WO2023210317A1 - 回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法 - Google Patents

回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法 Download PDF

Info

Publication number
WO2023210317A1
WO2023210317A1 PCT/JP2023/014499 JP2023014499W WO2023210317A1 WO 2023210317 A1 WO2023210317 A1 WO 2023210317A1 JP 2023014499 W JP2023014499 W JP 2023014499W WO 2023210317 A1 WO2023210317 A1 WO 2023210317A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
forming
insulating layer
coil
core
Prior art date
Application number
PCT/JP2023/014499
Other languages
English (en)
French (fr)
Inventor
真弥 井上
博司 山崎
淳 石井
誉大 ▲高▼野
修平 市丸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023210317A1 publication Critical patent/WO2023210317A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a circuit board, a digital isolator or a transformer, and a method for manufacturing a circuit board.
  • Patent Document 1 describes a thin magnetic component in which a coil conductor is formed.
  • a first conductor is provided in a slit-like groove on one side of the magnetic substrate, and a second conductor is provided in a slit-like groove on the other side of the magnetic substrate.
  • the first conductor and the second conductor are connected by a connecting conductor provided in the through hole of the magnetic substrate.
  • the inventors of the present invention considered developing other magnetic components using small coils.
  • the inventors of the present invention considered developing a digital isolator or transformer using two coils.
  • dielectric strength cannot be maintained. Therefore, it is difficult to miniaturize digital isolators or transformers.
  • An object of the present invention is to provide a circuit board, a digital isolator, or a transformer that can be used as a magnetic component and can be miniaturized, and a method for manufacturing the circuit board.
  • a circuit board includes a core formed of a magnetic material and having a thickness of 10 ⁇ m or more and 300 ⁇ m or less, an insulating layer provided around the core, and a core wound around the core via the insulating layer. The rotated first coil and second coil, the first wiring and second wiring connected to the first coil, and the third wiring and fourth wiring connected to the second coil. Equipped with.
  • the magnetic coupling between the first coil and the second coil is large, it becomes possible to arrange the first coil and the second coil apart from each other. This maintains the dielectric strength between the first coil and the second coil. As a result, it is possible to downsize the circuit board while configuring the circuit board as a magnetic component.
  • Each of the first coil, second coil, first wiring, second wiring, third wiring, and fourth wiring may have a rectangular cross section.
  • each of the first coil, second coil, first wiring, second wiring, third wiring, and fourth wiring can be easily formed using a wiring circuit board forming technique. Can be done.
  • the first coil and the second coil may be arranged with a distance of 10 ⁇ m or more. In this case, the dielectric strength voltage between the first coil and the second coil can be sufficiently maintained.
  • the core may be formed of a ferromagnetic material. In this case, the magnetic coupling between the first coil and the second coil can be further increased.
  • the core may include silicon steel, iron, or permalloy. In this case, the magnetic coupling between the first coil and the second coil can be easily increased.
  • the first coil and the second coil may be magnetically coupled and may transmit electrical signals or power while being electrically insulated from each other.
  • the circuit board can be used as a digital isolator or transformer.
  • a digital isolator or transformer according to another aspect of the present invention includes a circuit board according to one aspect of the present invention. Since this digital isolator or transformer includes the above-mentioned circuit board, it can be made small while being constructed as a ceramic component.
  • a method for manufacturing a circuit board includes preparing a core made of a magnetic material and having a thickness of 10 ⁇ m or more and 300 ⁇ m or less, and forming a first insulating layer around the core. and forming a conductor layer, the conductor layer being connected to the first coil and the second coil wound around the core through the first insulating layer.
  • the coil includes a first wiring and a second wiring connected to each other, and a third wiring and a fourth wiring connected to the second coil.
  • Forming the first insulating layer means forming a first portion of the first insulating layer on one surface of the core, and forming a first portion of the first insulating layer on the other surface of the core, which is connected to the first portion.
  • forming a second portion of the first insulating layer; forming a conductive layer includes forming a third portion of the conductive layer on the first portion of the first insulating layer;
  • the method may include forming a fourth portion of the conductive layer electrically connected to the third portion in the second portion of the first insulating layer.
  • the first insulating layer can be easily formed around the core.
  • the first coil and the second coil can be easily formed so as to be wound around the core with the first insulating layer interposed therebetween.
  • Preparing the core may include forming the core by etching a sheet formed of a magnetic material.
  • the core can be easily formed from a sheet made of magnetic material.
  • Forming the third portion of the conductor layer may include forming a seed layer that is resistant to an etching solution between the third portion of the conductor layer and the sheet.
  • the seed layer protects the third portion of the conductor layer from the etching solution, making it easier to form the core from the sheet by etching.
  • Forming the first portion of the first insulating layer includes forming a thick portion having a first thickness and forming a thin portion having a second thickness smaller than the first thickness.
  • forming the fourth portion of the conductive layer includes removing a thin portion of the first insulating layer exposed from the core formed by etching; forming a fourth portion of the conductor layer that is electrically connected to the third portion.
  • the core can be more easily formed from the sheet by etching.
  • the method for manufacturing a circuit board may further include, before forming the core, forming a second insulating layer on one surface of a region of the sheet to be removed by etching. According to this configuration, even if a part of the sheet is removed by etching, the second insulating layer remains, so that in the step of forming the second part of the first insulating layer, the second part is removed by etching. It is not formed by wrapping around one side of the sheet. This prevents the yield from decreasing.
  • Forming the second insulating layer may include further forming a second insulating layer on the conductor layer. According to this configuration, even when the circuit board is used for a long period of time, corrosion of the conductor layer is prevented. Thereby, the life of the circuit board can be extended.
  • Forming the fourth portion of the conductor layer may include forming a fourth portion that is electrically connected to the third portion of the conductor layer without via a via hole. In this case, it becomes easy to downsize the circuit board.
  • FIG. 1 is a plan view of a digital isolator according to a first embodiment of the invention.
  • FIG. 2 is a plan view of the circuit board of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line AA of the circuit board shown in FIG.
  • FIG. 4 is a perspective view showing the circuit board assembly sheet.
  • FIG. 5 is a process cross-sectional view for explaining an example of the first method of manufacturing a circuit board.
  • FIG. 6 is a process cross-sectional view for explaining an example of the first method of manufacturing a circuit board.
  • FIG. 7 is a process cross-sectional view for explaining an example of the first method of manufacturing a circuit board.
  • FIG. 8 is a process cross-sectional view for explaining an example of the first method of manufacturing a circuit board.
  • FIG. 9 is a process cross-sectional view for explaining an example of the first method for manufacturing a circuit board.
  • FIG. 10 is a process cross-sectional view for explaining an example of the first method of manufacturing a circuit board.
  • FIG. 11 is a process cross-sectional view for explaining an example of the second manufacturing method of a circuit board.
  • FIG. 12 is a process cross-sectional view for explaining an example of the second manufacturing method of a circuit board.
  • FIG. 13 is a process cross-sectional view for explaining an example of the second manufacturing method of a circuit board.
  • FIG. 14 is a process cross-sectional view for explaining an example of the second manufacturing method of a circuit board.
  • FIG. 15 is a process cross-sectional view for explaining an example of the third method of manufacturing a circuit board.
  • FIG. 16 is a process cross-sectional view for explaining an example of the third manufacturing method of a circuit board.
  • FIG. 17 is a process cross-sectional view for explaining an example of the third method for manufacturing a circuit board.
  • FIG. 18 is an enlarged plan view showing a part of the circuit board. It is a figure showing the composition of the circuit board concerning the 2nd embodiment of the present invention. It is a figure showing the composition of the circuit board concerning a 3rd embodiment of the present invention.
  • 21 is a process cross-sectional view for explaining an example of a method for manufacturing the circuit board of FIG. 20.
  • FIG. 21 is a process cross-sectional view for explaining an example of a method for manufacturing the circuit board of FIG. 20.
  • FIG. 21 is a process cross-sectional view for explaining an example of a method for manufacturing the circuit board of FIG. 20.
  • FIG. 21 is a process cross-sectional view for explaining an example of a method for manufacturing the circuit board of FIG. 20.
  • FIG. 21 is
  • FIG. 1 is a plan view of a digital isolator according to a first embodiment of the present invention.
  • digital isolator 200 includes a circuit board 100 and a chip package 110. Details of the configuration of the circuit board 100 will be described later.
  • Digital isolator 200 may further include an encoder that encodes the electrical signal, a decoder that decodes the electrical signal, or an amplifier that amplifies the electrical signal.
  • the chip package 110 is made of ceramic or resin.
  • the chip package 110 has, for example, a rectangular parallelepiped shape.
  • the width direction the direction along one pair of sides of the chip package 110
  • the arrangement direction the direction along the other pair of sides of the chip package 110
  • the length of the chip package 110 in the width direction is slightly larger than the length of the circuit board 100 in the longitudinal direction, which will be described later.
  • a circuit board 100 is housed within the chip package 110.
  • two circuit boards 100 are housed in the chip package 110 so as to be lined up in the arrangement direction, but the number of circuit boards 100 housed in the chip package 110 is not limited.
  • the length of the chip package 110 in the arrangement direction is determined according to the number of circuit boards 100 housed inside.
  • the chip package 110 may further accommodate an encoder, decoder, amplifier, or the like (not shown).
  • a plurality of (four in this example) input terminals 111 to 114 are provided so as to be lined up in the arrangement direction.
  • a plurality of (four in this example) output terminals 115 to 118 are provided so as to be lined up in the arrangement direction.
  • Input terminals 111 and 112 and output terminals 115 and 116 are connected to one circuit board 100.
  • a magnetic field is generated by one of the circuit boards 100.
  • an AC electric signal induced by the generated magnetic field is output between the output terminals 115 and 116.
  • input terminals 113 and 114 and output terminals 117 and 118 are connected to the other circuit board 100.
  • an AC electrical signal is input between the input terminals 113 and 114, a magnetic field is generated by the other circuit board 100. Further, an AC electric signal induced by the generated magnetic field is output between the output terminals 117 and 118.
  • FIG. 2 is a plan view of the circuit board 100 of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line AA of the circuit board 100 in FIG.
  • the circuit board 100 includes a core 10, a base insulating layer 20, a conductor layer 30, and a cover insulating layer 40.
  • the internal structure of the cover insulating layer 40 is mainly illustrated, and the illustration of the base insulating layer 20 is omitted.
  • the core 10 is formed of a magnetic material.
  • the magnetic material includes, for example, SUS430, amorphous, silicon steel, iron, or permalloy.
  • Core 10 is preferably formed from a ferromagnetic material such as silicon steel, iron or permalloy.
  • the core 10 has a flat plate shape extending in one direction.
  • the thickness of the core 10 is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the longitudinal direction in which the core 10 extends.
  • the base insulating layer 20 is formed of resin such as polyimide. Base insulating layer 20 surrounds core 10 and electrically insulates between core 10 and conductor layer 30 .
  • the thickness of the base insulating layer 20 is, for example, 5 ⁇ m or more and 10 ⁇ m or less.
  • the conductor layer 30 includes an input conductor layer 31 and an output conductor layer 32 that are electrically insulated from each other. The thickness of the conductor layer 30 is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the input conductor layer 31 includes a coil portion 31a, wiring 31b, 31c, and terminals 31d, 31e.
  • the coil portion 31a is wound around the core 10 via the base insulating layer 20.
  • One end of the coil portion 31a is drawn out from the core 10 and connected to one end of the wiring 31b.
  • the other end of the coil portion 31a is drawn out from the core 10 and connected to one end of the wiring 31c.
  • the terminals 31d and 31e are arranged at one end of the circuit board 100 in the longitudinal direction.
  • the terminal 31d is connected to the other end of the wiring 31b. Further, the terminal 31d is electrically connected to the input terminal 111 or the input terminal 113 in FIG.
  • Terminal 31e is connected to the other end of wiring 31c. Further, the terminal 31e is electrically connected to the input terminal 112 or the input terminal 114 in FIG.
  • the widths of the terminals 31d and 31e are larger than the widths of the wirings 31b and 31c.
  • the output conductor layer 32 includes a coil portion 32a, wiring 32b, 32c, and terminals 32d, 32e.
  • the coil portion 32a is arranged to face the coil portion 31a, and is wound around the core 10 via the base insulating layer 20.
  • the coil portion 31a and the coil portion 32a are spaced apart from each other by, for example, 10 ⁇ m or more.
  • One end of the coil portion 32a is drawn out from the core 10 and connected to one end of the wiring 32b.
  • the other end of the coil portion 32a is drawn out from the core 10 and connected to one end of the wiring 32c.
  • the terminals 32d and 32e are arranged on the other end side in the longitudinal direction of the circuit board 100.
  • the terminal 32d is connected to the other end of the wiring 32b. Further, the terminal 32d is electrically connected to the output terminal 115 or the output terminal 117 in FIG. Terminal 32e is connected to the other end of wiring 32c. Further, the terminal 32e is electrically connected to the output terminal 116 or the output terminal 118 in FIG.
  • the widths of the terminals 32d and 32e are larger than the widths of the wirings 32b and 32c.
  • the cover insulating layer 40 is formed of resin such as polyimide, and completely covers the conductor layer 30.
  • the thickness of the cover insulating layer 40 is, for example, 8 ⁇ m or more and 50 ⁇ m or less.
  • the length of the cover insulating layer 40 in the longitudinal direction, that is, the length of the circuit board 100 in the longitudinal direction is, for example, 1630 ⁇ m.
  • the circuit board 100 is housed in the chip package 110 with its longitudinal direction facing the width direction of the chip package 110 in FIG.
  • FIG. 4 is a perspective view showing a circuit board assembly sheet. As shown in FIG. 4, in this embodiment, a plurality of circuit boards 100 are formed on a circuit board assembly sheet 1 in an aligned state by a roll-to-roll method. Hereinafter, various examples of methods for manufacturing the circuit board 100 will be described with reference to a cross section of one circuit board 100 formed on the circuit board assembly sheet 1.
  • 5 to 10 are process cross-sectional views for explaining an example of the first manufacturing method of the circuit board 100.
  • 5 to 10 correspond to cross-sectional views taken along the line AA of the circuit board 100 in FIG.
  • a sheet 10A made of a magnetic material is prepared, and a base insulating layer 20A is formed in a predetermined region on the upper surface of the sheet 10A.
  • the base insulating layer 20A may be formed by applying a photosensitive resin precursor to the upper surface of the sheet 10A and partially exposing the photosensitive resin precursor to ultraviolet light.
  • the material of the base insulating layer 20A is polyimide, but it may be other resin such as epoxy.
  • a conductor layer 30A is formed on the upper surface of the sheet 10A so as to cover the base insulating layer 20A.
  • the conductor layer 30A mainly constitutes parts of the coil parts 31a and 32a, the wirings 31b, 31c, 32b, and 32c, and the terminals 31d, 31e, 32d, and 32e in FIG.
  • the conductor layer 30A may be formed by an additive method, a semi-additive method, or another method such as a subtractive method.
  • the cross-sectional shape of each part of the conductor layer 30A formed by these manufacturing methods has a quadrilateral shape such as a square, a rectangle, or a trapezoid.
  • a seed layer 33 is formed in the boundary area between the conductor layer 30A and the sheet 10A. Therefore, the conductor layer 30A does not come into direct contact with the sheet 10A, but rather through the base insulating layer 20A or the seed layer 33.
  • the seed layer 33 includes a material that is resistant to an etching solution to be described later, such as chromium, chromium copper, or nickel chromium.
  • a cover insulating layer 40A is formed on the upper surface of the sheet 10A so as to cover the conductor layer 30A.
  • the procedure for forming the cover insulating layer 40A is the same as the procedure for forming the base insulating layer 20A.
  • a mask (not shown) is formed on the other surface of the sheet 10A so that unnecessary portions of the sheet 10A are exposed, and the portions of the sheet 10A exposed from the mask are etched using an etching solution.
  • the core 10 is formed by removing unnecessary portions of the sheet 10A.
  • a ferric chloride solution is used as the etching solution. Since the conductor layer 30A is protected by the seed layer 33 that is resistant to etching liquid, the conductor layer 30A remains without being removed in the etching process. That is, the seed layer 33 functions as a barrier layer that protects the conductor layer 30A from the etching solution.
  • the seed layer 33 may be removed after the etching process is completed, or may remain. In subsequent steps, illustration of the seed layer 33 is omitted.
  • a base insulating layer 20B is formed on the lower surface of the cover insulating layer 40A so as to cover the lower surface of the core 10. A portion of the lower surface of the conductor layer 30A is exposed from the base insulating layer 20B.
  • the procedure for forming the base insulating layer 20B is the same as the procedure for forming the base insulating layer 20A.
  • the base insulating layer 20 is formed by connecting the base insulating layer 20A and the base insulating layer 20B.
  • a conductor layer 30B is formed to cover the base insulating layer 20B on the lower surface of the core 10.
  • the procedure for forming the conductor layer 30B is the same as the procedure for forming the conductor layer 30A.
  • the conductor layer 30B mainly constitutes another part of the coil parts 31a and 32a in FIG.
  • the conductor layer 30 is formed by connecting the conductor layer 30A and the conductor layer 30B.
  • a cover insulating layer 40B is formed to cover the conductor layer 30B.
  • the procedure for forming the insulating cover layer 40B is the same as the procedure for forming the insulating cover layer 40A.
  • the cover insulating layer 40 is formed by connecting the cover insulating layer 40A and the cover insulating layer 40B. In this example, the cover insulating layer 40A and the cover insulating layer 40B are connected via the base insulating layer 20B. As a result, the circuit board 100 is completed.
  • FIG. 11 to 14 are process cross-sectional views for explaining an example of the second manufacturing method of the circuit board 100.
  • a sheet 10A made of a magnetic material is prepared, and a base insulating layer 20A is formed in a predetermined region on the upper surface of the sheet 10A.
  • the base insulating layer 20A has a thick portion 20X and a thin portion 20Y.
  • the thickness of the thin portion 20Y is smaller than the thickness of the thick portion 20X.
  • the thin portion 20Y is located in the boundary area between the conductor layer 30A and the sheet 10A, which will be formed in the next step.
  • a conductor layer 30A is formed on the base insulating layer 20A.
  • the conductor layer 30A does not come into direct contact with the sheet 10A, but comes into contact with the base insulating layer 20A.
  • a cover insulating layer 40A is formed on the upper surface of the sheet 10A so as to cover the conductor layer 30A.
  • the core 10 is formed by etching the sheet 10A.
  • the conductor layer 30A is protected by the thin portion 20Y of the base insulating layer 20A, so the conductor layer 30A remains without being removed in the etching process.
  • the thin portion 20Y of the base insulating layer 20A is removed by etching. Thereafter, steps similar to those in FIGS. 9 and 10 are performed to sequentially form the base insulating layer 20B, the conductor layer 30B, and the cover insulating layer 40B. As a result, the circuit board 100 is completed.
  • 15 to 17 are process cross-sectional views for explaining an example of the third manufacturing method of the circuit board 100.
  • a sheet 10A made of a magnetic material is prepared, and a base insulating layer 20A is formed in a predetermined region on the upper surface of the sheet 10A.
  • the formation area of the base insulating layer 20A in this example is larger than the formation area of the base insulating layer 20A in FIG. 5 in the first manufacturing method.
  • Two openings 20Z are formed in the base insulating layer 20A. Each opening 20Z is used as a via hole.
  • a seed layer 33 is formed on the upper surface of the sheet 10A exposed within each opening 20Z of the base insulating layer 20A. Further, a conductor layer 30A is formed on a predetermined region of the base insulating layer 20A. A portion of the conductor layer 30A is formed within the opening 20Z. Therefore, the conductor layer 30A does not come into direct contact with the sheet 10A, but rather through the base insulating layer 20A or the seed layer 33.
  • a cover insulating layer 40A is formed on the base insulating layer 20A so as to cover the conductor layer 30A.
  • the sheet 10A is etched by performing steps similar to those in FIGS. 8 to 10, and the base insulating layer 20B, the conductor layer 30B, and the cover insulating layer 40B are sequentially formed.
  • a circuit board 100 similar to the circuit board 100 of FIG. 10 is completed, except that a portion of the cover insulating layer 40A is formed by the base insulating layer 20A.
  • the coil portion 31a and the coil portion 32a are magnetically coupled, and electrical signals or power are transmitted while being electrically insulated from each other.
  • the coil parts 31a and 32a are wound around a thin and common core 10 made of a magnetic material, a large magnetic coupling occurs between the coil parts 31a and 32a. Therefore, when the circuit board 100 is used as a digital isolator or a transformer, generation of large noise in the surroundings is prevented.
  • the core 10 is formed of a ferromagnetic material such as silicon steel, iron, or permalloy, the magnetic coupling between the coil parts 31a and 32a can be further increased.
  • the magnetic coupling between the coil parts 31a and 32a is large, it becomes possible to arrange the coil part 31a and the coil part 32a apart from each other. This maintains the dielectric strength between the coil parts 31a and 32a. Further, since only the end surfaces of the coil portion 31a and the coil portion 32a face each other, the opposing area between the coil portion 31a and the coil portion 32a is small. Therefore, the parasitic capacitance generated between the coil portion 31a and the coil portion 32a is small. In this case, it is possible to transmit high frequency electrical signals or power with low delay. As a result, it is possible to downsize the circuit board 100 while configuring the circuit board 100 as a magnetic component.
  • the conductor layer 30 can be formed using a wiring circuit board forming technique such as an additive method, a semi-additive method, or a subtractive method. Therefore, the circuit board 100 can be easily formed.
  • the coil portion 31a and the coil portion 32a are spaced apart by, for example, 10 ⁇ m or more. That is, the shortest distance between the coil portion 31a and the coil portion 32a is, for example, 10 ⁇ m. In this case, the dielectric strength between the coil portion 31a and the coil portion 32a can be sufficiently maintained.
  • the cover insulating layer 40 (cover insulating layer 40A) is formed on the upper surface of the region of the circuit board assembly sheet 1 that will be removed by etching. (See Figure 7). According to this configuration, even if a part of the circuit board assembly sheet 1 is removed by etching, the cover insulating layer 40A remains, so that in the step of forming the base insulating layer 20B, the base insulating layer 20B is removed from the circuit board. It is not formed by wrapping around the upper surface of the aggregate sheet 1 (see FIG. 9). This prevents the yield from decreasing.
  • the cover insulating layer 40 is also formed on the conductor layer 30, the conductor layer 30 is prevented from corroding even when the circuit board 100 is used for a long period of time. Thereby, the life of the circuit board 100 can be extended.
  • FIG. 18 is an enlarged plan view showing a part of the circuit board 100.
  • the left side of FIG. 18 shows the circuit board 100 manufactured by the third manufacturing method of the circuit board 100.
  • the width of the wiring portion of the coil parts 31a and 32a exposed from the opening 20Z is equal to the width of the opening. It is slightly larger than the diameter of the portion 20Z. Therefore, in order to prevent interference between the conductor layers 30A, it is necessary to increase the width between the wires in the coil portions 31a and 32a.
  • the right side of FIG. 18 shows the circuit board 100 manufactured by the first or second manufacturing method of the circuit board 100.
  • conductor layer 30A and conductor layer 30B are electrically connected without via holes.
  • the width of the wiring portion in the coil portions 31a and 32a can be reduced overall. Therefore, there is no need to increase the width between the wires in the coil parts 31a, 32a, and the coil parts 31a, 32a can be wound tightly. Thereby, the circuit board 100 can be made smaller.
  • FIG. 19 is a diagram showing the configuration of a circuit board 100 according to the second embodiment of the present invention.
  • FIG. 19 A perspective view of the circuit board 100 is shown on the left side of FIG. 19, and an enlarged cross section of the circuit board 100 is shown on the right side.
  • FIG. 19 illustrations of the terminals 31d, 31e, 32d, and 32e in FIG. 2, and the base insulating layer 20 and cover insulating layer 40 in FIG. 3 are omitted. Note that the positions of the terminals 31d, 31e, 32d, and 32e are not limited to the example in FIG. 2.
  • a hatching pattern is added to the output conductor layer 32 in order to easily identify the input conductor layer 31 and the output conductor layer 32. The same applies to FIG. 20, which will be described later.
  • the coil portion 31a and the coil portion 32a are wound around the core 10 such that the wiring of the coil portion 31a and the wiring of the coil portion 32a are arranged alternately in the longitudinal direction. be done.
  • the method for manufacturing circuit board 100 according to this embodiment is similar to the method for manufacturing circuit board 100 according to the first embodiment. Therefore, the circuit board 100 according to the present embodiment may be manufactured using any of the first to third manufacturing methods.
  • the coil portion 31a and the coil portion 32a are closer to each other than in the circuit board 100 according to the first embodiment. Therefore, magnetic coupling between the coil portion 31a and the coil portion 32a increases, thereby reducing leakage magnetic flux. This allows electrical signals or power to be transmitted with higher efficiency.
  • FIG. 20 is a diagram showing the configuration of a circuit board 100 according to the third embodiment of the present invention. As shown in FIG. 20, in this embodiment, coil portion 31a and coil portion 32a are wound around core 10 so as to be concentrically stacked.
  • 21 to 24 are process cross-sectional views for explaining an example of a method for manufacturing the circuit board 100 of FIG. 20.
  • the circuit board shown in FIG. 21 is manufactured by executing the manufacturing method shown in FIGS. 5 to 10.
  • the circuit board in FIG. 21 has the same configuration as the circuit board 100 in FIG. 10 except that only the input conductor layer 31 is formed as the conductor layer 30 and the output conductor layer 32 is not formed. In FIG. 21, only the coil portion 31a of the input conductor layer 31 appears.
  • a plurality of openings 40Z penetrating the cover insulating layer 40 are formed. Approximately half of the openings 40Z among the plurality of openings 40Z are arranged on one side of the coil portion 31a so as to be lined up in the longitudinal direction. Approximately half of the remaining openings 40Z among the plurality of openings 40Z are arranged on the other side of the coil portion 31a so as to be lined up in the longitudinal direction.
  • a conductor layer 30C is formed on a predetermined region of the upper surface of the cover insulating layer 40 and in each opening 40Z.
  • the procedure for forming the conductor layer 30C is the same as the procedure for forming the conductor layers 30A and 30B.
  • the conductor layer 30C mainly constitutes a part of the coil portion 32a in FIG. 20, the wirings 32b and 32c, and the terminals 32d and 32e in FIG.
  • a conductor layer 30D is formed in a predetermined region on the lower surface of the cover insulating layer 40.
  • the procedure for forming conductor layer 30D is the same as the procedure for forming conductor layers 30A to 30C.
  • the conductor layer 30D mainly constitutes another part of the coil portion 32a in FIG. 20.
  • the output conductor layer 32 is formed by connecting the conductor layer 30C and the conductor layer 30D through the opening 40Z. In FIG. 24, only the coil portion 32a of the output conductor layer 32 is visible.
  • the coil portion 32a is wound around the coil portion 31a via the cover insulating layer 40.
  • a cover insulating layer may be further formed on the upper and lower surfaces of the cover insulating layer 40 so as to cover the output conductor layer 32 .
  • the coil part 31a and the coil part 32a are closer to each other than in the circuit board 100 according to the second embodiment. Therefore, the magnetic coupling between the coil portion 31a and the coil portion 32a further increases, thereby further reducing the leakage magnetic flux. This allows electrical signals or power to be transmitted with even higher efficiency.
  • the wirings 31b, 31c, 32b, 32c and the terminals 31d, 31e, 32d, 32e are constituted by the conductor layer 30A, but the embodiments are not limited thereto.
  • the wirings 31b, 31c, 32b, 32c and the terminals 31d, 31e, 32d, 32e may be formed of the conductor layer 30B.
  • some of the wirings 31b, 31c, 32b, 32c and the terminals 31d, 31e, 32d, 32e may be formed by the conductor layer 30A, and the other portions may be formed by the conductor layer 30B.
  • each part of the conductor layer 30 has a quadrangular cross-sectional shape, but the embodiment is not limited to this.
  • the cross-sectional shape of each part of the conductor layer 30 may have a shape different from a square, for example, a circular shape.
  • the conductor layer 30 includes a coil portion 31a, wirings 31b, 31c, and terminals 31d, 31e, and a coil portion 32a, wirings 32b, 32c, and terminals 32d, 32e.
  • the conductor layer 30 does not need to include one of the coil portion 31a, the wires 31b, 31c, and the terminals 31d, 31e, and the coil portion 32a, the wires 32b, 32c, and the terminals 32d, 32e.
  • This circuit board manufacturing method includes preparing a core made of a magnetic material and having a thickness of 10 ⁇ m or more and 300 ⁇ m or less, forming an insulating layer around the core, and forming a conductive layer.
  • the conductor layer may include a coil wound around the core via the insulating layer, and first wiring and second wiring connected to the coil.
  • the core 10 is an example of the core
  • the base insulating layer 20 is an example of an insulating layer
  • the coil parts 31a and 32a are examples of first and second coils, respectively.
  • the wirings 31b and 31c are examples of first and second wirings, respectively
  • the wirings 32b and 32c are examples of third and fourth wirings, respectively
  • the circuit board 100 is an example of a circuit board
  • the digital isolator 200 is an example of a circuit board. is an example of a digital isolator.
  • the base insulating layer 20 and the cover insulating layer 40 are examples of the first and second insulating layers
  • the conductor layer 30 is an example of the conductor layer
  • the base insulating layers 20A and 20B are the first and second parts, respectively. This is an example.
  • the conductor layers 30A and 30B are examples of the third and fourth portions
  • the circuit board assembly sheet 1 is an example of a sheet
  • the seed layer 33 is an example of a seed layer
  • the thick portion 20X is an example of a thick portion. This is an example of a thin wall portion
  • the thin wall portion 20Y is an example of a thin wall portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

回路基板は、コア、ベース絶縁層、第1および第2のコイル部ならびに第1~第4の配線を備える。コアは、磁性体材料により形成され、10μm以上300μm以下の厚みを有する。ベース絶縁層は、コアの周囲に設けられる。第1のコイル部および第2のコイル部は、ベース絶縁層を介してコアに巻回される。第1の配線および第2の配線は、第1のコイル部と接続される。第3の配線および第4の配線は、第2のコイル部と接続される。

Description

回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法
 本発明は、回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法に関する。
 近年、小型かつ薄型の磁気部品が開発されている。例えば、特許文献1には、コイル導体が形成された薄型磁気部品が記載されている。この薄型磁気部品においては、磁性基板の一方の面のスリット状の溝に第1導体が設けられ、磁性基板の他方の面のスリット状の溝に第2導体が設けられる。第1導体と第2導体とが磁性基板の貫通孔内に設けられた接続導体により接続される。
特開2008-066671号公報
 本発明の発明者らは、小型のコイルを用いて、他の磁気部品を開発することを検討した。例えば、本発明の発明者らは、2つのコイルを用いて、デジタルアイソレータまたは変圧器を開発することを検討した。しかしながら、小型の構造においては、コイル間の十分な磁気的結合を維持することは容易ではない。また、磁気的結合を大きくするために、コイル間の距離を小さくすると、絶縁耐圧を維持することができない。そのため、デジタルアイソレータまたは変圧器を小型化することは困難である。
 本発明の目的は、磁気部品として使用可能でかつ小型化可能な回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法を提供することである。
 (1)本発明の一局面に従う回路基板は、磁性体材料により形成され、10μm以上300μm以下の厚みを有するコアと、コアの周囲に設けられた絶縁層と、絶縁層を介してコアに巻回された第1のコイルおよび第2のコイルと、第1のコイルと接続された第1の配線および第2の配線と、第2のコイルと接続された第3の配線および第4の配線とを備える。
 この回路基板においては、第1のコイルおよび第2のコイルが磁性体材料により形成された薄型でかつ共通のコアに巻回されるので、第1のコイルと第2のコイルとの間に大きい磁気的結合が発生する。そのため、回路基板をデジタルアイソレータまたは変圧器として使用する場合に、周囲に大きいノイズが発生することが防止される。
 また、第1のコイルと第2のコイルとの間の磁気的結合が大きいため、第1のコイルと第2のコイルとを離間して配置することが可能になる。これにより、第1のコイルと第2のコイルとの間の絶縁耐圧が維持される。これらの結果、回路基板を磁気部品として構成しつつ、回路基板を小型化することができる。
 (2)第1のコイル、第2のコイル、第1の配線、第2の配線、第3の配線および第4の配線の各々は、四角形状の断面を有してもよい。この場合、配線回路基板の形成技術を用いて、第1のコイル、第2のコイル、第1の配線、第2の配線、第3の配線および第4の配線の各々を容易に形成することができる。
 (3)第1のコイルと第2のコイルとは、10μm以上離間して配置されてもよい。この場合、第1のコイルと第2のコイルとの間の絶縁耐圧を十分に維持することができる。
 (4)コアは、強磁性体材料により形成されてもよい。この場合、第1のコイルと第2のコイルとの間の磁気的結合をより大きくすることができる。
 (5)コアは、ケイ素鋼、鉄またはパーマロイのいずれかを含んでもよい。この場合、第1のコイルと第2のコイルとの間の磁気的結合を容易に大きくすることができる。
 (6)第1のコイルと第2のコイルとは、磁気的に結合し、互いに電気的に絶縁されつつ電気信号または電力を伝送してもよい。この場合、回路基板をデジタルアイソレータまたは変圧器として使用することができる。
 (7)本発明の他の局面に従うデジタルアイソレータまたは変圧器は、本発明の一局面に従う回路基板を含む。このデジタルアイソレータまたは変圧器は、上記の回路基板を含むので、磁器部品として構成しつつ、小型化することができる。
 (8)本発明のさらに他の局面に従う回路基板の製造方法は、磁性体材料により形成された10μm以上300μm以下の厚みを有するコアを準備することと、コアの周囲に第1の絶縁層を形成することと、導体層を形成することとを含み、導体層は、第1の絶縁層を介してコアに巻回された第1のコイルおよび第2のコイルと、第1のコイルと接続された第1の配線および第2の配線と、第2のコイルと接続された第3の配線および第4の配線とを含む。この回路基板の製造方法によれば、磁気部品として使用可能でかつ小型化可能な回路基板を製造することができる。
 (9)第1の絶縁層を形成することは、コアの一面に、第1の絶縁層の第1の部分を形成することと、コアの他面に、第1の部分と接続される第1の絶縁層の第2の部分を形成することとを含み、導体層を形成することは、第1の絶縁層の第1の部分に、導体層の第3の部分を形成することと、第1の絶縁層の第2の部分に、第3の部分と電気的に接続される導体層の第4の部分を形成することとを含んでもよい。この場合、コアの周囲に第1の絶縁層を容易に形成することができる。また、第1の絶縁層を介してコアに巻回された第1のコイルおよび第2のコイルを容易に形成することができる。
 (10)コアを準備することは、磁性体材料により形成されたシートをエッチングすることによりコアを形成することを含んでもよい。この場合、磁性体材料により形成されたシートからコアを容易に形成することができる。
 (11)導体層の第3の部分を形成することは、導体層の第3の部分とシートとの間に、エッチング液に対して耐性を有するシード層を形成することを含んでもよい。この場合、シード層により導体層の第3の部分がエッチング液から保護されるので、エッチングによりシートからコアをより容易に形成することができる。
 (12)第1の絶縁層の第1の部分を形成することは、第1の厚みを有する厚肉部を形成することと、第1の厚みよりも小さい第2の厚みを有する薄肉部を形成することとを含み、導体層の第4の部分を形成することは、エッチングにより形成されたコアから露出する第1の絶縁層の薄肉部を除去することと、薄肉部が除去された第3の部分と電気的に接続される導体層の第4の部分を形成することとを含んでもよい。
 この場合、第1の絶縁層の薄肉部により導体層の第3の部分がエッチング液から保護されるので、エッチングによりシートからコアをより容易に形成することができる。
 (13)回路基板の製造方法は、コアの形成の前に、シートにおいて、エッチングにより除去されることとなる領域の一面に第2の絶縁層を形成することをさらに含んでもよい。この構成によれば、シートの一部がエッチングにより除去された場合でも、第2の絶縁層が残存するので、第1の絶縁層の第2の部分を形成する工程において、第2の部分がシートの一面に回り込んで形成されることがない。これにより、歩留まりが低下することが防止される。
 (14)第2の絶縁層を形成することは、導体層上にさらに第2の絶縁層を形成することを含んでもよい。この構成によれば、回路基板が長期間にわたって使用される場合でも、導体層が腐食することが防止される。これにより、回路基板の寿命を長期化することができる。
 (15)導体層の第4の部分を形成することは、ビアホールを介さずに導体層の第3の部分に電気的に接続される第4の部分を形成することを含んでもよい。この場合、回路基板を小型化することが容易になる。
 本発明によれば、磁気部品として使用可能な回路基板を小型化することができる。
図1は本発明の第1の実施の形態に係るデジタルアイソレータの平面図である。 図2は図1の回路基板の平面図である。 図3は図2の回路基板のA-A線断面図である。 図4は回路基板集合体シートを示す斜視図である。 図5は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図6は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図7は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図8は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図9は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図10は回路基板の第1の製造方法の一例を説明するための工程断面図である。 図11は回路基板の第2の製造方法の一例を説明するための工程断面図である。 図12は回路基板の第2の製造方法の一例を説明するための工程断面図である。 図13は回路基板の第2の製造方法の一例を説明するための工程断面図である。 図14は回路基板の第2の製造方法の一例を説明するための工程断面図である。 図15は回路基板の第3の製造方法の一例を説明するための工程断面図である。 図16は回路基板の第3の製造方法の一例を説明するための工程断面図である。 図17は回路基板の第3の製造方法の一例を説明するための工程断面図である。 図18は回路基板の一部を示す拡大平面図である。 本発明の第2の実施の形態に係る回路基板の構成を示す図である。 本発明の第3の実施の形態に係る回路基板の構成を示す図である。 図20の回路基板の製造方法の一例を説明するための工程断面図である。 図20の回路基板の製造方法の一例を説明するための工程断面図である。 図20の回路基板の製造方法の一例を説明するための工程断面図である。 図20の回路基板の製造方法の一例を説明するための工程断面図である。
 1.第1の実施の形態
 (1)デジタルアイソレータ
 以下、本発明の実施の形態に係る回路基板およびデジタルアイソレータについて図面を参照しながら説明する。なお、本発明の実施の形態に係る変圧器は、電気信号に代えて電力を伝送する点でデジタルアイソレータと異なるが、デジタルアイソレータとは同一の機械的構造を有する。そのため、以下、主としてデジタルアイソレータの機械的構造について説明し、変圧器の機械的構造についての説明は適宜省略する。
 図1は、本発明の第1の実施の形態に係るデジタルアイソレータの平面図である。図1に示すように、デジタルアイソレータ200は、回路基板100およびチップパッケージ110を含む。回路基板100の構成の詳細については後述する。デジタルアイソレータ200は、電気信号を符号化するエンコーダ、電気信号を復号化するデコーダ、または電気信号を増幅する増幅器をさらに含んでもよい。
 チップパッケージ110は、セラミックまたは樹脂により形成される。チップパッケージ110は、例えば直方体形状を有する。以下、平面視において、チップパッケージ110の一対の辺に沿う方向を幅方向と呼び、チップパッケージ110の他の一対の辺に沿う方向を配列方向と呼ぶ。チップパッケージ110の幅方向の長さは、後述する回路基板100の長手方向の長さよりもわずかに大きい。
 チップパッケージ110内には、回路基板100が収容される。図1の例では、配列方向に並ぶように2つの回路基板100がチップパッケージ110内に収容されるが、チップパッケージ110内に収容される回路基板100の数は限定されない。配列方向におけるチップパッケージ110の長さは、内部に収容される回路基板100の数に応じて決定される。チップパッケージ110内には、図示しないエンコーダ、デコーダまたはアンプ等がさらに収容されてもよい。
 チップパッケージ110の幅方向における一側面には、複数(本例では4個)の入力端子111~114が配列方向に並ぶように設けられる。チップパッケージ110の幅方向における他側面には、複数(本例では4個)の出力端子115~118が配列方向に並ぶように設けられる。
 入力端子111,112および出力端子115,116は、一方の回路基板100に接続される。入力端子111,112間に交流の電気信号が入力されると、一方の回路基板100により磁界が発生する。また、発生した磁界により誘導された交流の電気信号が出力端子115,116間に出力される。
 同様に、入力端子113,114および出力端子117,118は、他方の回路基板100に接続される。入力端子113,114間に交流の電気信号が入力されると、他方の回路基板100により磁界が発生する。また、発生した磁界により誘導された交流の電気信号が出力端子117,118間に出力される。
 (2)回路基板
 図2は、図1の回路基板100の平面図である。図3は、図2の回路基板100のA-A線断面図である。図2および図3に示すように、回路基板100は、コア10、ベース絶縁層20、導体層30およびカバー絶縁層40を含む。図2においては、主としてカバー絶縁層40の内部の構成が図示され、ベース絶縁層20の図示が省略されている。
 コア10は、磁性体材料により形成される。磁性体材料は、例えばSUS430、アモルファス、ケイ素鋼、鉄またはパーマロイのいずれかを含む。コア10は、ケイ素鋼、鉄またはパーマロイ等の強磁性体材料により形成されることが好ましい。コア10は、一方向に延びる平板形状を有する。コア10の厚みは、例えば10μm以上300μm以下である。以下、回路基板100において、コア10が延びる方向を長手方向と呼ぶ。
 ベース絶縁層20は、ポリイミド等の樹脂により形成される。ベース絶縁層20は、コア10の周囲を取り囲み、コア10と導体層30との間を電気的に絶縁する。ベース絶縁層20の厚みは、例えば5μm以上10μm以下である。導体層30は、互いに電気的に絶縁された入力導体層31と、出力導体層32とを含む。導体層30の厚みは、例えば5μm以上30μm以下である。
 入力導体層31は、コイル部31a、配線31b,31cおよび端子31d,31eを含む。コイル部31aは、ベース絶縁層20を介してコア10に巻回される。コイル部31aの一端部は、コア10から引き出され、配線31bの一端部に接続される。コイル部31aの他端部は、コア10から引き出され、配線31cの一端部に接続される。
 端子31d,31eは、回路基板100の長手方向における一端側に配置される。端子31dは、配線31bの他端部に接続される。また、端子31dは、図1の入力端子111または入力端子113と電気的に接続される。端子31eは、配線31cの他端部に接続される。また、端子31eは、図1の入力端子112または入力端子114と電気的に接続される。端子31d,31eの幅は、配線31b,31cの幅よりも大きい。
 出力導体層32は、コイル部32a、配線32b,32cおよび端子32d,32eを含む。コイル部32aは、コイル部31aと対向するように配置され、ベース絶縁層20を介してコア10に巻回される。コイル部31aとコイル部32aとは、例えば10μm以上離間して配置される。コイル部32aの一端部は、コア10から引き出され、配線32bの一端部に接続される。コイル部32aの他端部は、コア10から引き出され、配線32cの一端部に接続される。
 端子32d,32eは、回路基板100の長手方向における他端側に配置される。端子32dは、配線32bの他端部に接続される。また、端子32dは、図1の出力端子115または出力端子117と電気的に接続される。端子32eは、配線32cの他端部に接続される。また、端子32eは、図1の出力端子116または出力端子118と電気的に接続される。端子32d,32eの幅は、配線32b,32cの幅よりも大きい。
 カバー絶縁層40は、ポリイミド等の樹脂により形成され、導体層30を全体的に被覆する。カバー絶縁層40の厚みは、例えば8μm以上50μm以下である。カバー絶縁層40の長手方向の長さ、すなわち回路基板100の長手方向の長さは、例えば1630μmである。回路基板100は、長手方向が図1のチップパッケージ110の幅方向を向く状態で、チップパッケージ110内に収容される。
 上記の構成においては、入力導体層31の端子31d,31e間に交流の電気信号が入力されると、電気信号はコイル部31aを伝送し、コイル部31aにより磁界が発生する。コイル部31aにより発生した磁界は、コア10を通して出力導体層32のコイル部32aに伝達されることにより、交流の電気信号が誘導される。コイル部32aにより誘導された電気信号は、端子32d,32e間に出力される。
 (3)回路基板の第1の製造方法
 図4は、回路基板集合体シートを示す斜視図である。図4に示すように、本実施の形態においては、ロール・トゥ・ロール方式により複数の回路基板100が整列された状態で回路基板集合体シート1上に形成される。以下、回路基板集合体シート1上に形成される1つの回路基板100の断面を参照しつつ、回路基板100の製造方法について種々の例を説明する。
 図5~図10は、回路基板100の第1の製造方法の一例を説明するための工程断面図である。図5~図10は、図2の回路基板100のA-A線断面図に対応する。まず、図5に示すように、磁性体材料からなるシート10Aを準備し、シート10Aの上面の所定領域にベース絶縁層20Aを形成する。ベース絶縁層20Aは、シート10Aの上面に感光性樹脂前駆体を塗布し、紫外線を用いて感光性樹脂前駆体を部分的に露光することにより形成されてもよい。本例では、ベース絶縁層20Aの材料は、ポリイミドであるが、エポキシ等の他の樹脂であってもよい。
 次に、図6に示すように、ベース絶縁層20Aを覆うようにシート10Aの上面上に導体層30Aを形成する。導体層30Aは、主として、図2のコイル部31a,32aの一部、配線31b,31c,32b,32cおよび端子31d,31e,32d,32eを構成する。導体層30Aは、アディティブ法により形成してもよく、セミアディティブ法により形成してもよく、サブトラクティブ法等の他の方法により形成してもよい。これらの製法により形成された導体層30Aの各部の断面形状は、正方形、長方形または台形等の四角形を有する。
 ここで、導体層30Aの形成前に、導体層30Aとシート10Aとの境界領域に、シード層33を形成する。したがって、導体層30Aは、シート10Aとは直接接触せずに、ベース絶縁層20Aまたはシード層33を介して接触する。シード層33は、後述するエッチング液に対して耐性を有する材料、例えばクロム、クロム銅またはニッケルクロムを含む。
 続いて、図7に示すように、導体層30Aを覆うようにシート10Aの上面上にカバー絶縁層40Aを形成する。カバー絶縁層40Aの形成手順は、ベース絶縁層20Aの形成手順と同じである。その後、シート10Aの不要部分が露出するようにシート10Aの他面に図示しないマスクを形成し、エッチング液を用いてマスクから露出するシート10Aの部分にエッチングを行う。この場合、図8に示すように、シート10Aの不要部分が除去されることによりコア10が形成される。
 本例では、エッチング液として塩化第二鉄液を用いる。導体層30Aは、エッチング液に対して耐性を有するシード層33により保護されているので、エッチング工程において、導体層30Aは除去されずに残存する。すなわち、シード層33は、エッチング液から導体層30Aを保護するバリア層として機能する。シード層33は、エッチング工程の終了後に除去されてもよいし、残存してもよい。以降の工程では、シード層33の図示を省略する。
 次に、図9に示すように、コア10の下面を覆うようにカバー絶縁層40Aの下面にベース絶縁層20Bを形成する。導体層30Aの一部の下面は、ベース絶縁層20Bから露出する。ベース絶縁層20Bの形成手順は、ベース絶縁層20Aの形成手順と同じである。ベース絶縁層20Aとベース絶縁層20Bとが接続されることによりベース絶縁層20が形成される。
 続いて、コア10の下面のベース絶縁層20Bを覆うように導体層30Bを形成する。導体層30Bの形成手順は、導体層30Aの形成手順と同じである。導体層30Bは、主として、図2のコイル部31a,32aの他の一部を構成する。導体層30Aと導体層30Bとが接続されることにより導体層30が形成される。
 その後、図10に示すように、導体層30Bを覆うようにカバー絶縁層40Bを形成する。カバー絶縁層40Bの形成手順は、カバー絶縁層40Aの形成手順と同じである。カバー絶縁層40Aとカバー絶縁層40Bとが接続されることによりカバー絶縁層40が形成される。本例では、カバー絶縁層40Aとカバー絶縁層40Bとは、ベース絶縁層20Bを介して接続される。これにより、回路基板100が完成する。
 (4)回路基板の第2の製造方法
 回路基板100の第2の製造方法について、第1の製造方法と異なる点を説明する。図11~図14は、回路基板100の第2の製造方法の一例を説明するための工程断面図である。まず、図11に示すように、磁性体材料からなるシート10Aを準備し、シート10Aの上面の所定領域にベース絶縁層20Aを形成する。ベース絶縁層20Aは、厚肉部20Xと薄肉部20Yとを有する。薄肉部20Yの厚みは、厚肉部20Xの厚みよりも小さい。薄肉部20Yは、次の工程で形成される導体層30Aとシート10Aとの境界領域に位置する。
 次に、図12に示すように、ベース絶縁層20A上に導体層30Aを形成する。導体層30Aは、シート10Aとは直接接触せずに、ベース絶縁層20Aを介して接触する。続いて、図7と同様に、導体層30Aを覆うようにシート10Aの上面上にカバー絶縁層40Aを形成する。その後、図13に示すように、シート10Aにエッチングを行うことによりコア10を形成する。本例では、導体層30Aは、ベース絶縁層20Aの薄肉部20Yにより保護されているので、エッチング工程において、導体層30Aは除去されずに残存する。
 エッチング処理の後、図14に示すように、ベース絶縁層20Aの薄肉部20Yがエッチングにより除去される。その後、図9および図10と同様の工程が実行されることにより、ベース絶縁層20B、導体層30Bおよびカバー絶縁層40Bが順次形成される。これにより、回路基板100が完成する。
 (5)回路基板の第3の製造方法
 回路基板100の第3の製造方法について、第1の製造方法と異なる点を説明する。図15~図17は、回路基板100の第3の製造方法の一例を説明するための工程断面図である。まず、図15に示すように、磁性体材料からなるシート10Aを準備し、シート10Aの上面の所定領域にベース絶縁層20Aを形成する。本例におけるベース絶縁層20Aの形成領域は、第1の製造方法における図5のベース絶縁層20Aの形成領域よりも大きい。ベース絶縁層20Aには、開口部20Zが2か所形成される。各開口部20Zは、ビアホールとして用いられる。
 次に、図16に示すように、ベース絶縁層20Aの各開口部20Z内で露出するシート10Aの上面上にシード層33を形成する。また、ベース絶縁層20Aの所定領域上に導体層30Aを形成する。導体層30Aの一部は、開口部20Z内に形成される。したがって、導体層30Aは、シート10Aとは直接接触せずに、ベース絶縁層20Aまたはシード層33を介して接触する。
 続いて、図17に示すように、導体層30Aを覆うようにベース絶縁層20A上にカバー絶縁層40Aを形成する。その後、図8~図10と同様の工程が実行されることにより、シート10Aがエッチングされ、ベース絶縁層20B、導体層30Bおよびカバー絶縁層40Bが順次形成される。これにより、カバー絶縁層40Aの一部がベース絶縁層20Aにより形成される点を除いて、図10の回路基板100と同様の回路基板100が完成する。
 (6)効果
 本実施の形態に係る回路基板100においては、コイル部31aとコイル部32aとが磁気的に結合し、互いに電気的に絶縁されつつ電気信号または電力が伝送される。ここで、コイル部31a,32aが磁性体材料により形成された薄型でかつ共通のコア10に巻回されるので、コイル部31a,32a間に大きい磁気的結合が発生する。そのため、回路基板100をデジタルアイソレータまたは変圧器として使用する場合に、周囲に大きいノイズが発生することが防止される。コア10がケイ素鋼、鉄またはパーマロイ等の強磁性体材料により形成される場合には、コイル部31a,32a間の磁気的結合をより大きくすることができる。
 また、コイル部31a,32a間の磁気的結合が大きいため、コイル部31aとコイル部32aとを離間して配置することが可能になる。これにより、コイル部31a,32a間の絶縁耐圧が維持される。さらに、コイル部31aとコイル部32aとは互いの端面部のみが対向するので、コイル部31aとコイル部32aとの対向面積が小さい。したがって、コイル部31aとコイル部32aとの間に発生する寄生容量が小さい。この場合、高周波の電気信号または電力を低遅延で伝送することが可能である。これらの結果、回路基板100を磁気部品として構成しつつ、回路基板100を小型化することができる。
 導体層30は、アディティブ法、セミアディティブ法またはサブトラクティブ法等の配線回路基板の形成技術を用いて形成することができる。そのため、回路基板100を容易に形成することができる。
 コイル部31aとコイル部32aとは、例えば10μm以上離間して配置される。すなわち、コイル部31aとコイル部32aとの最短距離は、例えば10μmである。この場合、コイル部31aとコイル部32aとの間の絶縁耐圧を十分に維持することができる。
 回路基板100の製造方法においては、コア10の形成の前に、エッチングにより除去されることとなる回路基板集合体シート1の領域の上面にカバー絶縁層40(カバー絶縁層40A)が形成される(図7参照)。この構成によれば、回路基板集合体シート1の一部がエッチングにより除去された場合でも、カバー絶縁層40Aが残存するので、ベース絶縁層20Bを形成する工程において、ベース絶縁層20Bが回路基板集合体シート1の上面に回り込んで形成されることがない(図9参照)。これにより、歩留まりが低下することが防止される。
 また、カバー絶縁層40は、導体層30上にも形成されるので、回路基板100が長期間にわたって使用される場合でも、導体層30が腐食することが防止される。これにより、回路基板100の寿命を長期化することができる。
 図18は、回路基板100の一部を示す拡大平面図である。図18の左には、回路基板100の第3の製造方法により製造された回路基板100が示される。この構成においては、ビアホールとなる開口部20Zを介して導体層30Aと導体層30Bとが電気的に接続されるので、開口部20Zから露出するコイル部31a,32aにおける配線の部分の幅が開口部20Zの径よりもわずかに大きくなる。したがって、導体層30Aの干渉を防止するために、コイル部31a,32aにおける配線間の幅を大きくする必要がある。
 一方で、図18の右には、回路基板100の第1または第2の製造方法により製造された回路基板100が示される。この構成においては、ビアホールを介さずに導体層30Aと導体層30Bとが電気的に接続される。この場合、コイル部31a,32aにおける配線の部分の幅を全体的に小さくすることができる。したがって、コイル部31a,32aにおける配線間の幅を大きくする必要がなく、コイル部31a,32aを密に巻回することができる。これにより、回路基板100をより小さくすることができる。
 2.第2の実施の形態
 第1の実施の形態においては、コイル部31aとコイル部32aとが長手方向に離間して配置されるが、実施の形態はこれに限定されない。以下、第2の実施の形態に係る回路基板100について、第1の実施の形態に係る回路基板100と異なる点を説明する。図19は、本発明の第2の実施の形態に係る回路基板100の構成を示す図である。
 図19の左には回路基板100の斜視図が示され、右には回路基板100の拡大断面が示される。図19においては、図2の端子31d,31e,32d,32e、図3のベース絶縁層20およびカバー絶縁層40の図示が省略される。なお、端子31d,31e,32d,32eの位置は、図2の例に限定されない。また、図19においては、入力導体層31と出力導体層32との識別を容易にするために、出力導体層32にハッチングパターンが付されている。後述する図20においても同様である。
 図19に示すように、本実施の形態においては、コイル部31aの配線と、コイル部32aの配線とが長手方向に交互に並ぶように、コイル部31aおよびコイル部32aがコア10に巻回される。本実施の形態に係る回路基板100の製造方法は、第1の実施の形態に係る回路基板100の製造方法と同様である。したがって、第1~第3のいずれの製造方法を用いて本実施の形態に係る回路基板100を製造してもよい。
 本実施の形態に係る回路基板100においては、コイル部31aとコイル部32aとが第1の実施の形態に係る回路基板100よりも近接する。そのため、コイル部31aとコイル部32aとの間の磁気的結合が増加することにより、漏れ磁束が減少する。これにより、電気信号または電力をより高い効率で伝送することができる。
 3.第3の実施の形態
 第3の実施の形態に係る回路基板100について、第1および第2の実施の形態に係る回路基板100と異なる点を説明する。図20は、本発明の第3の実施の形態に係る回路基板100の構成を示す図である。図20に示すように、本実施の形態においては、コイル部31aおよびコイル部32aは、同心状に積層するようにコア10に巻回される。
 図21~図24は、図20の回路基板100の製造方法の一例を説明するための工程断面図である。本例では、図5~図10の製造方法を実行することにより、図21の回路基板が製造される。図21の回路基板は、導体層30として入力導体層31のみが形成され、出力導体層32が形成されていない点を除いて、図10の回路基板100と同様の構成を有する。図21には、入力導体層31のコイル部31aのみが現れている。
 次に、図22に示すように、カバー絶縁層40を貫通する複数の開口部40Zを形成する。複数の開口部40Zのうち略半数の開口部40Zは、長手方向に並ぶようにコイル部31aの一側方に配置される。複数の開口部40Zのうち残りの略半数の開口部40Zは、長手方向に並ぶようにコイル部31aの他側方に配置される。
 続いて、図23に示すように、カバー絶縁層40の上面の所定領域上および各開口部40Z内に導体層30Cを形成する。導体層30Cの形成手順は、導体層30A,30Bの形成手順と同じである。導体層30Cは、主として、図20のコイル部32aの一部、配線32b,32cおよび図2の端子32d,32eを構成する。
 その後、図24に示すように、カバー絶縁層40の下面上の所定領域に導体層30Dを形成する。導体層30Dの形成手順は、導体層30A~30Cの形成手順と同じである。導体層30Dは、主として、図20のコイル部32aの他の一部を構成する。開口部40Zを通して導体層30Cと導体層30Dとが接続されることにより出力導体層32が形成される。図24には、出力導体層32のコイル部32aのみが現れている。
 この製造方法によれば、コイル部32aがカバー絶縁層40を介してコイル部31aに巻回される。これにより、コイル部31aおよびコイル部32aが積層するようにコア10に巻回された回路基板100が完成する。出力導体層32を覆うように、カバー絶縁層40の上面および下面にカバー絶縁層がさらに形成されてもよい。
 本実施の形態に係る回路基板100においては、コイル部31aとコイル部32aとが第2の実施の形態に係る回路基板100よりも近接する。そのため、コイル部31aとコイル部32aとの間の磁気的結合がさらに増加することにより、漏れ磁束がさらに減少する。これにより、電気信号または電力をさらに高い効率で伝送することができる。
 4.他の実施の形態
 上記実施の形態において、配線31b,31c,32b,32cおよび端子31d,31e,32d,32eは導体層30Aにより構成されるが、実施の形態はこれに限定されない。配線31b,31c,32b,32cおよび端子31d,31e,32d,32eは、導体層30Bにより構成されてもよい。あるいは、配線31b,31c,32b,32cおよび端子31d,31e,32d,32eのうち、一部は導体層30Aにより形成され、他の部分は導体層30Bにより形成されてもよい。
 また、上記実施の形態において、導体層30の各部の断面形状は四角形を有するが、実施の形態はこれに限定されない。アディティブ法等とは異なる製法により回路基板100が製造される場合には、導体層30の各部の断面形状は四角形とは異なる形状、例えば円形状等を有してもよい。
 5.参考例
 本実施の形態において、導体層30は、コイル部31a、配線31b,31cおよび端子31d,31eと、コイル部32a、配線32b,32cおよび端子32d,32eとを含む。しかしながら、導体層30は、コイル部31a、配線31b,31cおよび端子31d,31eと、コイル部32a、配線32b,32cおよび端子32d,32eとの一方を含まなくてもよい。
 この回路基板の製造方法において、磁性体材料により形成された10μm以上300μm以下の厚みを有するコアを準備することと、前記コアの周囲に絶縁層を形成することと、導体層を形成することとを含み、前記導体層は、前記絶縁層を介して前記コアに巻回されたコイルと、前記コイルと接続された第1の配線および第2の配線とを含んでもよい。
 6.対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 上記実施の形態においては、コア10がコアの例であり、ベース絶縁層20が絶縁層の例であり、コイル部31a,32aがそれぞれ第1および第2のコイルの例である。配線31b,31cがそれぞれ第1および第2の配線の例であり、配線32b,32cがそれぞれ第3および第4の配線の例であり、回路基板100が回路基板の例であり、デジタルアイソレータ200がデジタルアイソレータの例である。
 ベース絶縁層20およびカバー絶縁層40がそれぞれ第1および第2の絶縁層の例であり、導体層30が導体層の例であり、ベース絶縁層20A,20Bがそれぞれ第1および第2の部分の例である。導体層30Aが,30Bがそれぞれ第3および第4の部分の例であり、回路基板集合体シート1がシートの例であり、シード層33がシード層の例であり、厚肉部20Xが厚肉部の例であり、薄肉部20Yが薄肉部の例である。

Claims (15)

  1. 磁性体材料により形成され、10μm以上300μm以下の厚みを有するコアと、
     前記コアの周囲に設けられた絶縁層と、
     前記絶縁層を介して前記コアに巻回された第1のコイルおよび第2のコイルと、
     前記第1のコイルと接続された第1の配線および第2の配線と、
     前記第2のコイルと接続された第3の配線および第4の配線とを備える、回路基板。
  2. 前記第1のコイル、前記第2のコイル、前記第1の配線、前記第2の配線、前記第3の配線および前記第4の配線の各々は、四角形状の断面を有する、請求項1記載の回路基板。
  3. 前記第1のコイルと前記第2のコイルとは、10μm以上離間して配置される、請求項1または2記載の回路基板。
  4. 前記コアは、強磁性体材料により形成される、請求項1または2記載の回路基板。
  5. 前記コアは、ケイ素鋼、鉄またはパーマロイのいずれかを含む、請求項1または2記載の回路基板。
  6. 前記第1のコイルと前記第2のコイルとは、磁気的に結合し、互いに電気的に絶縁されつつ電気信号または電力を伝送する、請求項1または2記載の回路基板。
  7. 請求項1または2記載の回路基板を含む、デジタルアイソレータまたは変圧器。
  8. 磁性体材料により形成された10μm以上300μm以下の厚みを有するコアを準備することと、
     前記コアの周囲に第1の絶縁層を形成することと、
     導体層を形成することとを含み、
     前記導体層は、前記第1の絶縁層を介して前記コアに巻回された第1のコイルおよび第2のコイルと、前記第1のコイルと接続された第1の配線および第2の配線と、前記第2のコイルと接続された第3の配線および第4の配線とを含む、回路基板の製造方法。
  9. 前記第1の絶縁層を形成することは、
     前記コアの一面に、前記第1の絶縁層の第1の部分を形成することと、
     前記コアの他面に、前記第1の部分と接続される前記第1の絶縁層の第2の部分を形成することとを含み、
     前記導体層を形成することは、
     前記第1の絶縁層の前記第1の部分に、前記導体層の第3の部分を形成することと、
     前記第1の絶縁層の前記第2の部分に、前記第3の部分と電気的に接続される前記導体層の第4の部分を形成することとを含む、請求項8記載の回路基板の製造方法。
  10. 前記コアを準備することは、磁性体材料により形成されたシートをエッチングすることにより前記コアを形成することを含む、請求項9記載の回路基板の製造方法。
  11. 前記導体層の第3の部分を形成することは、前記導体層の前記第3の部分と前記シートとの間に、エッチング液に対して耐性を有するシード層を形成することを含む、請求項10記載の回路基板の製造方法。
  12. 前記第1の絶縁層の第1の部分を形成することは、
     第1の厚みを有する厚肉部を形成することと、
     前記第1の厚みよりも小さい第2の厚みを有する薄肉部を形成することとを含み、
     前記導体層の第4の部分を形成することは、
     エッチングにより形成された前記コアから露出する前記第1の絶縁層の前記薄肉部を除去することと、
     前記薄肉部が除去された前記第3の部分と電気的に接続される前記導体層の第4の部分を形成することとを含む、請求項10記載の回路基板の製造方法。
  13. 前記コアの形成の前に、前記シートにおいて、エッチングにより除去されることとなる領域の一面に第2の絶縁層を形成することをさらに含む、請求項10または11記載の回路基板の製造方法。
  14. 前記第2の絶縁層を形成することは、前記導体層上にさらに前記第2の絶縁層を形成することを含む、請求項13記載の回路基板の製造方法。
  15. 前記導体層の第4の部分を形成することは、ビアホールを介さずに前記導体層の前記第3の部分に電気的に接続される前記第4の部分を形成することを含む、請求項9または10記載の回路基板の製造方法。
PCT/JP2023/014499 2022-04-28 2023-04-10 回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法 WO2023210317A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075049 2022-04-28
JP2022-075049 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210317A1 true WO2023210317A1 (ja) 2023-11-02

Family

ID=88518377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014499 WO2023210317A1 (ja) 2022-04-28 2023-04-10 回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023210317A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154795A (ja) * 1996-11-19 1998-06-09 Advanced Materials Eng Res Inc 半導体チップにおけるインダクター及びその製造方法
JP2005223129A (ja) * 2004-02-05 2005-08-18 Rohm Co Ltd コイル装置
JP2013527620A (ja) * 2010-05-26 2013-06-27 タイコ・エレクトロニクス・コーポレイション 平面インダクタデバイス
JP2017028064A (ja) * 2015-07-21 2017-02-02 太陽誘電株式会社 モジュール基板
JP2018046181A (ja) * 2016-09-15 2018-03-22 大日本印刷株式会社 インダクタおよびインダクタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154795A (ja) * 1996-11-19 1998-06-09 Advanced Materials Eng Res Inc 半導体チップにおけるインダクター及びその製造方法
JP2005223129A (ja) * 2004-02-05 2005-08-18 Rohm Co Ltd コイル装置
JP2013527620A (ja) * 2010-05-26 2013-06-27 タイコ・エレクトロニクス・コーポレイション 平面インダクタデバイス
JP2017028064A (ja) * 2015-07-21 2017-02-02 太陽誘電株式会社 モジュール基板
JP2018046181A (ja) * 2016-09-15 2018-03-22 大日本印刷株式会社 インダクタおよびインダクタの製造方法

Similar Documents

Publication Publication Date Title
US6867678B2 (en) Transformer structure
US7508292B2 (en) Coil component
JP5658429B2 (ja) 回路装置
KR20180057526A (ko) 트랜스 장치
JPS63173308A (ja) 変圧器
JP2005317724A (ja) コイル部品
KR20130072816A (ko) 인덕터의 제조 방법
JP2012038941A (ja) トランス
JP2008109139A (ja) いくつかのコイルブランチを有するコイル、及び当該コイルの一つを有するマイクロインダクタ
JP2004103624A (ja) トランス及びその製造方法
WO2023210317A1 (ja) 回路基板、デジタルアイソレータまたは変圧器および回路基板の製造方法
WO2019210541A1 (zh) 变压器及其制作方法和电磁器件
CN110415944B (zh) 变压器及其制作方法和电磁器件
WO2023210247A1 (ja) 配線回路基板および配線回路基板の製造方法
JP2017199718A (ja) 電子部品およびその製造方法
CN110415940B (zh) 集成变压器及电子装置
CN110415946B (zh) 电磁元件及其制造方法
JP2002359115A (ja) チップ型コモンモードチョークコイル
JP2008053754A (ja) コイル部品
WO2011118072A1 (ja) 回路基板
TWI530968B (zh) Magnetic coil structure
WO2023149348A1 (ja) コイル、インダクタ部品およびインダクタアレイ
WO2023149350A1 (ja) インダクタ部品およびインダクタアレイ
JP2010118367A (ja) 分配器
WO2024106370A1 (ja) Rfidモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024517955

Country of ref document: JP

Kind code of ref document: A