中特殊的官能团结构,增加了正极活性材料颗粒与粘结剂之间的分散能力,同时其低分子量能自修复溶剂蒸发的空隙,降低浆料干燥时的收缩应力,使得正极极片在保持优良粘结性能的同时具有柔软性以及韧性,提高了极片的机械性能,避免了极片分切时容易产生浮粉、卷绕断片等问题,保证了锂离子电池的电性能,同时本公开的正极浆料以水为溶剂,有效降低了环境污染,消除了作业人员的健康隐患。
在本公开的第三个方面,本公开提出了一种锂电池。根据本公开的实施例,所述锂电池包括上述的正极极片。由此,该锂电池具有较低的内阻以及优异的循环性能。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
具体实施方式
下面详细描述本公开的实施例,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种正极浆料。根据本公开的实施例,该正极浆料包括正极活性材料、导电剂、水性粘结剂和功能添加剂,其中所述功能添加剂具有-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2中的至少之一,R为烷基。
发明人发现,通过在正极浆料中添加水性粘结剂和功能添加剂(功能添加剂包含以下基团的一种或几种:-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2),在正极浆料混合过程中,这些功能添加剂通过离子键、共价键或氢键等相互作用强力吸附于正极活性材料颗粒表面,即在正极活性材料颗粒表面形成包覆层,该包覆层抑制了水性粘结剂与正极活性材料颗粒间的强作用力,从而有效改善浆料匀浆过程易产生凝胶的问题。同时将上述包括水性粘结剂和功能添加剂的粘结剂与正极活性颗粒和导电剂混合的正极浆料涂覆在正极集流体表面形成正极极片,因功能型添加剂中特殊的官能团结构,增加了正极活性材料颗粒与粘结剂之间的分散能力,同时其低分子量能自修复溶剂蒸发的空隙,降低浆料干燥时的收缩应力,使得正极极片在保持优良粘结性能的同时具有柔软性以及韧性提高了极片的机械性能,避免了极片分切时容易产生浮粉、卷绕断片等问题,保证了锂离子电池的电性能,同时本公 开的正极浆料以水为溶剂,有效降低了环境污染,消除了作业人员的健康隐患。
根据本公开的实施例,上述正极浆料中水性粘结剂和功能添加剂的质量比为1:(0.02~0.1)。发明人发现,若水性粘结剂加入量过高,浆料凝胶改善不明显,若水性粘结剂加入量过低,浆料稳定性会受影响;若功能添加剂加入量过高,极片粘结力会损失,若功能添加剂加入量过低,凝胶改善和极片韧性改善不足。由此,将水性粘结剂和功能添加剂按照上述配比进行搭配,可以在提高正极浆料稳定性的同时改善浆料凝胶和极片韧性。进一步地,上述水性粘结剂采用丙烯酸、丙烯腈、甲基丙烯酸甲酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸羟乙酯、甲基丙烯酸和丙烯酰胺中至少一种聚合而成,例如,所述水性粘结剂采用丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成。发明人发现,此种搭配得到的水性粘性粘结剂可以使得极片在拥有高粘结力的同时随着软单体的添加量增加,能进一步提升极片的柔韧性。同时,共聚的水性粘结剂中丙烯酸丁酯、丙烯腈和丙烯酰胺的摩尔比为(40~60):(20~40):(10~30)。
根据本公开的实施例,上述功能添加剂的分子量为200~100000,例如10000~30000。发明人发现,若功能添加剂的分子量过高,极片烘干时无法有效填充溶剂空隙,且自身容易收缩,造成极片翘曲或开裂;而若功能添加剂的分子量过低,可能会随着溶剂的蒸发被带走,无法起到增韧的作用。由此,通过采用上述分子量范围的功能添加剂,可以在避免极片翘曲或开裂的同时对极片进行增韧。进一步地,上述功能添加剂包括但不限于多元胺、聚乙烯吡咯烷酮和聚醚中的至少之一。
根据本公开的实施例,上述正极浆料中正极活性材料、导电剂、水性粘结剂和功能添加剂二者总和的质量比为(94~98):(0.5~6):(2~5)。进一步地,正极活性材料的D50为0.2μm~1.5μm,并且正极活性材料包括但不限于镍酸锂、锰酸锂、钴酸锂、磷酸锰锂、磷酸钒锂、磷酸铁锂、镍钴铝锂氧化物和镍钴锰锂氧化物中至少之一;导电剂包括但不限于乙炔黑、Super P、碳纳米管、石墨烯和导电碳纤维中的至少之一。
在本公开的第二个方面,本公开提出了一种正极极片。根据本公开的实施例,所述正极极片包括正极集流体和正极活性物质层,正极活性物质层形成在正极集流体的表面上,并且正极活性物质层采用上述的正极浆料形成。发明人发现,通过将上述包括水性粘结剂、功能添加剂、正极活性颗粒和导电剂的正极浆料涂覆在正极集流体表面形成正极极片,因功能型添加剂中特殊的官能团结构,增加了正极活性材料颗粒与粘结剂之间的分散能力,同时其低分子量能自修复溶剂蒸发的空隙,降低浆料干燥时的收缩应力,使得正极极片在保持优良粘结性能的同时具有柔软性以及韧性,提高了极片的机械性能,避免了极片分切时容易产生浮粉、卷绕断片等问题,保证了锂离子电池的电性能,同时本公开的正极浆料以水为溶剂,有效降低了环境污染,消除了作业人员的健康隐患。
需要说明的是,上述针对正极浆料所描述的特征和优点同样适用于该正极极片,此处不再赘述。
在本公开的第三个方面,本公开提出了一种锂电池。根据本公开的实施例,所述锂电池包括上述的正极极片。由此,该锂电池具有较低的内阻以及优异的循环性能。
需要说明的是,上述针对正极极片所描述的特征和优点同样适用于该锂电池,此处不再赘述。
下面详细描述本公开的实施例,需要说明的是下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。另外,如果没有明确说明,在下面的实施例中所采用的所有试剂均为市场上可以购得的,或者可以按照本文或已知的方法合成的,对于没有列出的反应条件,也均为本领域技术人员容易获得的。
实施例1
正极浆料包括:96.5wt%的磷酸铁锂、2.5wt%的粘结剂和1wt%的乙炔黑,其中,磷酸铁锂D50为1.2μm,粘结剂包括水性粘结剂聚丙烯酸和功能添加剂聚乙烯吡咯烷酮,并且聚丙烯酸和功能添加剂聚乙烯吡咯烷酮的质量比为1:0.07,聚乙烯吡咯烷酮的分子量分布宽度在12000~15000;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例2
正极浆料包括:96.5wt%的磷酸铁锂、2.5wt%的粘结剂和1wt%的乙炔黑,其中,磷酸铁锂D50为1.2μm,粘结剂包括水性粘结剂聚丙烯酸和功能添加剂聚乙烯吡咯烷酮,并且聚丙烯酸和功能添加剂聚乙烯吡咯烷酮的质量比为1:0.07,聚乙烯吡咯烷酮的分子量分布宽度在20000~30000;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例3
正极浆料包括:96.5wt%的磷酸铁锂、2.5wt%的粘结剂和1wt%的乙炔黑,其中,磷酸铁锂D50为1.2μm,粘结剂包括水性粘结剂聚丙烯酸和功能添加剂聚乙烯吡咯烷酮,并且 聚丙烯酸和功能添加剂聚乙烯吡咯烷酮的质量比为1:0.1,聚乙烯吡咯烷酮的分子量分布宽度在12000~15000;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例4
正极浆料包括:96.8wt%的磷酸铁锂、2wt%的粘结剂和1.2wt%的乙炔黑,其中,磷酸铁锂D50为0.8μm,粘结剂包括水性粘结剂(丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和功能添加剂月桂酰谷氨酸钠,并且水性粘结剂和功能添加剂的质量比为1:0.07;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例5
正极浆料包括:96.8wt%的磷酸铁锂、2wt%的粘结剂和1.2wt%的乙炔黑,其中,磷酸铁锂D50为0.8μm,粘结剂包括水性粘结剂(丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和功能添加剂烷基苯磺酸钠;并且水性粘结剂和功能添加剂的质量比为1:0.07;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例6
正极浆料包括:95.5wt%的磷酸铁锂、2.8wt%的粘结剂和1.7wt%的乙炔黑,其中,磷酸铁锂D50为0.8μm,粘结剂包括水性粘结剂(丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和功能添加剂异构醇磷酸酯,并且水性粘结剂和功能添加剂的质量比为1:0.07;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例7
正极浆料包括:95.5wt%的磷酸铁锂、2.8wt%的粘结剂和1.7wt%的乙炔黑,其中,磷 酸铁锂D50为0.8μm,粘结剂包括水性粘结剂(丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和功能添加剂聚醚,并且水性粘结剂和功能添加剂的质量比为1:0.07,功能添加剂的分子量分布宽度在18000~25000;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例8
正极浆料包括:95.5wt%的磷酸铁锂、2.8wt%的粘结剂和1.7wt%的乙炔黑,其中,磷酸铁锂D50为0.8μm,粘结剂包括水性粘结剂(丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和功能添加剂二乙烯三胺,并且水性粘结剂和功能添加剂的质量比为1:0.07,功能添加剂的分子量分布宽度在18000~25000;
制备正极极片的方法:利用在铝箔双表面涂布上述正极浆料,涂布完成后进行冷压,即可在铝箔表面形成正极活性物质层(双面涂布厚度为240μm);
电芯制备:以上述正极极片为正极,以石墨为负极,PP膜为隔膜,电解液为商用普通磷酸铁锂电解液组装电芯。
实施例9
正极活性物质为钴酸锂,导电剂为石墨烯,水性粘结剂为聚丙烯酸甲酯,其余同于实施例8。
实施例10
正极活性物质为镍钴锰锂氧化物,导电剂为碳纳米管,水性粘结剂为聚甲基丙烯酸,其余同于实施例8。
实施例11
水性粘结剂为聚丙烯酰胺,其余同于实施例8。
实施例12
水性粘结剂为丙烯酸和丙烯腈共聚而成,其余同于实施例8。
实施例13
水性粘结剂为丙烯酸甲酯和丙烯酰胺共聚而成,其余同于实施例8。
对比例1
正极浆料包括:96.5wt%的磷酸铁锂、2.5wt%的粘结剂聚丙烯酸和1wt%的乙炔黑,其中,磷酸铁锂D50为1.2μm,其余同于实施例1。
对比例2
正极浆料包括:96.5wt%的磷酸铁锂、2.5wt%的粘结剂(采用丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成)和1wt%的乙炔黑,其中,磷酸铁锂D50为1.2μm,其余同于实施例1。
对实施例1-13和对比例1-2所得正极浆料状态、正极极片柔韧性、正极片剥离力、电芯DCR性能进行评价,评价结果如表1所示。
表1实施例1-13和对比例1-2所得正极浆料状态、正极极片柔韧性、正极片剥离力、电芯DCR
Figure PCTCN2022141259-appb-000001
Figure PCTCN2022141259-appb-000002
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种正极浆料,其中,包括正极活性材料、导电剂、水性粘结剂和功能添加剂,所述功能添加剂具有-NR 3+、-SO 3 2-、-PO 4 3-、-CO-、-O-和-NH 2中的至少之一,R为烷基。
  2. 根据权利要求1所述的正极浆料,其中,所述水性粘结剂和所述功能添加剂的质量比为1:(0.02~0.1)。
  3. 根据权利要求1或2所述的正极浆料,其中,所述水性粘结剂采用丙烯酸、丙烯腈、甲基丙烯酸甲酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸羟乙酯、甲基丙烯酸和丙烯酰胺中至少一种聚合而成。
  4. 根据权利要求1-3中任一项所述的正极浆料,其中,所述水性粘结剂采用丙烯酸丁酯、丙烯腈和丙烯酰胺共聚而成。
  5. 根据权利要求1-4中任一项所述的正极浆料,其中,所述功能添加剂的分子量为200~100000。
  6. 根据权利要求1-5中任一项所述的正极浆料,其中,所述功能添加剂的分子量为10000~30000。
  7. 根据权利要求1-6中任一项所述的正极浆料,其中,所述功能添加剂包括多元胺、聚乙烯吡咯烷酮和聚醚中的至少之一。
  8. 根据权利要求1-7中任一项所述的正极浆料,其中,所述正极活性材料、所述导电剂与所述水性粘结剂和所述功能添加剂总和的质量比为(94~98):(0.5~6):(2~5)。
  9. 根据权利要求1-8中任一项所述的正极浆料,其中,所述正极活性材料的D50为0.2μm~1.5μm。
  10. 根据权利要求1-9中任一项所述的正极浆料,其中,所述正极活性材料包括镍酸锂、锰酸锂、钴酸锂、磷酸锰铁锂、磷酸钒锂、磷酸铁锂、镍钴铝锂氧化物和镍钴锰锂氧化物中至少之一。
  11. 根据权利要求1-10中任一项所述的正极浆料,其中,所述导电剂包括乙炔黑、Super P、碳纳米管、石墨烯和导电碳纤维中的至少之一。
  12. 一种正极极片,其中,包括:
    正极集流体;
    正极活性物质层,所述正极活性物质层形成在所述正极集流体的表面上,并且所述正极活性物质层采用权利要求1-11中任一项所述的正极浆料形成。
  13. 一种锂电池,其中,所述锂电池包括权利要求12所述的正极极片。
PCT/CN2022/141259 2022-05-11 2022-12-23 正极浆料、正极极片和锂电池 WO2023216608A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22941541.9A EP4336600A1 (en) 2022-05-11 2022-12-23 Positive electrode slurry, positive electrode plate and lithium battery
US18/531,744 US20240105953A1 (en) 2022-05-11 2023-12-07 Positive electrode slurry, positive electrode sheet, and lithium battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210512735.7 2022-05-11
CN202210512735.7A CN114899400B (zh) 2022-05-11 2022-05-11 正极浆料、正极极片和锂电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/531,744 Continuation US20240105953A1 (en) 2022-05-11 2023-12-07 Positive electrode slurry, positive electrode sheet, and lithium battery

Publications (1)

Publication Number Publication Date
WO2023216608A1 true WO2023216608A1 (zh) 2023-11-16

Family

ID=82721599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141259 WO2023216608A1 (zh) 2022-05-11 2022-12-23 正极浆料、正极极片和锂电池

Country Status (4)

Country Link
US (1) US20240105953A1 (zh)
EP (1) EP4336600A1 (zh)
CN (1) CN114899400B (zh)
WO (1) WO2023216608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899400B (zh) * 2022-05-11 2023-09-08 厦门海辰储能科技股份有限公司 正极浆料、正极极片和锂电池
WO2024040585A1 (zh) * 2022-08-26 2024-02-29 宁德时代新能源科技股份有限公司 补锂浆料、正极浆料、二次电池、二次电池的制备方法和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165108A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
CN106684381A (zh) * 2017-01-13 2017-05-17 天津中聚新能源科技有限公司 水性正极浆料及其制备方法
CN108933260A (zh) * 2017-05-23 2018-12-04 宁德时代新能源科技股份有限公司 水溶性电极粘结剂、电极片及其制备方法以及电化学储能装置
CN112259913A (zh) * 2020-09-25 2021-01-22 东莞维科电池有限公司 一种隔膜浆料及其制备方法与用途
CN113140720A (zh) * 2021-04-16 2021-07-20 广州鹏辉能源科技股份有限公司 锂离子电池的正极材料、正极浆料、正极及其制备方法和锂离子电池
CN114899400A (zh) * 2022-05-11 2022-08-12 厦门海辰新能源科技有限公司 正极浆料、正极极片和锂电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064326B (zh) * 2010-12-16 2016-01-06 东莞新能源电子科技有限公司 锂离子电池正负极材料分散剂
CN103117414B (zh) * 2013-01-31 2016-03-23 中航锂电(洛阳)有限公司 一种负极钛酸锂电池用电解液、锂离子电池及其制备方法
CN103199258B (zh) * 2013-03-07 2016-06-22 中航锂电(江苏)有限公司 锂离子电池正极材料、正极制备方法及锂离子电池
CN104393246B (zh) * 2014-11-17 2017-04-26 中航锂电(洛阳)有限公司 一种纳米磷酸铁锂水性基浆料的制备方法
KR101849826B1 (ko) * 2015-03-05 2018-04-17 주식회사 엘지화학 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
CN109546095B (zh) * 2017-09-22 2022-03-15 银隆新能源股份有限公司 一种锂离子电池负极材料的制备方法
CN108539122B (zh) * 2018-03-26 2020-11-03 横店集团东磁股份有限公司 一种正极片及包含该正极片的锂离子二次电池
CN111697231B (zh) * 2020-05-20 2021-10-22 华南理工大学 一种天然水性硫正极粘结剂及其制备方法与制备锂硫电池硫正极中的应用
CN111697225A (zh) * 2020-05-25 2020-09-22 安徽泰能新能源科技有限公司 一种锂离子电池磷酸铁锂正极浆料及其制备方法、正极极片
CN112599856A (zh) * 2021-03-01 2021-04-02 新乡华锐锂电新能源有限公司 一种适配高镍三元正极材料的电解液
CN114050260B (zh) * 2021-10-22 2023-06-16 深圳市研一新材料有限责任公司 一种正极膜层添加剂组合物、正极膜层添加剂、正极极片以及二次电池
CN114171736B (zh) * 2021-11-23 2023-08-22 电盈(广东)能源科技有限公司 一种水性锰酸锂正极浆料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165108A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
CN106684381A (zh) * 2017-01-13 2017-05-17 天津中聚新能源科技有限公司 水性正极浆料及其制备方法
CN108933260A (zh) * 2017-05-23 2018-12-04 宁德时代新能源科技股份有限公司 水溶性电极粘结剂、电极片及其制备方法以及电化学储能装置
CN112259913A (zh) * 2020-09-25 2021-01-22 东莞维科电池有限公司 一种隔膜浆料及其制备方法与用途
CN113140720A (zh) * 2021-04-16 2021-07-20 广州鹏辉能源科技股份有限公司 锂离子电池的正极材料、正极浆料、正极及其制备方法和锂离子电池
CN114899400A (zh) * 2022-05-11 2022-08-12 厦门海辰新能源科技有限公司 正极浆料、正极极片和锂电池

Also Published As

Publication number Publication date
EP4336600A1 (en) 2024-03-13
CN114899400A (zh) 2022-08-12
US20240105953A1 (en) 2024-03-28
CN114899400B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN108258249B (zh) 一种集流体涂层、浆料及其制备方法、电池极片和锂离子电池
WO2023216608A1 (zh) 正极浆料、正极极片和锂电池
EP1629556B1 (en) Composite binder for an electrode with dispersants chemically bound
WO2019120140A1 (zh) 一种水性粘结剂及二次电池
JP7238854B2 (ja) リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池負極用熱架橋性スラリー、リチウムイオン電池用負極、リチウムイオン電池負極用材料、並びにリチウムイオン電池及びその製造方法
CN108963187B (zh) 硅碳负极、其制备方法、锂离子电池及电动车辆
KR102117930B1 (ko) 리튬이온 전지용 열가교성 바인더 수용액, 리튬이온 전지용 전극 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 및 리튬이온 전지
WO2022121863A1 (zh) 一种负极片及包括该负极片的锂离子电池
WO2022257859A1 (zh) 一种锂离子电池
WO2022267534A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2022057668A1 (zh) 一种负极片及制备方法、电池
CN104795559A (zh) 一种高能量密度的锂离子动力电池
JP2020017504A (ja) リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
WO2019227972A1 (zh) 一种锂离子电池用复合负极材料、其制备方法及在锂离子电池中的用途
WO2022199505A1 (zh) 一种负极及其制备方法和应用
CN113193161B (zh) 一种电极组件及电化学装置
JP2021082584A (ja) リチウムイオン電池用導電性炭素材料分散剤、リチウムイオン電池電極用スラリー、リチウムイオン電池用電極、及び、リチウムイオン電池
CN112713266A (zh) 负极浆料及其应用
CN112103509A (zh) 正极集流体、正极片、锂离子电池及电池模组
CN113471512A (zh) 一种低温锂电池
JP7215348B2 (ja) リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極熱架橋性スラリー、リチウムイオン電池用電極、及びリチウムイオン電池
WO2023143035A1 (zh) 负极粘结剂及其制备方法、负极片和电池
WO2022237534A1 (zh) 一种复合粘结剂及其制备方法和应用
WO2023240681A1 (zh) 负极加速传质和改善膨胀的物料及应用
WO2023216610A1 (zh) 电池浆料、正极极片、负极极片和锂电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022941541

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022941541

Country of ref document: EP

Effective date: 20231207

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941541

Country of ref document: EP

Kind code of ref document: A1