WO2023210830A1 - 複合体及びその製造方法 - Google Patents

複合体及びその製造方法 Download PDF

Info

Publication number
WO2023210830A1
WO2023210830A1 PCT/JP2023/016988 JP2023016988W WO2023210830A1 WO 2023210830 A1 WO2023210830 A1 WO 2023210830A1 JP 2023016988 W JP2023016988 W JP 2023016988W WO 2023210830 A1 WO2023210830 A1 WO 2023210830A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
arsenic
iii
composite
particles
Prior art date
Application number
PCT/JP2023/016988
Other languages
English (en)
French (fr)
Inventor
浩 長谷川
優斗 阪井
航季 湯之下
圭佑 中窪
麻彩実 眞塩
クオ ホン ウォン
隆 新井
克 遠藤
陽子 三橋
Original Assignee
国立大学法人金沢大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 株式会社ダイセル filed Critical 国立大学法人金沢大学
Publication of WO2023210830A1 publication Critical patent/WO2023210830A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present disclosure relates to a novel composite, a method for producing the same, an arsenic adsorbent containing the composite, a method for producing these, a method for producing water using the arsenic adsorbent, and a water purification device equipped with the arsenic adsorbent.
  • arsenic Although arsenic is widely distributed in the environment, it is highly toxic and is known to cause various diseases and harm health when ingested even in minute amounts over a long period of time.
  • Patent Document 1 describes that an adsorbent obtained by mixing ferric hydroxide with a styrene-acrylic acid copolymer binder and pelletizing the mixture adsorbs and removes arsenic (III) from strongly acidic water. It has been described that it is useful for
  • Arsenic (V) is adsorbed on the surface of iron, but because the ferric hydroxide supported on the binder dissolves in water, it is difficult to secure a wide adsorption surface for arsenic (V). there were.
  • ferric hydroxide is supported by bonding to the carboxyl group of the styrene-acrylic acid copolymer binder, it is difficult to increase the amount of iron supported per unit weight. It was not possible to adsorb it well.
  • an object of the present disclosure is to provide a novel composite that is effective in efficiently adsorbing and recovering arsenic (V) dissolved in water. Another object of the present disclosure is to provide a method for producing the composite. Another object of the present disclosure is to provide a novel arsenic adsorbent that can efficiently adsorb and recover arsenic (V) dissolved in water. Another object of the present disclosure is to provide a method for producing purified water using the arsenic adsorbent. Another object of the present disclosure is to provide a water purification device equipped with the arsenic adsorbent.
  • Microfibrous cellulose has an extremely large specific surface area, and when iron (III)-containing particles are supported on the surface of microfibrous cellulose, aggregation of iron (III)-containing particles can be suppressed, and iron is effective in adsorbing arsenic. (III) A wide surface area of the contained particles can be secured2. Since microfibrous cellulose has as many as three hydroxyl groups per constituent unit to which iron is bonded, it is possible to increase the amount of iron supported per unit weight.3. 4.
  • microfibrous cellulose When the iron (III)-containing particles supported on microfibrous cellulose are crystallized into needles, the effective surface area for adsorption of arsenic can be significantly expanded, and the adsorption efficiency of arsenic can be dramatically improved.
  • Microfibrous cellulose has excellent hydrophilicity, and when immersed in water, water easily penetrates into the microfibrous cellulose. Therefore, arsenic dissolved in water is transferred to the iron (III)-containing particles supported on the microfibrous cellulose. The present disclosure has been completed based on these findings.
  • the present disclosure includes microfibrous cellulose and iron (III)-containing particles supported on the microfibrous cellulose, A composite is provided in which at least some of the iron(III)-containing particles have an aspect ratio of 2 or more.
  • the present disclosure also provides the composite, in which the amount of the iron (III)-containing particles supported per 1 g of the microfibrous cellulose (in terms of iron element) is 1 to 100 mmol.
  • the present disclosure also provides the composite, wherein the microfibrous cellulose is microfibrillated cellulose.
  • the present disclosure also provides the composite, wherein the iron(III)-containing particles contain at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide.
  • the iron(III)-containing particles contain at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide, and at least one iron compound selected from zirconium and titanium.
  • the composite has a molar ratio [iron/(zirconium and/or titanium)] of 1 to 100 (total amount of iron/(zirconium and/or titanium)).
  • the present disclosure also provides a composite in which the volume-equivalent spheres of the iron(III)-containing particles have a particle diameter of less than 1 ⁇ m.
  • the present disclosure also provides a method of mixing microfibrous cellulose and an iron compound in water in the presence of a modifier, allowing the microfibrous cellulose to adsorb the iron compound, and then heat-treating the composite.
  • a method for manufacturing a composite is provided.
  • the present disclosure also provides a method for producing the composite, in which at least one metal compound selected from a zirconium compound and a titanium compound is adsorbed together with the iron compound in the step of adsorbing the iron compound to the microfibrous cellulose. .
  • the present disclosure also provides an arsenic adsorbent comprising the composite.
  • the present disclosure also provides a method for producing purified water, in which purified water is obtained by treating arsenic-contaminated water with the arsenic adsorbent.
  • the present disclosure also provides a water purification device including the arsenic adsorbent.
  • the composite of the present disclosure has a structure in which acicular iron (III)-containing particles having a large adsorption surface area for arsenic (V) are dispersed and supported on microfibrous cellulose having an extremely large specific surface area and excellent hydrophilicity. has. Therefore, when the composite is immersed in water, arsenic (V) dissolved in water can be efficiently adsorbed and recovered. Further, the composite can selectively adsorb and recover arsenic even if an element having chemical properties similar to arsenic, such as phosphorus (P), coexists.
  • an element having chemical properties similar to arsenic such as phosphorus (P)
  • the above-mentioned composite does not cause exhaust gas problems even when burned, and after adsorbing arsenic (V), it can be burned to reduce its volume, significantly reducing the cost of disposal such as landfilling. can be reduced. Therefore, the composite can be suitably used as an arsenic adsorbent for adsorbing and recovering arsenic from water contaminated with arsenic (especially arsenic (V)).
  • FIG. 2 is a diagram showing a SEM image of the composite (1) obtained in Example 1 (magnification: 5000 times).
  • FIG. 3 is a diagram showing a SEM image of the composite (2) obtained in Example 2 (magnification: 5000 times).
  • FIG. 3 is a diagram showing SEM images of composites (2), (3), and (4) obtained in Examples 2 to 4.
  • (a) is a 5000x field of view
  • (b) is a 10000x field of view
  • (c) is a 5000x field of view.
  • It is a figure showing a SEM image of composite (5) obtained in Example 5 (magnification: 5000 times).
  • FIG. 2 is a diagram showing a SEM image of the composite (8) obtained in Reference Example 1 (magnification: 5000 times).
  • FIG. 2 is a diagram showing the relationship between the As(V) adsorption rate and pH of the composite (2) obtained in the example.
  • FIG. 3 is a diagram showing the As(V) adsorption rate of the complex (2) obtained in the example in the presence of anions.
  • FIG. 2 is a diagram showing that iron oxide particles are bonded to the surface of microfibrous cellulose (1) under pressure and high temperature in a composite in an embodiment of the present disclosure. It is a figure which shows the SEM image of the composite body (5) obtained in Example 5 (magnification: 30000 times). It is a figure which shows the SEM image of the composite body (7) obtained in Example 7 (magnification: 30000 times).
  • the lower limit and/or upper limit of the numerical range described in the present disclosure are numerical values within the numerical range, and may be replaced with the numerical values shown in the examples.
  • the lower limit and/or upper limit of the numerical range described in this disclosure is a numerical value within the numerical range, and may be replaced with the numerical value shown in the examples.
  • the expression "X to Y” regarding a numerical range means "more than or equal to X and less than or equal to Y.”
  • the expression "S and/or T" regarding components, substances, etc. means “at least one selected from the group consisting of S and T.”
  • the composite of the present disclosure includes microfibrous cellulose and iron (III)-containing particles, and the iron (III)-containing particles are supported on the microfibrous cellulose. Moreover, at least some of the iron(III)-containing particles have an aspect ratio of 2 or more (hereinafter sometimes referred to as "acicular particles").
  • “Acicular particle” means a particle with an aspect ratio of 2 or more; in one embodiment, a particle with an aspect ratio of 2 or more has a shape in which the diameter (or width) becomes smaller toward at least one tip. Alternatively, at least one tip may be pointed.
  • the proportion of the acicular particles in the total amount of the iron (III)-containing particles is, for example, 5% by weight or more, which further expands the arsenic adsorption surface and improves the arsenic adsorption/recovery efficiency. Preferably it is 8% by weight or more, particularly preferably 10% by weight or more.
  • the upper limit of the proportion of the acicular particles in the total amount of the iron (III)-containing particles is 100% by weight, particularly 50% by weight, particularly 30% by weight.
  • the aspect ratio (particle length/particle diameter) of the acicular particles is 2 or more.
  • the number is preferably 3 or more, more preferably 5 or more, particularly preferably 10 or more, since the arsenic adsorption surface can be further expanded and the arsenic adsorption/recovery efficiency can be improved.
  • the upper limit of the aspect ratio is, for example, preferably 100 or less, more preferably 50 or less, and even more preferably 30 or less. That is, the aspect ratio of the acicular particles may be any combination of these upper and lower limits, but is preferably 3 or more and 100 or less, more preferably 5 or more and 50 or less, and even more preferably 10 or more and 30 or less. be.
  • the aspect ratio of the acicular particles tends to be 2 or more.
  • the amount of the solvent to be used for example, from 0.1 to 10 parts by weight per 1 part by weight of the iron compound, formation of acicular particles is likely to be promoted and/or the aspect ratio of the acicular particles is likely to be increased.
  • the particle diameter of the volume-equivalent sphere of the acicular particle (hereinafter sometimes referred to as "volume-equivalent diameter") is, for example, less than 1 ⁇ m, preferably 800 nm or less, more preferably 600 nm or less, still more preferably 500 nm or less, and Preferably it is 400 nm or less. In the case of 400 nm or less, it may be 200 nm or less or 100 nm or less.
  • the lower limit of the particle diameter is, for example, preferably 1 nm or more, more preferably 10 nm or more.
  • the particle diameter of the volume-equivalent sphere of the acicular particle may be any combination of these upper and lower limits, but is, for example, 1 nm or more and less than 1 ⁇ m, preferably 1 nm or more and 800 nm or less, and more preferably 10 nm or more and 600 nm.
  • the thickness is more preferably 10 nm or more and 500 nm or less, and even more preferably 10 nm or more and 400 nm or less. When it is 10 nm or more and 400 nm or less, it may be 10 nm or more and 200 nm or less, or 10 nm or more and 100 nm or less.
  • Particle length and “particle diameter” in the particle mean the major axis diameter and minor axis diameter of the particle, respectively.
  • the long axis diameter and short axis diameter of a particle are the diameters of the long axis and short axis of the particle, respectively, in a two-dimensional particle image observed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the major axis diameter of ten arbitrarily selected particles and the minor axis diameter of the same particle are measured, and the aspect ratio of at least one of the particles is determined. is 2 or more. When the aspect ratio is 2 or more, the aspect ratio may be 4 or more, for example, 4.
  • the major axis diameter of 10 particles and the minor axis diameter of the same particles are measured, and the result is preferably 5% by weight or more, more preferably 7% by weight or more, and even more preferably 9% by weight based on the total weight of the composite. It is further preferable that the aspect ratio of the above particles is 2 or more. In the case of 9% by weight or more, it may be 10% by weight or more, 11% by weight or more, 12% by weight or more, or 13% by weight or more.
  • the particle diameter of the volume-equivalent sphere can be determined by SEM observation or image analysis.
  • the iron(III)-containing particles may include particles of other shapes besides acicular particles.
  • Other shapes include, for example, spherical shapes (true spheres, substantially true spheres, elliptical spheres, etc.), polyhedral shapes, flat plate shapes, scale shapes, irregular shapes, and the like.
  • the iron(III)-containing particles may include particles with an aspect ratio of less than 2.
  • the particles with an aspect ratio of less than 2 may have the above-mentioned spherical shape (true spherical shape, approximately true spherical shape, elliptic spherical shape). etc.), polyhedral shape, flat plate shape, scale shape, irregular shape, etc.
  • the iron(III)-containing particles include at least one iron compound selected from iron oxide (Fe 2 O 3 ), iron hydroxide (Fe(OH) 3 ), and iron oxyhydroxide (FeOOH).
  • iron oxide Fe 2 O 3
  • Fe(OH) 3 iron hydroxide
  • FeOOH iron oxyhydroxide
  • the iron(III)-containing particles may contain other components in addition to the water-insoluble trivalent iron compound, such as zirconium oxide, zirconium hydroxide, zirconium oxyhydroxide, titanium oxide, and hydroxide. It may contain an oxide, hydroxide, or oxyhydroxide of at least one metal selected from zirconium and titanium, such as titanium and titanium oxyhydroxide; It may contain a combination of two or more selected from compounds and oxyhydroxides.
  • the iron(III)-containing particles may contain iron(III) as a mixed oxide with at least one of the other metals.
  • the metal oxide, hydroxide, or oxyhydroxide has excellent affinity for arsenic (eg, pentavalent arsenic).
  • the arsenic adsorption power can be further improved.
  • the iron (III)-containing particles contain other components in addition to the water-insoluble trivalent iron compound, they consist of an oxide and oxyhydroxide of at least one metal selected from zirconium and titanium. It is more preferable to contain at least one selected from the group.
  • the iron (III)-containing particles contain a mixed oxide of iron (III) and at least one of the other metals, a mixed oxide with zirconium and/or titanium (Fe x Zry O z , Fe x Ti y O z etc.).
  • the iron (III)-containing particles include at least one of a trivalent iron compound, an oxide, hydroxide, or oxyhydroxide of zirconium and/or titanium, and at least one of iron (III) and the metal. It may contain any combination of at least two or more selected from mixed oxides of iron compounds, zirconium and/or titanium compounds, and mixed oxides of iron and zirconium and/or titanium. May contain.
  • the iron compound (iron element equivalent value)
  • the molar ratio [iron/(zirconium + titanium)] of the metal oxide hydroxide or oxyhydroxide (metal element equivalent value; if two or more types are contained, the total amount) is, for example, 1 to 100. .
  • the iron (III)-containing particles contain a mixed oxide of iron (III) and the other metal
  • the molar ratio [iron/(zirconium+titanium)] of the total amount (if more than one species is contained) is, for example, 1 to 100.
  • the upper limit of the molar ratio is preferably 50, more preferably 30, even more preferably 20, particularly preferably 15.
  • the lower limit of the molar ratio is preferably 3, particularly preferably 5, and most preferably 7.
  • the molar ratio [iron/(zirconium + titanium)] may be any combination of these upper and lower limits, but is preferably 3 or more and 50 or less, more preferably 3 or more and 30 or less, and even more preferably It is 5 or more and 20 or less, more preferably 7 or more and 15 or less.
  • zirconium + titanium means “zirconium and/or titanium”.
  • [iron/(zirconium+titanium)] means "iron/(zirconium and/or titanium)".
  • the molar ratio [iron/(zirconium+titanium)] is preferably a molar ratio of "iron/zirconium” or "iron/titanium”.
  • the content of iron (III)-containing particles (in terms of iron element) in 1 g of the composite (or the total of microfibrous cellulose and iron (III)-containing particles contained in the composite) is, for example, 10 to 5000 ⁇ mol. It is.
  • the upper limit of the content (in terms of iron element) of the iron (III)-containing particles is preferably 4000 ⁇ mol, particularly preferably 3500 ⁇ mol, and most preferably 3000 ⁇ mol.
  • the lower limit of the content (in terms of iron element) of the iron (III)-containing particles is preferably 100 ⁇ mol, more preferably 500 ⁇ mol, particularly preferably 1000 ⁇ mol, most preferably 1500 ⁇ mol, and may be 2000 ⁇ mol.
  • the content of iron (III)-containing particles may be any combination of these upper and lower limits, but is preferably 100 ⁇ mol or more and 4000 ⁇ mol or less, more preferably 500 ⁇ mol or more and 4000 ⁇ mol or less. , more preferably 1000 ⁇ mol or more and 3500 ⁇ mol or less, still more preferably 1500 ⁇ mol or more and 3500 ⁇ mol or less, even more preferably 1500 ⁇ mol or more and 3000 ⁇ mol or less, and may be 2000 ⁇ mol or more and 3000 ⁇ mol or less.
  • the total amount of iron (III)-containing particles supported in the composite can be determined by adding 6 mol/L of hydrochloric acid to the composite and eluating trivalent iron as iron (III) ions. By measuring the concentration with a device such as an ICP emission spectrometer, it can be evaluated by the method described in Examples.
  • the content of iron (III)-containing particles per 1 g of microfibrous cellulose is, for example, 1 to 100 mmol, preferably 1 to 50 mmol, more preferably 1 to 10 mmol, particularly preferably is 1-5 mmol, most preferably 1-3 mmol.
  • the content of iron(III)-containing particles relative to the microfibrous cellulose can be calculated or measured in the same manner as the content of iron(III)-containing particles in the composite.
  • the weight of the microfibrous cellulose contained in the composite is determined by calculating the weight of zero-valent iron and trivalent iron particles calculated from the total supported amount of zero-valent and trivalent iron (iron element equivalent value) in the composite. It can be evaluated by subtracting it from the weight of the composite.
  • the amount of zero-valent iron and trivalent iron supported on 1 g of microfibrous cellulose is calculated from the total amount of zero-valent and trivalent iron supported in the composite and the weight of the microfibrous cellulose contained in the composite. can do.
  • Microfibrous cellulose is, for example, cellulose fibers torn longitudinally and made into fine particles, and is preferably microfibrillated cellulose.
  • a cellulose fiber is torn longitudinally, it is meant that the cellulose fiber is torn along its fiber direction.
  • the average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm.
  • the average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 ⁇ m.
  • the aspect ratio (average fiber length/average fiber diameter) of the microfibrous cellulose is preferably 5 to 10,000, more preferably 7 to 5,000, and even more preferably 10 to 3,000.
  • the fiber length and fiber diameter are the long axis length and short axis diameter of the fibers in a two-dimensional particle image observed by SEM.
  • the aspect ratio of the microfibrous cellulose is determined by measuring the length of ten or more cellulose long axes and the short axis diameter of the same cellulose in a SEM two-dimensional cellulose image, and This is a value calculated from the average value and the average value of the minor axis diameter using the formula: average fiber length/average fiber diameter.
  • the aspect ratio of microfibrous cellulose is a value calculated from the average fiber length/average fiber diameter from the average fiber length and average fiber diameter (or reference fiber diameter) stated in the product information published by the manufacturer. Good too.
  • the composite may further contain other components, but the total content of microfibrous cellulose and iron (III)-containing particles accounts for, for example, 50% by weight or more of the total amount of the composite, preferably is 60% by weight or more, particularly preferably 70% by weight or more, most preferably 80% by weight or more, particularly preferably 90% by weight or more.
  • the content of microfibrous cellulose and iron (III)-containing particles is below the above range, it tends to be difficult to efficiently and selectively adsorb arsenic.
  • the shape of the composite is not particularly limited as long as it does not impair the effects of the present disclosure, but it may be gel-like or powder-like in that it can be easily recovered from the aqueous solution after adsorbing arsenic in the aqueous solution. , or pellet form is preferable.
  • the method of adsorbing arsenic dissolved in an aqueous solution to the complex is not particularly limited, and examples include a method of filling the complex into a column or the like and flowing an aqueous solution containing arsenic therein; Examples include a method in which the complex is added to an aqueous solution in which the complex is dissolved and stirred.
  • FIG. 8 shows a state in which metal particles (iron (III)-containing particles (2)) have grown on microfibrous cellulose (1).
  • metal particles iron (III)-containing particles (2)
  • metal particles iron (III)-containing particles (2)
  • more iron can be supported than when the iron compound is adsorbed only on the surface of the fiber.
  • arsenic can be adsorbed on more surfaces in the particles.
  • Arsenic (V) exists as arsenate ions in an aqueous solution.
  • the complex is formed by complex formation of at least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide through the hydroxyl group of arsenic (especially arsenate ion) in water. It adsorbs and fixes arsenic (especially arsenate ion) ( Figure 8) (see below).
  • Fe connected to Cellulose by a dotted line means iron of the iron compound contained in the iron (III)-containing particles adsorbed to Cellulose, and as mentioned above, iron adsorbs and fixes arsenic. Show the situation.
  • [Chemical formula 2] shows how the metals (Fe, Zr, Ti) contained in the iron (III)-containing particles (2) adsorb and fix arsenic.
  • the arsenic adsorption capacity of the composite is, for example, 300 ⁇ mol/g or more, preferably 500 ⁇ mol/g or more, more preferably 900 ⁇ mol/g or more, and still more preferably 1300 ⁇ mol/g or more.
  • the upper limit of the arsenic adsorption capacity is, for example, 5000 ⁇ mol/g. That is, the arsenic adsorption capacity of the composite may be any combination of these upper and lower limits, but for example, from 300 ⁇ mol/g to 5000 ⁇ mol/g, preferably from 500 ⁇ mol/g to 5000 ⁇ mol/g, and more.
  • it is 900 ⁇ mol/g or more and 5000 ⁇ mol/g or less, more preferably 1300 ⁇ mol/g or more and 5000 ⁇ mol/g or less.
  • the adsorption capacity of arsenic per mol of iron (III)-containing particles (calculated as iron element) contained in the composite is, for example, 0.2 mol or more, preferably 0.3 mol or more, particularly preferably 0.5 mol or more.
  • the upper limit of the arsenic adsorption capacity is, for example, 10 mol, particularly 5 mol. That is, the adsorption capacity of arsenic per 1 mol of iron (III)-containing particles (iron element equivalent value) contained in the composite may be any combination of these upper and lower limits, but for example, 0.2 mol or more.
  • the amount is 10 mol or less, preferably 0.3 mol or more and 10 mol or less, more preferably 0.5 mol or more and 10 mol or less, and still more preferably 0.5 mol or more and 5 mol or less.
  • At least one iron compound selected from iron oxide, iron hydroxide, and iron oxyhydroxide has a high affinity for arsenic ions, but dihydrogen phosphate ions containing phosphorus, which have chemical properties similar to arsenic, It has low affinity with other anions such as ions, halide ions, and sulfate ions. Since the complex contains an iron compound having the above characteristics, it is possible to selectively adsorb arsenic without decreasing the arsenic adsorption power even in the coexistence of other anions.
  • the arsenic adsorption capacity of the arsenic adsorbent is determined by immersing 0.01 g of the composite in 10 mL of a 1000 mg/L arsenic (V) aqueous solution at 25°C and shaking it for 30 minutes with a shaker. This is the amount of adsorption, and is calculated from the formula described in Examples.
  • arsenic particularly arsenic (V)
  • V arsenic
  • the volume can be significantly reduced by burning it, and the cost of disposal can be reduced.
  • the composite Since the composite has the above characteristics, it is useful as an arsenic (particularly arsenic (V)) adsorbent for adsorbing and recovering arsenic from arsenic-contaminated water.
  • the composite can be prepared, for example, by mixing microfibrous cellulose and an iron compound in water in the presence of a crystal modifier, allowing the microfibrous cellulose to adsorb the iron compound (adsorption step), and then subjecting it to heat treatment. (hydrothermal treatment process).
  • This step is a step in which microfibrous cellulose and an iron compound are mixed in water in the presence of a crystal modifier, and the iron compound is adsorbed onto the microfibrous cellulose.
  • iron compound for example, a trivalent iron compound such as FeCl 3 can be used.
  • the amount of iron compound used is, for example, 1 to 100 mmol, preferably 1 to 50 mmol, per 1 g of microfibrous cellulose.
  • the amount of iron compound used is, for example, 1 to 10 g per 1 g of microfibrous cellulose. From the viewpoint of obtaining a composite with particularly excellent arsenic adsorption power, the amount is preferably 2 to 8 g, particularly preferably 3 to 6 g.
  • the crystal modifier it is preferable to select and use a compound that promotes needle-like crystallization of iron (III)-containing particles, and for example, sodium sulfate can be used.
  • the amount of crystallizing modifier used is, for example, 0.1 to 10 parts by weight, preferably 0.1 to 5 parts by weight, particularly preferably 0.1 to 2 parts by weight, per 1 part by weight of the iron compound.
  • the crystal modifier in the above range it is possible to promote the acicular crystallization of the iron compound, to promote the formation of acicular particles in the iron(III)-containing particles, and/or to increase the aspect ratio of the acicular particles. It can be made larger, and the surface on which arsenic can be adsorbed can be further expanded.
  • a metal compound having good affinity for arsenic may be used to further improve the arsenic adsorption power.
  • the metal compound examples include zirconium compounds such as zirconium oxide (ZrO 2 ), zirconium hydroxide, zirconium oxyhydroxide, zirconium chloride oxide (ZrCl 2 O), and zirconium chloride (ZrCl 4 ), titanium oxide, and titanium chloride. , titanium compounds such as titanium hydroxide and titanium oxyhydroxide. These can be used alone or in combination of two or more.
  • the metal compound is at least one selected from oxides, hydroxides, and oxyhydroxides of the metals, which have excellent affinity with arsenic and are particularly effective in improving the amount of adsorption of arsenic. is preferable, at least one selected from the group consisting of oxides and oxyhydroxides of the metals mentioned above is more preferable, and zirconium compounds such as zirconium chloride oxide (ZrCl 2 O) are even more preferable.
  • the amount of the metal compound used (if two or more types are used, the total amount) is, for example, 0.01 to 10 parts by weight, preferably 0.01 to 2 parts by weight, per 1 part by weight of the iron compound.
  • the usage ratio (mole ratio) [Fe/(Zr+Ti)] of the iron compound (value in terms of iron element) and the zirconium compound and/or titanium compound (value in terms of metal element; if two or more types are included, the total amount thereof) is, for example, It is 1-100.
  • the upper limit of the molar ratio is preferably 50, particularly preferably 10.
  • the lower limit of the molar ratio is preferably 3, particularly preferably 5, and most preferably 8. That is, the usage ratio (mole ratio) [Fe/(Zr+Ti)] may be any combination of these upper and lower limits, but is preferably 3 or more and 50 or less, more preferably 5 or more and 50 or less, and Preferably it is 8 or more and 10 or less.
  • Zr+Ti means "Zr (zirconium compound) and/or Ti (titanium compound)". That is, [Fe/(Zr+Ti)] means "iron/(zirconium compound and/or titanium compound)".
  • the molar ratio [Fe/(Zr+Ti)] is preferably a molar ratio of "iron/zirconium compound” or "iron/titanium compound”.
  • the metal compound When using the metal compound, the metal compound may be added to water together with the iron compound, stirred, and adsorbed onto the microfibrous cellulose.
  • Microfibrous cellulose is, for example, cellulose fibers that are longitudinally torn and made into fine particles, that is, microfibrillated cellulose.
  • Microfibrous cellulose is produced by, for example, subjecting cellulose fibers having a specific fiber length to beating treatment and/or mechanical shearing treatment (e.g., homogenization treatment) so that the cellulose fibers are torn along the fiber direction. can be manufactured.
  • cellulose fibers for example, cellulose fibers derived from wood pulp (softwood pulp, hardwood pulp) or cotton linter pulp can be suitably used. These can be used alone or in combination of two or more. Note that the pulp may contain different components such as hemicellulose.
  • the cellulose fiber may have a functional group such as a hydrophilic group added to its surface.
  • the average fiber length of the microfibrous cellulose is, for example, 0.5 to 1.5 mm, preferably 0.5 to 1.2 mm, particularly preferably 0.6 to 0.8 mm.
  • the average fiber diameter of the microfibrous cellulose is, for example, 0.5 to 50 ⁇ m. Examples and preferred aspect ratios of the microfibrous cellulose are as described in the "Composite" section.
  • microfibrous cellulose As the microfibrous cellulose, commercially available products such as the product names "Selish”, “Filtration Meijin”, “PC110S”, and “PC110T” (manufactured by Daicel Millize Co., Ltd.) can be used.
  • an iron compound and, if necessary, the metal compound (or a mixed oxide of iron and the metal) can be adsorbed onto the microfibrous cellulose.
  • the iron compound in the case of using the metal compound together with the iron compound, the iron compound and the metal compound, or the mixed oxide of iron and the metal
  • it may be adsorbed to microfibrous cellulose in an ionic state.
  • This step is a step in which microfibrous cellulose adsorbed with an iron compound is heat-treated in water.
  • the heat treatment temperature is, for example, 100 to 150°C.
  • the pressure during the heat treatment is, for example, normal pressure to 5 atm, preferably normal pressure to 3 atm.
  • the heat treatment temperature time is, for example, 0.5 to 10 hours.
  • the heat treatment can be performed using a well-known and commonly used heating means (for example, a heat block type thermal decomposition system).
  • the heat treatment time is, for example, 0.5 to 10 hours, preferably 1 to 7 hours, particularly preferably 3 to 7 hours.
  • the heat treatment time is increased within the above range, crystallization tends to be promoted.
  • iron (III)-containing particles By heating microfibrous cellulose on which an iron compound has been adsorbed in water, iron (III)-containing particles, at least some of which are acicular, can be precipitated on the surface of the microfibrous cellulose.
  • At least one selected from iron oxide, iron hydroxide, and iron oxyhydroxide is added to the surface of the microfibrous cellulose through heat treatment.
  • Iron(III)-containing particles containing a mixed oxide of iron(III) and zirconium and/or titanium and having at least a portion of acicular shape can be precipitated on the surface.
  • the arsenic adsorbent of the present disclosure includes the composite.
  • the arsenic adsorbent may contain other components in addition to the complex, but the proportion of the complex in the total amount of the arsenic adsorbent (or the total amount of nonvolatile content contained in the arsenic adsorbent) is For example, it is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, particularly preferably 95% by weight or more.
  • the arsenic adsorbent may be composed only of the composite.
  • nonvolatile content refers to the total weight of components other than the solvent (including water and organic solvents), and for example, the amount remaining after heating 1 g of arsenic adsorbent at 100 ° C. for 1 hour under normal pressure. It is an ingredient.
  • the shape of the arsenic adsorbent is not particularly limited as long as it does not impair the effects of the present disclosure, but it may be gel-like or powdery in that it can be easily recovered from the aqueous solution after adsorbing arsenic therein. or pellet form is preferable.
  • the arsenic adsorbent of the present disclosure contains the above-mentioned complex, it can be suitably used for adsorbing and removing arsenic (V) dissolved in water.
  • the arsenic adsorbent can be prepared by manufacturing a composite by the method for manufacturing the composite, adding other components as necessary, and molding as necessary.
  • the method for producing purified water of the present disclosure includes treating arsenic-contaminated water (water contaminated with arsenic, where the arsenic concentration is, for example, 5 mM or more) with the arsenic adsorbent (or the complex), This is a method for obtaining purified water (for example, purified water in which 99% by weight or more (more preferably 99.9% by weight or more) of arsenic contained in the contaminated water has been removed).
  • Arsenic (V) exists as arsenate ions in an aqueous solution.
  • the arsenic adsorbent (or the composite) adsorbs and recovers arsenic ions by forming a complex with trivalent iron contained in the metal particles via the hydroxyl groups of arsenate ions.
  • the method of treating contaminated water with the arsenic adsorbent is a method in which arsenic contained in contaminated water is adsorbed onto the arsenic adsorbent.
  • the method is not particularly limited, and examples include a method in which the arsenic adsorbent is packed in a column or the like and contaminated water is poured therein, a method in which the arsenic adsorbent is added to contaminated water, and the mixture is stirred. Can be mentioned.
  • the pH of contaminated water When treating with the arsenic adsorbent, adjusting the pH of contaminated water to, for example, 10 or less (for example, 1 to 10, preferably 2 to 10), preferably 8 or less, recovers arsenic more efficiently. This is preferable because it can be done.
  • the said pH adjustment can be performed using a well-known and commonly used pH adjuster.
  • the volume can be significantly reduced and the cost of disposal can be reduced.
  • arsenic can be efficiently removed from water contaminated with arsenic, and purified water without arsenic contamination can be efficiently produced.
  • the water purification device of the present disclosure includes the arsenic adsorbent (or the composite).
  • the water purification device may include a column filled with the arsenic adsorbent.
  • the water purification device may include necessary configurations such as a device for supplying unpurified water to the arsenic adsorbent and a device for discharging water after being purified by the arsenic adsorbent. I can do it.
  • the water purification device includes the arsenic adsorbent, it can efficiently remove arsenic from arsenic-contaminated water, and can efficiently produce purified water free from arsenic contamination.
  • Example 1 (Adsorption process) Microfibrillated cellulose (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, trade name "Filtration Meijin", manufactured by Daicel Millize Co., Ltd.) 0. 10g of FeCl3.6H2O , 0.68g ( 2.5mmol ), Na2SO40.41g (2.9mmol), and 50mL of purified water were added, and the mixture was heated using a homogenizer (OMNI tissue homogenizer TH, OMNI international) at room temperature. nal company ) until the microfibrillated cellulose was completely dispersed.
  • the homogenizer used has a weak shearing force compared to, for example, high-pressure homogenizers used to prepare cellulose nanofibers. Thereby, microfibrillated cellulose can be stirred and dispersed with less energy consumption.
  • Example 2 (Adsorption process) In a 50 mL Digi-Tube, 0.10 g of microfibrillated cellulose (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, product name "Furoku Meijin", manufactured by Daicel Millize Co., Ltd.), Add 0.68 g (2.5 mmol) of FeCl3.6H2O , 0.41 g (2.9 mmol) of Na2SO4 , 0.088 g (0.27 mmol) of ZrCl2O.8H2O, and 50 mL of purified water.
  • FIGS. 2 and 3(a) SEM images of the obtained composite (2) are shown in FIGS. 2 and 3(a) (two different fields of view).
  • the composite consists of particles with sharp tips and particles whose diameter (or width) decreases toward the tip, on the surface of microfibrous cellulose. , and contained elongated particles with an aspect ratio of more than 2. Of all the particles observable in the two observation fields, more than 80% were observed to be elongated particles with an aspect ratio exceeding 2.
  • the amount of the iron (III)-containing particles supported per 1 g of microfibrous cellulose in this composite was 2.5 mmol.
  • the average value of the volume equivalent diameter of 10 arbitrarily selected acicular particles from Figure 2 is 0.53 ⁇ m
  • the average value of the volume equivalent diameter of 10 arbitrarily selected acicular particles from Figure 3a is It was 0.33 ⁇ m.
  • Example 3 Composite (3) (Fe III /Zr(1.0)-NN- CMF) was obtained.
  • a SEM image of the obtained composite (3) is shown in FIG. 3(b).
  • the composite consists of particles with a pointed tip, a particle whose diameter (or width) becomes smaller toward the tip, and an aspect ratio of particles on the surface of microfibrous cellulose. It was observed that elongated particles with a ratio of more than 2 accounted for more than 90% of all particles observable in the observed field of view.
  • Example 4 Composite (4) (Fe III /Zr(1.0)-NN- CMF) was obtained.
  • a SEM image of the obtained composite (4) is shown in FIG. 3(c).
  • the complex observed in the circled area in the field of view of the SEM image in Figure 3(c) is a particle with a sharp tip on the surface of microfibrous cellulose, and the diameter (or width) increases toward the tip. The particles were smaller in size. It was observed that elongated particles with an aspect ratio exceeding 2 accounted for about 100% of all particles observable in the observed field of view.
  • Example 5 In the ( adsorption step ), iron oxide (or iron oxide and Particles containing zirconium oxide (iron hydroxide) and zirconium oxide (volume equivalent diameter: less than 1 ⁇ m (actual value: 0.1 ⁇ m (100 nm)), and acicular particles with an aspect ratio of 2 or more (actual value: 4) are combined into a composite.
  • iron oxide or iron oxide and Particles containing zirconium oxide (iron hydroxide) and zirconium oxide (volume equivalent diameter: less than 1 ⁇ m (actual value: 0.1 ⁇ m (100 nm)), and acicular particles with an aspect ratio of 2 or more (actual value: 4) are combined into a composite.
  • a composite (5) (Fe III /Zr(0.7)-NN-CMF) was obtained, in which a compound (including Fe III /Zr(0.7)-NN-CMF) was supported on microfibrillated cellulose.
  • a SEM image of the obtained composite (5) is shown in FIG. 4 (5,000 times), and a SEM image of another field of view is shown in FIG. 9 (30,000 times). As shown in FIG.
  • the composite consists of particles with a sharp tip, a diameter (or width) that becomes smaller toward the tip, and an aspect ratio of 4 on the surface of microfibrous cellulose. It contained elongated particles. It was observed that more than 90% of all particles observable in the two observation fields were elongated particles with an aspect ratio exceeding 4. The amount of the iron (III)-containing particles supported per gram of microfibrous cellulose in this composite was 1.8 mmol. Furthermore, the average volume-equivalent diameter of 10 acicular particles arbitrarily selected from the SEM image of this composite was 0.12 ⁇ m.
  • Example 6 (Adsorption step), the amounts of FeCl 3 .6H 2 O and ZrCl 2 O .8H 2 O are adjusted so that the molar ratio of FeCl 3 and ZrCl 2 [Fe/Zr (metal element conversion value)] is 1/1.
  • Particles containing iron oxide (or iron oxide and iron oxyhydroxide) and zirconium oxide (acicular particles having a volume equivalent diameter of less than 1 ⁇ m and an aspect ratio of 2 or more) were prepared in the same manner as in Example 2 except for the following changes.
  • a composite (6) (Fe III /Zr(1.0)-NN-CMF) supported on cellulose was obtained.
  • the obtained composite has particles with a pointed tip, particles whose diameter (or width) becomes smaller toward the tip, and elongated particles with an aspect ratio of 2 or more on the surface of microfibrous cellulose. It contained.
  • Example 7 (Adsorption step), except that TiCl 4 solution (33.8 ⁇ L: Ti (8.76 mg, 0.18 mmol)) (Fuji Film Wako Pure Chemical Industries, Ltd.) was used instead of ZrCl 2 O.8H 2 O.
  • particles containing iron oxide and titanium oxide (volume equivalent diameter: 0.1 ⁇ m (100 nm), containing 8% by weight or more of acicular particles with an aspect ratio of 2), and/or iron and particles containing a mixed oxide of titanium ( Fex Ti y O z ) (volume equivalent diameter: 0.1 ⁇ m (100 nm), containing 8% by weight or more of acicular particles with an aspect ratio of 2 or more) are microfibrils.
  • a composite (7) (Fe III /Ti(0.7)-NN-CMF) supported on cellulose was obtained.
  • a SEM image of the obtained composite (7) is shown in FIG.
  • the amounts of the FeCl 3 .6H 2 O and TiCl 4 solutions charged were 0.7 times the weight as in Example 5, and the molar ratio of FeCl 3 and TiCl 4 [Fe/Ti (metal element conversion value)] )] was 9/1.
  • the obtained composite contains particles with a pointed tip, particles whose diameter (or width) becomes smaller toward the tip, and elongated particles with an aspect ratio of 2 or more on the surface of the microfibrous cellulose. It was.
  • Reference example 1 A 10 wt% FeCl 3.6H 2 O aqueous solution (10 mL) and a buffer solution (0.5 mol/L 2-(N-morpholino)ethanesulfonic acid) were added to a flask to make a total volume of 50 mL, and the solution was diluted with NaOH. The pH was adjusted to 6. As a result, iron(III)-containing particles (Fe III particles) (volume equivalent diameter: 1 ⁇ m) were formed. Add 10 mL of the prepared solution and 0.10 g of cellulose nanofiber (average fiber length: 0.6 to 0.8 mm, reference fiber diameter: 0.5 to 50 ⁇ m, product name "Furoku Meijin", manufactured by Daicel Millize Co., Ltd.).
  • Comparative example 1 10 mL of 10 wt% FeCl 3 , 10 mL of 1.0 wt % ZrCl 2 O, and a buffer solution were added to the flask, and the mixture was stirred at room temperature using a stirrer for 0.5 hour.
  • Comparative example 2 A solution containing 10% by weight FeCl 3 and a buffer solution was placed in a flask at room temperature and adjusted to the desired pH by adding NaOH. After that, the mixture was further stirred for 30 minutes, and the solid content was obtained by suction filtration. No particles were observed).
  • the complex of the present disclosure can efficiently adsorb and recover arsenic in a solution, and can significantly reduce the arsenic concentration in the solution, and after adsorbing arsenic to the complex, It can be seen that by firing, the volume can be significantly reduced, and the cost of disposal such as landfilling can be significantly reduced.
  • the complex (1) 0.02 g was added to 10 mL of the arsenic aqueous solution, and the mixture was stirred for 20 minutes at 25° C. using a shaker. It was filtered using a membrane filter (nitrocellulose, pore size: 0.45 ⁇ m), and the arsenic ion concentration (C e : ⁇ mol/L) in the filtrate was determined using an ICP emission spectrometer (iCAP6300 manufactured by Thermo Fischer Scientific). The initial concentration of arsenic ions in the solution was set as C 0 ( ⁇ mol/L), and the removal rate (%) was calculated from the following formula.
  • Total supported amount Ce x V/m
  • the weight of the microfibrous cellulose was evaluated by subtracting the amount of iron supported as determined above from the weight of the composite, and the amount of iron supported per 1 g of the microfibrous cellulose (iron content per 1 g of CMF) , Table 1) were calculated.
  • [1] Comprising microfibrous cellulose and iron (III)-containing particles supported on the microfibrous cellulose, At least some of the iron(III)-containing particles are particles having an aspect ratio of 2 or more.
  • [2] The composite according to [1], wherein the amount of the iron (III)-containing particles supported per gram of the microfibrous cellulose (in terms of iron element) is 1 to 100 mmol.
  • [3] The composite according to [1] or [2], wherein the microfibrous cellulose is microfibrillated cellulose.
  • Microfibrous cellulose and an iron compound are mixed in water in the presence of a crystal modifier to adsorb the iron compound to the microfibrous cellulose, and then heat-treated to produce [1] to [6].
  • a method for manufacturing a composite which comprises manufacturing the composite according to any one of the above.
  • a method for producing purified water comprising treating arsenic-contaminated water with the complex according to any one of [1] to [6] to obtain purified water.
  • a water purification device comprising the arsenic adsorbent according to [9].
  • a water purification device comprising the composite according to any one of [1] to [6].
  • the composite of the present disclosure can efficiently adsorb and recover arsenic dissolved in water. After arsenic has been adsorbed, it is burned to reduce its volume, thereby significantly reducing the cost of disposal such as landfilling. Therefore, the composite can be suitably used for purifying water contaminated with arsenic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

水中に溶解するヒ素(V)を効率よく吸着・回収することができる新規の複合体、及び新規のヒ素吸着剤を提供する。 本開示の複合体は、前記微小繊維状セルロースに担持された鉄(III)含有粒子を含み、 前記鉄(III)含有粒子の少なくとも一部は、アスペクト比が2以上の粒子である。 前記鉄(III)含有粒子は、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物を含有することが好ましい。 本開示のヒ素吸着剤は、前記複合体を含有する。

Description

複合体及びその製造方法
 本開示は、新規の複合体、その製造方法、前記複合体を含むヒ素吸着剤、これらの製造方法、前記ヒ素吸着剤を用いた浄水の製造方法、並びに前記ヒ素吸着剤を備えた浄水装置に関する。
 ヒ素は、環境中に広く分布しているが、有害性が高く、微量であっても長期間摂取することで、種々の疾患を引き起こし、健康被害をもたらすことが知られている。
 そして、東南アジアをはじめ世界各地で発生している井戸水の無機ヒ素汚染が、大きな環境問題となっている。そのため、水中に含まれるヒ素を除去する方法が求められている。
 例えば、特許文献1には、水酸化第2鉄を、スチレン-アクリル酸共重合体バインダーと混合し、ペレット化して得られる吸着剤が、強酸性水中からヒ素(III)を吸着して除去するのに有用であることが記載されている。
特開2008-207110号公報
 ヒ素(V)は鉄の表面に吸着するが、前記吸着剤は、バインダーに担持された水酸化第2鉄が水に溶解するため、ヒ素(V)の吸着面を広く確保することが困難であった。また、水酸化第2鉄は、スチレン-アクリル酸共重合体バインダーのカルボキシル基に結合して担持されるため、単位重量当たりの鉄担持量を増やすことが困難であり、ヒ素(V)を効率よく吸着することができなかった。
 従って、本開示の目的は、水中に溶解するヒ素(V)を効率よく吸着して回収する効果を有する新規の複合体を提供することにある。
 本開示の他の目的は、前記複合体の製造方法を提供することにある。
 本開示の他の目的は、水中に溶解するヒ素(V)を効率よく吸着・回収することができる新規のヒ素吸着剤を提供することにある。
 本開示の他の目的は、前記ヒ素吸着剤を用いた浄水の製造方法を提供することにある。
 本開示の他の目的は、前記ヒ素吸着剤を備えた浄水装置を提供することにある。
 本発明者らは前記課題を解決するため鋭意検討した結果、以下の事項を見出した。
1.微小繊維状セルロースは比表面積が極めて大きく、微小繊維状セルロースの表面に鉄(III)含有粒子を担持すると、鉄(III)含有粒子の凝集を抑制することができ、ヒ素の吸着に有効な鉄(III)含有粒子の表面積を広く確保できること
2.微小繊維状セルロースは、鉄が結合する水酸基を構成単位当たり3個も有するため、単位重量当たりの鉄担持量を増やすことができること
3.微小繊維状セルロースに担持される鉄(III)含有粒子を針状結晶化すると、ヒ素の吸着に有効な表面積を顕著に拡大することができ、ヒ素の吸着効率が飛躍的に向上すること
4.微小繊維状セルロースは親水性に優れ、水に浸漬すると、微小繊維状セルロース中に水が容易に浸透するため、水中に溶解するヒ素が、微小繊維状セルロースに担持された鉄(III)含有粒子に効率的に吸着されること
 本開示はこれらの知見に基づいて完成させたものである。
 すなわち、本開示は、微小繊維状セルロースと、前記微小繊維状セルロースに担持された鉄(III)含有粒子を含み、
前記鉄(III)含有粒子の少なくとも一部は、アスペクト比が2以上の粒子である複合体を提供する。
 本開示は、また、前記微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量(鉄元素換算値)が1~100mmolである前記複合体を提供する。
 本開示は、また、前記微小繊維状セルロースがミクロフィブリル化セルロースである前記複合体を提供する。
 本開示は、また、前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物を含有する前記複合体を提供する。
 本開示は、また、前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物と、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、前記鉄化合物(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム及び/又はチタン)]が1~100である前記複合体を提供する。
 本開示は、また、前記鉄(III)含有粒子の体積相当球の粒子直径が1μm未満である複合体を提供する。
 本開示は、また、水中にて、媒晶剤の存在下、微小繊維状セルロースと鉄化合物を混合して、微小繊維状セルロースに鉄化合物を吸着させ、その後加熱処理を施して前記複合体を製造する、複合体の製造方法を提供する。
 本開示は、また、微小繊維状セルロースに鉄化合物を吸着させる工程において、鉄化合物と共に、ジルコニウム化合物及びチタン化合物から選択される少なくとも1種の金属化合物を吸着させる前記複合体の製造方法を提供する。
 本開示は、また、前記複合体を含むヒ素吸着剤を提供する。
 本開示は、また、ヒ素汚染水を、前記ヒ素吸着剤で処理して浄水を得る、浄水の製造方法を提供する。
 本開示は、また、前記ヒ素吸着剤を備えた浄水装置を提供する。
 本開示の複合体は、比表面積が極めて大きく、且つ親水性に優れる微小繊維状セルロースに、ヒ素(V)の吸着表面積が大きな針状の鉄(III)含有粒子が分散して担持された構成を有する。そのため、前記複合体を水中に浸漬すると、水中に溶解したヒ素(V)を効率よく吸着して回収することができる。
 また、前記複合体は、リン(P)等のヒ素と類似の化学的性質を有する元素が共存しても、ヒ素を選択的に吸着・回収することができる。
 さらに、前記複合体は、燃焼させても排気ガスの問題を生じることがなく、ヒ素(V)を吸着させたあとは燃焼させて減容することにより、埋め立て等の処分に係る費用を大幅に削減することができる。
 従って、前記複合体はヒ素(特に、ヒ素(V))で汚染された水からヒ素を吸着して回収するためのヒ素吸着剤として好適に使用することができる。
実施例1で得られた複合体(1)のSEM画像を示す図である(倍率:5000倍)。 実施例2で得られた複合体(2)のSEM画像を示す図である(倍率:5000倍)。 実施例2~4で得られた複合体(2)(3)(4)のSEM画像を示す図である。(a)は5000倍の視野であり、(b)は10000倍の視野であり、(c)は5000倍の視野である。 実施例5で得られた複合体(5)のSEM画像を示す図である(倍率:5000倍)。 参考例1で得られた複合体(8)のSEM画像を示す図である(倍率:5000倍)。 実施例で得られた複合体(2)のAs(V)吸着率とpHとの関係を示す図である。 実施例で得られた複合体(2)の、陰イオン共存下におけるAs(V)吸着率を示す図である。 本開示の一実施形態において、複合体において、加圧、高温下で、微小繊維状セルロース(1)表面に酸化鉄粒子が結合することを示す図である。 実施例5で得られた複合体(5)のSEM画像を示す図である(倍率:30000倍)。 実施例7で得られた複合体(7)のSEM画像を示す図である(倍率:30000倍)。
 以下、本開示の一実施形態について詳細に説明する。本開示は、以下の実施形態に限定されるものではなく、本開示の効果を阻害しない範囲で適宜変更を加えて実施することができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 本明細書に開示された各々の態様は、本明細書に開示された他の如何なる特徴とも組み合わせることができる。
 一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。また、本開示に記載されている数値範囲の下限値及び/又は上限値は、その数値範囲内の数値であって、実施例で示されている数値に置き換えてもよい。本開示に記載されている数値範囲の下限値及び/又は上限値は、その数値範囲内の数値であって、実施例で示されている数値に置き換えてもよい。
 本開示において数値範囲についての「X~Y」との表現は、「X以上Y以下」であることを意味している。
 本開示において、成分や物質などについての「S及び/又はT」との表現は、「S及びTからなる群から選ばれた少なくとも一種」であることを意味している。
 [複合体]
 本開示の複合体は、微小繊維状セルロースと鉄(III)含有粒子を含み、前記鉄(III)含有粒子は、前記微小繊維状セルロースに担持された状態で含まれる。また、前記鉄(III)含有粒子の少なくとも一部はアスペクト比が2以上の粒子(以後、「針状粒子」と称する場合がある)である。「針状粒子」は、アスペクト比が2以上の粒子を意味するが、一実施形態においては、アスペクト比が2以上の粒子において、少なくとも一方の先端にいくほど直径(又は幅)が小さくなる形状であってもよく、少なくとも一方の先端が尖っている形状であってもよい。
 前記鉄(III)含有粒子全量における針状粒子の占める割合は、例えば5重量%以上であり、ヒ素の吸着表面をさらに拡大して、ヒ素の吸着・回収効率を向上することができる点で、好ましくは8重量%以上、特に好ましくは10重量%以上である。前記鉄(III)含有粒子全量における針状粒子の占める割合の上限値は100重量%、なかでも50重量%、特に30重量%である。
 針状粒子のアスペクト比(粒子長さ/粒子径)は2以上である。ヒ素の吸着表面をさらに拡大して、ヒ素の吸着・回収効率を向上することができる点で、好ましくは3以上、より好ましくは5以上、特に好ましくは10以上である。前記アスペクト比の上限値については、例えば100以下が好ましく、50以下がより好ましく、30以下がさらに好ましい。すなわち、針状粒子のアスペクト比は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、好ましくは3以上100以下、より好ましくは5以上50以下、更に好ましくは10以上30以下である。
 製造時に媒晶剤の存在下、水熱条件(加圧、高温下)で粒子を成長させることにより、針状粒子のアスペクト比が2以上になり易い。鉄化合物1重量部に対しする溶媒剤の使用量を例えば0.1~10重量部にすることにより、針状粒子化が促進され易く、且つ/又は針状粒子のアスペクト比が大きくなり易い。
 針状粒子の体積相当球の粒子直径(以後、「体積相当径」と称する場合がある)は、例えば1μm未満であり、好ましくは800nm以下、より好ましくは600nm以下、更に好ましくは500nm以下、更に好ましくは400nm以下である。400nm以下の場合、200nm以下であっても、100nm以下であってもよい。前記粒子直径の下限値については、例えば1nm以上が好ましく、10nm以上がより好ましい。すなわち、針状粒子の体積相当球の粒子直径は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、例えば1nm以上1μm未満、好ましくは1nm以上800nm以下、より好ましくは10nm以上600nm以下、更に好ましくは10nm以上500nm以下、更に好ましくは10nm以上400nm以下である。10nm以上400nm以下である場合、10nm以上200nm以下であっても、10nm以上100nm以下であってもよい。
 粒子における「粒子長さ」及び「粒子径」とは、それぞれ粒子の長軸径及び短軸径を意味する。
 粒子の長軸径及び短軸径は、走査型電子顕微鏡(SEM)によって観察される二次元の粒子画像における、粒子長軸と短軸それぞれの径である。
 一実施形態において、少なくとも1つのSEMの二次元粒子画像において、任意に選択した10個の粒子の長軸径、及び同一粒子の短軸径を測定し、そのうち少なくとも1個以上の粒子のアスペクト比が2以上である。アスペクト比が2以上の場合、アスペクト比が4以上であってもよく、例えば、4であってもよい。更に、10個の粒子の長軸径、及び同一粒子の短軸径を測定し、複合体総重量に対し、好ましくは5重量%以上、より好ましくは7重量%以上、更に好ましくは9重量%以上の粒子のアスペクト比が2以上であることが更に好ましい。9重量%以上の場合、10重量%以上であっても、11重量%以上であっても、12重量%以上であっても、13重量%以上であってもよい。
 前記体積相当球の粒子直径は、SEM観察や画像解析で求めることができる。体積相当球の粒子直径は、少なくとも1つのSEMの二次元粒子画像において、任意に選択した10個の粒子について当該粒子を直方体とみなして3辺の乗算から体積(V)を算出し、下式により体積相当球粒子直径(D)を算出した値の平均値である。
D=(6/πV) (1/3)
 鉄(III)含有粒子には、針状粒子以外にも他の形状の粒子が含まれていて良い。他の形状としては、例えば、球状(真球状、略真球状、楕円球状など)、多面体状、平板状、りん片状、不定形状等が挙げられる。言い換えると、鉄(III)含有粒子には、アスペクト比が2未満の粒子が含まれていてもよい、アスペクト比が2未満の粒子としては、上記した球状(真球状、略真球状、楕円球状など)、多面体状、平板状、りん片状、不定形状等が挙げられる。
 鉄(III)含有粒子としては、少なくとも、酸化鉄(Fe)、水酸化鉄(Fe(OH))、及びオキシ水酸化鉄(FeOOH)から選択される少なくとも1種の鉄化合物(例えば、水に不溶の3価の鉄化合物)を含有することが好ましく、酸化鉄(Fe)、及びオキシ水酸化鉄(FeOOH)からなる群から選択される少なくとも1種がより好ましい。
 鉄(III)含有粒子は、水に不溶の3価の鉄化合物以外にも他の成分を含有していても良く、例えば、酸化ジルコニウム、水酸化ジルコニウム、オキシ水酸化ジルコニウム、酸化チタン、水酸化チタン、オキシ水酸化チタン等の、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有していても良く、前記金属の酸化物、水酸化物、及びオキシ水酸化物から選択される2種以上を組み合わせて含有しても良い。鉄(III)含有粒子は、鉄(III)を前記他の金属の少なくとも1種との混合酸化物として含有していてもよい。
 前記金属の酸化物、水酸化物、又はオキシ水酸化物はヒ素(例えば、5価のヒ素)に対する親和性に優れる。そのため、微小繊維状セルロース表面に、鉄成分と共に前記金属酸化物を担持すれば、又は鉄成分と前記金属との混合酸化物を担持すれば、ヒ素吸着力をより一層向上することができる。鉄(III)含有粒子が、水に不溶の3価の鉄化合物以外にも他の成分を含有する場合、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物及びオキシ水酸化物からなる群から選択される少なくとも1種を含有することがより好ましい。鉄(III)含有粒子が、鉄(III)と前記他の金属の少なくとも1種との混合酸化物を含有する場合、ジルコニウム及び/又はチタンとの混合酸化物(FeZr、FeTi等)の少なくとも1種を含有することが好ましい。
 鉄(III)含有粒子は、3価の鉄化合物、前記ジルコニウム及び/若しくはチタンの酸化物、水酸化物、又はオキシ水酸化物の少なくとも1種、並びに鉄(III)と前記金属の少なくとも1種との混合酸化物から選択される少なくとも2種以上を如何なる組み合わせで含有してもよく、鉄化合物、ジルコニウム及び/又はチタンの化合物、並びに鉄とジルコニウム及び/又はチタンとの混合酸化物の全てを含有していてもよい。
 前記鉄(III)含有粒子が、水に不溶の3価の鉄化合物と共に、前記金属の酸化物、水酸化物、又はオキシ水酸化物を含有する場合、前記鉄化合物(鉄元素換算値)と前記金属の酸化物水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]は、例えば1~100である。前記鉄(III)含有粒子が、鉄(III)と前記他の金属との混合酸化物を含有する場合、前記鉄(III)(鉄元素換算値)と他の金属(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム+チタン)]は、例えば1~100である。
 前記モル比の上限値は、好ましくは50、より好ましくは30、更に好ましくは20、特に好ましくは15である。前記モル比の下限値は、好ましくは3、特に好ましくは5、最も好ましくは7である。すなわち、モル比[鉄/(ジルコニウム+チタン)]は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、好ましくは3以上50以下、より好ましくは3以上30以下、更に好ましくは5以上20以下、更に好ましくは7以上15以下である。
 ここで、「ジルコニウム+チタン」とは、「ジルコニウム及び/又はチタン」を意味する。すなわち、[鉄/(ジルコニウム+チタン)]は、「鉄/(ジルコニウム及び/又はチタン)」を意味する。
 一実施形態において、モル比[鉄/(ジルコニウム+チタン)]は、「鉄/ジルコニウム」又は「鉄/チタン」のモル比であることが好ましい。
 前記複合体(若しくは、複合体に含まれる、微小繊維状セルロースと鉄(III)含有粒子の合計)1gにおける、鉄(III)含有粒子の含有量(鉄元素換算値)は、例えば10~5000μmolである。鉄(III)含有粒子の含有量(鉄元素換算値)の上限値は、好ましくは4000μmol、特に好ましくは3500μmol、最も好ましくは3000μmolである。鉄(III)含有粒子の含有量(鉄元素換算値)の下限値は、好ましくは100μmol、更に好ましくは500μmol、特に好ましくは1000μmol、最も好ましくは1500μmolであり、2000μmolであってもよい。すなわち、鉄(III)含有粒子の含有量(鉄元素換算値)は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、好ましくは100μmol以上4000μmol以下、より好ましくは500μmol以上4000μmol以下、更に好ましくは1000μmol以上3500μmol以下、更に好ましくは1500μmol以上3500μmol以下、更に好ましくは1500μmol以上3000μmol以下であり、2000μmol以上3000μmol以下であってもよい。
 複合体における鉄(III)含有粒子の合計担持量は、複合体に6mol/Lの塩酸を加えて3価の鉄を鉄(III)イオンとして溶出させ、溶離液中の鉄(III)イオンの濃度をICP発光分光分析機等の機器で測定することにより、実施例に記載の方法で評価することができる。
 前記複合体中において、微小繊維状セルロース1g当たりの鉄(III)含有粒子の含有量(鉄元素換算値)は、例えば1~100mmol、好ましくは1~50mmol、更に好ましくは1~10mmol、特に好ましくは1~5mmol、最も好ましくは1~3mmolである。
 微小繊維状セルロースに対する鉄(III)含有粒子の含有量は、複合体中の鉄(III)含有粒子の含有量と同様の方法で算出又は測定することができる。
 複合体に含まれる微小繊維状セルロースの重量は、前記複合体中の0価と3価の鉄の合計担持量(鉄元素換算値)から算出した0価の鉄と3価の粒子重量を、複合体の重量から減ずることで評価することができる。微小繊維状セルロース1gに対する0価の鉄と3価の鉄の担持量は、前記複合体中の0価と3価の鉄の合計担持量と複合体に含まれる微小繊維状セルロースの重量から算出することができる。
 微小繊維状セルロースは、例えばセルロース繊維が縦に引き裂かれ、微細化されたものであり、好ましくはミクロフィブリル化セルロースである。セルロース繊維が縦に引き裂かれるとは、セルロース繊維がその繊維方向に沿って引き裂かれることを意味する。
 微小繊維状セルロースの平均繊維長は、例えば0.5~1.5mm、好ましくは0.5~1.2mm、特に好ましくは0.6~0.8mmである。微小繊維状セルロースの平均繊維径は、例えば0.5~50μmである。
 微小繊維状セルロースのアスペクト比(平均繊維長/平均繊維径)は、5~10000が好ましく、7~5000がより好ましく、10~3000が更に好ましい。
 微小繊維状セルロースにおいて、繊維長及び繊維径は、SEMによって観察される二次元の粒子画像における、繊維の長軸の長さと短軸径である。
 一実施形態において、微小繊維状セルロースのアスペクト比は、SEM二次元セルロース画像において、10本以上のセルロースの長軸の長さ、及び同一セルロースの短軸径を測定し、長軸の長さの平均値と短軸径の平均値から、平均繊維長/平均繊維径により算出される値である。或いは、微小繊維状セルロースのアスペクト比は、メーカーの公開する製品情報に記載の平均繊維長と平均繊維径(又は参考繊維径)から、平均繊維長/平均繊維径により算出される値であってもよい。
 前記複合体は、さらに他の成分を含有していても良いが、微小繊維状セルロースと鉄(III)含有粒子の合計含有量の占める割合は、前記複合体全量の例えば50重量%以上、好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上、とりわけ好ましくは90重量%以上である。微小繊維状セルロースと鉄(III)含有粒子の含有率が前記範囲を下回ると、ヒ素を効率よく且つ選択的に吸着することが困難となる傾向がある。
 前記複合体の形状としては、本開示の効果を損なわない限り特に制限されるものではないが、水溶液中のヒ素を吸着させた後に、水溶液からの回収が容易な点において、ゲル状、粉末状、又はペレット状が好ましい。
 前記複合体に、水溶液に溶解したヒ素を吸着させる方法としては、特に制限されることがなく、例えば、前記複合体をカラム等に充填し、そこにヒ素を溶解した水溶液を流す方法や、ヒ素を溶解した水溶液中に前記複合体を加え、撹拌する方法等が挙げられる。
 微小繊維状セルロース(1)上に金属粒子(鉄(III)含有粒子(2))が成長した状態を図8に示す。微小繊維状セルロース繊維表面に繊維径よりも小さな粒子が複数結合することで、繊維の表面のみに鉄化合物が吸着した場合よりも多くの鉄を担持することができる。また、アスペクト比が2以上であることにより、粒子中においてより多くの表面でヒ素を吸着できる。
 ヒ素(V)は水溶液中においてはヒ酸イオンとして存在する。前記複合体は、水中において、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物がヒ素(特に、ヒ酸イオン)の水酸基を介して錯形成することによって、ヒ素(特に、ヒ酸イオン)を吸着し固定する(図8)(下記参照)。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 [化1]は、Celluloseに点線で接続した「Fe」は、Celluloseに吸着した鉄(III)含有粒子に含まれる鉄化合物の鉄を意味し、上記のように鉄がヒ素を吸着し固定する様子を示す。
 [化2]は、鉄(III)含有粒子(2)に含まれる金属(Fe、Zr、Ti)がヒ素を吸着し固定する様子を示す。
 前記複合体のヒ素の吸着容量は、例えば300μmol/g以上、好ましくは500μmol/g以上、より好ましくは900μmol/g以上、更に好ましくは1300μmol/g以上である。ヒ素の吸着容量の上限値は、例えば5000μmol/gである。すなわち、複合体のヒ素の吸着容量は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、例えば300μmol/g以上5000μmol/g以下、好ましくは500μmol/g以上5000μmol/g以下、より好ましくは900μmol/g以上5000μmol/g以下、更に好ましくは1300μmol/g以上5000μmol/g以下である。
 前記複合体が含有する鉄(III)含有粒子(鉄元素換算値)1mol当たりのヒ素の吸着容量は、例えば0.2mol以上、好ましくは0.3mol以上、特に好ましくは0.5mol以上である。ヒ素の吸着容量の上限値は、例えば10mol、特に5molである。すなわち、複合体が含有する鉄(III)含有粒子(鉄元素換算値)1mol当たりのヒ素の吸着容量は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、例えば0.2mol以上10mol以下、好ましくは0.3mol以上10mol以下、より好ましくは0.5mol以上10mol以下、更に好ましくは0.5mol以上5mol以下である。
 酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物はヒ素イオンとは高い親和性を有するが、ヒ素と化学的性質が近似するリンを含むリン酸二水素イオンや、ハロゲン化物イオン、硫酸イオン等の他の陰イオンとは親和性が低い。前記複合体は、前記特性を有する鉄化合物を含有するため、他の陰イオンの共存下でも、ヒ素吸着力が低下することなく、ヒ素を選択的に吸着することができる。
 尚、前記ヒ素吸着剤によるヒ素の吸着容量は、25℃において、1000mg/Lのヒ素(V)水溶液10mLに、前記複合体0.01gを浸漬し、振とう器で30分振とうした場合の吸着量であり、実施例に記載の式から算出される。
 本開示の複合体を使用すれば、水中に溶解したヒ素(特に、ヒ素(V))回収することができる。
 また、本開示の複合体にヒ素を吸着させた後は、燃焼させることによって、顕著に減容することができ、処分にかかる費用を軽減することができる。
 前記複合体は前記特性を有するため、ヒ素で汚染された水からヒ素を吸着して回収するためのヒ素(特に、ヒ素(V))吸着剤として有用である。
 [複合体の製造方法]
 前記複合体は、例えば、水中にて、媒晶剤の存在下、微小繊維状セルロースと鉄化合物を混合して、微小繊維状セルロースに鉄化合物を吸着させ(吸着工程)、その後、加熱処理を施して(水熱処理工程)、製造することができる。
 (吸着工程)
 本工程は、水中において、媒晶剤の存在下、微小繊維状セルロースと鉄化合物を混合して、微小繊維状セルロースに鉄化合物を吸着させる工程である。
 鉄化合物としては、例えば、FeCl3等の3価の鉄化合物を使用することができる。
 鉄化合物の使用量は、微小繊維状セルロース1gに対して、例えば1~100ミリモル、好ましくは1~50ミリモルである。
 鉄化合物の使用量は、微小繊維状セルロース1gに対して、例えば1~10gである。ヒ素吸着力が特に優れる複合体が得られる観点から、好ましくは2~8g、特に好ましくは3~6gである。
 媒晶剤としては、鉄(III)含有粒子の針状結晶化を促進する化合物を選択して使用することが好ましく、例えば、硫酸ナトリウムを使用することができる。
 媒晶剤の使用量は、鉄化合物1重量部に対して、例えば0.1~10重量部、好ましくは0.1~5重量部、特に好ましくは0.1~2重量部である。媒晶剤を前記範囲で使用することにより、鉄化合物の針状結晶化を促進して、鉄(III)含有粒子の針状粒子化を促進して、及び/又は針状粒子のアスペクト比を大きくすることができ、ヒ素の吸着表面をより一層広げることができる。
 本開示の方法では、更に、ヒ素吸着力を向上させるために、ヒ素に対して良好な親和性を有する金属化合物を使用してもよい。
 前記金属化合物としては、例えば、酸化ジルコニウム(ZrO)、水酸化ジルコニウム、オキシ水酸化ジルコニウム、塩化酸化ジルコニウム(ZrClO)、塩化ジルコニウム(ZrCl)等のジルコニウム化合物や、酸化チタン、塩化チタン、水酸化チタン、オキシ水酸化チタン等のチタン化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記金属化合物としては、ヒ素との親和性に優れ、ヒ素の吸着量を向上する効果に特に優れる点で、前記金属の酸化物、水酸化物、及びオキシ水酸化物から選択される少なくとも1種であることが好ましく、前記金属の酸化物及びオキシ水酸化物からなる群から選択される少なくとも1種であることがより好ましく、塩化酸化ジルコニウム(ZrCl2O)等のジルコニウム化合物が更に好ましい。
 前記金属化合物の使用量(2種以上を使用する場合はその総量)は、鉄化合物1重量部に対して、例えば0.01~10重量部、好ましくは0.01~2重量部である。
 鉄化合物(鉄元素換算値)と、ジルコニウム化合物及び/又はチタン化合物(金属元素換算値;2種以上含有する場合はその総量)の使用割合(モル比)[Fe/(Zr+Ti)]は、例えば1~100である。前記モル比の上限値は、好ましくは50、特に好ましくは10である。前記モル比の下限値は、好ましくは3、特に好ましくは5、最も好ましくは8である。すなわち、使用割合(モル比)[Fe/(Zr+Ti)]は、これらの上限値及び下限値の如何なる組み合わせであってもよいが、好ましくは3以上50以下、より好ましくは5以上50以下、更に好ましくは8以上10以下である。
 ここで、「Zr+Ti」とは、「Zr(ジルコニウム化合物)及び/又はTi(チタン化合物)」を意味する。すなわち、[Fe/(Zr+Ti)]は、「鉄/(ジルコニウム化合物及び/又はチタン化合物)」を意味する。
 一実施形態において、モル比[Fe/(Zr+Ti)]は、「鉄/ジルコニウム化合物」又は「鉄/チタン化合物」のモル比であることが好ましい。
 前記金属化合物を使用する場合は、鉄化合物と共に、前記金属化合物を水中に添加し、撹拌して、微小繊維状セルロースに吸着させれば良い。
 微小繊維状セルロースは、例えばセルロース繊維が縦に引き裂かれ、微細化されたもの、すなわちミクロフィブリル化セルロースである。微小繊維状セルロースは、例えば、特定の繊維長を有するセルロース繊維を、例えば、叩解処理及び/又は機械的剪断処理(例えば、ホモジナイズ処理)等に付すことによりセルロース繊維がその繊維方向に沿って引き裂かれ、製造することができる。
 前記セルロース繊維としては、例えば、木材パルプ(針葉樹パルプ、広葉樹パルプ)やコットンリンターパルプ由来のセルロース繊維を好適に用いることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。尚、前記パルプには、ヘミセルロースなどの異成分が含まれていてもよい。
 また、前記セルロース繊維は、その表面に親水性基等の官能基が付与されたものであっても良い。
 前記微小繊維状セルロースの平均繊維長は、例えば0.5~1.5mm、好ましくは0.5~1.2mm、特に好ましくは0.6~0.8mmである。微小繊維状セルロースの平均繊維径は、例えば0.5~50μmである。
 微小繊維状セルロースのアスペクト比の例、好適例は、「複合体」の項に記載のとおりである。
 前記微小繊維状セルロースとしては、例えば商品名「セリッシュ」「ろ過名人」「PC110S」「PC110T」(以上、ダイセルミライズ(株)製)等の市販品を使用することができる。
 本工程を経て、鉄化合物と、必要に応じて前記金属化合物(又は鉄と前記金属との混合酸化物)を微小繊維状セルロースに吸着させることができる。鉄化合物(鉄化合物と共に前記金属化合物を使用する場合は、鉄化合物と前記金属化合物、又は鉄と前記金属との混合酸化物)の、微小繊維状セルロースに吸着する態様としては、特に制限がなく、例えば、イオンの状態で微小繊維状セルロースに吸着していても良い。
 (水熱処理工程)
 本工程は、水中にて、鉄化合物を吸着させた微小繊維状セルロースに加熱処理を施す工程である。
 前記加熱処理温度は、例えば100~150℃である。前記加熱処理時の圧力は、例えば常圧~5atm、好ましくは常圧~3atmである。前記加熱処理温時間は、例えば0.5~10時間である。前記加熱処理は、周知慣用の加熱手段(例えば、ヒートブロック式加熱分解システム)を用いて行うことができる。
 前記加熱処理時間は、例えば0.5~10時間、好ましくは1~7時間、特に好ましくは3~7時間である。前記範囲において加熱処理時間を長くすると、結晶化が促進される傾向がある。
 水中において、鉄化合物を吸着させた微小繊維状セルロースに加熱処理を施すことで、微小繊維状セルロースの表面に、少なくとも一部が針状である鉄(III)含有粒子を析出させることができる。
 鉄化合物と共に、ジルコニウム化合物及び/又はチタン化合物を使用する場合は、加熱処理を経て、微小繊維状セルロースの表面に、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物(=水に不溶の3価の鉄化合物)と、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、若しくはオキシ水酸化物を含み、又は微小繊維状セルロースの表面に、鉄(III)とジルコニウム及び/又はチタンとの混合酸化物を含み、かつ少なくとも一部が針状である鉄(III)含有粒子を析出させることができる。
 本工程を経て、微小繊維状セルロースに、少なくとも一部が針状である鉄(III)含有粒子を担持した構成を有する複合体が得られる。
 [ヒ素吸着剤]
 本開示のヒ素吸着剤は、前記複合体を含む。前記ヒ素吸着剤は、前記複合体以外にも他の成分を含有していても良いが、ヒ素吸着剤全量(若しくは、ヒ素吸着剤に含まれる不揮発分全量)における前記複合体の占める割合は、例えば50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。尚、前記ヒ素吸着剤は前記複合体のみからなるものであってもよい。
 尚、本開示において「不揮発分」とは、溶剤(水や有機溶媒を含む)以外の成分の合計重量であり、例えば、1gのヒ素吸着剤を常圧下において100℃で1時間加熱した後に残る成分である。
 前記ヒ素吸着剤の形状としては、本開示の効果を損なわない限り特に制限されるものではないが、水溶液中のヒ素を吸着させた後に、水溶液からの回収が容易な点において、ゲル状、粉末状、又はペレット状が好ましい。
 本開示のヒ素吸着剤は前記複合体を含むため、水中に溶解したヒ素(V)を吸着して除去する用途に好適に使用することができる。
 前記ヒ素吸着剤は、前記複合体の製造方法により複合体を製造し、必要に応じて他の成分を添加し、また必要に応じて成形することで調製することができる。
 [浄水の製造方法]
 本開示の浄水の製造方法は、ヒ素汚染水(ヒ素で汚染された水であり、ヒ素濃度は、例えば5mM以上である)を、前記ヒ素吸着剤(或いは、前記複合体)で処理して、浄水(例えば、前記汚染水に含まれるヒ素の99重量%以上(更に好ましくは99.9重量%以上)が除去されてなる浄水)を得る方法である。
 ヒ素(V)は水溶液中においてはヒ酸イオンとして存在する。そして、前記ヒ素吸着剤(或いは、前記複合体)は、金属粒子に含まれるは3価の鉄が、ヒ酸イオンの水酸基を介して錯形成することによって、ヒ素イオンを吸着し、回収する。
 汚染水を前記ヒ素吸着剤で処理する方法とは、すなわち汚染水に含まれるヒ素を前記ヒ素吸着剤に吸着させる方法である。前記方法としては、特に制限されることがなく、例えば、前記ヒ素吸着剤をカラム等に充填し、そこに汚染水を流す方法や、汚染水中に前記ヒ素吸着剤を加え、撹拌する方法等が挙げられる。
 前記ヒ素吸着剤で処理する際には、汚染水のpHを例えば10以下(例えば1~10、好ましくは2~10)、好ましくは8以下に調整することが、ヒ素をより一層効率よく回収することができる点で好ましい。尚、前記pH調整は、周知慣用のpH調整剤を用いて行うことができる。
 また、ヒ素吸着剤にヒ素を吸着させた後は、ヒ素を吸着したヒ素吸着剤を燃焼させることによって、顕著に減容することができ、処分にかかる費用を軽減することができる。
 本開示の浄水の製造方法によれば、ヒ素で汚染された水から効率よくヒ素を除去することができ、ヒ素汚染のない浄水を効率よく製造することができる。
 [浄水装置]
 本開示の浄水装置は、前記ヒ素吸着剤(或いは、前記複合体)を備える。
 ヒ素吸着剤の装備方法としては、特に制限がない。例えば、ヒ素吸着剤をカラム等に充填した状態で装備する方法が挙げられる。
 従って、前記浄水装置は、上記ヒ素吸着剤を充填したカラムを備えるものであってよい。
 前記浄水装置は、上記ヒ素吸着剤の他、ヒ素吸着剤に浄化前の水を供給するための装置や、ヒ素吸着剤により浄化された後の水を排出する装置等、必要な構成を備えることができる。
 前記浄水装置は、上記ヒ素吸着剤を備えるため、ヒ素で汚染された水から効率よくヒ素を除去することができ、ヒ素汚染のない浄水を効率よく製造することができる。
 以上、本開示の各構成及びそれらの組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本開示は、実施形態によって限定されることはなく、請求の範囲の記載によってのみ限定される。
 以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではない。
 実施例1
 (吸着工程)
 50mLのDigi-Tubeに、ミクロフィブリル化セルロース(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10g、FeCl・6HO 0.68g(2.5mmol)、NaSO4 0.41g(2.9mmol)、精製水50mLを加え、室温下において、ホモジナイザー(OMNI tissue homogenizer TH、 OMNI international社)を使用してミクロフィブリル化セルロースが完全分散するまで撹拌した。
 使用したホモジナイザーは、例えばセルロースナノファイバーを調製するために使用される高圧ホモジナイザーに比較して、剪断力の弱いホモジナイザーである。これにより、少ない消費エネルギーでミクロフィブリル化セルロースを撹拌・分散することができる。
 (水熱処理工程)
 撹拌後、ヒートブロック式加熱分解システムを用いて、121℃、2気圧下で4.0~5.0時間加熱した。
 加熱終了後、反応物を吸引ろ過処理に付し、得られた濾物を40℃で乾燥させて、酸化鉄(又は酸化鉄及びオキシ水酸化鉄)を含有する粒子(体積相当径:1μm未満、アスペクト比が2以上である針状粒子を12重量%以上含む)がミクロフィブリル化セルロースに担持されてなる複合体(1)(FeIII-NN-セルロースマイクロファイバー(CMF))を得た。得られた複合体(1)のSEM画像を図1に示す。図1に示すように、複合体をSEMで観察すると、微小繊維状セルロースの表面に針状の粒子が観察された。この視野内の丸で囲った部分においては、少なくとも、50個の針状粒子が観察された。複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であった。観測した視野で観測可能な全粒子のうち、8割以上がアスペクト比8を超える細長い粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、2.5mmolであった。また、この複合体中のSEM画像の中から任意で選ばれる10個の針状粒子の体積相当径の平均値は、0.16μmであった。
 実施例2
 (吸着工程)
 50mLDigi-Tubeに、ミクロフィブリル化セルロース(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10g、FeCl・6HO 0.68g(2.5mmol)、NaSO4 0.41g(2.9mmol)、ZrClO・8HO 0.088g(0.27mmol)、精製水50mLを加え、室温下において、ホモジナイザー(OMNI tissue homogenizer TH, OMNI international)を使用してミクロフィブリル化セルロースが完全分散するまで撹拌した。(FeClとZrClOの仕込みモル比[Fe/Zr(金属元素換算値)]9/1)
 (水熱処理工程)
 撹拌後、ヒートブロック式加熱分解システムを用いて、120℃で5時間加熱した。
 加熱終了後、ろ過処理に付して得られた濾物を40℃で乾燥させて、酸化鉄(又は酸化鉄及びオキシ水酸化鉄)と酸化ジルコニウムを含有する粒子(体積相当径:1μm未満、アスペクト比が2以上である針状粒子を13重量%以上含む)、及び/又は鉄及びジルコニウムの混合酸化物を含有する粒子(体積相当径:1μm未満、アスペクト比が2以上である針状粒子を13重量%以上含む)がミクロフィブリル化セルロースに担持されてなる複合体(2)(FeIII/Zr(1.0)-NN-CMF)を得た。得られた複合体(2)のSEM画像を図2及び図3(a)に示す(異なる2つの視野)。図2及び図3(a)に示すように、複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であり、且つアスペクト比が2を超える細長い粒子を含んでいた。観測した2つの視野で観測可能な全粒子のうち、8割以上がアスペクト比2を超える細長い粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、2.5mmolであった。図2の中から任意で選ばれる10個の針状粒子の体積相当径の平均値は0.53μm、図3aの中から任意で選ばれる10個の針状粒子の体積相当径の平均値は0.33μmであった。
 実施例3
 (水熱処理工程)において、120℃での加熱時間を5時間から2時間に変更した以外は実施例2と同様にして、複合体(3)(FeIII/Zr(1.0)-NN-CMF)を得た。得られた複合体(3)のSEM画像を図3(b)に示す。図3(b)に示すように、複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であり、且つアスペクト比が2を超える細長い粒子が観測した視野で観測可能な全粒子の9割以上であることが観察された。
 実施例4
 (水熱処理工程)において、120℃での加熱時間を5時間から1時間に変更した以外は実施例2と同様にして、複合体(4)(FeIII/Zr(1.0)-NN-CMF)を得た。得られた複合体(4)のSEM画像を図3(c)に示す。図3(c)のSEM画像の視野内の丸で囲った部分に観察される複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であった。アスペクト比が2を超える細長い粒子が観測した視野で観測可能な全粒子の約10割であることが観察された。
 実施例5
 (吸着工程)において、FeCl・6HO及びZrClO・8HOの仕込み量を0.7重量倍に変更した以外は実施例2と同様にして、酸化鉄(又は酸化鉄及びオキシ水酸化鉄)と酸化ジルコニウムを含有する粒子(体積相当径:1μm未満(実測値:0.1μm(100nm))、アスペクト比が2以上(実測値:4)である針状粒子を複合体総重量の9重量%以上含む)、及び/又は鉄及びジルコニウムの混合酸化物を含有する粒子(体積相当径:1μm未満、アスペクト比が4である針状粒子を複合体総重量の9重量%以上含む)がミクロフィブリル化セルロースに担持されてなる複合体(5)(FeIII/Zr(0.7)-NN-CMF)を得た。得られた複合体(5)のSEM画像を図4(5000倍)、別の視野のSEM画像を図9(30000倍)に示す。図9に示すように、複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であり、且つアスペクト比が4の細長い粒子を含んでいた。観測した2つの視野で観測可能な全粒子のうち、9割以上がアスペクト比4を超える細長い粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、1.8mmolであった。また、この複合体のSEM画像の中から任意で選ばれる10個の針状粒子の体積相当径の平均値は0.12μmであった。
 実施例6
 (吸着工程)において、FeCl・6HO及びZrClO・8HOの仕込み量を、FeClとZrClのモル比[Fe/Zr(金属元素換算値)]が1/1となるよう変更した以外は実施例2と同様にして、酸化鉄(又は酸化鉄及びオキシ水酸化鉄)と酸化ジルコニウムを含有する粒子(体積相当径:1μm未満、アスペクト比が2以上である針状粒子を13重量%以上含む)、及び/又は鉄及びジルコニウムの混合酸化物を含有する粒子(体積相当径:1μm未満、アスペクト比が2である針状粒子を13重量%以上含む)がミクロフィブリル化セルロースに担持されてなる複合体(6)(FeIII/Zr(1.0)-NN-CMF)を得た。得られた複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子であり、且つアスペクト比が2以上の細長い粒子を含んでいた。観測した2つの視野で観測可能な全粒子のうち、9割以上がアスペクト比2以上の細長い粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、1.4mmolであった。
 実施例7
  (吸着工程)において、ZrClO・8HOに代えて、TiCl溶液(33.8μL:Ti(8.76mg、0.18mmol))(富士フィルム和光純薬)を使用した以外は、実施例5と同様にして、酸化鉄と酸化チタンを含有する粒子(体積相当径:0.1μm(100nm))、アスペクト比が2である針状粒子を8重量%以上含む)、及び/又は鉄及びチタンの混合酸化物(FeTi)を含有する粒子(体積相当径:0.1μm(100nm)、アスペクト比が2以上である針状粒子を8重量%以上含む)がミクロフィブリル化セルロースに担持されてなる複合体(7)(FeIII/Ti(0.7)-NN-CMF)を得た。得られた複合体(7)のSEM画像を図10に示す。なお、FeCl・6HO及び、TiCl溶液の仕込み量は、実施例5と同様、0.7重量倍であり、FeClと、TiClのモル比[Fe/Ti(金属元素換算値)]は9/1であった。得られた複合体は、微小繊維状セルロースの表面に、先端が尖った形状の粒子、先端に行くほど直径(又は幅)が小さくなっている粒子、且つアスペクト比が2以上の細長い粒子を含んでいた。観測した2つの視野で観測可能な全粒子のうち、9割以上がアスペクト比2以上の細長い粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、1.6mmolであった。また、この複合体のSEM画像の中から任意で選ばれる10個の針状粒子の体積相当径の平均値は0.10μmであった。
 参考例1
 フラスコに、10wt%FeCl・6HO水溶液(10mL)、緩衝液(0.5mol/L 2-(N-モルホリノ)エタンスルホン酸)を加えて全量を50mLとした溶液を、NaOHを用いてpH6に調整した。これにより、鉄(III)含有粒子(FeIII粒子)(体積相当径:1μm)を形成した。調整した溶液10mLとセルロースナノファイバー(平均繊維長:0.6~0.8mm、参考繊維径:0.5~50μm、商品名「ろ過名人」、ダイセルミライズ(株)製)0.10g、を加え、室温下、スターラーを用いて1.0時間撹拌した。その後、吸引ろ過により固形分を得、得られた固形分を乾燥させて、鉄(III)含有粒子がセルロースナノファイバーに担持されてなる複合体(8)(FeIII-CMF)を得た。得られた複合体(8)のSEM画像を図5に示す。図5に示すように、微小繊維状セルロースの表面にはアスペクト比が1の立方体状の粒子を含んでいた。観測した視野で観測可能な全粒子のうち、9割以上がアスペクト比1の立方体状の粒子であることが観察された。
 この複合体の、微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量は、3.3mmolであった。また、この複合体に含まれる粒子の体積相当径は、1.24μmであった。
 比較例1
 フラスコに、10重量%FeClを10mL、1.0重量%ZrClOを10mL、及び緩衝液を加え、室温下において、スターラーを使用して0.5時間撹拌した。次に、溶液を60℃に加熱しながら、NaOHを加えてpHを6.0に調整し、その後さらに30分撹拌し、吸引ろ過により固形分を得、得られた固形分を乾燥させて、酸化鉄(又は酸化鉄及びオキシ水酸化鉄)と酸化ジルコニウムを含有する粒子(FeClとZrClのモル比[Fe/Zr(金属元素換算値)]=10/1、アスペクト比が2以上である針状粒子は確認できず)、及び/又は鉄及びジルコニウムの混合酸化物を含有する粒子(FeClとZrClのモル比[Fe/Zr(金属元素換算値)]=10/1、アスペクト比が2以上である針状粒子は確認できず)を得た。
 比較例2
 フラスコに、10重量%FeClと緩衝液を加えた溶液を、室温下において、NaOHを加えて目的のpHに調整した。その後さらに30分撹拌し、吸引ろ過により固形分を得、得られた固形分を乾燥させて酸化鉄(又は酸化鉄及びオキシ水酸化鉄)を含有する粒子(アスペクト比が2以上である針状粒子は確認できず)を得た。
 実施例の複合体及び比較例の粒子について、下記評価を行った。
 (評価1)
 実施例の複合体又は比較例の粒子0.010gを、室温にて水10mLと混合し、スターラーで10分撹拌して、分散性を評価した。
 その結果、実施例で得られた複合体からは、均一な分散液が得られ、凝集は抑制された。このことから、本開示の複合体は、水中において、ヒ素吸着に寄与する鉄(III)含有粒子の表面積を広く保持できることが分かる。一方、比較例の粒子は、凝集して沈殿した。
 (評価2)
 実施例で得られた複合体、及び比較例で得られたFeIII/Zr粒子について、ヒ素(V)の吸着容量を下記方法で求めた。
 100mLの遠沈管に、1000mg/LのAs(V)水溶液(pH7)10mLと、実施例の複合体又は比較例の粒子0.010gを加え、25℃において、振盪機で20分撹拌した。
 メンブランフィルター(ニトロセルロース、孔径:0.45μm)を用いてろ過し、濾液中のヒ素イオン濃度(Ce:μmol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。溶液中のヒ素イオンの初期濃度をC(μmol/L)、加えた液量をV(L)、使用したヒ素吸着剤重量をm(g)とし、下記式から吸着容量(μmol/g)を算出した。
   吸着容量=(C-Ce)×V/m
 (評価3)
 実施例で得られた複合体について、下記方法で減容率を測定した。
 複合体0.10(w1)を800℃で1時間燃焼させ、燃焼後に残存した灰分の重量(w2)を測定し、下記式から減容率を算出した。
   減容率(%)=(w1-w2)/w1×100
 結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表1より、微小繊維状セルロースの表面に、酸化鉄を含む針状粒子を担持すると、ヒ素吸着量が有意に向上することが分かる。また、微小繊維状セルロースの表面に、酸化鉄と酸化ジルコニウム(及び/若しくは鉄とジルコニウムの混合酸化物)、又は酸化鉄と酸化チタン(及び/若しくは鉄とチタンの混合酸化物)を含む針状粒子を担持すると、ヒ素吸着力がより一層向上することが分かる。
 そして、本開示の複合体は、溶液中のヒ素を効率よく吸着して回収することができ、溶液中のヒ素濃度を大幅に低減させることができ、前記複合体にヒ素を吸着させた後は、焼成することで大幅に減容することができ、埋め立て等の処分にかかる費用を大幅に削減できることが分かる。
 (評価4)
 実施例で得られた複合体を内径2mm、長さ5cmのテフロンチューブに充填し、両端にテフロンウールを詰め、固相カラムを作製し、カラムによるヒ素の除去試験を実施した。
 前記固相カラムに0.1mol/L緩衝液20mLを通液しカラム 内のpHを調整した。続いて、ヒ素を含む緩衝液(初期ヒ素濃度C=5μmol/L)5mLを約1mL/minの流速で通液し、留出液および、前記のヒ素を含む緩衝液中のヒ素イオン濃度(C:μmol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。留出液中のヒ素イオンの初期濃度をC(μmol/L)とし、下記式から除去率(%)を算出した。その結果、全複合体(1)、(2)、(5)、(6)、(7)において水溶液中の99.9重量%のヒ素が除去できた。

   除去率(%)=(C-C)/C×100
 (評価5)
 複合体(1)について、0.01mol硝酸、又は緩衝液を用いてpHを2~12に調整したヒ素水溶液(初期ヒ素濃度10μmol/L)を調整し、ヒ素除去率のpH依存性を評価した。
 前記ヒ素水溶液10mLに複合体(1)0.02gを加え、25℃において、振盪機で20分撹拌した。メンブランフィルター(ニトロセルロース、孔径:0.45μm)を用いてろ過し、濾液中のヒ素イオン濃度(C:μmol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。溶液中のヒ素イオンの初期濃度をC(μmol/L)とし、下記式から除去率(%)を算出した。

   除去率(%)=(C-C)/C×100

 緩衝液は、酢酸(pH3-5)、2-(N-モルホリノ)-エタンスルホン酸(pH6)、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(pH7-8)、塩化アンモニウム(pH9)、3-[N-トリス(ヒドロキシメチル)メチル-3-アミノ]-1-プロパンスルホン酸(pH9)、3-シクロヘキシルアミノプロパンスルホン酸(pH10-12)、および水酸化ナトリウムを用いて調整した。
 結果を図6に示す。図6から、実施例で得られた複合体(2)は、pH10以下において90%を超えるヒ素吸着率を示すことが分かる。そして、pH8以下においては、100%に近いヒ素吸着率を示すことが分かる。
 (評価6)
 複合体(2)について、塩化ナトリウム、硫酸ナトリウム、リン酸ナトリウム、前記の緩衝液(評価5を参照)を用いて、塩化物イオン、硫酸イオン、リン酸イオンの濃度を0.1mmol/L、1mmol/L、又は100mmol/Lとしたヒ素水溶液(ヒ素初期濃度:10μmol/L、pH3)を調整し、陰イオン共存下におけるヒ素除去率の変化を評価した。
 前記ヒ素水溶液10mLに、複合体(2)0.02gを加えて、25℃において、振盪機で20分撹拌した。ヒ素イオン濃度(C:μmol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。ヒ素の吸着率を算出して、複合体(2)の陰イオン共存下におけるヒ素吸着率の変化を確認した。
   除去率=(C-C)/C×100
 結果を図7に示す。図7から、実施例で得られた複合体(2)は、陰イオンが共存しても(特に、ヒ素と化学的性質が近似するリンが存在しても)、陰イオンが共存しない時と変わらず、ヒ素(V)を効率よく吸着することが分かる。
 (評価7)
 複合体(1)、(2)、(5)、(6)、(7)について、塩酸を加えて3価の鉄を鉄(III)イオンとして溶出させ、溶離液中の鉄(III)イオンの濃度を測定することにより、微小繊維状セルロース1g当たりの鉄の合計担持量(鉄元素換算値)を評価した。
 50mL遠沈管に複合体(1)0.01g、6mol/L塩酸5mLを加え、振盪機を用いて室温で20分撹拌した。メンブランフィルター(ニトロセルロース、孔径:0.45μm)を用いてろ過し、濾液中の鉄イオン濃度(Ce:mol/L)をICP発光分光分析機(Thermo Fischer Scientific社製 iCAP6300)で定量した。複合体の重量をm(g)、使用した塩酸の量をV(mL)とし、下式から、複合体1g当たりの鉄の合計担持量(鉄元素換算値)を評価した。

合計担持量=Ce×V/m
 上記複合体の重量から、上記のように求めた鉄の担持量を減ずることによって微小繊維状セルロースの重量を評価し、該微小繊維状セルロース1gに対する鉄の担持量(CMF 1g当たりの鉄含有量、表1)を算出した。
 以上のまとめとして、本開示の構成及びそのバリエーションを以下に付記する。
[1] 微小繊維状セルロースと、前記微小繊維状セルロースに担持された鉄(III)含有粒子と、を含み、
前記鉄(III)含有粒子の少なくとも一部は、アスペクト比が2以上の粒子である、複合体。
[2] 前記微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量(鉄元素換算値)が1~100mmolである、[1]に記載の複合体。
[3] 前記微小繊維状セルロースがミクロフィブリル化セルロースである、[1]又は[2]に記載の複合体。
[4] 前記鉄(III)含有粒子の体積相当球の粒子直径が1μm未満である、[1]~[3]の何れか1つに記載の複合体。
[5] 前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物を含有する、[1]~[4]の何れか1つに記載の複合体。
[6] 前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物と、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、前記鉄化合物(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム及び/又はチタン)]1~100である、[1]~[5]の何れか1つに記載の複合体。
[7] 水中にて、媒晶剤の存在下、微小繊維状セルロースと鉄化合物を混合して、微小繊維状セルロースに鉄化合物を吸着させ、その後加熱処理を施して、[1]~[6]の何れか1つに記載の複合体を製造する、複合体の製造方法。
[8] 微小繊維状セルロースに鉄化合物を吸着させる工程において、鉄化合物と共に、ジルコニウム化合物及びチタン化合物から選択される少なくとも1種の金属化合物を吸着させる、[7]に記載の複合体の製造方法。
[9] [1]~[6]の何れか1つに記載の複合体を含むヒ素吸着剤。
[10] [1]~[6]の何れか1つに記載の複合体のヒ素吸着剤としての使用。
[11] ヒ素汚染水を、[9]に記載のヒ素吸着剤で処理して浄水を得る、浄水の製造方法。
[12] ヒ素汚染水を、[1]~[6]の何れか1つに記載の複合体で処理して浄水を得る、浄水の製造方法。
[13] [9]に記載のヒ素吸着剤を備えた浄水装置。
[14] [1]~[6]の何れか1つに記載の複合体を備えた浄水装置。
[15] [1]~[6]の何れか1つに記載の複合体をヒ素吸着剤として使用する、使用方法。
 本開示の複合体は、水中に溶解したヒ素を効率よく吸着して回収することができる。そして、ヒ素を吸着させたあとは燃焼させて減容することにより、埋め立て等の処分に係る費用を大幅に削減することができる。そのため、前記複合体は、ヒ素で汚染された水の浄化処理用途に好適に使用することができる。
1  微小繊維状セルロース
2  鉄(III)含有粒子




 

Claims (11)

  1.  微小繊維状セルロースと、前記微小繊維状セルロースに担持された鉄(III)含有粒子と、を含み、
    前記鉄(III)含有粒子の少なくとも一部は、アスペクト比が2以上の粒子である、複合体。
  2.  前記微小繊維状セルロース1g当たりの前記鉄(III)含有粒子の担持量(鉄元素換算値)が1~100mmolである、請求項1に記載の複合体。
  3.  前記微小繊維状セルロースがミクロフィブリル化セルロースである、請求項1又は2に記載の複合体。
  4.  前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物を含有する、請求項1又は2に記載の複合体。
  5.  前記鉄(III)含有粒子が、酸化鉄、水酸化鉄、及びオキシ水酸化鉄から選択される少なくとも1種の鉄化合物と、ジルコニウム及びチタンから選択される少なくとも1種の金属の酸化物、水酸化物、又はオキシ水酸化物を含有し、前記鉄化合物(鉄元素換算値)と前記金属の酸化物、水酸化物、又はオキシ水酸化物(金属元素換算値;2種以上含有する場合はその総量)のモル比[鉄/(ジルコニウム及び/又はチタン)]が1~100である、請求項1又は2に記載の複合体。
  6.  前記鉄(III)含有粒子の体積相当球の粒子直径が1μm未満である、請求項1又は2に記載の複合体。
  7.  水中にて、媒晶剤の存在下、微小繊維状セルロースと鉄化合物を混合して、微小繊維状セルロースに鉄化合物を吸着させ、その後加熱処理を施して、請求項1又は2に記載の複合体を製造する、複合体の製造方法。
  8.  微小繊維状セルロースに鉄化合物を吸着させる工程において、鉄化合物と共に、ジルコニウム化合物及びチタン化合物から選択される少なくとも1種の金属化合物を吸着させる、請求項5に記載の複合体の製造方法。
  9.  請求項1又は2に記載の複合体を含むヒ素吸着剤。
  10.  ヒ素汚染水を、請求項9に記載のヒ素吸着剤で処理して浄水を得る、浄水の製造方法。
  11.  請求項9に記載のヒ素吸着剤を備えた浄水装置。


     
PCT/JP2023/016988 2022-04-28 2023-04-28 複合体及びその製造方法 WO2023210830A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/019876 WO2023210024A1 (ja) 2022-04-28 2022-04-28 複合体及びその製造方法
JPPCT/JP2022/019876 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210830A1 true WO2023210830A1 (ja) 2023-11-02

Family

ID=88518264

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/019876 WO2023210024A1 (ja) 2022-04-28 2022-04-28 複合体及びその製造方法
PCT/JP2023/016988 WO2023210830A1 (ja) 2022-04-28 2023-04-28 複合体及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019876 WO2023210024A1 (ja) 2022-04-28 2022-04-28 複合体及びその製造方法

Country Status (1)

Country Link
WO (2) WO2023210024A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350326A (ja) * 1986-08-20 1988-03-03 Ishihara Sangyo Kaisha Ltd ヘマタイトの製造方法
JPH03270708A (ja) * 1990-03-22 1991-12-02 Mitsubishi Heavy Ind Ltd 脱臭フィルター
JP2007229551A (ja) * 2006-02-27 2007-09-13 Toda Kogyo Corp 吸着剤
JP2010058008A (ja) * 2008-09-01 2010-03-18 Toda Kogyo Corp 吸着剤
JP2014171996A (ja) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd 砒素吸着性再生セルロース成形体、その製造方法、砒素吸着材及び水処理材
JP2016097351A (ja) * 2014-11-20 2016-05-30 大成建設株式会社 ヒ素を含む泥水の浄化方法及び浄化装置
WO2019172164A1 (ja) * 2018-03-07 2019-09-12 島根県 ヒ素吸着性セルロース材料
JP2021171729A (ja) * 2020-04-28 2021-11-01 東レ株式会社 中空糸状吸着材、浄水器、浄水の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350326A (ja) * 1986-08-20 1988-03-03 Ishihara Sangyo Kaisha Ltd ヘマタイトの製造方法
JPH03270708A (ja) * 1990-03-22 1991-12-02 Mitsubishi Heavy Ind Ltd 脱臭フィルター
JP2007229551A (ja) * 2006-02-27 2007-09-13 Toda Kogyo Corp 吸着剤
JP2010058008A (ja) * 2008-09-01 2010-03-18 Toda Kogyo Corp 吸着剤
JP2014171996A (ja) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd 砒素吸着性再生セルロース成形体、その製造方法、砒素吸着材及び水処理材
JP2016097351A (ja) * 2014-11-20 2016-05-30 大成建設株式会社 ヒ素を含む泥水の浄化方法及び浄化装置
WO2019172164A1 (ja) * 2018-03-07 2019-09-12 島根県 ヒ素吸着性セルロース材料
JP2021171729A (ja) * 2020-04-28 2021-11-01 東レ株式会社 中空糸状吸着材、浄水器、浄水の製造方法

Also Published As

Publication number Publication date
WO2023210024A1 (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
CN101712489B (zh) 碳酸锆钠和碱式碳酸锆及其制备方法
JP6616782B2 (ja) 高表面積の層状複水酸化物
CN112313179A (zh) 水纯化组合物及其制造方法
CN102531145B (zh) 含纳米材料的水处理组合物
CN103998379B (zh) 中孔二氧化钛纳米颗粒及其制备方法
JP2012509169A (ja) 多孔ブロックナノファイバー複合フィルタ
Borgo et al. Zirconium phosphate dispersed on a cellulose fiber surface: preparation, characterization, and selective adsorption of Li+, Na+, and K+ from aqueous solution
JP6581986B2 (ja) 無機細孔質モノリシックカチオン交換材料、その調製方法、およびそれを用いる分離方法
Mercante et al. Free-standing SiO 2/TiO 2–MoS 2 composite nanofibrous membranes as nanoadsorbents for efficient Pb (II) removal
JP6737435B2 (ja) 貴金属固溶体担持微粒子の製造方法
JP2013095653A (ja) 銅及びアルカリ金属を有するゼオライト
WO2023210830A1 (ja) 複合体及びその製造方法
CN108367267A (zh) 吸附材料粒子
EP2955159A1 (en) Filter for the treatment of liquids with magnetite nanoparticles and corresponding methods
JP2014115135A (ja) 放射性Cs吸着剤及びその製造方法
WO2023210831A1 (ja) 複合体及びその製造方法
JPWO2017081857A1 (ja) 吸着材担持体
JPWO2017061115A1 (ja) 吸着材粒子及び造粒吸着材
JP6998058B2 (ja) 金属ナノワイヤー
Wang et al. High-efficiency enrichment of uranium (VI) from aqueous solution by hydromagnesite and its calcination products
JP2022030885A (ja) セルロース/磁性体複合体粒子及びその製造方法
KR102126227B1 (ko) 알칼리로 표면 개질된 석탄 연소 부산물을 지지체로 이용한 영가철 촉매 및 이의 제조방법
JP4266672B2 (ja) 多孔質体、吸着剤及び多孔質体の製造方法
CN110449114A (zh) 一种掺铝硬硅钙石材料的制备方法及应用
JP4238111B2 (ja) フッ素イオン回収材の製造方法及びフッ素イオンの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796562

Country of ref document: EP

Kind code of ref document: A1