WO2023210404A1 - 光増幅用伝送路 - Google Patents

光増幅用伝送路 Download PDF

Info

Publication number
WO2023210404A1
WO2023210404A1 PCT/JP2023/015136 JP2023015136W WO2023210404A1 WO 2023210404 A1 WO2023210404 A1 WO 2023210404A1 JP 2023015136 W JP2023015136 W JP 2023015136W WO 2023210404 A1 WO2023210404 A1 WO 2023210404A1
Authority
WO
WIPO (PCT)
Prior art keywords
edf
mfd
face
smf
core
Prior art date
Application number
PCT/JP2023/015136
Other languages
English (en)
French (fr)
Inventor
重博 長能
健美 長谷川
貴博 菅沼
洋宇 佐久間
淳 衣笠
Original Assignee
住友電気工業株式会社
住友電工オプティフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工オプティフロンティア株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023210404A1 publication Critical patent/WO2023210404A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present disclosure relates to a transmission line for optical amplification.
  • This application claims priority from Japanese Patent Application No. 2022-072525 filed on April 26, 2022, relies on the contents thereof, and is incorporated herein by reference in its entirety.
  • Patent Document 1 describes Er-doped optical fibers (EDF: Er-Doped optical fibers, hereinafter referred to as "EDF”) for optical amplification whose cores are doped with Er (erbium) in order along the propagation direction of signal light.
  • EDF Er-doped optical fibers
  • EDFA Er-doped optical fiber amplifier
  • SMF single mode optical fiber
  • Patent Document 2 discloses an EDF having a core diameter of 3.5 ⁇ m or less and an MFD of less than 5.0 ⁇ m at the excitation light wavelength. Furthermore, Non-Patent Document 1 discloses an EDF in which the amplification efficiency is increased by adding Al (aluminum) to the core and increasing the relative refractive index difference between the core and the cladding.
  • the optical amplification transmission line of the present disclosure includes an EDF as an amplification optical fiber and an SMF as a transmission optical fiber that are fusion-spliced to each other.
  • the EDF includes a first end surface, a second end surface, a first core extending from the first end surface toward the second end surface and doped with Er, and surrounding the first core and containing F( a first cladding to which fluorine) is added.
  • the SMF has a third end face fusion-spliced to the first end face, a fourth end face, and a second core extending from the third end face toward the fourth end face without adding Er. , and a second cladding surrounding the second core, and propagates only single mode light.
  • the EDF has a first MFD
  • the EDF further includes a transition portion including a first end surface and the first MFD decreasing from the first end surface to the second end surface. and a first steady-state part.
  • the first steady part is a part that connects the transition part and the second end face, and the composition of the EDF and the first MFD 1 in the first steady part move toward the second end face from the transition part. is constant.
  • the composition of the SMF and the second MFD 2 which is the second MFD in the second steady portion, are constant from the third end face to the fourth end face.
  • the ratio (MFD2/MFD1) of MFD2 in the second steady-state region to MFD1 in the first steady-state region is within the range of 1.9 or more and 2.2 or less.
  • FIG. 1 is a diagram showing an optical amplification transmission line and an optical fiber amplifier including the same according to the present disclosure.
  • FIG. 2 is a diagram showing various fiber characteristics of EDF, which is an Er-doped optical fiber.
  • FIG. 3 is a graph showing the relationship between MFD and the square value ⁇ 2 (/W 2 /km 2 ) of the nonlinear coefficient.
  • FIG. 4 is a diagram showing changes in the MFD as optical characteristics at each fusion point in the optical amplification transmission line.
  • FIG. 5 is a diagram showing the fusion loss as an optical characteristic at each fusion point in the optical amplification transmission line.
  • Patent Document 1 and Patent Document 2 as a method for reducing the connection loss of two optical fibers constituting an optical amplification transmission line, the V value, which is the normalized frequency of two optical fibers including EDF, is proposed. (2 ⁇ / ⁇ a ⁇ n1 ⁇ (2 ⁇ ) 1/2 ) By matching the ⁇ value (V ⁇ ) obtained from Methods to suppress this have been proposed.
  • the ⁇ values may become a factor in increasing loss.
  • the conditions shown in Patent Document 1 strongly restrict the core diameter and relative refractive index difference of the EDF, which may become an obstacle in increasing the amplification efficiency of the EDF.
  • Patent Document 1 discloses that a dopant, preferably added to the core of the EDF, is added to the core of the EDF in order to match the MFD of the two optical fibers at the joint between the EDF and another optical fiber disposed downstream. discloses diffusing Ge (see paragraphs "0006" and “0007") and diffusing F (fluorine) added to the optical cladding (see paragraph "0021"). Furthermore, Non-Patent Document 1 discloses an EDF in which the amplification efficiency is increased by adding Al to the core and increasing the relative refractive index difference. However, in the Al-doped EDF, since Al is easily diffused, the MFD tends to expand more easily than other optical fibers.
  • Patent Document 2 states that the relative refractive index difference ⁇ is 2% or more (that is, the refractive index difference ⁇ n is 0.03 or more), the core diameter is 3.5 ⁇ m or less, and the MFD at the excitation wavelength is less than 5.0 ⁇ m.
  • An EDF is disclosed.
  • Patent Document 2 and Patent Document 3 disclose the use of a tapered splicer to couple this EDF with an SMF that is a transmission optical fiber.
  • the core diameter of the EDF increases as it approaches the fused portion, and the taper length of the EDF is approximately 0.5 ⁇ m. It is 5 mm or more and about 5 mm or less.
  • Non-Patent Document 1 points out that the non-linearity in the EDF increases due to the downsizing of the MFD. Specifically, when the MFD becomes approximately 4.8 ⁇ m or less, signal deterioration due to nonlinearity is considered to be non-negligible.
  • the present disclosure has been made to solve the above-mentioned problems, and the connection loss between the EDF placed on the upstream side of the signal optical path and the SMF placed on the downstream side can be reduced by reducing the connection loss between the EDF placed on the upstream side and the SMF placed on the downstream side It is an object of the present invention to provide a transmission line for optical amplification having a structure for reducing the amount of damage compared to a transmission line.
  • the optical amplification transmission line of the present disclosure includes: (1) An EDF as an amplification optical fiber and an SMF as a transmission optical fiber are arranged in order along the propagation direction of signal light, and the EDF and SMF are arranged so that the signal light amplified in the EDF propagates through the SMF. are fusion spliced.
  • the EDF includes a first end surface, a second end surface, a first core extending from the first end surface toward the second end surface and doped with Er, and surrounding the first core and containing F. and a first cladding added thereto.
  • the SMF has a third end face fusion-spliced to the first end face, a fourth end face, and a second core extending from the third end face toward the fourth end face without adding Er. , and a second cladding surrounding the second core, and propagates only single mode light.
  • the EDF has a first MFD, and the EDF further includes a transition portion including a first end surface and the first MFD decreasing from the first end surface to the second end surface. and a first steady-state part.
  • the first steady part is a part that connects the transition part and the second end face, and the composition of the EDF and the first MFD 1 in the first steady part move toward the second end face from the transition part. is constant.
  • the composition of the SMF and the second MFD, MFD2 are constant from the third end face to the fourth end face.
  • the ratio of MFD2 of the second steady-state region to MFD1 of the first steady-state region is in the range of 1.9 or more and 2.2 or less.
  • a state in which the MFD is constant means that the variation in the MDF along the longitudinal direction of the optical fiber is equal to or greater than (design value - 0.1) ⁇ m (design value - 0.1) based on the design value of the MFD for a specific wavelength. This means that the design value is within the range of +0.1) ⁇ m or less.
  • the optical amplification transmission line of the present disclosure at the fusion point of the EDF and the SMF, there is a significant step difference (hereinafter referred to as "MFD step difference") between the mode field diameters of the EDF and the SMF even due to the expansion of the MFD on the EDF side. ) is formed.
  • MFD step difference a significant step difference between the mode field diameters of the EDF and the SMF even due to the expansion of the MFD on the EDF side.
  • Ge and Al may be added to the core of the EDF. In this case, a structure that can suppress the increase in nonlinearity in the EDF can be realized.
  • MFD1 may be 5.3 ⁇ m or less in the wavelength band of 1.55 ⁇ m.
  • the concentration of Ge in the first core, the concentration of Ge may be at a mass fraction of 3.8% or less, and the concentration of Al may be at a mass fraction of at least 4.0%. Good too. Further, the upper limit of the Al concentration may be 5.0% or less in mass fraction. In this way, by setting the Ge concentration in the first core to a mass fraction of 3.8% or less, good polarization mode dispersion (PMD) can be achieved. Furthermore, since the nonlinear coefficient of Ge is higher than that of Al, suppressing the Ge concentration is effective for suppressing nonlinearity. Note that since the MFD in the steady portion of the EDF is set to 5.3 ⁇ m or less, nonlinearity in the EDF tends to increase. However, by employing the F-doped cladding, the Ge concentration can be suppressed. That is, it becomes possible to ensure a sufficient relative refractive index difference between the core and the cladding.
  • the MFD of a conventional EDF (hereinafter referred to as "MFD_EDF”) in the 1.55 ⁇ m band is 5.7 ⁇ m
  • the MFD of a general SMF, which is different from the above-mentioned transmission optical fiber is 1.55 ⁇ m.
  • MFD_SMF MFD in the band
  • MFD_EDF/MFD_EDF MFD_EDF/MFD_EDF
  • the fusion loss of the optical amplification transmission line constituted by the fusion-spliced high-concentration Al-doped EDF and SMF of the present disclosure is different from the fusion loss of the optical amplification transmission line constituted by the conventional EDF and SMF. This is improved by 0.02 dB or more and 0.05 dB or less.
  • the fusion loss means the connection loss at the fusion point. This shows that the EDF applied to the optical amplification transmission line of the present disclosure can sufficiently contribute to increasing the efficiency of optical amplification.
  • Ge and Al are added to the core and F is added to the first cladding, so that the MFD is easier to expand than in the SMF containing Ge in the core.
  • the optical amplification transmission line of the present disclosure by making the MFD of the EDF small in advance, it is possible to check whether the MFD of the EDF after being expanded by fusion matches the MFD of the SMF, or whether there is a gap between the EDF and the SMF. MFD steps are actively formed.
  • MFD1 may be 5.3 ⁇ m or less in the wavelength band of 1.55 ⁇ m.
  • MFD1 may be 5.3 ⁇ m or less in the wavelength band of 1.55 ⁇ m.
  • the relative refractive index difference between the first core and the first cladding may be 1% or more and 2% or less. In this case as well, by strengthening the light confinement within the first core, it is possible to increase the amplification efficiency. Furthermore, increases in nonlinearity and PMD due to a high relative refractive index difference are effectively suppressed.
  • FIG. 1 is a diagram showing an optical amplification transmission line and an optical fiber amplifier including the same according to the present disclosure (referred to as "optical amplification transmission line” in FIG. 1).
  • the upper part of FIG. 1 shows the structure of an Er-doped fiber amplifier to which the optical amplification transmission line of the present disclosure is applied.
  • the lower part of FIG. 1 (denoted as "near the fusion point (enlarged view)" in FIG. 1), the cross-sectional structures of the EDF 100 and the SMF 200 in the vicinity of the fusion point C1 are shown.
  • the EDFA shown in the upper part of FIG. 1 has the optical amplification transmission line of the present disclosure.
  • the EDF 100 and the SMF 200 are arranged in order along the propagation direction of the signal light S.
  • the EDF 100 and the SMF 200 are fusion-spliced at a fusion point C1, which is a position indicated by C1.
  • a wavelength division multiplexing filter (WDMF) 300 that functions as a coupler and is configured with an SMF is arranged.
  • the optical output end face of the WDMF 300 is connected to the optical input end face 100b of the EDF 100, and the light input from the optical input end face of the WDMF 300, that is, output from the excitation light source 500, is connected to the optical input end face 100b of the EDF 100.
  • the pump light P and signal light S thus generated are output to the EDF 100.
  • the optical amplification transmission line of the present disclosure shown in the lower part of FIG. 1 includes an EDF 100 placed on the upstream side of the propagation path, and an SMF 200 placed on the downstream side.
  • the EDF 100 includes a light output end face 100a that is a first end face, a light input end face 100b that is a second end face, a core 110, and a cladding 120.
  • the SMF 200 includes a light output end face 200a that is a fourth end face, a light input end face 200b that is a third end face, a core 210, and a cladding 220.
  • the light output end face 100a of the EDF 100 and the light input end face 200b of the SMF 200 are fusion-spliced at a fusion point C1, and a transition portion R1 and a steady portion R2 are formed in the EDF 100 by this fusion splicing.
  • the transition portion R1 of the EDF 100 includes the light output end surface 100a, and is a portion where the MFD is reduced from the light output end surface 100a toward the light input end surface 100b.
  • the constant portion R2 of the EDF 100 is a portion connecting the transition portion R1 and the light input end face 100b, and the composition of the EDF 100 and the MFD1 are constant.
  • the composition and MFD2 of the SMF 200 are constant from the light input end face 200b to the light output end face 200a.
  • the ratio of MFD2 in the steady-state region of the SMF to MFD1 in the steady-state region of the EDF falls within the range of 1.9 or more and 2.2 or less. Therefore, in the optical amplification transmission line of the present disclosure, an MFD step is formed at the fusion point C1.
  • the state in which the MFD is constant includes almost constant conditions with measurement errors and differences within the allowable range, and specifically, (design value - 0.1) ⁇ m or more based on the design value of the MFD. (Design value + 0.1) means a state within the range of .mu.m or less.
  • FIG. 2 is a diagram showing various fiber characteristics of EDF (denoted as “fiber characteristics (EDF)” in FIG. 2).
  • EDF fiber characteristics
  • MFD-core diameter the core diameter dependence of MFD for various EDFs with different relative refractive index differences ⁇ .
  • ⁇ value - core diameter the core diameter dependence of the ⁇ value for various EDFs with different relative refractive index differences ⁇ .
  • graph G210A shows the calculation results of MFD in the 1.55 ⁇ m band with respect to the core diameter for an EDF in which the relative refractive index difference ⁇ of the core with respect to the optical cladding is 1.25%. show.
  • Graph G220A shows the calculation result of MFD in the 1.55 ⁇ m band with respect to the core diameter for an EDF with a relative refractive index difference ⁇ of 1.41%.
  • Graph G230A shows the calculation result of MFD in the 1.55 ⁇ m band with respect to the core diameter for an EDF with a relative refractive index difference ⁇ of 1.55%. Note that point A shown in the upper part of FIG.
  • FIG. 2 is the calculation result of the conventional EDF
  • point B is the calculation result of the EDF applied to the optical amplification transmission line of the present disclosure, that is, the core is doped with Ge and Al.
  • the upper part of FIG. 2 also shows that the MFD of the SMF is 9.9 ⁇ m or more and 10.9 ⁇ m or less at a wavelength of 1.55 ⁇ m.
  • graph G210B shows the light intensity distribution of the LP01 mode, which is the prescribed mode of excitation light in the 0.98 ⁇ m band, for an EDF in which the relative refractive index difference ⁇ of the core with respect to the optical cladding is 1.25%.
  • the calculation results of the ⁇ value which is the overlap integral with the Er-doped core region, are shown.
  • Graph G220B shows the calculation results of the ⁇ value between the light intensity distribution of the LP01 mode of the excitation light in the 0.98 ⁇ m band and the Er-doped core region for an EDF with a relative refractive index difference ⁇ of 1.41%. It is shown.
  • Graph G230B shows the calculation results of the ⁇ value between the light intensity distribution of the LP01 mode of the excitation light in the 0.98 ⁇ m band and the Er-doped core region for an EDF with a relative refractive index difference ⁇ of 1.55%. It is shown.
  • the ⁇ value is a value normalized by the total light intensity of the LP01 mode of the excitation light in the 0.98 ⁇ m band.
  • An index for increasing the efficiency of an EDFA is power conversion efficiency (PCE), and improving the ⁇ value is effective.
  • PCE power conversion efficiency
  • Increasing the core diameter is effective for this purpose, but on the other hand, the noise factor (NF) increases, so it is necessary to optimize the core diameter.
  • P1 is the amount of signal light output from the EDF
  • P2 is the amount of signal light input to the EDF
  • P3 is the amount of excitation light input to the EDF.
  • the noise figure is expressed as a ratio between SN1, which is the signal-to-noise ratio of the input signal light, and SN2, which is the signal-to-noise ratio of the output signal light.
  • the noise figure would worsen due to the increase in the ⁇ value, but it was confirmed that the increase was only 0.2% compared to the conventional one, and was at a negligible level. From the above, since it is effective for the ⁇ value, that is, the overlap rate, to be 85% or more, it is effective for the MFD of the EDF to be 5.3 ⁇ m or less. Considering the deterioration of the noise figure, the upper limit is less than 90%.
  • the ⁇ value was 76%. Although it is necessary to increase the ⁇ value to improve the efficiency of the EDF, there is a concern that the noise figure will increase, so it is necessary to set an appropriate ⁇ value. Therefore, as a highly concentrated Al-doped EDF applied to the optical amplification transmission line of the present disclosure, at point B shown in the upper part of FIG. 2, the relative refractive index difference ⁇ of the core with respect to the optical cladding is the same as that of the conventional EDF.
  • fusion loss splice loss at the fusion point
  • Patent Document 1 discloses that the MFD with the SMF is matched by thermal diffusion of a dopant in the core.
  • MFD_SMF and MFD_EDF are the same, that is, MFD_SMF/MFD_EDF is 1.
  • MFD_SMF/MFD_EDF is 1.
  • EDF100 which is a high concentration Al-doped EDF that can be applied to the optical amplification transmission line of the present disclosure, uses SiO 2 doped with F throughout the cladding to suppress the viscosity difference between the core and the cladding. This can be reduced compared to the conventional example of Document 2. Therefore, although it is suitable for reducing splicing loss, it was predicted that an increase in the difference between the MFD of EDF and the MFD of SMF would lead to an increase in splicing loss.
  • the MFD_EDF of a conventional EDF does not become larger than the MFD_SMF of an SMF, but in order to make this MFD_EDF closer to the MFD_SMF, F is added to the optical cladding, and the core is made of more than Ge.
  • Adding Al is effective. It is effective that the Al concentration has a mass fraction of 4.0% or more and 5.0% or less. As a side effect, the nonlinear coefficient of Al is halved compared to the nonlinear coefficient of Ge, so increasing the concentration of Al can suppress unnecessary nonlinearity.
  • FIG. 3 is a graph showing the relationship between MFD and the square value ⁇ 2 (/W 2 /km 2 ) of the nonlinear coefficient.
  • one guideline for the square value ⁇ 2 of the nonlinear coefficient is 30.0 or less.
  • the lower limit of the MFD is 5.0 ⁇ m.
  • the SMF falls within the range of -0.5 ⁇ m or more +0.5 ⁇ m or less based on the MFD of 10.4 in the 1.55 ⁇ m band, and -0.7 ⁇ m or more +0.7 ⁇ m based on the outer diameter of 125.0 ⁇ m. It is defined by falling within the following range and having a core eccentricity of 0.5 ⁇ m or less.
  • FIG. 4 is a diagram showing changes in the MFD as optical characteristics at each fusion point in the optical amplification transmission line (denoted as "optical characteristics at the fusion point” in FIG. 4).
  • the upper part of FIG. 4 (indicated as “MFD fluctuation (transmission path)” in FIG. 4) shows an outline of changes in MFD in each transmission path near the fusion point C1 and near the fusion point C2. ing.
  • the middle part of FIG. 4 (denoted as “MFD fluctuation (near fusion point C1)” in FIG. 4) shows MFD changes in the vicinity of fusion point C1.
  • the lower part of FIG. 4 (denoted as “MFD fluctuation (near fusion point C2)" in FIG.
  • FIG. 5 shows the fusion loss between the EDF 100 and the WDMF 300 at the fusion point C2, and the fusion loss between the EDF 100 and the SMF 200 at the fusion point C1.
  • SMF200 with an MFD of 10.5 ⁇ m in the 1.55 ⁇ m band, EDF100 which is a high concentration Al-doped EDF, and WDMF300 are fusion-spliced at the welding point C1 and the welding point C2.
  • a transmission line for optical amplification is shown.
  • the light input end face 200b of the SMF 200 and the light output end face 100a of the EDF 100 are fusion spliced.
  • the optical input end face 100b of the EDF 100 and the optical output end face of the WDMF 300 are fusion spliced.
  • the signal light S passes through the WDMF 300, the EDF 100, and the SMF 200 in this order.
  • MFD2 is the MFD in the steady-state part of the SMF 200
  • MFD1 is the MFD in the steady-state part R2 of the EDF 100.
  • the MFD is reduced from the light output end face 100a toward the light input end face 100b, and an MFD step is formed at the fusion point C1.
  • the diagram shown in the middle part of FIG. 4 shows the difference between -1500 ⁇ m and +1500 ⁇ m in the above-mentioned optical amplification transmission line, with the fusion point corresponding to the fusion point C1 shown in the upper part of FIG. 4 being 0 ⁇ m as a reference.
  • the results of measuring the refractive index distribution of each optical fiber in the range and calculating the MFD in the 1.55 ⁇ m wavelength band from the refractive index distribution are shown.
  • the positive region on the horizontal axis indicates the side from 0 ⁇ m of the fusion point toward the EDF 100, and the negative region on the horizontal axis indicates the side from the fusion point 0 ⁇ m toward the SMF 200.
  • the fluctuation of the MFD1 of 5.0 ⁇ m increases by about +0.1 ⁇ m from +1000 ⁇ m to +500 ⁇ m. It can be seen that in the transition region R1 from around +500 ⁇ m to 0 ⁇ m, it expands to about 10.5 ⁇ m toward the fusion point C1, and becomes equivalent to MFD2 in the steady region of SMF200. On the other hand, it was found that the MFD2 in the steady state part of SMF200 was 10.5 ⁇ m, which was almost unchanged at the melting point C1.
  • MFD_EDF2 of the EDF which corresponds to point B shown in the upper part of FIG. 2 and has a relative refractive index difference ⁇ of 1.41% and a core diameter of 3.5 ⁇ m, is 5.0 ⁇ m and MFD_SMF is 9.9 ⁇ m.
  • the ratio of MFD_SMF to MFD_EDF2 is 1.98 or more and 2.18 or less. Therefore, the range of the ratio (MFD_SMF/MFD_EDF2) related to the high concentration Al-doped EDF applicable to the optical amplification transmission line of the present disclosure tends to be higher than the range of the ratio (MFD_SMF/MFD_EDF1) related to the conventional EDF. I understand.
  • the diagram shown in the lower part of FIG. 4 shows the difference between ⁇ 1500 ⁇ m and +1500 ⁇ m in the optical amplification transmission line described above, with the fusion point corresponding to the fusion point C2 shown in the upper part of FIG.
  • the results of measuring the refractive index distribution of each optical fiber in the following range and calculating the MFD from the refractive index distribution are shown below.
  • graph G410 shows the calculated value of MFD in the wavelength band of 1.55 ⁇ m
  • graph G420 shows the calculated value of MFD in the wavelength band of 0.98 ⁇ m.
  • the plus sign on the horizontal axis indicates the side from the fusion point 0 ⁇ m toward the EDF 100
  • the minus sign indicates the side from the fusion point 0 ⁇ m toward the WDMF 300.
  • the conventional EDF prepared has an MFD of 5.7 ⁇ m, which corresponds to point A shown in the top row of FIG.
  • the prepared EDF 100 which is a high-concentration Al-doped EDF, has an MFD of 5.0 ⁇ m, which corresponds to point B shown in the upper part of FIG.
  • the MFD of the conventional EDF when used as a reference value, the MFD of the EDF100 applicable to the optical amplification transmission line of the present disclosure is -1.27%, which is a high concentration compared to the conventional EDF. Since the fusion loss of Al-added EDF was reduced, it can be seen that high-concentration Al-added EDF is effective for PCE of EDFA.
  • the fusion point C2 between EDF100 and WDMF300 was also investigated.
  • the prepared WDMF 300 has an MFD of 7.0 ⁇ m.
  • the fusion loss at the signal light wavelength of 1.55 ⁇ m and the excitation light wavelength of 0.98 ⁇ m is based on the fusion loss at point A.
  • the fusion loss at point B is based on the fusion loss at the excitation light wavelength in the 0.98 ⁇ m band.
  • the loss increased by 0.1%, an improvement of 0.12% was confirmed for the signal light wavelength in the 1.55 ⁇ m band. This is indicated as "-0.12%" in the table of FIG. From the sum of the fusion loss between EDF 100 and WDMF 300 and the fusion loss between EDF 100 and SMF 200, it can be seen that the decrease in PCE due to fusion loss in the conventional optical amplification transmission line using EDF is suppressed.
  • the high concentration Al-doped EDF that can be applied to the optical amplification transmission line of the present disclosure is likely to form a tapered core due to thermal diffusion, there is a difference between the MFD of the high-concentration Al-doped EDF and the MFD of the SMF. Even if the fusion loss is large, the fusion loss can be appropriately controlled.
  • Appropriate ranges for the fiber composition include an Al concentration in the core with a mass fraction of 4.0% to 5.0%, a Ge concentration of the same level or less as the SMF concentration, that is, a mass fraction of less than 3.5%, and an optical It is effective for the F concentration in the cladding to be -0.30% or more and -0.50%, preferably -0.30% or more and -0.40% or less in terms of relative refractive index difference ⁇ . It is effective that the MFD of the high concentration Al-added EDF is 5.0 ⁇ m or more and 5.3 ⁇ m or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

本開示の光増幅用伝送路は、信号光経路の上流側に配置されたEDFと下流側に配置されたSMFとの接続損失を、従来の光増幅用伝送路よりも低減する。当該光増幅用伝送路は、融着接続されたEDFとSMFを含む。EDFは、Er添加コアとF添加クラッドを有する。SMFのコアには、Erが添加されていない。EDFの定常部のMFD1に対するSMFの定常部におけるMFD2の比(MFD2/MFD1)は、1.9以上2.2以下の範囲に収まっている。

Description

光増幅用伝送路
 本開示は、光増幅用伝送路に関するものである。
  本願は、2022年4月26日に出願された日本特許出願第2022-072525号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
 特許文献1には、信号光の伝搬方向に沿って順に、コアにEr(エルビウム)が添加された光増幅用のEr添加光ファイバ(EDF:Er-Doped optical Fiber、以下、「EDF」と記す)、伝送用光ファイバ(SMF:Single Mode optical Fiber、以下「SMF」と記す)が配置されたEr添加光ファイバ増幅器(EDFA:Er-Doped optical Fiber Amplifier、以下、「EDFA」と記す)が開示されている。EDFとSMFの接続部では、コア内に含まれるドーパント、好ましくはGe(ゲルマニウム)の拡散によりコアが拡径されることで双方のコア径が一致し、これらEDFおよびSMFの、励起光波長におけるモードフィールド径(以下、「MFD」と記す)および信号光波長におけるMFDがいずれも整合している。
 なお、特許文献2には、3.5μm以下のコア径と、励起光波長において5.0μm未満のMFDを有するEDFが開示されている。また、非特許文献1には、コアにAl(アルミニウム)を添加するとともに、クラッドに対するコアの比屈折率差を増大させることで増幅効率を高めたEDFが開示されている。
特開平8-204257号公報 特開平4-273187号公報 特開平4-253003号公報
Pierluigi Poggiolini, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 24, DECEMBER  15, 2012 p.3857
 本開示の光増幅用伝送路は、互いに融着接続された増幅用光ファイバとしてのEDFおよび伝送用光ファイバとしてのSMFを備える。EDFは、第一の端面と、第二の端面と、第一の端面から第二の端面に向かって伸びるとともにErが添加された第一のコアと、該第一のコアを取り囲むとともにF(フッ素)が添加された第一のクラッドと、を有する。SMFは、第一の端面と融着接続された第三の端面と、第四の端面と、Erが添加されることなく第三の端面から第四の端面に向かって伸びる第二のコアと、該第二のコアを取り囲む第二のクラッドと、を有し、シングルモード光のみを伝搬する。また、EDFは、第一のMFDを有し、更に、EDFは、第一の端面を含むとともに該第一の端面から第二の端面に向かって該第一のMFDが縮小している遷移部と、第一の定常部と、を有する。第一の定常部は、遷移部と第二の端面とを連絡する部分であって、EDFの組成および第一の定常部における第一のMFDであるMFD1が遷移部から第二の端面に向かって一定である。一方、SMFの第二の定常部は、第三の端面から第四の端面に向かってSMFの組成および第二の定常部における第二のMFDであるMFD2が一定である。特に、第一の定常部のMFD1に対する第二の定常部のMFD2の比(MFD2/MFD1)は、1.9以上2.2以下の範囲に収まっている。
図1は、本開示の光増幅用伝送路およびそれを含む光ファイバ増幅器を示す図である。 図2は、Er添加光ファイバであるEDFの種々のファイバ特性を示す図である。 図3は、MFDと非線形係数の二乗値γ(/W/km)の関係を示すグラフである。 図4は、光増幅用伝送路における各融着点における光学特性として、MFDの変化状態を示す図である。 図5は、光増幅用伝送路における各融着点における光学特性として、融着損失を示す図である。
 [本開示が解決しようとする課題]
  発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、特許文献1および特許文献2に開示された光増幅用伝送路では、EDFと他の光ファイバとの接続において、コア径の差、励起波長0.98μmでのMFDと通信波長1.55μmでのMFDの差(以下、「波長間MFD差」と記す)が接続損失の要因になる。そこで、これら特許文献1および特許文献2では、光増幅用伝送路を構成する2本の光ファイバの接続損失を低減する方法として、EDFを含む2本の光ファイバの正規化周波数であるV値(2π/λ・a・n1・(2Δ)1/2)から得られるα値(V・λ)を一致させることで、コア内のドーパントの熱拡散に起因したファイバ端面における波長間MFD差を抑制する方法が提案されている。しかしながら、光増幅用伝送路を構成する2本の光ファイバの間における接続損失の抑制に関しては、α値の一致は損失増加の要因になることがある。また、特許文献1に示された条件は、EDFのコア径と比屈折率差を強く制約するため、EDFの増幅効率を高める上では障害となることがある。
 MFDの拡大に関しては、特許文献1に、EDFとその下流に配置された他の光ファイバの接続部でこれら2本の光ファイバのMFDを一致させるため、EDFのコアに添加されたドーパント、好ましくはGeを拡散させること(段落「0006」および段落「0007」参照)、および、光学クラッドに添加されたF(フッ素)を拡散させること(段落「0021」参照)が開示されている。また、非特許文献1には、コアにAlを添加するとともに比屈折率差を増大させることで増幅効率が高められたEDFが開示されている。しかしながら、Al添加EDFでは、Alが拡散し易いため、他の光ファイバに比べてMFDが容易に拡大し易い特徴がある。更に、クラッドにFを添加することでクラッドの屈折率を下げる一方で相対的にコアに添加するGeの添加量を低減することは、残留応力に起因する偏波モード分散(以下、「PMD」と記す)やGe添加に起因する水素ロスの増加を低減する上で効果的である。しかしながら、クラッドに添加されたFはMFDを更に拡大し易くする。そのため、コアにErおよびAlが添加されるとともにクラッドにFが添加されたEDFと他の光ファイバとを接続する際には、特許文献1に開示された技術を用いると、むしろ接続損失の増加要因になることがあった。
 また、特許文献2には、比屈折率差Δが2%以上(すなわち、屈折率差Δnが0.03以上)であり、コア径が3.5μm以下、励起波長におけるMFDが5.0μm未満であるEDFが開示されている。また、特許文献2および特許文献3には、このEDFを伝送用光ファイバであるSMFと結合するためにテーパー状スプライサーを用いることが示されている。なお、EDFのMFDが約4μm以下のEDFとMFDが約6μm以上のSMFを結合するテーパー状スプライサーでは、融着部分に近づく程EDFのコア直径は増大し、該EDFのテーパー長は約0.5mm以上約5mm以下である。しかしながら、実際には接続損失を0.05dB以下に低減することは難しかった。
 更に、非特許文献1には、MFDの縮小化によりEDFにおける非線形性が増大することが指摘されている。具体的には、MFDが4.8μm程度以下になると、非線形による信号劣化は無視できないと考えられる。
 本開示は、上述のような課題を解決するためになされたものであり、信号光経路の上流側に配置されたEDFと下流側に配置されたSMFとの接続損失を、従来の光増幅用伝送路よりも低減するための構造を備えた光増幅用伝送路を提供することを目的としている。
 [本開示の効果]
  本開示の光増幅用伝送路によれば、EDFとSMFの接続損失を、従来の光増幅用伝送路よりも低減することを可能にする。
 [本開示の実施形態の説明]
  最初に本開示の実施形態の内容をそれぞれ個別に列挙して説明する。
 本開示の光増幅用伝送路は、
  (1)信号光の伝搬方向に沿って順に、増幅用光ファイバとしてのEDF、伝送用光ファイバとしてのSMFが配置され、EDFにおいて増幅された信号光がSMFを伝搬するように、EDFとSMFは、融着接続されている。EDFは、第一の端面と、第二の端面と、第一の端面から第二の端面に向かって伸びるとともにErが添加された第一のコアと、該第一のコアを取り囲むとともにFが添加された第一のクラッドと、を有する。SMFは、第一の端面と融着接続された第三の端面と、第四の端面と、Erが添加されることなく第三の端面から第四の端面に向かって伸びる第二のコアと、該第二のコアを取り囲む第二のクラッドと、を有し、シングルモード光のみを伝搬する。また、EDFは、第一のMFDを有し、更に、EDFは、第一の端面を含むとともに該第一の端面から第二の端面に向かって該第一のMFDが縮小している遷移部と、第一の定常部と、を有する。第一の定常部は、遷移部と第二の端面とを連絡する部分であって、EDFの組成および第一の定常部における第一のMFDであるMFD1が遷移部から第二の端面に向かって一定である。一方、SMFにおける第二の定常部は、第三の端面から第四の端面に向かってSMFの組成および第二のMFDであるMFD2が一定である。特に、第一の定常部のMFD1に対する第二の定常部のMFD2の比(MFD2/MFD1)は、1.9以上2.2以下の範囲である。なお、本明細書において「MFDが一定の状態」とは、光ファイバの長手方向に沿ったMDFの変動が、特定波長に対するMFDの設計値を基準として(設計値-0.1)μm以上(設計値+0.1)μm以下の範囲に収まっている状態を意味する。
 本開示の光増幅用伝送路によれば、EDFとSMFの融着点では、EDF側のMFDの拡大によってもEDFとSMFのモードフィールド径の間に有意な段差(以下、「MFD段差」と記す)が形成される。このような伝送路構造により、EDF側からSMF側への信号光の伝搬において、接続損失を効果的に低減することが可能になる。
 (2)上記(1)において、EDFのコアには、GeおよびAlが添加されてもよい。この場合、EDFにおける非線形性の増大を抑制可能にする構造が実現可能になる。
 (3)上記(2)において、波長1.55μm帯において、MFD1は、5.3μm以下であってもよい。第一のコア内への光閉じ込めを強めることにより、増幅効率を高めることが可能になる。更に、高い比屈折率差に伴う非線形性の増大やPMDの増大が効果的に抑制され得る。
 (4)上記(2)において、第一のコアにおいて、Geの濃度は、質量分率3.8%以下であってもよく、Alの濃度は、質量分率4.0%以上であってもよい。また、Alの濃度上限は、質量分率5.0%以下であればよい。このように、第一のコアにおけるGe濃度を質量分率3.8%以下とすることで、良好な偏波モード分散(PMD:Polarization Mode Dispersion)が実現できる。また、Geの非線形係数は、Alの非線形係数よりも高いため、Ge濃度を抑制することは非線形抑制のために有効である。なお、EDFの定常部におけるMFDは5.3μm以下とするため、EDFにおける非線形性が増大する傾向にある。しかしながら、F添加クラッドの採用によりGe濃度が抑制可能になる。すなわち、クラッドに対するコアの比屈折率差を十分に確保可能となる。
 より具体的には、1.55μm帯での従来のEDFのMFD(以下、「MFD_EDF」と記す)が5.7μmであり、上述の伝送用光ファイバとは異なる一般的なSMFの1.55μm帯でのMFD(以下、「MFD_SMF」と記す)が10.5μmであった場合、MFD_EDFに対するMFD_SMFの比(MFD_SMF/MFD_EDF)は、1.84である。これに対し、本開示の光増幅用伝送路に適用される高濃度Al添加EDF(heavily Al-doped EDF)では、1.55μm帯でのMFD(以下、「MFD_Al,EDF」と記す)は、5.0μmであり、MFD_SMFとの差は、従来のEDFと比べむしろ大きくなっている(MFD_SMF/MFD_Al,EDF=2.18)。これは、一見、融着点における接続損失を抑制するためには不利と考えられた。しかしながら、本開示の融着接続された高濃度Al添加EDFおよびSMFにより構成された光増幅用伝送路の融着損失は、従来のEDFおよびSMFにより構成された光増幅用伝送路の融着損失に比べ、0.02dB以上0.05dB以下に改善する。ここで、融着損失とは、融着点における接続損失を意味する。このことから、本開示の光増幅用伝送路に適用されるEDFは、光増幅の高効率化に十分寄与し得ることがわかる。高濃度Al添加EDFは、コアにGeおよびAlが添加されるとともに第一のクラッドにFが添加されることで、コアにGeを含有するSMFに比べてMFDが拡大し易くなる。そこで、本開示の光増幅用伝送路では、EDFのMFDを予め小さくしておくことで、融着によって拡大した後のEDFのMFDがSMFのMFDに一致するか、または、EDFとSMFの間に積極的にMFD段差が形成される。
 (5)上記(2)において、波長1.55μm帯において、MFD1は、5.3μm以下であってもよい。この場合、第一のコア内への光閉じ込めを強めることにより、増幅効率を高めることが可能になる。更に、高い比屈折率差に伴う非線形性の増大やPMDの増大が効果的に抑制される。
 (6)上記(2)から上記(5)のいずれかにおいて、EDFにおいて、第一のクラッドに対する第一のコアの比屈折率差は、1%以上2%以下であってもよい。この場合も、第一のコア内への光閉じ込めを強めることにより、増幅効率を高めることが可能になる。更に、高い比屈折率差に伴う非線形性の増大やPMDの増大が効果的に抑制される。
 以上、この[本開示の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 [本開示の実施形態の詳細]
  以下、本開示の光増幅用伝送路の具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本開示は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、本開示の光増幅用伝送路およびそれを含む光ファイバ増幅器を示す図である(図1中、「光増幅用伝送路」と記す)。図1の上段(図1中、「EDFA」と記す)には、本開示の光増幅用伝送路が適用されたEr添加ファイバ増幅器(Er-doped Fiber Amplifier)の構造が示されている。図1の下段(図1中、「融着点近傍(拡大図)」と記す)には、融着点C1近傍のEDF100およびSMF200の断面構造が示されている。
 図1の上段に示されたEDFAは、本開示の光増幅用伝送路を有する。具体的に、信号光Sの伝搬方向に沿って順にEDF100、SMF200が配置されている。EDF100とSMF200は、C1で示された位置である融着点C1で融着接続されている。また、EDF100の上流には、SMFで構成されたカプラとして機能する波長分割多重フィルタ(WDMF:Wavelength Division Multiplexing Filter)300が配置されている。C2で示された位置である融着点C2で、WDMF300の光出力端面は、EDF100の光入力端面100bに接続されており、WDMF300の光入力端面から入力された光、すなわち励起光源500から出力された励起光Pと信号光Sを、EDF100へ出力している。
 図1の下段に示された本開示の光増幅用伝送路は、伝搬経路の上流側に配置されたEDF100と、下流側に配置されたSMF200とを備える。EDF100は、第一の端面である光出力端面100aと、第二の端面である光入力端面100bと、コア110と、クラッド120と、を備える。SMF200は、第四の端面である光出力端面200aと、第三の端面である光入力端面200bと、コア210と、クラッド220と、を備える。EDF100の光出力端面100aとSMF200の光入力端面200bは、融着点C1で融着接続されており、この融着接続により、EDF100には、遷移部R1と定常部R2が形成されている。EDF100の遷移部R1は、光出力端面100aを含み、光出力端面100aから光入力端面100bに向かってMFDが縮小している部分である。EDF100の定常部R2は、遷移部R1と光入力端面100bを連絡する部分であって、EDF100の組成およびMFD1が一定である。一方、SMF200の定常部は、光入力端面200bから光出力端面200aに向かってSMF200の組成およびMFD2が一定である。特に、EDFの定常部におけるMFD1に対するSMFの定常部におけるMFD2の比(MFD2/MFD1)は、1.9以上2.2以下の範囲に収まっている。そのため、本開示の光増幅用伝送路では、融着点C1において、MFD段差が形成されている。なお、「MFDが一定の状態」には、測定誤差や許容範囲内の差異がある略一定が含まれ、具体的には、MFDの設計値を基準として(設計値-0.1)μm以上(設計値+0.1)μm以下の範囲に収まっている状態を意味する。
 図2は、EDFの種々のファイバ特性を示す図である(図2中、「ファイバ特性(EDF)」と記す)。図2の上段(図2中、「MFD-コア径」と記す)には、比屈折率差Δの異なる種々のEDFについて、MFDのコア径依存性を示すグラフが示されている。図2の下段(図2中、「Γ値-コア径」と記す)には、比屈折率差Δの異なる種々のEDFについて、Γ値のコア径依存性を示すグラフが示されている。
 より具体的には、図2の上段において、グラフG210Aは、光学クラッドに対するコアの比屈折率差Δが1.25%であるEDFについて、コア径に対する1.55μm帯でのMFDの計算結果を示す。グラフG220Aは、比屈折率差Δが1.41%であるEDFについて、コア径に対する1.55μm帯でのMFDの計算結果を示す。グラフG230Aは、比屈折率差Δが1.55%であるEDFについて、コア径に対する1.55μm帯でのMFDの計算結果を示す。なお、図2の上段に示された点Aは、従来のEDFの計算結果であり、点Bは、本開示の光増幅用伝送路に適用されるEDF、すなわちコアにGe、Alが添加され、クラッドにFが添加されたEDFの計算結果である。また、図2の上段には、参考として、SMFのMFDが波長1.55μmで9.9μm以上10.9μm以下であることも併せて示されている。
 図2の下段において、グラフG210Bは、光学クラッドに対するコアの比屈折率差Δが1.25%であるEDFについて、0.98μm帯での励起光の規定モードであるLP01モードの光強度分布とEr添加されたコア領域内との重なり積分であるΓ値の計算結果が示されている。グラフG220Bは、比屈折率差Δが1.41%であるEDFについて、0.98μm帯での励起光のLP01モードの光強度分布とEr添加されたコア領域内とのΓ値の計算結果が示されている。グラフG230Bは、比屈折率差Δが1.55%であるEDFについて、0.98μm帯での励起光のLP01モードの光強度分布とEr添加されたコア領域内とのΓ値の計算結果が示されている。
 なお、Γ値は、0.98μm帯での励起光のLP01モードの光強度の総量で規格化された値である。EDFAの高効率化の指標は、電力変換効率(PCE:Power Conversion Efficiency)であり、Γ値の向上が有効である。これには、コア径の増大が効果的であるが、一方で雑音指数(NF:Noise Factor)が増大するため、コア径の適切化が必要である。なお、電力変換効率は、励起光の光量とEDFから得られる信号光の光量の比であり、以下の式:
PCE=(P1-P2)/P3×100[%]
で与えられる。ここで、P1は、EDFから出力された信号光の光量、P2は、EDFへ入力される信号光の光量、P3は、EDFに入力される励起光の光量である。また、雑音指数は、入力信号光の信号対雑音比であるSN1と出力信号光の信号対雑音比であるSN2の比で表される。
 Γ値の増大により雑音指数の悪化が懸念されたが、従来対比で0.2%増に留まり、無視できるレベルであることが確認された。以上のことから、Γ値すなわちオーバーラップ率は、85%以上が有効であることから、EDFのMFDは、5.3μm以下が有効である。雑音指数の悪化を踏まえると、上限は90%未満である。
 従来のEDFのファイバ構造の一例として図2の上段に示された点AのEDFにおいて、Γ値は76%であった。EDFの高効率化には、Γ値の増大は必要だが、雑音指数の増大が懸念されることから、適切なΓ値の設定が必要である。そこで、本開示の光増幅用伝送路に適用される高濃度Al添加EDFとして、図2の上段に示された点Bにおいて、光学クラッドに対するコアの比屈折率差Δが、従来のEDFと同じ1.41%、Γ値が86%、コア径が3.5μmのEDFサンプルを試作し、点AでのPCEおよび雑音指数を基準として、高濃度Al添加EDFのPCFおよび雑音指数の相対的な変化量を評価した。点BでのPCEは、従来のEDFとの対比で4%増大し、高濃度Al添加EDFは有効であることが分かった。一方、点Bでの雑音指数の大幅な増大が懸念されたが、実際には従来のEDFとの対比で0.2%の増大に留まり、ほぼ無視できるレベルであることが分かった。
 一方、従来のEDFの設計指針として、特許文献1には、V値(=2π/λ・a・n1・(2Δ)1/2)から得られるα値(V・λ)をEDFとSMFの両者で一致させることが提案されている。これは、EDFの入力端側において、それぞれ異なる励起光の波長と信号光の波長の双方における融着損失(融着点における接続損失)の抑制には有効である。しかしながら、EDFの光出力端面側において、信号光の波長におけるEDFとSMFとの融着損失を抑制することに関して、特許文献1には、コアのドーパントの熱拡散によってSMFとのMFDが整合されることのみが開示されており、詳細な規定はなかった(段落「0022」参照)。EDFとSMFのように、異なる光ファイバ間の融着損失を抑制する設計方針としては、MFD_SMFとMFD_EDFが同一、すなわち、MFD_SMF/MFD_EDFが1であることが有効である。従来のEDFは、図2に示されたように、コア径が小さい程、SMFのMFD_SMFとの差異が小さくなり、その結果、融着によって添加物の熱拡散によってテーパー形状の導波路長を短尺化できるため有効であった。一方で、PCEの向上には、上述の通り、Γ値の増大が必要であり、コア径を2.5μmから3.5μmと増大させた場合、MFD_SMF/MFD_EDFは増大し、融着損失の増大が懸案事項であった。また、特許文献2では、外側クラッドとなるMCVDのSiO基体管の粘性がコアに比べて高く、粘性差が大きい。そのため、十分な接続強度が得られる程度に外側クラッドを軟化させると、内側のコアは粘性が下がり過ぎ、添加物の過剰な拡散によるMFDの過剰な拡大やコアの変形が接続損失を増大させていた。
 これに対し、本開示の光増幅用伝送路に適用可能な高濃度Al添加EDFであるEDF100では、クラッド全体にFが添加されたSiOを利用することで、コアとクラッドの粘性差を特許文献2の従来例に比べて低減できる。そのため、接続損失の低減に適しているとは言え、EDFのMFDとSMFのMFDの差の増大は融着損失の増大に繋がることが予想された。
 なお、融着接続において、SMFのMFD_SMFに比べ、従来のEDFのMFD_EDFが大きくなることは無いが、このMFD_EDFをMFD_SMFに近づけるには、光学クラッドにFを添加するとともに、コアにはGeよりもAlを添加することが有効である。Al濃度は、質量分率4.0%以上5.0%以下であることが効果的である。副次的な効果として、Alの非線形係数は、Geの非線形係数に比べ半減することから、Alの高濃度化は、不要な非線形を抑制させることが可能となる。
 以上のことから、Γ値の増大、すなわち、コア径の増大に伴い、EDFはPCEに対して有利に働くが、図2に示されたように、EDFのMFDとSMFのMFDの差は増大することから、融着損失の抑制とEDFにおける光増幅の効率化はトレードオフの関係にあることが予想された。なお、コア径増大はPCEに有効ではあるが、MFDの下限設定には、非線形雑音の観点から注意が必要である。非線形係数γは、以下の式:
γ=2π/λ・n2/Aeff
で与えられる。ここで、n2は非線形屈折率、λは波長、Aeffは実効断面積(Effective Area)である。高濃度Al添加EDFにおけるn2は2.6程度である。
 次に、光ファイバ中で発生する非線形現象の一つである四光波混合(FWM:Four-Wave Mixing)の発生効率P_pumpはγに比例するため、波長1.55μm帯におけるMFDに対する非線形係数の二乗値γ[/W/km]の計算を行った。図3は、MFDと非線形係数の二乗値γ(/W/km)の関係を示すグラフである。
 光ファイバ伝送システムにおける非線形応答特性の観点から、非線形係数の二乗値γは30.0以下が一つの目安となる。図3から分かるように、γ=30.0におけるMFDは、4.95μmであることから、MFDの下限は5.0μmが適切である。なお、SMFは、1.55μm帯でのMFDが10.4を基準として-0.5μm以上+0.5μm以下の範囲に収まり、外径が125.0μmを基準として-0.7μm以上+0.7μm以下の範囲に収まり、コア偏心が0.5μm以下であることで定義される。
 そこで、コア径増大とMFDの下限値の関係性を明らかにするために、EDFAを構成するEDFと異種ファイバとの融着接続損失について検討した。具体的には、EDFAにおける異種ファイバとして、EDFの光出力端面に接続されるSMF、および、入力端に接続される波長分割多重フィルタ(WDMF:Wavelength Division Multiplexing Filter)として機能するSMFについて検討し、従来のEDFと本開示の光増幅用伝送路に適用可能な高濃度Al添加EDFのそれぞれにおける融着損失の評価を行った。図4は、光増幅用伝送路における各融着点における光学特性として、MFDの変化状態を示す図である(図4中、「融着点における光学特性」と記す)。図4の上段(図4中、「MFD変動(伝送路)」と記す)には、融着点C1の近傍および融着点C2の近傍における各伝送路内におけるMFDの変化の概略が示されている。図4の中段(図4中、「MFD変動(融着点C1近傍)」と記す)には、融着点C1の近傍におけるMFD変化が示されている。図4の下段(図4中、「MFD変動(融着点C2近傍)」と記す)には、融着点C2の近傍におけるMFD変化が示されている。また、図5には、融着点C2におけるEDF100とWDMF300との融着損失、および融着点C1におけるEDF100とSMF200との融着損失が示されている。
 具体的に、図4の上段には、1.55μm帯でMFDが10.5μmであるSMF200、高濃度Al添加EDFであるEDF100、およびWDMF300が融着点C1および融着点C2において融着接続された光増幅用伝送路が示されている。融着点C1では、SMF200の光入力端面200bとEDF100の光出力端面100aが融着接続されている。融着点C2では、EDF100の光入力端面100bとWDMF300の光出力端面が融着接続されている。信号光Sは、WDMF300、EDF100、SMF200の順に通過する。また、図4の上段において、MFD2はSMF200の定常部におけるMFDであり、MFD1はEDF100の定常部R2におけるMFDである。EDF100の遷移部R1ではMFDが光出力端面100aから光入力端面100bに向かって縮小しており、融着点C1においてMFD段差が形成されている。
 図4の中段に示された図は、上述の光増幅伝送路において、図4の上段に示された融着点C1に相当する融着点を基準である0μmとして、-1500μm以上+1500μm以下の範囲の各光ファイバの屈折率分布を測定し、その屈折率分布から波長1.55μm帯におけるMFDを計算した結果を示す。横軸のプラス領域は融着点の0μmからEDF100に向かう側、横軸のマイナス領域は融着点0μmからSMF200に向かう側を示す。図4の中段に示された図から分かるように、EDF100の定常部R2において、5.0μmのMFD1の変動は、+1000μmから+500μmにかけて+0.1μm程度増大する。+500μm近傍から0μmまでの遷移部R1では、融着点C1に向かって10.5μm程度にまで拡大し、SMF200の定常部におけるMFD2と同等になることが分かる。一方、SMF200の定常部におけるMFD2は10.5μmと融着点C1ではほぼ変化ないことが分かった。
 以上の結果をMFD_SMF/MFD_EDFの関係で整理してみると、5.7μmのMFD_EDFに対するMFD_SMFの比は1.84、5.0μmのMFD_EDFに対するMFD_SMFの比は2.10であった。5.7μmのMFD_EDFに対するMFD_SMFの比が1.84のときの融着損失を基準とした場合、5.0μmのMFD_EDFに対するMFD_SMFの比が2.10のときの融着損失は1.27%改善されている。MFD_SMF/MFD_EDFは小さい程、融着損失を抑制できると考えていたが、むしろ大きい方が有効であることが分かった。更に、図2の上段に示された点Aに相当する、比屈折率差Δが1.41%でありコア径が2.5μmであるEDFのMFD_EDF1が6.0μmでありMFD_SMFが9.9μm以上10.9μm以下であるとき、MFD_EDF1に対するMFD_SMFの比は1.65以上1.82以下である。
 一方、図2の上段に示された点Bに相当する、比屈折率差Δが1.41%でありコア径が3.5μmであるEDFのMFD_EDF2が5.0μmでありMFD_SMFが9.9μm以上10.9μm以下であるとき、MFD_EDF2に対するMFD_SMFの比は1.98以上2.18以下である。したがって、本開示の光増幅用伝送路に適用可能な高濃度Al添加EDFに関する比(MFD_SMF/MFD_EDF2)の範囲は、従来のEDFに関する比(MFD_SMF/MFD_EDF1)の範囲に比べ、高い傾向にあることが分かった。
 なお、図4の下段に示された図は、上述の光増幅伝送路において、図4の上段に示された融着点C2に相当する融着点を基準である0μmとして、-1500μm以上+1500μm以下の範囲の各光ファイバの屈折率分布を測定し、その屈折率分布からMFDを計算した結果を示す。なお、図4の下段に示された図において、グラフG410は、波長1.55μm帯におけるMFDの計算値を示し、グラフG420は、波長0.98μm帯におけるMFDの計算値を示す。また、横軸のプラス符号は融着点の0μmからEDF100に向かう側、マイナス符号は融着点0μmからWDMF300に向かう側を示す。この図4の下段に示された図から分かるように、+500μm近傍から0μmまでのEDF100の遷移部R1では、融着点C2に向かってWDMF300のMFDを超える程度にまで拡大する。一方、WDMF300のMFDも、融着点C2に向かって拡大している。
 続いて、図5の表について説明する。なお、図5中の符号において、プラス領域は、融着損失が基準対比で増大していることを示し、マイナス領域は、融着損失が基準対比で低減していることを示す。図5に示された表を得るため、用意された従来のEDFは、図2の上段に示された点Aに相当する5.7μmのMFDを有する。用意された高濃度Al添加EDFであるEDF100は、図2の上段に示された点Bに相当する5.0μmのMFDを有する。それぞれの融着損失は、従来のEDFのMFDを基準値とした場合、本開示の光増幅用伝送路に適用可能なEDF100のMFDは、-1.27%と、従来のEDFに比べ高濃度Al添加EDFの融着損は低減していたことから、高濃度Al添加EDFは、EDFAのPCEに有効であることが分かる。
 また、EDF100とWDMF300との融着点C2においても検討した。用意されたWDMF300は7.0μmのMFDを有する。1.55μmの信号光波長と0.98μmの励起光波長それぞれにおける融着損失は、点Aでの融着損失を基準とした点Bでの融着損失は、0.98μm帯の励起光波長では0.1%の損失増となるが、1.55μm帯の信号光波長では0.12%改善が確認された。これは、図5の表では「-0.12%」で示されている。EDF100とWDMF300の融着損失、および、EDF100とSMF200の融着損失の合計から、従来のEDFを利用した光増幅用伝送路における融着損失によるPCE低下は抑制されていることが分かる。
 以上のように、本開示の光増幅用伝送路に適用可能な高濃度Al添加EDFは熱拡散によってテーパー状のコアを形成させ易いことから、高濃度Al添加EDFのMFDとSMFのMFDの差が大きくても融着損失を適切に制御できる。ファイバ組成の適切な範囲としては、コアにおけるAl濃度は質量分率4.0%以上5.0%以下、Ge濃度はSMFの濃度と同程度以下、すなわち質量分率3.5%未満、光学クラッドにおけるF濃度は比屈折率差Δに換算して-0.30%以上-0.50%、好ましくは、-0.30%以上-0.40%以下が有効である。高濃度Al添加EDFのMFDは5.0μm以上5.3μm以下が有効である。なお、この結果からも明らかなように、SMFと高濃度Al添加EDFの双方におけるGe濃度は同程度であって、SMFのMFDの変化幅は0.1μm未満とGe拡散の寄与度は殆ど無いことが判明した。
100…EDF
100a…光出力端面
100b…光入力端面
110…コア
120…クラッド
200…SMF
200a…光出力端面
200b…光入力端面
210…コア
220…クラッド
300…WDMF
500…励起光源
C1、C2…融着点
R1…遷移部
R2…定常部
P…励起光
S…信号光

Claims (6)

  1.  第一の端面と、第二の端面と、前記第一の端面から前記第二の端面に向かって伸びるとともにエルビウムが添加された第一のコアと、前記第一のコアを取り囲むとともにフッ素が添加された第一のクラッドと、を有する増幅用光ファイバと、
     前記第一の端面と融着接続された第三の端面と、第四の端面と、エルビウムが添加されることなく前記第三の端面から前記第四の端面に向かって伸びる第二のコアと、前記第二のコアを取り囲む第二のクラッドと、を有する、シングルモード光のみを伝搬する伝送用光ファイバと、
     を備え、
     前記増幅用光ファイバは、前記第一の端面を含むとともに前記第一の端面から前記第二の端面に向かって第一のモードフィールド径が縮小している遷移部と、前記遷移部と前記第二の端面とを連絡する部分であって前記増幅用光ファイバの組成および前記第一のモードフィールド径が前記遷移部から前記第二の端面に向かって一定である第一の定常部と、を含み、
     前記伝送用光ファイバは、前記第三の端面から前記第四の端面に向かって前記伝送用光ファイバの組成および前記第二のモードフィールド径が一定である第二の定常部を含み、
     前記第一の定常部の前記第一のモードフィールド径であるMFD1に対する前記第二の定常部の前記第二のモードフィールド径であるMFD2の比(MFD2/MFD1)は、1.9以上2.2以下である、
     光増幅用伝送路。
  2.  前記第一のコアには、ゲルマニウムおよびアルミニウムが添加されている、
     請求項1に記載の光増幅用伝送路。
  3.  波長1.55μm帯において、前記MFD1は、5.3μm以下である、
     請求項2に記載の光増幅用伝送路。
  4.  前記第一のコアにおいて、前記ゲルマニウムの濃度は、質量分率3.8%以下であり、前記アルミニウムの濃度は、質量分率4.0%以上である、
     請求項2に記載の光増幅用伝送路。
  5.  波長1.55μm帯において、前記MFD1は、5.3μm以下である、
     請求項4に記載の光増幅用伝送路。
  6.  前記第一のクラッドに対する前記第一のコアの比屈折率差は、1%以上2%以下である、
     請求項2から請求項5のいずれか一項に記載の光増幅用伝送路。
PCT/JP2023/015136 2022-04-26 2023-04-14 光増幅用伝送路 WO2023210404A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072525 2022-04-26
JP2022-072525 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210404A1 true WO2023210404A1 (ja) 2023-11-02

Family

ID=88518526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015136 WO2023210404A1 (ja) 2022-04-26 2023-04-14 光増幅用伝送路

Country Status (1)

Country Link
WO (1) WO2023210404A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072006A (ja) * 2000-08-28 2002-03-12 Sumitomo Electric Ind Ltd 光ファイバの接続方法
JP2002243971A (ja) * 2001-02-19 2002-08-28 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバの接続方法及びその接続構造体並びにその接続構造体の構成部材
JP2004117965A (ja) * 2002-09-27 2004-04-15 Showa Electric Wire & Cable Co Ltd 光導波路接続部及びその製造方法
JP2004325863A (ja) * 2003-04-25 2004-11-18 Furukawa Electric Co Ltd:The 光ファイバの接続方法及び接続部を有する光ファイバ
JP2004354809A (ja) * 2003-05-30 2004-12-16 Sumitomo Electric Ind Ltd 光ファイバの接続構造及び接続方法並びに分散補償光ファイバ
JP2005101590A (ja) * 2003-09-05 2005-04-14 Sumitomo Electric Ind Ltd 光増幅用ファイバ、光増幅モジュール、光通信システム及び光増幅方法
WO2017195636A1 (ja) * 2016-05-12 2017-11-16 住友電気工業株式会社 光コネクタ及び光結合構造
US20210011219A1 (en) * 2019-07-11 2021-01-14 National Cheng Kung University Method of Splicing Optical Fibers and Sturcture of Spliced Optical Fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072006A (ja) * 2000-08-28 2002-03-12 Sumitomo Electric Ind Ltd 光ファイバの接続方法
JP2002243971A (ja) * 2001-02-19 2002-08-28 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバの接続方法及びその接続構造体並びにその接続構造体の構成部材
JP2004117965A (ja) * 2002-09-27 2004-04-15 Showa Electric Wire & Cable Co Ltd 光導波路接続部及びその製造方法
JP2004325863A (ja) * 2003-04-25 2004-11-18 Furukawa Electric Co Ltd:The 光ファイバの接続方法及び接続部を有する光ファイバ
JP2004354809A (ja) * 2003-05-30 2004-12-16 Sumitomo Electric Ind Ltd 光ファイバの接続構造及び接続方法並びに分散補償光ファイバ
JP2005101590A (ja) * 2003-09-05 2005-04-14 Sumitomo Electric Ind Ltd 光増幅用ファイバ、光増幅モジュール、光通信システム及び光増幅方法
WO2017195636A1 (ja) * 2016-05-12 2017-11-16 住友電気工業株式会社 光コネクタ及び光結合構造
US20210011219A1 (en) * 2019-07-11 2021-01-14 National Cheng Kung University Method of Splicing Optical Fibers and Sturcture of Spliced Optical Fiber

Similar Documents

Publication Publication Date Title
JP5307114B2 (ja) 光ファイバ
JP4999063B2 (ja) 光ファイバ
JP3893877B2 (ja) 分散補償ファイバ
JP4460065B2 (ja) 非線形光ファイバおよび非線形光デバイスならびに光信号処理装置
JP3760557B2 (ja) 分散補償ファイバ及びそれを含む光伝送システム
JPH09218318A (ja) 分散シフト光ファイバ
JP6659847B2 (ja) モード間損失差補償器及び光増幅器
US6941054B2 (en) Optical transmission link with low slope, raman amplified fiber
JP2003114350A (ja) 光ファイバ、光ファイバ部品および光伝送方法
JP5117131B2 (ja) ホーリーファイバおよびホーリーファイバの製造方法
JP3784656B2 (ja) 分散補償光ファイバおよびこれを用いた分散補償モジュールと光ファイバ複合伝送路
WO2002019576A2 (en) Optical transmission link with low slope, raman amplified fiber
JP2976959B2 (ja) 分散シフトファイバ
WO2023210404A1 (ja) 光増幅用伝送路
JP3774159B2 (ja) 分散補償光ファイバの接続構造
JP3798227B2 (ja) 分散補償光ファイバの接続構造
JP4206623B2 (ja) 負分散光ファイバおよび光伝送路
JP4118912B2 (ja) 分散補償光ファイバの接続構造
JP4617587B2 (ja) 光ファイバ伝送路
JPWO2018097256A1 (ja) 光ファイバ線路および光ファイバ線路製造方法
JP2002082251A (ja) 光ファイバ、光伝送路および分散補償モジュール
JP2002062450A (ja) 分散補償光ファイバおよび光伝送路
JPH10300970A (ja) 光ファイバ素子及び光ファイバ接続方法
JP2005196231A (ja) 光伝送システム
EP1289078B1 (en) Optical transmission line and optical communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18569633

Country of ref document: US