WO2023209897A1 - ウエハ加工装置、半導体チップの製造方法および半導体チップ - Google Patents

ウエハ加工装置、半導体チップの製造方法および半導体チップ Download PDF

Info

Publication number
WO2023209897A1
WO2023209897A1 PCT/JP2022/019169 JP2022019169W WO2023209897A1 WO 2023209897 A1 WO2023209897 A1 WO 2023209897A1 JP 2022019169 W JP2022019169 W JP 2022019169W WO 2023209897 A1 WO2023209897 A1 WO 2023209897A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
module
modules
section
dicing
Prior art date
Application number
PCT/JP2022/019169
Other languages
English (en)
French (fr)
Inventor
芳邦 鈴木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/019169 priority Critical patent/WO2023209897A1/ja
Priority to PCT/JP2023/003610 priority patent/WO2023210088A1/ja
Priority to TW112114670A priority patent/TW202401536A/zh
Publication of WO2023209897A1 publication Critical patent/WO2023209897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a wafer processing apparatus, a semiconductor chip manufacturing method, and a semiconductor chip, and particularly relates to a wafer processing apparatus, a semiconductor chip manufacturing method, and a semiconductor chip that process a wafer on which a plurality of semiconductor chips are formed.
  • wafer processing apparatuses that process wafers on which a plurality of semiconductor chips are formed.
  • Such a wafer processing apparatus is disclosed in, for example, Japanese Patent No. 6904368.
  • the above-mentioned Japanese Patent No. 6904368 discloses a semiconductor substrate processing apparatus (wafer processing apparatus) that processes a semiconductor substrate (wafer) on which a plurality of integrated circuit chips are formed.
  • This semiconductor substrate processing equipment includes a coating module for applying DAF (Die Attach Film) to a semiconductor substrate, a dicing tape application module for applying a dicing tape to the semiconductor substrate, and a dicing module for dicing the semiconductor substrate. Equipped with various modules.
  • DAF Die Attach Film
  • dicing tape application module for applying a dicing tape to the semiconductor substrate
  • a dicing module for dicing the semiconductor substrate. Equipped with various modules.
  • semiconductor substrates are sequentially processed by various modules.
  • each process (each modules) have different cycle times.
  • a user desires to change the length of unmanned operation time, such as wanting to increase the length of unmanned operation time at night when there are few workers.
  • the optimal equipment configuration differs depending on the product and the user's requests, there is a problem in that it is difficult to construct the optimal equipment configuration.
  • This invention has been made to solve the above-mentioned problems, and one object of the invention is to provide a wafer processing apparatus, a semiconductor chip manufacturing method, and a semiconductor chip manufacturing method that can construct an optimal equipment configuration. By offering a tip.
  • a wafer processing apparatus includes a module selected from a plurality of modules that perform mutually different types of processing on a wafer on which a plurality of semiconductor chips are formed. , the number of each of the plurality of modules can be changed.
  • the number of each of the plurality of modules can be changed as described above. This makes it possible to change the number of each of multiple modules, so for example, if the cycle time of each process differs for each product that is a processed product of wafers, the cycle time of each process for each product can be changed.
  • the equipment configuration can be changed depending on the size. Additionally, if there is a user's request to change the length of unmanned operation time, such as increasing the length of unmanned operation time at night when there are fewer workers, it is possible to change the equipment configuration according to the user's request. I can do it. As a result, even if the optimal equipment configuration differs depending on the product or the user's request, the optimal equipment configuration can be constructed.
  • the plurality of modules include a dicing module that dices the wafer, an expand module that expands the sheet member to which the wafer is attached, and a wafer supply module that supplies the wafer. , an ablation laser module that laser-ablates the wafer, a cleaning module that cleans the wafer, and a grinding module that grinds the wafer.
  • the number of at least one of the dicing module, the expand module, the wafer supply module, the ablation laser module, the cleaning module, and the grinding module can be adjusted according to the product and user's requests. and can be changed.
  • two or more modules of the same type can be arranged.
  • the processing amount of two or more modules can be increased, so the cycle time for processing the two or more modules is large. In some cases, cycle time imbalances can be easily adjusted.
  • modules of the same type can be placed on one side and on the other side with modules of other types in between.
  • the degree of freedom in arranging the modules can be improved compared to the case where modules of the same type can only be arranged adjacent to each other.
  • the modules are connected along a predetermined direction.
  • the modules are connected along the predetermined direction, it is possible to suppress the device from increasing in size in directions other than the predetermined direction.
  • a common wafer transport unit is further provided that transports the wafer in a predetermined direction between the plurality of modules selected from among the plurality of modules.
  • the wafer transfer section changes the length in the predetermined direction according to the number of the plurality of modules selected from the plurality of modules and connected along the predetermined direction. It is possible. With this configuration, the length of the wafer transfer section can be changed appropriately according to an increase or decrease in the number of modules, so it is easy to realize a configuration in which a common wafer transfer section is provided among multiple modules. be able to.
  • the module includes a dicing module that dices the wafer, and an expand module that expands the sheet member to which the wafer is attached, and expands the first wafer to be diced.
  • a second wafer is independently supplied to a dicing module and an expand module, respectively, and the dicing of the first wafer by the dicing module and the expansion of the sheet member of the second wafer by the expand module are performed independently and in parallel. is configured to do so. With this configuration, even if the dicing cycle time and the expanding cycle time are completely different, dicing and expanding can be smoothly performed without causing any stop time.
  • the module includes a dicing module for dicing the wafer, the dicing module has an imaging section for capturing an image of the wafer, and the dicing module includes a dicing module for dicing the wafer.
  • the wafer is imaged by the imaging unit, and the laser processing is performed based on the imaging result of the wafer by the imaging unit. It is configured to obtain the amount of street positional deviation due to processing, and change the laser processing position from one side of the wafer to the other side or from the other side to one side of the wafer based on the amount of street positional deviation.
  • a method for manufacturing a semiconductor chip according to a second aspect of the present invention includes the steps of installing a module selected from a plurality of modules that perform different types of processing on a wafer on which a plurality of semiconductor chips are formed; and a step of processing a wafer using the modules, and the number of each of the plurality of modules can be changed.
  • the number of each of the plurality of modules can be changed as described above.
  • the cycle time balance of each process is different for each product, which is a processed product of a wafer
  • the equipment configuration can be changed in accordance with the user's request.
  • a semiconductor chip according to a third aspect of the invention includes a module selected from a plurality of modules that perform mutually different types of processing on a wafer on which a plurality of semiconductor chips are formed, and the number of each of the plurality of modules is Manufactured by wafer processing equipment that can be modified.
  • the number of each of the plurality of modules can be changed as described above.
  • the cycle time balance of each process is different for each product, which is a processed product of a wafer
  • the equipment configuration can be changed in accordance with the user's request.
  • an optimal equipment configuration can be constructed as described above.
  • FIG. 1 is a block diagram showing a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 2 is a plan view showing a wafer ring structure processed in a semiconductor wafer processing apparatus according to an embodiment.
  • 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. FIG. 1 is a plan view of a first configuration example of a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 2 is a side view of the dicing module according to one embodiment, viewed from the Y2 direction side.
  • FIG. 2 is a side view of the expand module and wafer supply module according to one embodiment, viewed from the Y2 direction side.
  • FIG. 2 is a side view of the expand module and wafer supply module according to one embodiment, viewed from the X1 direction side.
  • FIG. 1 is a block diagram showing a control configuration of a semiconductor wafer processing apparatus of a first configuration example according to an embodiment
  • FIG. 3 is a flowchart of the first half of the semiconductor chip manufacturing process of the semiconductor wafer processing apparatus of the first configuration example according to one embodiment
  • 2 is a flowchart of the latter half of the semiconductor chip manufacturing process of the semiconductor wafer processing apparatus of the first configuration example according to one embodiment.
  • FIG. 2 is a plan view of a second configuration example of a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 3 is a plan view of a third configuration example of a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 7 is a plan view of a fourth configuration example of a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 7 is a plan view of a fifth configuration example of a semiconductor wafer processing apparatus according to an embodiment.
  • FIG. 6 is a diagram for explaining a change in the length of a wafer transport section according to an embodiment.
  • FIG. 3 is a diagram for explaining laser processing of a dicing module according to an embodiment.
  • FIG. 6 is a diagram for explaining laser processing and panning of a street of a dicing module according to an embodiment.
  • FIG. 3 is a diagram for explaining a panning image of a dicing module according to an embodiment.
  • FIG. 3 is a diagram for explaining a brightness profile based on a panning image of a dicing module according to an embodiment.
  • FIG. 7 is a plan view of an expandable module according to a modified example of one embodiment.
  • FIG. 7 is a side view of an expandable module according to a modified example of the embodiment, viewed from the Y2 direction side.
  • FIG. 7 is a side view of an expandable module according to a modified example of the embodiment when viewed from the X1 direction side.
  • FIGS. 1 to 19 The configuration of a semiconductor wafer processing apparatus 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 19. Note that the semiconductor wafer processing apparatus 100 is an example of a "wafer processing apparatus" in the claims.
  • a semiconductor wafer processing apparatus 100 is an apparatus that processes a wafer W1 provided in a wafer ring structure W (see FIG. 2).
  • the semiconductor wafer processing apparatus 100 has a plurality of modules 100a selected from among a plurality of modules 100a that perform mutually different types of processing on the wafer W1 on which a plurality of semiconductor chips Ch (see FIG. 7) are formed.
  • a module 100a is provided.
  • the semiconductor wafer processing apparatus 100 can change the number of each of the plurality of modules 100a.
  • the method for manufacturing semiconductor chips Ch using this semiconductor wafer processing apparatus 100 uses a module 100a selected from a plurality of modules 100a that perform different types of processing on a wafer W1 on which a plurality of semiconductor chips Ch are formed.
  • the method includes a step of installing the module 100a and a step of processing the wafer W1 using the installed module 100a, and the number of each of the plurality of modules 100a can be changed.
  • the semiconductor chips Ch manufactured by this semiconductor wafer processing apparatus 100 are manufactured using a module 100a selected from a plurality of modules 100a that perform different types of processing on the wafer W1 on which a plurality of semiconductor chips Ch are formed. It is manufactured by a semiconductor wafer processing apparatus 100 that includes a plurality of modules 100a and can change the number of each of the plurality of modules 100a.
  • the plurality of modules 100a include a dicing module 1 that dices the wafer W1, an expand module 2 that expands the sheet member W2 to which the wafer W1 is attached, and a wafer supply module 3 that supplies the wafer W1. Contains.
  • the wafer ring structure W includes a wafer W1, a sheet member W2, and a ring-shaped member W3.
  • the wafer W1 is a circular thin plate made of crystalline semiconductor material that is a material for semiconductor integrated circuits.
  • a modified layer is formed inside the wafer W1 by processing the semiconductor wafer in the processing apparatus 100 along the dividing line. That is, the wafer W1 is processed so that it can be divided along the dividing line.
  • the sheet member W2 is an elastic adhesive tape.
  • An adhesive layer is provided on the upper surface W21 of the sheet member W2.
  • the wafer W1 is attached to the adhesive layer of the sheet member W2.
  • the ring-shaped member W3 is a ring-shaped metal frame in plan view. The ring-shaped member W3 is attached to the adhesive layer of the sheet member W2 while surrounding the wafer W1.
  • the vertical direction will be referred to as the Z direction
  • the upper direction will be referred to as the Z1 direction
  • the lower direction will be referred to as the Z2 direction.
  • Two directions that are orthogonal to the Z direction and mutually orthogonal in the horizontal plane are referred to as an X direction and a Y direction, respectively.
  • One side of the X direction is defined as the X1 direction
  • the other side of the X direction is defined as the X2 direction
  • One side of the Y direction is defined as the Y1 direction
  • the other side of the Y direction is defined as the Y2 direction.
  • FIG. 4 shows a first configuration example of the semiconductor wafer processing apparatus 100.
  • the semiconductor wafer processing apparatus 100 of the first configuration example includes one dicing module 1, one expand module 2, and one wafer supply module 3.
  • the dicing module 1, the expand module 2, and the wafer supply module 3 are connected along a predetermined direction (X direction).
  • the dicing module 1 is arranged on the X2 direction side.
  • the expand module 2 is arranged on the X1 direction side.
  • the wafer supply module 3 is placed between the dicing module 1 and the expand module 2 in the X direction.
  • the semiconductor wafer processing apparatus 100 of the first configuration example has a common system for transporting the wafer ring structure W (wafer W1) in a predetermined direction between the dicing module 1, the expand module 2, and the wafer supply module 3.
  • a suction hand section 4 is provided. Note that the suction hand section 4 is an example of a "wafer transfer section" in the claims.
  • the dicing module 1 is configured to form a modified layer by irradiating the wafer W1 with a laser having a wavelength that is transparent to the wafer W1 along dividing lines (streets). has been done.
  • the modified layer refers to cracks, voids, etc. formed inside the wafer W1 by the laser.
  • the method of forming the modified layer on the wafer W1 in this way is called dicing.
  • the dicing module 1 includes a base 11, a chuck table section 12, a laser section 13, and an imaging section 14.
  • the base 11 is a base on which the chuck table section 12 is installed.
  • the base 11 has a rectangular shape in plan view.
  • the chuck table section 12 includes a suction section 12a, a clamp section 12b, a rotation mechanism 12c, and a table movement mechanism 12d.
  • the suction portion 12a is configured to suction the wafer ring structure W onto the upper surface on the Z1 direction side.
  • the suction unit 12a is a table provided with a suction hole, a suction conduit, and the like for suctioning the lower surface of the ring-shaped member W3 of the wafer ring structure W on the Z2 direction side.
  • the suction portion 12a is supported by a table moving mechanism 12d via a rotation mechanism 12c.
  • the clamp part 12b is provided at the upper end of the suction part 12a.
  • the clamp part 12b is configured to hold down the wafer ring structure W attracted by the attraction part 12a.
  • the clamp part 12b holds down the ring-shaped member W3 of the wafer ring structure W that is attracted by the attraction part 12a from the Z1 direction side. In this way, the wafer ring structure W is held by the suction part 12a and the clamp part 12b.
  • the rotation mechanism 12c is configured to rotate the suction portion 12a in the circumferential direction around a rotation center axis C extending parallel to the Z direction.
  • the rotation mechanism 12c is attached to the upper end of the table moving mechanism 12d.
  • the table moving mechanism 12d is configured to move the wafer ring structure W in the X direction and the Y direction.
  • the table moving mechanism 12d includes an X-direction moving mechanism 121 and a Y-direction moving mechanism 122.
  • the X-direction moving mechanism 121 is configured to move the rotation mechanism 12c in the X1 direction or the X2 direction.
  • the X-direction movement mechanism 121 includes, for example, a linear conveyor module or a drive unit having a ball screw and a motor with an encoder.
  • the Y-direction moving mechanism 122 is configured to move the rotation mechanism 12c in the Y1 direction or the Y2 direction.
  • the Y-direction movement mechanism 122 includes, for example, a linear conveyor module or a drive unit having a ball screw and a motor with an encoder.
  • the laser section 13 is configured to irradiate the wafer W1 of the wafer ring structure W held by the chuck table section 12 with laser light.
  • the laser section 13 is arranged on the Z1 direction side of the chuck table section 12.
  • the laser section 13 includes a laser irradiation section 13a, a mounting member 13b, and a Z-direction moving mechanism 13c.
  • the laser irradiation section 13a is configured to irradiate pulsed laser light.
  • the attachment member 13b is a frame to which the laser section 13 and the imaging section 14 are attached.
  • the Z direction moving mechanism 13c is configured to move the laser section 13 in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 13c includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the laser irradiation unit 13a may be a laser irradiation unit that oscillates continuous wave laser light other than pulsed laser light as laser light, as long as it can form a modified layer by multiphoton absorption.
  • the imaging unit 14 is configured to take an image of the wafer W1 of the wafer ring structure W held by the chuck table unit 12.
  • the imaging section 14 is arranged on the Z1 direction side of the chuck table section 12.
  • the imaging unit 14 includes a high-resolution camera 14a, a wide-angle camera 14b, a Z-direction moving mechanism 14c, and a Z-direction moving mechanism 14d.
  • the high-resolution camera 14a and wide-angle camera 14b are near-infrared imaging cameras.
  • the high-resolution camera 14a has a narrower viewing angle than the wide-angle camera 14b.
  • the high-resolution camera 14a has higher resolution than the wide-angle camera 14b.
  • the wide-angle camera 14b has a wider viewing angle than the high-resolution camera 14a.
  • the wide-angle camera 14b has lower resolution than the high-resolution camera 14a.
  • the high-resolution camera 14a is arranged on the X1 direction side of the laser irradiation section 13a.
  • the wide-angle camera 14b is arranged on the X2 direction side of the laser irradiation section 13a. In this way, the high-resolution camera 14a, the laser irradiation section 13a, and the wide-angle camera 14b are arranged adjacent to each other in this order from the X1 direction to the X2 direction.
  • the Z direction moving mechanism 14c is configured to move the high resolution camera 14a in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 14c includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the Z-direction moving mechanism 14d is configured to move the wide-angle camera 14b in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 14d includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the expand module 2 is configured to divide the wafer W1 to form a plurality of semiconductor chips Ch. Further, the expandable module 2 is configured to form a sufficient gap between the plurality of semiconductor chips Ch.
  • a modified layer is formed on the wafer W1 by irradiating the wafer W1 with a laser having a wavelength that is transparent to the wafer W1 along a dividing line (street) in the dicing module 1.
  • a plurality of semiconductor chips Ch are formed by dividing the wafer W1 along the modified layer formed in advance in the dicing module 1.
  • the wafer W1 is divided along the modified layer by expanding the sheet member W2. Moreover, in the expandable module 2, by expanding the sheet member W2, the gaps between the plurality of divided semiconductor chips Ch are widened.
  • the expand module 2 includes a base 205, a cold air supply section 206, a cooling unit 207, an expand section 208, a base 209, an expansion maintenance member 210, a heat shrink section 211, an ultraviolet irradiation section 212, and a squeegee section 213. and a clamp section 214.
  • the base 205 is a base on which the expanding section 208, the cooling unit 207, the ultraviolet irradiation section 212, and the squeegee section 213 are installed.
  • the base 205 has a rectangular shape in plan view.
  • the clamp part 214 disposed at a position in the Z1 direction of the cooling unit 207 is shown by a dotted line.
  • the cold air supply unit 206 is configured to supply cold air to the sheet member W2 from the Z1 direction side when the expanding unit 208 expands the sheet member W2.
  • the cold air supply section 206 includes a supply section main body 206a, a cold air supply port 206b, and a moving mechanism 206c.
  • the cold air supply port 206b is configured to allow the cold air supplied from the cold air supply device to flow out.
  • the cold air supply port 206b is provided at the end of the supply section main body 206a on the Z2 direction side.
  • the cold air supply port 206b is arranged at the center of the end of the supply section main body 206a on the Z2 direction side.
  • the moving mechanism 206c includes, for example, a linear conveyor module or a motor with a ball screw and an encoder.
  • the cold air supply device is a device for generating cold air.
  • the cold air supply device supplies air cooled by, for example, a heat pump.
  • a cold air supply device is installed on the base 205.
  • the cold air supply unit 206 and the cold air supply device are connected through a hose (not shown).
  • the cooling unit 207 is configured to cool the sheet member W2 from the Z2 direction side.
  • the cooling unit 207 includes a cooling member 207a having a cooling body 271 and a Peltier element 272, and a Z-direction moving mechanism 207b.
  • the cooling body 271 is made of a member having a large heat capacity and high thermal conductivity. Cooling body 271 is made of metal such as aluminum.
  • the Peltier element 272 is configured to cool the cooling body 271. Note that the cooling body 271 is not limited to aluminum, and may be made of other members having a large heat capacity and high thermal conductivity.
  • the Z direction moving mechanism 207b is a cylinder.
  • the cooling unit 207 is configured to be movable in the Z1 direction or the Z2 direction by a Z direction movement mechanism 207b. Thereby, the cooling unit 207 can be moved to a position where it contacts the sheet member W2 and a position where it is spaced apart from the sheet member W2.
  • the expanding section 208 is configured to expand the sheet member W2 of the wafer ring structure W to divide the wafer W1 along the dividing line.
  • the expander 208 has an expander ring 281.
  • the expand ring 281 is configured to expand the sheet member W2 by supporting the sheet member W2 from the Z2 direction side.
  • the expand ring 281 has a ring shape in plan view. Note that the structure of the expand ring 281 will be explained in detail later.
  • the base 209 is a base material on which the cold air supply section 206, the expansion maintenance member 210, and the heat shrink section 211 are installed.
  • the expansion maintaining member 210 is configured to press the sheet member W2 from the Z1 direction side so that the sheet member W2 near the wafer W1 does not shrink due to heating by the heating ring 211a. .
  • the expansion maintaining member 210 includes a pressing ring portion 210a, a lid portion 210b, and an air intake portion 210c.
  • the pressing ring portion 210a has a ring shape in plan view.
  • the lid portion 210b is provided on the press ring portion 210a so as to close the opening of the press ring portion 210a.
  • the intake portion 210c is an intake ring having a ring shape when viewed from above. A plurality of intake ports are formed on the lower surface of the intake portion 210c on the Z2 direction side.
  • the press ring portion 210a is configured to move in the Z direction by a Z direction moving mechanism 210d.
  • the Z direction moving mechanism 210d is configured to move the pressing ring portion 210a to a position where it presses the sheet member W2 and a position away from the sheet member W2.
  • the Z-direction movement mechanism 210d includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the heat shrink section 211 is configured to shrink the sheet member W2 expanded by the expand section 208 by heating while maintaining gaps between the plurality of semiconductor chips Ch.
  • the heat shrink part 211 has a heating ring 211a and a Z-direction moving mechanism 211b.
  • the heating ring 211a has a ring shape in plan view.
  • the heating ring 211a has a sheathed heater that heats the sheet member W2.
  • the Z direction moving mechanism 211b is configured to move the heating ring 211a in the Z direction.
  • the Z-direction movement mechanism 211b includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the ultraviolet irradiation unit 212 is configured to irradiate the sheet member W2 with ultraviolet rays in order to reduce the adhesive force of the adhesive layer of the sheet member W2.
  • the ultraviolet irradiation unit 212 includes ultraviolet lighting.
  • the ultraviolet irradiation section 212 is arranged at the end of the pressing section 213a of the squeegee section 213 on the Z1 direction side, which will be described later.
  • the ultraviolet irradiation section 212 is configured to irradiate the sheet member W2 with ultraviolet rays while moving together with the squeegee section 213.
  • the squeegee section 213 is configured to further divide the wafer W1 along the modified layer by locally pressing the wafer W1 from the Z2 direction side after expanding the sheet member W2.
  • the squeegee section 213 includes a pressing section 213a, a Z direction movement mechanism 213b, an X direction movement mechanism 213c, and a rotation mechanism 213d.
  • the pressing section 213a presses the wafer W1 from the Z2 direction side via the sheet member W2 and is moved by the rotating mechanism 213d and the X direction moving mechanism 213c, thereby generating bending stress on the wafer W1 and removing the modified layer.
  • the wafer W1 is configured to be divided along the wafer W1.
  • the pressing portion 213a is raised to the raised position in the Z1 direction by the Z direction moving mechanism 213b, the wafer W1 is pressed through the sheet member W2.
  • the pressing portion 213a is lowered in the Z2 direction to the lowered position by the Z direction moving mechanism 213b, so that the wafer W1 is no longer pressed.
  • the pressing part 213a is a squeegee.
  • the pressing part 213a is attached to the end of the Z1-direction side of the Z-direction moving mechanism 213b.
  • the Z direction moving mechanism 213b is configured to move the pressing part 213a linearly in the Z1 direction or the Z2 direction.
  • the Z direction moving mechanism 213b is, for example, a cylinder.
  • the Z direction moving mechanism 213b is attached to the end of the X direction moving mechanism 213c on the Z1 direction side.
  • the X-direction moving mechanism 213c is attached to the end of the rotation mechanism 213d on the Z1 direction side.
  • the X-direction moving mechanism 213c is configured to linearly move the pressing portion 213a in one direction.
  • the X-direction movement mechanism 213c includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the pressing portion 213a is raised to the raised position by the Z direction moving mechanism 213b.
  • the pressing part 213a locally presses the wafer W1 from the Z2 direction side via the sheet member W2, and the pressing part 213a moves in the Y direction by the X direction moving mechanism 213c, thereby moving the wafer W1. be divided.
  • the pressing portion 213a is lowered to the lowered position by the Z direction moving mechanism 213b.
  • the pressing section 213a is rotated by 90 degrees by the rotation mechanism 213d.
  • the pressing portion 213a is raised to the raised position by the Z direction moving mechanism 213b.
  • the pressing part 213a after the pressing part 213a rotates 90 degrees, the pressing part 213a locally presses the wafer W1 from the Z2 direction side via the sheet member W2, and the pressing part 213a is moved by the X direction moving mechanism 213c. By moving in the X direction, wafer W1 is divided.
  • the clamp portion 214 is configured to grip the ring-shaped member W3 of the wafer ring structure W.
  • the clamp section 214 includes a grip section 214a, a Z direction movement mechanism 214b, and a Y direction movement mechanism 214c.
  • the grip portion 214a supports the ring-shaped member W3 from the Z2 direction side, and holds the ring-shaped member W3 from the Z1 direction side. In this way, the ring-shaped member W3 is held by the gripping portion 214a.
  • the grip portion 214a is attached to a Z-direction moving mechanism 214b.
  • the Z direction moving mechanism 214b is configured to move the clamp portion 214 in the Z direction. Specifically, the Z direction moving mechanism 214b is configured to move the grip portion 214a in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 214b includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the Z direction moving mechanism 214b is attached to the Y direction moving mechanism 214c.
  • the Y direction moving mechanism 214c is configured to move the Z direction moving mechanism 214b in the Y1 direction or the Y2 direction.
  • the Y-direction movement mechanism 214c includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the wafer supply module 3 includes a base 201, a cassette section 202, and a lift-up hand section 203.
  • the base 201 is a base on which the cassette section 202 and the lift-up hand section 203 are installed.
  • the base 201 has a rectangular shape in plan view.
  • the cassette section 202 is configured to be able to accommodate a plurality of wafer ring structures W (wafers W1).
  • the cassette section 202 includes a wafer cassette 202a, a Z-direction moving mechanism 202b, and a pair of mounting sections 202c.
  • a plurality (three) of wafer cassettes 202a are arranged in the Z direction.
  • the wafer cassette 202a has an accommodation space that can accommodate a plurality (five) of wafer ring structures W.
  • the wafer ring structure W is manually supplied and placed on the wafer cassette 202a.
  • the wafer cassette 202a may accommodate one to four wafer ring structures W, or may accommodate six or more wafer ring structures W. Further, one, two, four or more wafer cassettes 202a may be arranged in the Z direction.
  • the Z direction moving mechanism 202b is configured to move the wafer cassette 202a in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 202b includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder. Further, the Z-direction moving mechanism 202b includes a mounting table 202d that supports the wafer cassette 202a from below. A plurality (three) of mounting tables 202d are arranged in accordance with the positions of the plurality of wafer cassettes 202a.
  • a plurality (five) of the pair of placement parts 202c are arranged inside the wafer cassette 202a.
  • the ring-shaped member W3 of the wafer ring structure W is placed on the pair of placement parts 202c from the Z1 direction side.
  • One of the pair of placement parts 202c protrudes in the X2 direction from the inner surface of the wafer cassette 202a on the X1 direction.
  • the other of the pair of placement parts 202c protrudes in the X1 direction from the inner surface of the wafer cassette 202a on the X2 direction.
  • the lift-up hand section 203 is configured to be able to take out the wafer ring structure W from the cassette section 202. Further, the lift-up hand section 203 is configured to be able to accommodate the wafer ring structure W in the cassette section 202.
  • the lift-up hand section 203 includes a Y-direction moving mechanism 203a and a lift-up hand 203b.
  • the Y-direction movement mechanism 203a includes, for example, a linear conveyor module or a drive unit including a ball screw and a motor with an encoder.
  • the lift-up hand 203b is configured to support the ring-shaped member W3 of the wafer ring structure W from the Z2 direction side.
  • the suction hand section 4 is configured to suction the ring-shaped member W3 of the wafer ring structure W from the Z1 direction side.
  • the suction hand section 4 includes an X-direction movement mechanism 204a, a Z-direction movement mechanism 204b, and a suction hand 204c.
  • the X-direction moving mechanism 204a is configured to move the suction hand 204c in the X-direction.
  • the Z direction moving mechanism 204b is configured to move the suction hand 204c in the Z direction.
  • the X-direction movement mechanism 204a and the Z-direction movement mechanism 204b have, for example, a linear conveyor module or a drive unit having a ball screw and a motor with an encoder.
  • the suction hand 204c is configured to suction and support the ring-shaped member W3 of the wafer ring structure W from the Z1 direction side.
  • the ring-shaped member W3 of the wafer ring structure W is supported by the suction hand 204c by generating negative pressure.
  • the semiconductor wafer processing apparatus 100 of the first configuration example includes a first control section 101, a second control section 102, a third control section 103, a fourth control section 104, and a fifth control section 101. It includes a control section 105, a sixth control section 106, a seventh control section 107, an eighth control section 108, an expansion control calculation section 109, a handling control calculation section 110, and a dicing control calculation section 111.
  • the first control section 101 is configured to control the squeegee section 213.
  • the first control unit 101 includes a CPU (Central Processing Unit), and a storage unit including a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the first control unit 101 may include, as a storage unit, an HDD (Hard Disk Drive) or the like that retains stored information even after the voltage is cut off.
  • the HDD also includes a first control section 101, a second control section 102, a third control section 103, a fourth control section 104, a fifth control section 105, a sixth control section 106, a seventh control section 107, and a third control section 103. It may be provided in common for eight control units 108.
  • the second control section 102 is configured to control the cold air supply section 206 and the cooling unit 207.
  • the second control unit 102 includes a CPU and a storage unit including ROM, RAM, and the like.
  • the third control section 103 is configured to control the heat shrink section 211 and the ultraviolet irradiation section 212.
  • the third control unit 103 includes a CPU and a storage unit including ROM, RAM, and the like. Note that the second control unit 102 and the third control unit 103 may include, as a storage unit, an HDD or the like that retains stored information even after the voltage is cut off.
  • the fourth control section 104 is configured to control the cassette section 202 and the lift-up hand section 203.
  • the fourth control unit 104 includes a CPU and a storage unit including ROM, RAM, and the like.
  • the fifth control section 105 is configured to control the suction hand section 4.
  • the fifth control unit 105 includes a CPU and a storage unit including ROM, RAM, and the like. Note that the fourth control unit 104 and the fifth control unit 105 may include, as a storage unit, an HDD or the like in which stored information is retained even after the voltage is cut off.
  • the sixth control section 106 is configured to control the chuck table section 12.
  • the sixth control unit 106 includes a CPU and a storage unit including ROM, RAM, and the like.
  • the seventh control section 107 is configured to control the laser section 13.
  • the seventh control unit 107 includes a CPU and a storage unit including ROM, RAM, and the like.
  • the eighth control unit 108 is configured to control the imaging unit 14.
  • the eighth control unit 108 includes a CPU and a storage unit including ROM, RAM, and the like. Note that the sixth control unit 106, the seventh control unit 107, and the eighth control unit 108 may include, as a storage unit, an HDD or the like in which stored information is retained even after the voltage is cut off.
  • the expansion control calculation unit 109 is configured to perform calculations related to the expansion process of the sheet member W2 based on the processing results of the first control unit 101, the second control unit 102, and the third control unit 103.
  • the expansion control calculation unit 109 includes a CPU and a storage unit including a ROM, a RAM, and the like.
  • the handling control calculation unit 110 is configured to perform calculations related to the movement process of the wafer ring structure W based on the processing results of the fourth control unit 104 and the fifth control unit 105.
  • Handling control calculation unit 110 includes a CPU and a storage unit including ROM, RAM, and the like.
  • the dicing control calculation unit 111 is configured to perform calculations related to the dicing process of the wafer W1 based on the processing results of the sixth control unit 106, the seventh control unit 107, and the eighth control unit 108.
  • the dicing control calculation unit 111 includes a CPU and a storage unit including a ROM, a RAM, and the like.
  • the storage unit 112 stores programs for operating the dicing module 1, the expand module 2, the wafer supply module 3, and the suction hand unit 4.
  • the storage unit 112 includes ROM, RAM, HDD, and the like.
  • step S1 the wafer ring structure W is taken out from the cassette section 202. That is, after the wafer ring structure W housed in the cassette part 202 is supported by the lift-up hand 203b, the lift-up hand 203b is moved in the Y1 direction by the Y-direction moving mechanism 203a, thereby removing the wafer from the cassette part 202. The ring structure W is taken out.
  • step S2 the wafer ring structure W is transferred to the chuck table section 12 of the dicing module 1 by the suction hand 204c. That is, the wafer ring structure W taken out from the cassette section 202 is moved in the X2 direction by the X direction moving mechanism 204a while being sucked by the suction hand 204c. Then, the wafer ring structure W that has moved in the X2 direction is transferred from the suction hand 204c to the chuck table section 12, and then gripped by the chuck table section 12.
  • step S3 a modified layer is formed on the wafer W1 by the laser unit 13.
  • step S4 the wafer ring structure W having the wafer W1 on which the modified layer has been formed is transferred to the clamp section 214 by the suction hand 204c.
  • step S5 the sheet member W2 is cooled by the cold air supply section 206 and the cooling unit 207. That is, the Z-direction moving mechanism 214b moves (lowers) the wafer ring structure W held by the clamp part 214 in the Z2 direction to contact the cooling unit 207, and the cold air supply part 206 supplies cold air from the Z1 direction side. By doing so, the sheet member W2 is cooled.
  • step S6 the wafer ring structure W is moved to the expanding section 208 by the clamping section 214. That is, the wafer ring structure W, in which the sheet member W2 has been cooled, is moved in the Y1 direction by the Y direction moving mechanism 214c while being held by the clamp part 214.
  • step S7 the expanding section 208 expands the sheet member W2. That is, the wafer ring structure W is moved in the Z2 direction by the Z direction moving mechanism 214b while being held by the clamp part 214. Then, the sheet member W2 contacts the expand ring 281 and is expanded by being pulled by the expand ring 281. Thereby, the wafer W1 is divided along the dividing line (modified layer).
  • step S8 the expanded sheet member W2 is held down by the expansion maintaining member 210 from the Z1 direction side. That is, the press ring portion 210a is moved (downward) in the Z2 direction by the Z direction moving mechanism 210d until it comes into contact with the sheet member W2. Then, the process proceeds from point A in FIG. 9 to point A in FIG. 10 to step S9.
  • step S9 after the sheet member W2 is pressed by the expansion maintaining member 210, the ultraviolet ray irradiation unit 212 irradiates the sheet member W2 with ultraviolet rays while pressing the wafer W1 with the squeegee unit 213. As a result, the wafer W1 is further divided by the squeegee section 213. Further, the adhesive strength of the sheet member W2 is reduced by the ultraviolet rays irradiated from the ultraviolet irradiation section 212.
  • step S10 the heat shrink section 211 heats and shrinks the sheet member W2, and the clamp section 214 rises. At this time, the air intake portion 210c sucks air near the heated sheet member W2.
  • step S11 the wafer ring structure W is transferred from the clamp section 214 to the suction hand 204c. That is, the wafer ring structure W is moved in the Y2 direction by the Y direction moving mechanism 214c while being held by the clamp part 214. Then, after the wafer ring structure W is released from the grip by the clamp part 214 at a position on the Z1 direction side of the cooling unit 207, it is sucked by the suction hand 204c.
  • step S12 the wafer ring structure W is transferred to the lift-up hand 203b by the suction hand 204c.
  • step S13 the wafer ring structure W is accommodated in the cassette section 202. That is, the wafer ring structure W supported by the lift-up hand 203b is moved in the Y1 direction by the Y direction moving mechanism 203a, so that the wafer ring structure W is accommodated in the cassette portion 202.
  • the processing performed on one wafer ring structure W is completed. Then, the process returns to step S1 from point B in FIG. 10 to point B in FIG.
  • FIG. 11 shows a second configuration example of the semiconductor wafer processing apparatus 100.
  • the semiconductor wafer processing apparatus 100 of the second configuration example includes one expand module 2 and one wafer supply module 3.
  • the expand module 2 and the wafer supply module 3 are connected along a predetermined direction (X direction).
  • the expand module 2 is arranged on the X1 direction side.
  • the wafer supply module 3 is arranged on the X2 direction side.
  • the semiconductor wafer processing apparatus 100 of the second configuration example has a common suction hand section 4 that transports the wafer ring structure W (wafer W1) in a predetermined direction between the expand module 2 and the wafer supply module 3. Be prepared.
  • FIG. 12 shows a third configuration example of the semiconductor wafer processing apparatus 100.
  • the semiconductor wafer processing apparatus 100 of the third configuration example includes one dicing module 1 and one wafer supply module 3.
  • the dicing module 1 and the wafer supply module 3 are connected along a predetermined direction (X direction).
  • the dicing module 1 is arranged on the X2 direction side.
  • the wafer supply module 3 is arranged on the X1 direction side.
  • the semiconductor wafer processing apparatus 100 of the third configuration example includes a common suction hand section 4 that transports the wafer ring structure W (wafer W1) in a predetermined direction between the dicing module 1 and the wafer supply module 3. Be prepared.
  • FIG. 13 shows a fourth configuration example of the semiconductor wafer processing apparatus 100.
  • the semiconductor wafer processing apparatus 100 of the fourth configuration example includes one dicing module 1.
  • a wafer ring structure W (wafer W1) is manually supplied to the dicing module 1 by an operator.
  • FIG. 14 shows a fifth configuration example of the semiconductor wafer processing apparatus 100.
  • the semiconductor wafer processing apparatus 100 of the fifth configuration example includes two dicing modules 1, one expand module 2, and two wafer supply modules 3.
  • two dicing modules 1 of the same type and two wafer supply modules 3 of the same type are arranged. Furthermore, the two dicing modules 1, one expand module 2, and two wafer supply modules 3 are connected along a predetermined direction (X direction).
  • One of the two dicing modules 1 is placed closest to the X2 direction side.
  • the other of the two dicing modules 1 is disposed closest to the X1 direction side.
  • two dicing modules 1 of the same type are arranged on one side and the other side with an expand module 2 and a wafer supply module 3 of another type in between.
  • the expand module 2 and the two wafer supply modules 3 are arranged between the two dicing modules 1 in this order from the X1 direction toward the X2 direction.
  • the semiconductor wafer processing apparatus 100 of the fifth configuration example has a wafer ring structure in a predetermined direction (X direction) between two dicing modules 1, one expand module 2, and two wafer supply modules 3.
  • a common suction hand section 4 for transporting W (wafer W1) is provided.
  • the semiconductor wafer processing apparatus 100 can arrange two or more modules 100a of the same type. Further, in the present embodiment, the semiconductor wafer processing apparatus 100 can arrange modules 100a of the same type on one side and the other side with a module 100a of another type interposed therebetween. Furthermore, as explained in the first to third and fifth configuration examples above, in this embodiment, the semiconductor wafer processing apparatus 100 operates in a predetermined direction between a plurality of modules 100a selected from among a plurality of modules 100a.
  • a common suction hand section 4 is provided for transporting the wafer ring structure W (wafer W1) in the X direction.
  • the X-direction moving mechanism 204a of the suction hand section 4 is arranged so as to straddle all of the plurality of modules 100a selected from the plurality of modules 100a and connected along a predetermined direction.
  • the suction hand section 4 has a length in a predetermined direction depending on the number of the plurality of modules 100a connected along the predetermined direction (X direction) selected from the plurality of modules 100a. can be changed. Specifically, the suction hand section 4 can change the length of the X-direction moving mechanism 204a according to the number of the plurality of modules 100a selected from the plurality of modules 100a and connected along a predetermined direction. It is.
  • the X-direction movement mechanism 204a includes a linear conveyor module 40.
  • the linear conveyor module 40 is a conveyance device that moves the slider 50 in a predetermined direction (X direction).
  • the linear conveyor module 40 has a linear motor stator extending in a predetermined direction.
  • the slider 50 has a linear motor mover.
  • a linear motor is configured by a linear motor stator and a linear motor mover.
  • magnetic interaction between the linear motor stator of the linear conveyor module 40 and the linear motor mover of the slider 50 generates a magnetic propulsive force that moves the slider 50 in a predetermined direction.
  • a suction hand 204c is connected to the slider 50 via a Z-direction moving mechanism 204b.
  • the linear conveyor module 40 is configured so that a plurality of them can be connected in a predetermined direction via a connecting member 61.
  • the linear conveyor module 40 has a mounting portion 41 to which a connecting member 61 is attached.
  • the attachment portions 41 are provided at both ends of the linear conveyor module 40 in the X direction.
  • an end member 62 is attached to the end-side attachment portion 41 of the linear conveyor module 40 that is disposed at the end of the linear conveyor modules 40 to be connected.
  • the semiconductor wafer processing apparatus 100 performs dicing (forming a modified layer) on the wafer W1 (hereinafter referred to as A wafer W1 (hereinafter referred to as a first wafer W1) and a wafer W1 to be expanded (hereinafter referred to as a second wafer W1) are independently supplied to a dicing module 1 and an expand module 2. (formation of a solid layer) and the expansion of the sheet member W2 of the second wafer W1 by the expansion module 2 are performed independently and in parallel.
  • the plurality of wafer cassettes 202a of the wafer supply module 3 are a wafer cassette 202a (hereinafter referred to as the first wafer cassette 202a) in which only the wafer ring structure W including the first wafer W1 is arranged, and a second wafer cassette 202a (hereinafter referred to as the first wafer cassette 202a).
  • the wafer ring structure W includes a wafer cassette 202a (hereinafter referred to as a second wafer cassette 202a) in which only the wafer ring structure W including the wafer ring structure W is arranged.
  • the wafer supply module 3 is configured to supply the wafer ring structure W including the undiced first wafer W1 from the first wafer cassette 202a to the dicing module 1 via the suction hand section 204. .
  • the dicing module 1 is configured to form a modified layer on the first wafer W1 of the supplied wafer ring structure W.
  • the dicing module 1 also returns the wafer ring structure W including the first wafer W1 on which the modified layer has been formed to the first wafer cassette 202a of the wafer supply module 3 via the suction hand section 204. It is configured. At this time, the wafer ring structure W including the first wafer W1 on which the modified layer is formed is not supplied to the expand module 2.
  • the wafer supply module 3 receives the wafer ring structure W including the second wafer W1 on which the modified layer is formed but is not expanded from the second wafer cassette 202a via the suction hand section 204. It is configured to supply the expand module 2.
  • the expansion module 2 is configured to expand the sheet member W2 of the supplied wafer ring structure W. Further, the expand module 2 returns the wafer ring structure W including the expanded sheet member W2 and the divided second wafer W1 to the second wafer cassette 202a of the wafer supply module 3 via the suction hand section 204. is configured to do so.
  • the formation of the modified layer on the first wafer W1 and the expansion of the sheet member W2 on the second wafer W1 are performed independently and in parallel.
  • the dicing module 1 performs laser processing on the street St from one side (Y2 direction side) of the wafer W1, and performs laser processing on the street St from the other side (Y1 direction side) of the wafer W1.
  • the structure is such that the laser processing is repeated.
  • FIG. 16 shows only the street St where laser processing was performed.
  • FIG. 16 shows an example in which laser processing is performed on the street St in one direction, the wafer W1 is rotated by 90 degrees by the rotation mechanism 12c, and the street St is perpendicular to the one direction. Laser processing is also performed on the street St in the other direction.
  • the dicing module 1 moves the wafer W1 in the X direction using the X direction moving mechanism 121, thereby moving the laser beam from the laser unit 13 in the X direction relative to the street St. It is configured to perform laser processing on St. Further, the dicing module 1 is configured to move the wafer W1 in the Y direction by the Y direction moving mechanism 122, thereby moving the laser section 13 relatively to a position above the next street St.
  • Correction of the positional deviation of the street St means, for example, acquiring the positional deviation amount of the street St by imaging the surface of the wafer W1 with the imaging unit 14, and when the obtained positional deviation amount of the street St is equal to or greater than a threshold value. In this case, the wafer W1 is moved by the chuck table section 12 to correct the position of the street St.
  • the dicing module 1 images the wafer W1 with the imaging unit 14, and based on the imaging result of the wafer W1 by the imaging unit 14, the dicing module 1 performs a street St by laser processing.
  • the positional deviation amount Am of the street St is obtained, and the laser processing position is changed from one side of the wafer W1 to the other side or from the other side to one side based on the positional deviation amount Am of the street St. That is, the dicing module 1 is configured to determine the timing of changing the laser processing position of the wafer W1 from one side to the other side or from the other side to one side based on the positional deviation amount Am of the street St. .
  • the dicing module 1 moves the laser beam from the laser unit 13 in the X direction relative to the street St, and performs laser processing on the street St. It is configured to acquire a panning image G by continuing to expose the unprocessed side of the high-resolution camera 14a and wide-angle camera 14b that are relatively moved in the X direction. For example, when laser processing is performed from the X1 direction side to the X2 direction side, a panning image G is acquired by the high resolution camera 14a arranged on the X2 direction side with respect to the laser unit 13.
  • a panning image G is acquired by the wide-angle camera 14b arranged on the X1 direction side with respect to the laser unit 13.
  • the panning image G an image of the unprocessed street St is acquired.
  • the exposure of the high-resolution camera 14a or the wide-angle camera 14b may be performed in the entire section of one street St, or may be performed in a partial section of one street St.
  • the panning image G may be acquired for each street St, or for each of a plurality of streets St (such as two streets). If the panning is performed every even number of images, such as every two images, the panning image G is acquired only by either the high-resolution camera 14a or the wide-angle camera 14b.
  • the dicing module 1 averages the luminance of pixels in the panning image G, which is a two-dimensional image in which pixels are arranged in the X and Y directions, in the X direction, thereby obtaining a one-dimensional image in which pixels are arranged in the Y direction. At the same time, it is configured to obtain a brightness profile P based on the obtained one-dimensional image. Further, the dicing module 1 is configured to obtain, based on the brightness profile P, the center position in the Y direction of the portion Stc of the brightness profile P corresponding to the street St as the center position Ps in the Y direction of the street St. There is.
  • the dicing module 1 also determines the center position Ps of the street St in the Y direction and the center position Pc of the camera (high-resolution camera 14a or wide-angle camera 14b) in the Y direction (that is, the center position of the brightness profile P in the Y direction). ) is configured to be obtained as the positional deviation amount Am of the street St.
  • the dicing module 1 is configured to, for example, change the laser processing position from one side of the wafer W1 to the other side or from the other side to one side when the positional deviation amount Am of the street St is equal to or greater than a threshold value. There is. That is, when the dicing module 1 performs laser processing on the street St from one side of the wafer W1, if it is detected that the misalignment amount Am of the street St is equal to or greater than the threshold value, the dicing module 1 performs laser processing on the street St from one side of the wafer W1. The laser processing position is changed from one side of the wafer W1 to the other side, and the laser processing is performed on the street St from the other side of the wafer W1.
  • the dicing module 1 controls the wafer W1.
  • the laser processing position is changed from the other side to one side of the wafer W1, and the laser processing is performed on the street St from one side of the wafer W1.
  • the threshold value is smaller than the threshold value for correcting the positional deviation, and the laser processing position is changed at a timing that does not require correction of the positional deviation.
  • the semiconductor wafer processing apparatus 100 can change the number of each of the plurality of modules 100a.
  • the number of each of the plurality of modules 100a can be changed, so that, for example, when the cycle time of each process is different for each product that is a processed product of the wafer W1, the cycle time of each process for each product is different. It is possible to change the equipment configuration according to the time. Additionally, if there is a user's request to change the length of unmanned operation time, such as increasing the length of unmanned operation time at night when there are fewer workers, it is possible to change the equipment configuration according to the user's request. I can do it. As a result, even if the optimal equipment configuration differs depending on the product or the user's request, the optimal equipment configuration can be constructed.
  • the plurality of modules 100a include the dicing module 1 that dices the wafer W1, the expand module 2 that expands the sheet member W2 to which the wafer W1 is attached, and the expand module 2 that supplies the wafer W1.
  • two or more modules 100a of the same type can be arranged.
  • the processing amount of two or more modules 100a can be increased, so if the processing cycle time of two or more modules 100a is large.
  • imbalances in cycle time can be easily adjusted.
  • modules 100a of the same type can be placed on one side and the other side with the module 100a of another type interposed therebetween.
  • the degree of freedom in arranging the modules 100a can be improved compared to the case where modules 100a of the same type can only be arranged adjacently.
  • the modules 100a are connected along a predetermined direction. Therefore, since the modules 100a are connected along the predetermined direction, it is possible to suppress the device from increasing in size in directions other than the predetermined direction.
  • the semiconductor wafer processing apparatus 100 includes a common suction hand unit 4 that transports the wafer W1 in a predetermined direction between a plurality of modules 100a selected from among the plurality of modules 100a. Equipped with Accordingly, since the suction hand section 4 is common among the plurality of modules 100a, the complexity of the structure can be suppressed compared to the case where the suction hand section 4 is provided for each module 100a.
  • the suction hand section 4 has a length in a predetermined direction depending on the number of the plurality of modules 100a selected from the plurality of modules 100a and connected along the predetermined direction. It is possible to change the As a result, the length of the suction hand section 4 can be appropriately changed according to an increase or decrease in the number of modules 100a, so a configuration in which a common suction hand section 4 is provided among a plurality of modules 100a can be easily realized. be able to.
  • the module 100a includes the dicing module 1 that dices the wafer W1, and the expand module 2 that expands the sheet member W2 to which the wafer W1 is attached.
  • the wafer W1 and the second wafer W1 to be expanded are independently supplied to the dicing module 1 and the expand module 2, and the dicing module 1 dices the first wafer W1 and the expand module 2 performs dicing of the second wafer W1. It is configured to perform the expansion of W2 independently and in parallel. Thereby, even if the cycle time of dicing and the cycle time of expansion are completely different, dicing and expansion can be smoothly performed without causing any downtime.
  • the module 100a includes the dicing module 1 that dices the wafer W1
  • the dicing module 1 includes the imaging section 14 that captures an image of the wafer W1
  • the dicing module 1 includes the dicing module 1 that dices the wafer W1.
  • the imaging unit 14 images the wafer W1, and Based on the imaging result of the wafer W1 by the section 14, the amount of positional deviation Am of the street St due to laser processing is acquired, and based on the positional deviation amount Am of the street St, the wafer W1 is moved from one side to the other side or from the other side to one side. It is configured to change the laser processing position to the side. As a result, by repeating laser processing on the street St from one side of the wafer W1 and laser processing on the street St from the other side of the wafer W1, it is possible to simply perform laser processing from one side or the other side.
  • the positional deviation of the street St due to laser processing can be reduced, so the number of times the positional deviation of the street St due to laser processing is corrected can be reduced. Furthermore, by changing the laser processing position from one side of the wafer W1 to the other side or from the other side to one side based on the positional deviation amount Am of the street St, the positional deviation amount Am of the street St starts to increase. Since the laser processing position can be changed at an effective timing, the number of times the positional deviation of the street St is corrected can be reduced.
  • the expanded module 302 of the modified example shown in FIGS. 20 to 22 includes a base 205, a cold air supply section 206, a cooling unit 207, an expanded section 3208, a base 209, an expansion maintenance member 210, and a heat shrink section. 211, an ultraviolet irradiation section 212, a squeegee section 3213, and a clamp section 214.
  • the expanding section 3208 is configured to expand the sheet member W2 of the wafer ring structure W to divide the wafer W1 along the dividing line.
  • the expander 3208 includes an expander ring 3281 and a Z-direction moving mechanism 3282.
  • the expand ring 3281 is configured to expand the sheet member W2 by supporting the sheet member W2 from the Z2 direction side.
  • the expand ring 3281 has a ring shape in plan view.
  • the Z direction moving mechanism 3282 is configured to move the expand ring 3281 in the Z1 direction or the Z2 direction.
  • the Z-direction movement mechanism 3282 includes, for example, a linear conveyor module or a drive unit having a ball screw and a motor with an encoder.
  • the Z direction movement mechanism 3282 is attached to the base 205.
  • the squeegee section 3213 is configured to further divide the wafer W1 along the modified layer by pressing the wafer W1 from the Z2 direction side after expanding the sheet member W2.
  • the squeegee portion 3213 includes a pressing portion 3213a, an X-direction movement mechanism 3213b, a Z-direction movement mechanism 3213c, and a rotation mechanism 3213d.
  • the pressing section 3213a is moved in the Z1 direction by the Z direction moving mechanism 3213c, and then moved by the rotating mechanism 3213d and the X direction moving mechanism 3213b while pressing the wafer W1 from the Z2 direction side via the sheet member W2. , the wafer W1 is divided along the modified layer by generating bending stress on the wafer W1.
  • the pressing part 3213a is a squeegee.
  • the pressing portion 3213a is attached to the end of the rotation mechanism 3213d on the Z1 direction side.
  • the Z direction moving mechanism 3213c is configured to move the rotation mechanism 3213d in the Z1 direction or the Z2 direction.
  • the Z direction movement mechanism 3213c has, for example, a cylinder.
  • the Z direction moving mechanism 3213c is attached to the end of the X direction moving mechanism 3213b on the Z1 direction side.
  • the X-direction movement mechanism 3213b includes, for example, a linear conveyor module or a drive unit having a ball screw and a motor with an encoder.
  • the X-direction moving mechanism 3213b is attached to the end of the base 205 on the Z1 direction side.
  • the pressing portion 3213a presses the wafer W1 from the Z2 direction side via the sheet member W2, and the pressing portion 3213a is moved in the Y direction by the X direction moving mechanism 3213b. By moving in the direction, the wafer W1 is divided. Further, in the squeegee portion 3213, after the pressing portion 3213a finishes moving in the Y direction, the pressing portion 3213a is rotated by 90 degrees by the rotation mechanism 3213d.
  • the pressing portion 3213a presses the wafer W1 from the Z2 direction side via the sheet member W2, and the pressing portion 3213a moves in the X direction by the X direction moving mechanism 3213b. By moving in the direction, the wafer W1 is divided.
  • the module includes a dicing module, an expand module, and a wafer supply module, but the present invention is not limited to this.
  • the module includes a dicing module, an expand module, a wafer supply module, an ablation laser module for laser ablating the wafer, a cleaning module for cleaning the wafer, and a grinding module for grinding the wafer. It may contain at least one of the following. As a result, the number of at least one of the dicing module, the expand module, the wafer supply module, the ablation laser module, the cleaning module, and the grinding module is changed according to the product, user's request, etc. be able to.
  • the ablation laser module is configured to perform laser ablation that melts and sublimates the surface of the wafer by irradiating the wafer with laser light from a laser irradiation unit.
  • the cleaning module is configured to clean dirt on the surface of the wafer by supplying a cleaning liquid to the wafer from a cleaning liquid supply unit.
  • the grinding module is configured to perform grinding to reduce the thickness of the wafer by grinding the wafer using a grinding section.
  • the semiconductor wafer processing apparatus may process a wafer of a wafer structure (a structure including only a wafer and a sheet member) in which a ring-shaped member is not provided.
  • a wafer transfer section may be provided for each module.
  • the wafer transport section was constituted by a suction hand section, but the present invention is not limited to this.
  • the wafer transfer section may be configured by a wafer transfer section other than the suction hand section.
  • the modules were connected along a predetermined direction, but the present invention is not limited to this.
  • the modules may be connected along a predetermined direction and a direction orthogonal to the predetermined direction.
  • control processing may be performed by event-driven processing that executes processing on an event-by-event basis. In this case, it may be completely event-driven, or it may be a combination of event-driven and flow-driven.
  • Dicing module 2 Expand module 3 Wafer supply module 4 Suction hand section (wafer transfer section) 14 Imaging unit 100 Semiconductor wafer processing device (wafer processing device) 100a Module Am Positional deviation amount Ch Semiconductor chip St Street W1 Wafer (1st wafer, 2nd wafer) W2 sheet member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Dicing (AREA)

Abstract

このウエハ加工装置(100)は、複数の半導体チップ(Ch)が形成されたウエハ(W1)の互いに異なる種類の処理を行う複数のモジュール(100a)のうちから選択されたモジュールを備え、複数のモジュールの各々の数を変更可能である。

Description

ウエハ加工装置、半導体チップの製造方法および半導体チップ
 この発明は、ウエハ加工装置、半導体チップの製造方法および半導体チップに関し、特に、複数の半導体チップが形成されたウエハに対して加工を行うウエハ加工装置、半導体チップの製造方法および半導体チップに関する。
 従来、複数の半導体チップが形成されたウエハに対して加工を行うウエハ加工装置が知られている。このようなウエハ加工装置は、たとえば、特許第6904368号公報に開示されている。
 上記特許第6904368号公報には、複数の集積回路チップが形成された半導体基板(ウエハ)に対して加工を行う半導体基板の処理装置(ウエハ加工装置)が開示されている。この半導体基板の処理装置は、半導体基板にDAF(Die Attach Film)を塗布するための塗布モジュール、半導体基板にダイシングテープを貼り付けるためのダイシングテープ貼付モジュール、および、半導体基板をダイシングするダイシングモジュールなどの各種のモジュールを備える。この半導体基板の処理装置では、各種のモジュールにより、半導体基板の処理が順番に行われる。
特許第6904368号公報
 ここで、上記特許第6904368号公報には明記されていないものの、上記特許第6904368号公報に記載されるような半導体基板の処理装置では、半導体基板の加工品である製品ごとに各処理(各モジュール)のサイクルタイムの大きさが異なる。また、作業者が少ない夜間に無人運転時間の長さを大きくしたいなど、無人運転時間の長さを変更したいユーザの要望が存在する場合もある。このように、製品やユーザの要望によって、最適な設備構成が異なるため、最適な設備構成を構築することが困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、最適な設備構成を構築することが可能なウエハ加工装置、半導体チップの製造方法および半導体チップを提供することである。
 上記目的を達成するために、この発明の第1の局面によるウエハ加工装置は、複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを備え、複数のモジュールの各々の数を変更可能である。
 この発明の第1の局面によるウエハ加工装置では、上記のように、複数のモジュールの各々の数を変更可能である。これにより、複数のモジュールの各々の数を変更可能であるので、たとえば、ウエハの加工品である製品ごとに各処理のサイクルタイムの大きさが異なる場合に、製品ごとの各処理のサイクルタイムの大きさに応じた設備構成に変更することができる。また、たとえば、作業者が少ない夜間に無人運転時間の長さを大きくしたいなど、無人運転時間の長さを変更したいユーザの要望がある場合に、ユーザの要望に応じた設備構成に変更することができる。その結果、製品やユーザの要望によって最適な設備構成が異なる場合にも、最適な設備構成を構築することができる。
 上記第1の局面によるウエハ加工装置において、好ましくは、複数のモジュールは、ウエハをダイシングするダイシングモジュールと、ウエハが貼り付けられたシート部材をエキスパンドするエキスパンドモジュールと、ウエハを供給するウエハ供給モジュールと、ウエハをレーザアブレーションするアブレーションレーザモジュールと、ウエハを洗浄する洗浄モジュールと、ウエハをグラインディングするグラインディングモジュールと、うちの少なくとも1つを含む。このように構成すれば、ダイシングモジュールと、エキスパンドモジュールと、ウエハ供給モジュールと、アブレーションレーザモジュールと、洗浄モジュールと、グラインディングモジュールとのうちの少なくとも1つの数を、製品やユーザの要望などに応じて、変更することができる。
 上記第1の局面によるウエハ加工装置において、好ましくは、同じ種類のモジュールを2つ以上配置可能である。このように構成すれば、同じ種類のモジュールを2つ以上配置することにより、2つ以上配置したモジュールの処理量を増加させることができるので、2つ以上配置したモジュールの処理のサイクルタイムが大きい場合に、サイクルタイムの大きさの不均衡を容易に調整することができる。
 この場合、好ましくは、同じ種類のモジュールを他の種類のモジュールを挟んで一方側と他方側とに配置可能である。このように構成すれば、同じ種類のモジュールを隣接させてしか配置できない場合と比べて、モジュールの配置の自由度を向上させることができる。
 上記第1の局面によるウエハ加工装置において、好ましくは、モジュールは、所定方向に沿って連結される。このように構成すれば、モジュールが所定方向に沿って連結されるので、所定方向以外の方向に装置が大型化することを抑制することができる。
 この場合、好ましくは、複数のモジュールのうちから選択された複数のモジュール間で所定方向にウエハを搬送する共通のウエハ搬送部をさらに備える。このように構成すれば、複数のモジュール間でウエハ搬送部が共通であるので、モジュールごとにウエハ搬送部を設ける場合に比べて、構造の複雑化を抑制することができる。
 上記ウエハ搬送部を備える構成において、好ましくは、ウエハ搬送部は、複数のモジュールのうちから選択されて所定方向に沿って連結される複数のモジュールの数に応じて、所定方向の長さを変更可能である。このように構成すれば、モジュールの数の増減に応じて、ウエハ搬送部の長さを適切に変更することができるので、複数のモジュール間で共通のウエハ搬送部を設ける構成を容易に実現することができる。
 上記第1の局面によるウエハ加工装置において、好ましくは、モジュールは、ウエハをダイシングするダイシングモジュールと、ウエハが貼り付けられたシート部材をエキスパンドするエキスパンドモジュールとを含み、ダイシングする第1ウエハとエキスパンドする第2ウエハとをそれぞれダイシングモジュールとエキスパンドモジュールとに独立して供給し、ダイシングモジュールによる第1ウエハのダイシングと、エキスパンドモジュールによる第2ウエハのシート部材のエキスパンドとを、独立してかつ並行して行うように構成されている。このように構成すれば、ダイシングのサイクルタイムと、エキスパンドのサイクルタイムとが全く異なる場合にも、停止時間を発生させずに、ダイシングとエキスパンドとを円滑に行うことができる。
 上記第1の局面によるウエハ加工装置において、好ましくは、モジュールは、ウエハをダイシングするダイシングモジュールを含み、ダイシングモジュールは、ウエハを撮像する撮像部を有し、ダイシングモジュールは、ウエハの一方側からストリートに対してレーザ加工を行うことと、ウエハの他方側からストリートに対してレーザ加工を行うこととを繰り返す場合において、撮像部によりウエハを撮像し、撮像部によるウエハの撮像結果に基づいて、レーザ加工によるストリートの位置ずれ量を取得し、ストリートの位置ずれ量に基づいて、ウエハの一方側から他方側または他方側から一方側に、レーザ加工の位置を変更する、ように構成されている。このように構成すれば、ウエハの一方側からストリートに対してレーザ加工を行うことと、ウエハの他方側からストリートに対してレーザ加工を行うこととを繰り返すことで、単に一方側または他方側からレーザ加工を行う場合と比べて、レーザ加工によるストリートの位置ずれを低減することができるので、レーザ加工によるストリートの位置ずれを補正する回数を少なくすることができる。また、ストリートの位置ずれ量に基づいて、ウエハの一方側から他方側または他方側から一方側に、レーザ加工の位置を変更することで、ストリートの位置ずれ量が増加し始めた効果的なタイミングで、レーザ加工の位置を変更することができるので、ストリートの位置ずれを補正する回数をより少なくすることができる。
 この発明の第2の局面による半導体チップの製造方法は、複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを設置する工程と、設置したモジュールを用いて、ウエハの処理を行う工程と、を備え、複数のモジュールの各々の数を変更可能である。
 この発明の第2の局面による半導体チップの製造方法では、上記のように、複数のモジュールの各々の数を変更可能である。これにより、たとえば、ウエハの加工品である製品ごとに各処理のサイクルタイムのバランスが異なる場合に、各処理のサイクルタイムに応じた設備構成に変更することができる。また、たとえば、無人運転時間の長さを変更したいユーザの要望がある場合に、ユーザの要望に応じた設備構成に変更することができる。その結果、製品やユーザの要望によって最適な設備構成が異なる場合にも、最適な設備構成を構築することが可能な半導体チップの製造方法を提供することができる。
 この発明の第3の局面による半導体チップは、複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを備え、複数のモジュールの各々の数を変更可能であるウエハ加工装置により製造される。
 この発明の第3の局面による半導体チップでは、上記のように、複数のモジュールの各々の数を変更可能である。これにより、たとえば、ウエハの加工品である製品ごとに各処理のサイクルタイムのバランスが異なる場合に、各処理のサイクルタイムに応じた設備構成に変更することができる。また、たとえば、無人運転時間の長さを変更したいユーザの要望がある場合に、ユーザの要望に応じた設備構成に変更することができる。その結果、製品やユーザの要望によって最適な設備構成が異なる場合にも、最適な設備構成を構築することが可能な半導体チップを提供することができる。
 本発明によれば、上記のように、最適な設備構成を構築することができる。
一実施形態による半導体ウエハの加工装置を示したブロック図である。 一実施形態による半導体ウエハの加工装置において加工されるウエハリング構造体を示した平面図である。 図2のIII-III線に沿った断面図である。 一実施形態による半導体ウエハの加工装置の第1構成例の平面図である。 一実施形態によるダイシングモジュールをY2方向側から見た側面図である。 一実施形態によるエキスパンドモジュールおよびウエハ供給モジュールをY2方向側から見た側面図である。 一実施形態によるエキスパンドモジュールおよびウエハ供給モジュールをX1方向側から見た側面図である。 一実施形態による第1構成例の半導体ウエハの加工装置の制御的な構成を示したブロック図である。 一実施形態による第1構成例の半導体ウエハの加工装置の半導体チップ製造処理の前半部分のフローチャートである。 一実施形態による第1構成例の半導体ウエハの加工装置の半導体チップ製造処理の後半部分のフローチャートである。 一実施形態による半導体ウエハの加工装置の第2構成例の平面図である。 一実施形態による半導体ウエハの加工装置の第3構成例の平面図である。 一実施形態による半導体ウエハの加工装置の第4構成例の平面図である。 一実施形態による半導体ウエハの加工装置の第5構成例の平面図である。 一実施形態によるウエハ搬送部の長さの変更を説明するための図である。 一実施形態によるダイシングモジュールのレーザ加工を説明するための図である。 一実施形態によるダイシングモジュールのストリートのレーザ加工および流し撮りを説明するための図である。 一実施形態によるダイシングモジュールの流し撮り画像を説明するための図である。 一実施形態によるダイシングモジュールの流し撮り画像に基づく輝度プロファイルを説明するための図である。 一実施形態の変形例によるエキスパンドモジュールの平面図である。 一実施形態の変形例によるエキスパンドモジュールをY2方向側から見た側面図である。 一実施形態の変形例によるエキスパンドモジュールをX1方向側から見た側面図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 図1~図19を参照して、本発明の一実施形態による半導体ウエハの加工装置100の構成について説明する。なお、半導体ウエハの加工装置100は、請求の範囲の「ウエハ加工装置」の一例である。
(半導体ウエハの加工装置)
 図1に示すように、半導体ウエハの加工装置100は、ウエハリング構造体W(図2参照)に設けられたウエハW1の加工を行う装置である。ここで、本実施形態では、半導体ウエハの加工装置100は、複数の半導体チップCh(図7参照)が形成されたウエハW1の互いに異なる種類の処理を行う複数のモジュール100aのうちから選択されたモジュール100aを備える。半導体ウエハの加工装置100は、複数のモジュール100aの各々の数を変更可能である。
 また、この半導体ウエハの加工装置100による半導体チップChの製造方法は、複数の半導体チップChが形成されたウエハW1の互いに異なる種類の処理を行う複数のモジュール100aのうちから選択されたモジュール100aを設置する工程と、設置したモジュール100aを用いて、ウエハW1の処理を行う工程と、を備え、複数のモジュール100aの各々の数を変更可能である。
 また、この半導体ウエハの加工装置100により製造される半導体チップChは、複数の半導体チップChが形成されたウエハW1の互いに異なる種類の処理を行う複数のモジュール100aのうちから選択されたモジュール100aを備え、複数のモジュール100aの各々の数を変更可能である半導体ウエハの加工装置100により製造される。
 また、本実施形態では、複数のモジュール100aは、ウエハW1をダイシングするダイシングモジュール1と、ウエハW1が貼り付けられたシート部材W2をエキスパンドするエキスパンドモジュール2と、ウエハW1を供給するウエハ供給モジュール3とを含んでいる。
 ここで、図2および図3を参照して、ウエハリング構造体Wに関して説明する。ウエハリング構造体Wは、ウエハW1と、シート部材W2と、リング状部材W3とを有している。
 ウエハW1は、半導体集積回路の材料となる半導体物質の結晶でできた円形の薄い板である。ウエハW1の内部には、半導体ウエハの加工装置100における加工により、分割ラインに沿って内部を改質させた改質層が形成されている。すなわち、ウエハW1は、分割ラインに沿って分割可能に加工される。シート部材W2は、伸縮性を有する粘着テープである。シート部材W2の上面W21には、粘着層が設けられている。シート部材W2には、粘着層にウエハW1が貼り付けられている。リング状部材W3は、平面視においてリング状の金属製のフレームである。リング状部材W3は、ウエハW1を囲んだ状態でシート部材W2の粘着層に貼り付けられている。
 以下では、上下方向をZ方向とし、上方向をZ1方向とするとともに、下方向をZ2方向とする。Z方向に直交するとともに、水平面内で互いに直交する2方向をそれぞれX方向およびY方向とする。X方向のうち一方側をX1方向とし、X方向のうち他方側をX2方向とする。Y方向のうち一方側をY1方向とし、Y方向のうち他方側をY2方向とする。
(第1構成例)
 図4に、半導体ウエハの加工装置100の第1構成例を示す。第1構成例の半導体ウエハの加工装置100は、ダイシングモジュール1と、エキスパンドモジュール2と、ウエハ供給モジュール3とをそれぞれ1つずつ備える。ダイシングモジュール1と、エキスパンドモジュール2と、ウエハ供給モジュール3とは、所定方向(X方向)に沿って連結されている。ダイシングモジュール1は、X2方向側に配置されている。エキスパンドモジュール2は、X1方向側に配置されている。ウエハ供給モジュール3は、X方向において、ダイシングモジュール1とエキスパンドモジュール2とに挟まれるように配置されている。また、第1構成例の半導体ウエハの加工装置100は、ダイシングモジュール1と、エキスパンドモジュール2と、ウエハ供給モジュール3との間で所定方向にウエハリング構造体W(ウエハW1)を搬送する共通の吸着ハンド部4を備える。なお、吸着ハンド部4は、請求の範囲の「ウエハ搬送部」の一例である。
(ダイシングモジュール)
 図4および図5に示すように、ダイシングモジュール1は、ウエハW1に対して透過性を有する波長のレーザを分割ライン(ストリート)に沿って照射することにより、改質層を形成するように構成されている。改質層とは、レーザによりウエハW1の内部に形成された亀裂およびボイドなどを示す。このように、ウエハW1に改質層を形成する手法をダイシング加工という。
 具体的には、ダイシングモジュール1は、ベース11と、チャックテーブル部12と、レーザ部13と、撮像部14とを含んでいる。
 ベース11は、チャックテーブル部12が設置される基台である。ベース11は、平面視において、矩形形状を有している。
〈チャックテーブル部〉
 チャックテーブル部12は、吸着部12aと、クランプ部12bと、回動機構12cと、テーブル移動機構12dとを有している。吸着部12aは、ウエハリング構造体WをZ1方向側の上面に吸着するように構成されている。吸着部12aは、ウエハリング構造体Wのリング状部材W3のZ2方向側の下面を吸着するために吸引孔および吸引管路などが設けられたテーブルである。吸着部12aは、回動機構12cを介してテーブル移動機構12dに支持されている。クランプ部12bは、吸着部12aの上端部に設けられている。クランプ部12bは、吸着部12aにより吸着されたウエハリング構造体Wを押さえるように構成されている。クランプ部12bは、吸着部12aにより吸着されたウエハリング構造体Wのリング状部材W3をZ1方向側から押さえている。このように、ウエハリング構造体Wは、吸着部12aおよびクランプ部12bにより把持されている。
 回動機構12cは、Z方向に平行に延びた回動中心軸線C回りの周方向に吸着部12aを回動させるように構成されている。回動機構12cは、テーブル移動機構12dの上端部に取り付けられている。テーブル移動機構12dは、ウエハリング構造体WをX方向およびY方向に移動させるように構成されている。テーブル移動機構12dは、X方向移動機構121と、Y方向移動機構122とを有している。X方向移動機構121は、X1方向またはX2方向に回動機構12cを移動させるように構成されている。X方向移動機構121は、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。Y方向移動機構122は、Y1方向またはY2方向に回動機構12cを移動させるように構成されている。Y方向移動機構122は、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
〈レーザ部〉
 レーザ部13は、チャックテーブル部12に把持されたウエハリング構造体WのウエハW1にレーザ光を照射するように構成されている。レーザ部13は、チャックテーブル部12のZ1方向側に配置されている。レーザ部13は、レーザ照射部13aと、取付部材13bと、Z方向移動機構13cとを有している。レーザ照射部13aは、パルスレーザ光を照射するように構成されている。取付部材13bは、レーザ部13および撮像部14が取り付けられるフレームである。Z方向移動機構13cは、Z1方向またはZ2方向にレーザ部13を移動させるように構成されている。Z方向移動機構13cは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。なお、レーザ照射部13aは、多光子吸収による改質層を形成できる限り、パルスレーザ光以外の、連続波レーザ光をレーザ光として発振するレーザ照射部であってもよい。
〈撮像部〉
 撮像部14は、チャックテーブル部12に把持されたウエハリング構造体WのウエハW1を撮像するように構成されている。撮像部14は、チャックテーブル部12のZ1方向側に配置されている。撮像部14は、高分解能カメラ14aと、広画角カメラ14bと、Z方向移動機構14cと、Z方向移動機構14dとを有している。
 高分解能カメラ14aおよび広画角カメラ14bは、近赤外線撮像用カメラである。高分解能カメラ14aは、広画角カメラ14bよりも視野角が狭い。高分解能カメラ14aは、広画角カメラ14bよりも分解能が高い。広画角カメラ14bは、高分解能カメラ14aよりも視野角が広い。広画角カメラ14bは、高分解能カメラ14aよりも分解能が低い。高分解能カメラ14aは、レーザ照射部13aのX1方向側に配置されている。広画角カメラ14bは、レーザ照射部13aのX2方向側に配置されている。このように、高分解能カメラ14a、レーザ照射部13aおよび広画角カメラ14bは、X1方向側からX2方向側に向かってこの順序で隣接して配置されている。
 Z方向移動機構14cは、Z1方向またはZ2方向に高分解能カメラ14aを移動させるように構成されている。Z方向移動機構14cは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。Z方向移動機構14dは、Z1方向またはZ2方向に広画角カメラ14bを移動させるように構成されている。Z方向移動機構14dは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
(エキスパンドモジュール)
 図4、図6および図7に示すように、エキスパンドモジュール2は、ウエハW1を分割して複数の半導体チップChを形成するように構成されている。また、エキスパンドモジュール2は、複数の半導体チップCh同士の間に十分な隙間を形成するように構成されている。ここで、ウエハW1には、ダイシングモジュール1において、ウエハW1に対して透過性を有する波長のレーザが分割ライン(ストリート)に沿って照射されることにより、改質層が形成されている。エキスパンドモジュール2では、ダイシングモジュール1において予め形成された改質層に沿ってウエハW1を分割することにより、複数の半導体チップChが形成されている。
 したがって、エキスパンドモジュール2では、シート部材W2をエキスパンドさせることにより、改質層に沿ってウエハW1が分割されることになる。また、エキスパンドモジュール2において、シート部材W2をエキスパンドさせることにより、分割されて形成された複数の半導体チップCh同士の隙間が広がることになる。
 エキスパンドモジュール2は、ベース205と、冷気供給部206と、冷却ユニット207と、エキスパンド部208と、ベース209と、拡張維持部材210と、ヒートシュリンク部211と、紫外線照射部212と、スキージ部213と、クランプ部214と、を含んでいる。
〈ベース〉
 ベース205は、エキスパンド部208、冷却ユニット207、紫外線照射部212およびスキージ部213が設置される基台である。ベース205は、平面視において、矩形形状を有している。なお、図7では、冷却ユニット207のZ1方向の位置に配置されたクランプ部214が点線で示されている。
〈冷気供給部〉
 冷気供給部206は、エキスパンド部208によりシート部材W2をエキスパンドさせる際、シート部材W2にZ1方向側から冷気を供給するように構成されている。
 具体的には、冷気供給部206は、供給部本体206aと、冷気供給口206bと、移動機構206cとを有している。冷気供給口206bは、冷気供給装置から供給される冷気を流出させるように構成されている。冷気供給口206bは、供給部本体206aのZ2方向側の端部に設けられている。冷気供給口206bは、供給部本体206aのZ2方向側の端部における中央部に配置されている。移動機構206cは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有している。
 冷気供給装置は、冷気を生成するための装置である。冷気供給装置は、たとえば、ヒートポンプなどにより冷却された空気を供給する。このような冷気供給装置は、ベース205に設置される。冷気供給部206と、冷気供給装置とは、ホース(図示せず)により接続されている。
〈冷却ユニット〉
 冷却ユニット207は、シート部材W2をZ2方向側から冷却するように構成されている。
 具体的には、冷却ユニット207は、冷却体271およびペルチェ素子272を有する冷却部材207aと、Z方向移動機構207bとを含んでいる。冷却体271は、熱容量が大きく、かつ、熱伝導率が高い部材により構成されている。冷却体271は、アルミニウムなどの金属により形成されている。ペルチェ素子272は、冷却体271を冷却するように構成されている。なお、冷却体271は、アルミニウムに限定されず、他の熱容量が大きく、かつ、熱伝導率が高い部材であってもよい。Z方向移動機構207bは、シリンダである。
 冷却ユニット207は、Z方向移動機構207bにより、Z1方向またはZ2方向に移動可能に構成されている。これにより、冷却ユニット207は、シート部材W2に接触する位置、および、シート部材W2から離間した位置に移動することが可能である。
〈エキスパンド部〉
 エキスパンド部208は、ウエハリング構造体Wのシート部材W2をエキスパンドすることにより、分割ラインに沿ってウエハW1を分割するように構成されている。
 具体的には、エキスパンド部208は、エキスパンドリング281を有している。エキスパンドリング281は、シート部材W2をZ2方向側から支持することにより、シート部材W2をエキスパンド(拡張)させるように構成されている。エキスパンドリング281は、平面視においてリング形状を有している。なお、エキスパンドリング281の構造については、後に詳細に説明する。
〈ベース〉
 ベース209は、冷気供給部206、拡張維持部材210およびヒートシュリンク部211が設置される基材である。
〈拡張維持部材〉
 図7および図8に示すように、拡張維持部材210は、加熱リング211aによる加熱によってウエハW1付近のシート部材W2が収縮しないように、シート部材W2をZ1方向側から押さえるように構成されている。
 具体的には、拡張維持部材210は、押圧リング部210aと、蓋部210bと、吸気部210cとを有している。押圧リング部210aは、平面視においてリング形状を有している。蓋部210bは、押圧リング部210aの開口を閉塞するように押圧リング部210aに設けられている。吸気部210cは、平面視において、リング形状を有する吸気リングである。吸気部210cのZ2方向側の下面には、複数の吸気口が形成されている。また、押圧リング部210aは、Z方向移動機構210dによりZ方向に移動するように構成されている。すなわち、Z方向移動機構210dは、シート部材W2を押さえる位置、および、シート部材W2から離れた位置に押圧リング部210aを移動させるように構成されている。Z方向移動機構210dは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
〈ヒートシュリンク部〉
 ヒートシュリンク部211は、エキスパンド部208によりエキスパンドされたシート部材W2を、複数の半導体チップCh同士の間の隙間を保持した状態で、加熱により収縮させるように構成されている。
 ヒートシュリンク部211は、加熱リング211aと、Z方向移動機構211bとを有している。加熱リング211aは、平面視において、リング形状を有している。また、加熱リング211aは、シート部材W2を加熱するシーズヒータを有している。Z方向移動機構211bは、加熱リング211aをZ方向に移動させるように構成されている。Z方向移動機構211bは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
〈紫外線照射部〉
 紫外線照射部212は、シート部材W2の粘着層の粘着力を低下させるために、シート部材W2に紫外線を照射するように構成されている。具体的には、紫外線照射部212は、紫外線用照明を有している。紫外線照射部212は、スキージ部213の後述する押圧部213aのZ1方向側の端部に配置されている。紫外線照射部212は、スキージ部213とともに移動しながら、シート部材W2に紫外線を照射するように構成されている。
〈スキージ部〉
 スキージ部213は、シート部材W2をエキスパンドさせた後、ウエハW1をZ2方向側から局所的に押圧することにより、ウエハW1を改質層に沿ってさらに分割させるように構成されている。具体的には、スキージ部213は、押圧部213aと、Z方向移動機構213bと、X方向移動機構213cと、回動機構213dとを有している。
 押圧部213aは、シート部材W2を介してZ2方向側からウエハW1を押圧しつつ、回動機構213dおよびX方向移動機構213cにより移動することによって、ウエハW1に曲げ応力を発生させて改質層に沿ってウエハW1を分割するように構成されている。押圧部213aがZ方向移動機構213bによりZ1方向側の上昇位置に上昇することにより、シート部材W2を介してウエハW1が押圧される。押圧部213aがZ方向移動機構213bによりZ2方向側に下降位置に下降することにより、ウエハW1が押圧されなくなる。押圧部213aは、スキージである。
 押圧部213aは、Z方向移動機構213bのZ1方向側の端部に取り付けられている。Z方向移動機構213bは、Z1方向またはZ2方向に直線的に押圧部213aを移動させるように構成されている。Z方向移動機構213bは、たとえば、シリンダである。Z方向移動機構213bは、X方向移動機構213cのZ1方向側の端部に取り付けられている。
 X方向移動機構213cは、回動機構213dのZ1方向側の端部に取り付けられている。X方向移動機構213cは、一方向に直線的に押圧部213aを移動させるように構成されている。X方向移動機構213cは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
 スキージ部213では、Z方向移動機構213bにより押圧部213aが上昇位置まで上昇される。スキージ部213では、シート部材W2を介してZ2方向側からウエハW1を押圧部213aが局所的に押圧しつつ、X方向移動機構213cにより押圧部213aがY方向に移動することにより、ウエハW1が分割される。スキージ部213では、Z方向移動機構213bにより押圧部213aが下降位置まで下降される。スキージ部213では、押圧部213aのY方向への移動が終了した後、回動機構213dにより押圧部213aが90度回動する。
 スキージ部213では、Z方向移動機構213bにより押圧部213aが上昇位置まで上昇される。スキージ部213では、押圧部213aが90度回動した後、シート部材W2を介してZ2方向側からウエハW1を押圧部213aが局所的に押圧しつつ、X方向移動機構213cにより押圧部213aがX方向に移動することにより、ウエハW1が分割される。
〈クランプ部〉
 クランプ部214は、ウエハリング構造体Wのリング状部材W3を把持するように構成されている。具体的には、クランプ部214は、把持部214aと、Z方向移動機構214bと、Y方向移動機構214cとを有している。把持部214aは、リング状部材W3をZ2方向側から支持するとともに、リング状部材W3をZ1方向側から押さえる。このように、リング状部材W3は、把持部214aにより把持される。把持部214aは、Z方向移動機構214bに取り付けられている。
 Z方向移動機構214bは、クランプ部214をZ方向に移動させるように構成されている。具体的には、Z方向移動機構214bは、把持部214aをZ1方向またはZ2方向に移動させるように構成されている。Z方向移動機構214bは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。Z方向移動機構214bは、Y方向移動機構214cに取り付けられている。Y方向移動機構214cは、Z方向移動機構214bをY1方向またはY2方向に移動させるように構成されている。Y方向移動機構214cは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。
(ウエハ供給モジュール)
 ウエハ供給モジュール3は、ベース201と、カセット部202と、リフトアップハンド部203と、を含んでいる。
〈ベース〉
 ベース201は、カセット部202およびリフトアップハンド部203が設置される基台である。ベース201は、平面視において、矩形形状を有している。
〈カセット部〉
 カセット部202は、複数のウエハリング構造体W(ウエハW1)を収容可能に構成されている。カセット部202は、ウエハカセット202aと、Z方向移動機構202bと、一対の載置部202cとを含んでいる。
 ウエハカセット202aは、Z方向に複数(3個)配置されている。ウエハカセット202aは、複数(5個)のウエハリング構造体Wを収容可能な収容空間を有している。ウエハカセット202aには、ウエハリング構造体Wが手作業によって供給および載置される。なお、ウエハカセット202aは、1~4個のウエハリング構造体Wを収容するか、または、6個以上のウエハリング構造体Wを収容してもよい。また、ウエハカセット202aは、Z方向に1、2、または、4個以上配置されてもよい。
 Z方向移動機構202bは、Z1方向またはZ2方向にウエハカセット202aを移動させるように構成されている。Z方向移動機構202bは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。また、Z方向移動機構202bは、ウエハカセット202aを下側から支持する載置台202dを有している。載置台202dは、複数のウエハカセット202aの位置に合わせて複数(3個)配置されている。
 一対の載置部202cは、ウエハカセット202aの内側に複数(5個)配置されている。一対の載置部202cには、ウエハリング構造体Wのリング状部材W3がZ1方向側から載置される。一対の載置部202cの一方は、ウエハカセット202aのX1方向側の内側面からX2方向側に突出している。一対の載置部202cの他方は、ウエハカセット202aのX2方向側の内側面からX1方向側に突出している。
〈リフトアップハンド部〉
 リフトアップハンド部203は、カセット部202からウエハリング構造体Wを取出可能に構成されている。また、リフトアップハンド部203は、カセット部202にウエハリング構造体Wを収容可能に構成されている。
 具体的には、リフトアップハンド部203は、Y方向移動機構203aと、リフトアップハンド203bとを含んでいる。Y方向移動機構203aは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。リフトアップハンド203bは、ウエハリング構造体Wのリング状部材W3をZ2方向側から支持するように構成されている。
(吸着ハンド部)
 吸着ハンド部4は、ウエハリング構造体Wのリング状部材W3をZ1方向側から吸着するように構成されている。
 具体的には、吸着ハンド部4は、X方向移動機構204aと、Z方向移動機構204bと、吸着ハンド204cとを含んでいる。X方向移動機構204aは、吸着ハンド204cをX方向に移動させるように構成されている。Z方向移動機構204bは、吸着ハンド204cをZ方向に移動させるように構成されている。X方向移動機構204aおよびZ方向移動機構204bは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。吸着ハンド204cは、ウエハリング構造体Wのリング状部材W3をZ1方向側から吸着して支持するように構成されている。ここで、吸着ハンド204cでは、負圧を発生させることにより、ウエハリング構造体Wのリング状部材W3が支持される。
(半導体ウエハの加工装置の制御的な構成)
 図8に示すように、第1構成例の半導体ウエハの加工装置100は、第1制御部101と、第2制御部102と、第3制御部103と、第4制御部104と、第5制御部105と、第6制御部106と、第7制御部107と、第8制御部108と、エキスパンド制御演算部109と、ハンドリング制御演算部110と、ダイシング制御演算部111とを備えている。
 第1制御部101は、スキージ部213を制御するように構成されている。第1制御部101は、CPU(Central Processing Unit)と、ROM(Read Only Memory)およびRAM(Random Access Memory)などを有する記憶部とを含んでいる。なお、第1制御部101は、記憶部として、電圧遮断後にも記憶された情報が保持されるHDD(Hard Disk Drive)などを含んでいてもよい。また、HDDは、第1制御部101、第2制御部102、第3制御部103、第4制御部104、第5制御部105、第6制御部106、第7制御部107、および、第8制御部108に対して共通に設けられていてもよい。
 第2制御部102は、冷気供給部206および冷却ユニット207を制御するように構成されている。第2制御部102は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。第3制御部103は、ヒートシュリンク部211および紫外線照射部212を制御するように構成されている。第3制御部103は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。なお、第2制御部102および第3制御部103は、記憶部として、電圧遮断後にも記憶された情報が保持されるHDDなどを含んでいてもよい。
 第4制御部104は、カセット部202およびリフトアップハンド部203を制御するように構成されている。第4制御部104は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。第5制御部105は、吸着ハンド部4を制御するように構成されている。第5制御部105は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。なお、第4制御部104および第5制御部105は、記憶部として、電圧遮断後にも記憶された情報が保持されるHDDなどを含んでいてもよい。
 第6制御部106は、チャックテーブル部12を制御するように構成されている。第6制御部106は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。第7制御部107は、レーザ部13を制御するように構成されている。第7制御部107は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。第8制御部108は、撮像部14を制御するように構成されている。第8制御部108は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。なお、第6制御部106、第7制御部107および第8制御部108は、記憶部として、電圧遮断後にも記憶された情報が保持されるHDDなどを含んでいてもよい。
 エキスパンド制御演算部109は、第1制御部101、第2制御部102および第3制御部103の処理結果に基づいて、シート部材W2のエキスパンド処理に関する演算を行うように構成されている。エキスパンド制御演算部109は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。
 ハンドリング制御演算部110は、第4制御部104および第5制御部105の処理結果に基づいて、ウエハリング構造体Wの移動処理に関する演算を行うように構成されている。ハンドリング制御演算部110は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。
 ダイシング制御演算部111は、第6制御部106、第7制御部107および第8制御部108の処理結果に基づいて、ウエハW1のダイシング処理に関する演算を行うように構成されている。ダイシング制御演算部111は、CPUと、ROMおよびRAMなどを有する記憶部とを含んでいる。
 記憶部112は、ダイシングモジュール1、エキスパンドモジュール2、ウエハ供給モジュール3および吸着ハンド部4を動作させるためのプログラムが記憶されている。記憶部112は、ROM、RAMおよびHDDなどを含んでいる。
(半導体チップ製造処理)
 図9および図10を参照して、第1構成例の半導体ウエハの加工装置100の全体的な動作について以下に説明する。
 ステップS1において、カセット部202からウエハリング構造体Wが取り出される。すなわち、カセット部202内に収容されたウエハリング構造体Wをリフトアップハンド203bにより支持した後、Y方向移動機構203aによりリフトアップハンド203bがY1方向側に移動することによって、カセット部202からウエハリング構造体Wが取り出される。ステップS2において、吸着ハンド204cによりウエハリング構造体Wが、ダイシングモジュール1のチャックテーブル部12に移載される。すなわち、カセット部202から取り出されたウエハリング構造体Wは、吸着ハンド204cにより吸着された状態で、X方向移動機構204aによりX2方向側に移動する。そして、X2方向側に移動したウエハリング構造体Wは、吸着ハンド204cからチャックテーブル部12に移載された後、チャックテーブル部12により把持される。
 ステップS3において、レーザ部13によりウエハW1に改質層が形成される。ステップS4において、吸着ハンド204cにより改質層が形成されたウエハW1を有するウエハリング構造体Wがクランプ部214に移載される。ステップS5において、冷気供給部206および冷却ユニット207によりシート部材W2が冷却される。すなわち、Z方向移動機構214bによりクランプ部214に把持されたウエハリング構造体WをZ2方向に移動(下降)させて冷却ユニット207に接触させるとともに、冷気供給部206によりZ1方向側から冷気を供給することによって、シート部材W2が冷却される。
 ステップS6において、クランプ部214によりエキスパンド部208にウエハリング構造体Wが移動する。すなわち、シート部材W2が冷却されたウエハリング構造体Wが、クランプ部214に把持された状態で、Y方向移動機構214cによりY1方向に移動する。ステップS7において、エキスパンド部208によりシート部材W2がエキスパンドされる。すなわち、ウエハリング構造体Wが、クランプ部214に把持された状態で、Z方向移動機構214bによりZ2方向に移動する。そして、シート部材W2が、エキスパンドリング281に当接するとともに、エキスパンドリング281により引っ張られることによって、エキスパンドされる。これにより、ウエハW1が分割ライン(改質層)に沿って分割される。
 ステップS8において、拡張維持部材210により、エキスパンドされた状態のシート部材W2がZ1方向側から押さえられる。すなわち、押圧リング部210aが、Z方向移動機構210dによりシート部材W2に当接するまでZ2方向に移動(下降)する。そして、図9のA点から図10のA点を介してステップS9に進む。
 図10に示すように、ステップS9において、拡張維持部材210によりシート部材W2が押さえられた後、スキージ部213によりウエハW1を押圧しながら、紫外線照射部212によりシート部材W2に紫外線を照射する。これにより、ウエハW1が、スキージ部213によりさらに分割される。また、シート部材W2の粘着力が、紫外線照射部212から照射される紫外線により低下する。
 ステップS10において、ヒートシュリンク部211によりシート部材W2が加熱されて収縮されつつ、クランプ部214が上昇する。この際、吸気部210cが、加熱されているシート部材W2付近の空気を吸い込む。ステップS11において、ウエハリング構造体Wがクランプ部214から吸着ハンド204cに移載される。すなわち、ウエハリング構造体Wが、クランプ部214に把持された状態で、Y方向移動機構214cによりY2方向に移動する。そして、ウエハリング構造体Wが、冷却ユニット207のZ1方向側の位置において、クランプ部214による把持が解除された後、吸着ハンド204cにより吸着される。
 ステップS12において、吸着ハンド204cによりリフトアップハンド203bにウエハリング構造体Wが移載される。ステップS13において、ウエハリング構造体Wが、カセット部202に収容される。すなわち、リフトアップハンド203bにより支持されたウエハリング構造体Wは、Y方向移動機構203aによってY1方向側に移動させることによって、カセット部202にウエハリング構造体Wが収容される。これらにより、1枚のウエハリング構造体Wに対して行われる処理が終了する。そして、図10のB点から図9のB点を介してステップS1に戻る。
(第2構成例)
 図11に、半導体ウエハの加工装置100の第2構成例を示す。第2構成例の半導体ウエハの加工装置100は、エキスパンドモジュール2と、ウエハ供給モジュール3とをそれぞれ1つずつ備える。エキスパンドモジュール2と、ウエハ供給モジュール3とは、所定方向(X方向)に沿って連結されている。エキスパンドモジュール2は、X1方向側に配置されている。ウエハ供給モジュール3は、X2方向側に配置されている。また、第2構成例の半導体ウエハの加工装置100は、エキスパンドモジュール2と、ウエハ供給モジュール3との間で所定方向にウエハリング構造体W(ウエハW1)を搬送する共通の吸着ハンド部4を備える。
(第3構成例)
 図12に、半導体ウエハの加工装置100の第3構成例を示す。第3構成例の半導体ウエハの加工装置100は、ダイシングモジュール1と、ウエハ供給モジュール3とをそれぞれ1つずつ備える。ダイシングモジュール1と、ウエハ供給モジュール3とは、所定方向(X方向)に沿って連結されている。ダイシングモジュール1は、X2方向側に配置されている。ウエハ供給モジュール3は、X1方向側に配置されている。また、第3構成例の半導体ウエハの加工装置100は、ダイシングモジュール1と、ウエハ供給モジュール3との間で所定方向にウエハリング構造体W(ウエハW1)を搬送する共通の吸着ハンド部4を備える。
(第4構成例)
 図13に、半導体ウエハの加工装置100の第4構成例を示す。第4構成例の半導体ウエハの加工装置100は、ダイシングモジュール1を1つ備える。ダイシングモジュール1には、作業者により手動でウエハリング構造体W(ウエハW1)が供給される。
(第5構成例)
 図14に、半導体ウエハの加工装置100の第5構成例を示す。第5構成例の半導体ウエハの加工装置100は、2つのダイシングモジュール1と、1つのエキスパンドモジュール2と、2つのウエハ供給モジュール3とを備える。半導体ウエハの加工装置100では、同じ種類の2つのダイシングモジュール1と、同じ種類の2つのウエハ供給モジュール3とが配置されている。また、2つのダイシングモジュール1と、1つのエキスパンドモジュール2と、2つのウエハ供給モジュール3とは、所定方向(X方向)に沿って連結されている。
 2つのダイシングモジュール1のうちの一方は、最もX2方向側に配置されている。2つのダイシングモジュール1のうちの他方は、最もX1方向側に配置されている。半導体ウエハの加工装置100では、同じ種類の2つのダイシングモジュール1が、他の種類のエキスパンドモジュール2およびウエハ供給モジュール3を挟んで一方側と他方側とに配置されている。エキスパンドモジュール2と、2つのウエハ供給モジュール3とは、2つのダイシングモジュール1の間に、X1方向側からX2方向側に向かってこの順に配置されている。また、第5構成例の半導体ウエハの加工装置100は、2つのダイシングモジュール1と、1つのエキスパンドモジュール2と、2つのウエハ供給モジュール3との間で所定方向(X方向)にウエハリング構造体W(ウエハW1)を搬送する共通の吸着ハンド部4を備える。
 上記第5構成例で説明したように、本実施形態では、半導体ウエハの加工装置100は、同じ種類のモジュール100aを2つ以上配置可能である。また、本実施形態では、半導体ウエハの加工装置100は、同じ種類のモジュール100aを他の種類のモジュール100aを挟んで一方側と他方側とに配置可能である。また、上記第1~第3および第5構成例で説明したように、本実施形態では、半導体ウエハの加工装置100は、複数のモジュール100aのうちから選択された複数のモジュール100a間で所定方向(X方向)にウエハリング構造体W(ウエハW1)を搬送する共通の吸着ハンド部4を備える。吸着ハンド部4のX方向移動機構204aは、複数のモジュール100aのうちから選択されて所定方向に沿って連結された複数のモジュール100aの全てに跨るように配置されている。
〈吸着ハンド部の長さの変更〉
 また、本実施形態では、吸着ハンド部4は、複数のモジュール100aのうちから選択された所定方向(X方向)に沿って連結される複数のモジュール100aの数に応じて、所定方向の長さを変更可能である。具体的には、吸着ハンド部4は、複数のモジュール100aのうちから選択されて所定方向に沿って連結される複数のモジュール100aの数に応じて、X方向移動機構204aの長さを変更可能である。
 図15に示すように、X方向移動機構204aは、リニアコンベアモジュール40を有する。リニアコンベアモジュール40は、スライダ50を所定方向(X方向)に移動させる搬送装置である。リニアコンベアモジュール40は、所定方向に延びるリニアモータ固定子を有する。スライダ50は、リニアモータ可動子を有する。リニアモータ固定子とリニアモータ可動子とにより、リニアモータが構成される。また、リニアコンベアモジュール40のリニアモータ固定子とスライダ50のリニアモータ可動子との間の磁気的な相互作用によって、スライダ50を所定方向に移動させる磁気的な推進力が生成される。なお、スライダ50には、Z方向移動機構204bを介して吸着ハンド204cが接続されている。
 リニアコンベアモジュール40は、連結部材61を介して所定方向に複数連結可能に構成されている。連結されるリニアコンベアモジュール40の数を変更することにより、X方向移動機構204aの長さ(吸着ハンド204cが所定方向に移動可能な長さ)を変更可能である。リニアコンベアモジュール40は、連結部材61が取り付けられる取付部41を有する。取付部41は、リニアコンベアモジュール40のX方向の両端にそれぞれ設けられている。また、連結されるリニアコンベアモジュール40のうち、最も端に配置されるリニアコンベアモジュール40の端側の取付部41には、エンド部材62が取り付けられる。
〈ダイシングとエキスパンドとの独立並行制御〉
 ここで、上記第1構成例の半導体ウエハの加工装置100の動作説明では、1つのウエハリング構造体Wに対してダイシング(改質層の形成)とエキスパンドとを連続して行う例について説明した。しかしながら、ダイシングのサイクルタイムと、エキスパンドのサイクルタイムとが全く異なる場合に、ダイシングとエキスパンドとを連続して行う場合、サイクルタイムの不一致に起因して大きなロス時間(モジュールの停止時間)が発生する。
 そこで、本実施形態では、ダイシングモジュール1と、エキスパンドモジュール2とを含む上記第1構成例などの場合、半導体ウエハの加工装置100は、ダイシングする(改質層を形成する)ウエハW1(以下、第1ウエハW1という)とエキスパンドするウエハW1(以下、第2ウエハW1という)とをそれぞれダイシングモジュール1とエキスパンドモジュール2とに独立して供給し、ダイシングモジュール1による第1ウエハW1のダイシング(改質層の形成)と、エキスパンドモジュール2による第2ウエハW1のシート部材W2のエキスパンドとを、独立してかつ並行して行うように構成されている。
 この場合、ウエハ供給モジュール3の複数のウエハカセット202aは、第1ウエハW1を含むウエハリング構造体Wのみが配置されるウエハカセット202a(以下、第1ウエハカセット202aという)と、第2ウエハW1を含むウエハリング構造体Wのみが配置されるウエハカセット202a(以下、第2ウエハカセット202aという)を含む。
 ウエハ供給モジュール3は、第1ウエハカセット202aから、ダイシングされていない第1ウエハW1を含むウエハリング構造体Wを、吸着ハンド部204を介して、ダイシングモジュール1に供給するように構成されている。ダイシングモジュール1は、供給されたウエハリング構造体Wの第1ウエハW1に改質層を形成するように構成されている。また、ダイシングモジュール1は、改質層が形成された第1ウエハW1を含むウエハリング構造体Wを、吸着ハンド部204を介して、ウエハ供給モジュール3の第1ウエハカセット202aに返却するように構成されている。この際、改質層が形成された第1ウエハW1を含むウエハリング構造体Wは、エキスパンドモジュール2に供給されない。
 同様に、ウエハ供給モジュール3は、第2ウエハカセット202aから、改質層が形成されているがエキスパンドされていない第2ウエハW1を含むウエハリング構造体Wを、吸着ハンド部204を介して、エキスパンドモジュール2に供給するように構成されている。エキスパンドモジュール2は、供給されたウエハリング構造体Wのシート部材W2をエキスパンドするように構成されている。また、エキスパンドモジュール2は、エキスパンドされたシート部材W2および分割された第2ウエハW1を含むウエハリング構造体Wを、吸着ハンド部204を介して、ウエハ供給モジュール3の第2ウエハカセット202aに返却するように構成されている。これらのように、第1ウエハW1の改質層の形成と、第2ウエハW1のシート部材W2のエキスパンドとが独立してかつ並行して行われる。
〈ダイシング〉
 図16に示すように、ダイシングモジュール1は、ウエハW1の一方側(Y2方向側)からストリートStに対してレーザ加工を行うことと、ウエハW1の他方側(Y1方向側)からストリートStに対してレーザ加工を行うこととを繰り返すように構成されている。なお、図16では、レーザ加工が行われたストリートStのみを示している。また、図16では、一方向のストリートStに対してレーザ加工が行われる例を示しているが、ウエハW1の姿勢を回動機構12cにより90度回動させた状態で、一方向に直交する他方向のストリートStに対するレーザ加工も行われる。
 また、ダイシングモジュール1は、ウエハW1をX方向移動機構121によりX方向に移動させることにより、レーザ部13によるレーザ光をストリートStに対してX方向に相対的に移動させて、1本のストリートStに対するレーザ加工を行うように構成されている。また、ダイシングモジュール1は、ウエハW1をY方向移動機構122によりY方向に移動させることにより、レーザ部13を次のストリートStの上方位置に相対的に移動させるように構成されている。
 ここで、ストリートStに対するレーザ加工を行った場合、ウエハW1の内部に改質層が形成される。この際、改質層の形成によりウエハW1がY方向に微小に拡大するため、ストリートStがY方向に位置ずれする。このため、レーザ加工によるストリートStの位置ずれを補正することが行われる。ストリートStの位置ずれの補正とは、たとえば、撮像部14によりウエハW1の表面を撮像することによりストリートStの位置ずれ量を取得し、取得したストリートStの位置ずれ量がしきい値以上になった場合に、チャックテーブル部12によりウエハW1を移動させて、ストリートStの位置を補正することである。
 そこで、上記のように、ウエハW1の一方側(Y2方向側)からストリートStに対してレーザ加工を行うことと、ウエハW1の他方側(Y1方向側)からストリートStに対してレーザ加工を行うこととを繰り返すように、ダイシングを行うと、ウエハW1の一方側からレーザ加工を行った際のストリートStの位置ずれの影響と、ウエハW1の他方側からレーザ加工を行った際のストリートStの位置ずれの影響とが互いに打ち消す方向に作用するため、レーザ加工によるストリートStの位置ずれを低減することが可能である。その結果、ストリートStの位置ずれを補正する回数を少なくすることが可能である。
 また、本実施形態では、図17~図19に示すように、ダイシングモジュール1は、撮像部14によりウエハW1を撮像し、撮像部14によるウエハW1の撮像結果に基づいて、レーザ加工によるストリートStの位置ずれ量Amを取得し、ストリートStの位置ずれ量Amに基づいて、ウエハW1の一方側から他方側または他方側から一方側に、レーザ加工の位置を変更するように構成されている。すなわち、ダイシングモジュール1は、ストリートStの位置ずれ量Amに基づいて、ウエハW1の一方側から他方側または他方側から一方側へのレーザ加工の位置の変更タイミングを決定するように構成されている。
 具体的には、ダイシングモジュール1は、レーザ部13によるレーザ光をストリートStに対してX方向に相対的に移動させて、ストリートStに対するレーザ加工を行いながら、レーザ部13と共にストリートStに対してX方向に相対的に移動される高分解能カメラ14aおよび広画角カメラ14bのうちの未加工側の方を露光させ続けることにより流し撮り画像Gを取得するように構成されている。たとえば、X1方向側からX2方向側に向かってレーザ加工が行われる場合、レーザ部13に対してX2方向側に配置された高分解能カメラ14aにより流し撮り画像Gが取得される。また、X2方向側からX1方向側に向かってレーザ加工が行われる場合、レーザ部13に対してX1方向側に配置された広画角カメラ14bにより流し撮り画像Gが取得される。流し撮り画像Gとして、未加工のストリートStを写した画像が取得される。
 なお、高分解能カメラ14aまたは広画角カメラ14bの露光は、1本のストリートStの全区間で行われてもよいし、1本のストリートStの一部区間で行われてもよい。また、流し撮り画像Gの取得は、ストリートStの1本ごとに行われてもよいし、ストリートStの複数本(2本など)ごとに行われてもよい。2本ごとなどの偶数本ごとに行う場合には、高分解能カメラ14aまたは広画角カメラ14bのいずれか一方のみにより、流し撮り画像Gが取得される。
 ダイシングモジュール1は、X方向およびY方向に画素が並ぶ2次元画像である流し撮り画像Gの画素の輝度をX方向に平均化処理することにより、Y方向に画素が並ぶ1次元画像を取得するとともに、取得した1次元画像による輝度プロファイルPを取得するように構成されている。また、ダイシングモジュール1は、輝度プロファイルPに基づいて、輝度プロファイルPのストリートStに対応する部分StcのY方向の中心位置を、ストリートStのY方向の中心位置Psとして取得するように構成されている。また、ダイシングモジュール1は、ストリートStのY方向の中心位置Psと、カメラ(高分解能カメラ14aまたは広画角カメラ14b)のY方向の中心位置Pc(すなわち、輝度プロファイルPのY方向の中心位置)との間の距離を、ストリートStの位置ずれ量Amとして取得するように構成されている。
 ダイシングモジュール1は、たとえば、ストリートStの位置ずれ量Amがしきい値以上の場合、ウエハW1の一方側から他方側または他方側から一方側に、レーザ加工の位置を変更するように構成されている。すなわち、ダイシングモジュール1は、ウエハW1の一方側からストリートStに対してレーザ加工を行っている場合に、ストリートStの位置ずれ量Amがしきい値以上であることが検出された場合、ウエハW1の一方側から他方側にレーザ加工の位置を変更し、ウエハW1の他方側からストリートStに対してレーザ加工を行うように構成されている。また、ダイシングモジュール1は、ウエハW1の他方側からストリートStに対してレーザ加工を行っている場合に、ストリートStの位置ずれ量Amがしきい値以上であることが検出された場合、ウエハW1の他方側から一方側に、レーザ加工の位置を変更し、ウエハW1の一方側からストリートStに対してレーザ加工を行うように構成されている。なお、しきい値は、上記位置ずれの補正のしきい値よりも小さく、上記位置ずれの補正を必要としないタイミングで、レーザ加工の位置が変更される。
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、半導体ウエハの加工装置100は、複数のモジュール100aの各々の数を変更可能である。これにより、複数のモジュール100aの各々の数を変更可能であるので、たとえば、ウエハW1の加工品である製品ごとに各処理のサイクルタイムの大きさが異なる場合に、製品ごとの各処理のサイクルタイムに応じた設備構成に変更することができる。また、たとえば、作業者が少ない夜間に無人運転時間の長さを大きくしたいなど、無人運転時間の長さを変更したいユーザの要望がある場合に、ユーザの要望に応じた設備構成に変更することができる。その結果、製品やユーザの要望によって最適な設備構成が異なる場合にも、最適な設備構成を構築することができる。
 また、本実施形態では、上記のように、複数のモジュール100aは、ウエハW1をダイシングするダイシングモジュール1と、ウエハW1が貼り付けられたシート部材W2をエキスパンドするエキスパンドモジュール2と、ウエハW1を供給するウエハ供給モジュール3とを含む。これにより、ダイシングモジュール1と、エキスパンドモジュール2と、ウエハ供給モジュール3との数を、製品やユーザの要望などに応じて、変更することができる。
 また、本実施形態では、上記のように、同じ種類のモジュール100aを2つ以上配置可能である。これにより、同じ種類のモジュール100aを2つ以上配置することにより、2つ以上配置したモジュール100aの処理量を増加させることができるので、2つ以上配置したモジュール100aの処理のサイクルタイムが大きい場合に、サイクルタイムの大きさの不均衡を容易に調整することができる。
 また、本実施形態では、上記のように、同じ種類のモジュール100aを他の種類のモジュール100aを挟んで一方側と他方側とに配置可能である。これにより、同じ種類のモジュール100aを隣接させてしか配置できない場合と比べて、モジュール100aの配置の自由度を向上させることができる。
 また、本実施形態では、上記のように、モジュール100aは、所定方向に沿って連結される。これにより、モジュール100aが所定方向に沿って連結されるので、所定方向以外の方向に装置が大型化することを抑制することができる。
 また、本実施形態では、上記のように、半導体ウエハの加工装置100は、複数のモジュール100aのうちから選択された複数のモジュール100a間で所定方向にウエハW1を搬送する共通の吸着ハンド部4を備える。これにより、複数のモジュール100a間で吸着ハンド部4が共通であるので、モジュール100aごとに吸着ハンド部4を設ける場合に比べて、構造の複雑化を抑制することができる。
 また、本実施形態では、上記のように、吸着ハンド部4は、複数のモジュール100aのうちから選択されて所定方向に沿って連結される複数のモジュール100aの数に応じて、所定方向の長さを変更可能である。これにより、モジュール100aの数の増減に応じて、吸着ハンド部4の長さを適切に変更することができるので、複数のモジュール100a間で共通の吸着ハンド部4を設ける構成を容易に実現することができる。
 また、本実施形態では、上記のように、モジュール100aは、ウエハW1をダイシングするダイシングモジュール1と、ウエハW1が貼り付けられたシート部材W2をエキスパンドするエキスパンドモジュール2とを含み、ダイシングする第1ウエハW1とエキスパンドする第2ウエハW1とをそれぞれダイシングモジュール1とエキスパンドモジュール2とに独立して供給し、ダイシングモジュール1による第1ウエハW1のダイシングと、エキスパンドモジュール2による第2ウエハW1のシート部材W2のエキスパンドとを、独立してかつ並行して行うように構成されている。これにより、ダイシングのサイクルタイムと、エキスパンドのサイクルタイムとが全く異なる場合にも、停止時間を発生させずに、ダイシングとエキスパンドとを円滑に行うことができる。
 また、本実施形態では、上記のように、モジュール100aは、ウエハW1をダイシングするダイシングモジュール1を含み、ダイシングモジュール1は、ウエハW1を撮像する撮像部14を有し、ダイシングモジュール1は、ウエハW1の一方側からストリートStに対してレーザ加工を行うことと、ウエハW1の他方側からストリートStに対してレーザ加工を行うこととを繰り返す場合において、撮像部14によりウエハW1を撮像し、撮像部14によるウエハW1の撮像結果に基づいて、レーザ加工によるストリートStの位置ずれ量Amを取得し、ストリートStの位置ずれ量Amに基づいて、ウエハW1の一方側から他方側または他方側から一方側に、レーザ加工の位置を変更する、ように構成されている。これにより、ウエハW1の一方側からストリートStに対してレーザ加工を行うことと、ウエハW1の他方側からストリートStに対してレーザ加工を行うこととを繰り返すことで、単に一方側または他方側からレーザ加工を行う場合と比べて、レーザ加工によるストリートStの位置ずれを低減することができるので、レーザ加工によるストリートStの位置ずれを補正する回数を少なくすることができる。また、ストリートStの位置ずれ量Amに基づいて、ウエハW1の一方側から他方側または他方側から一方側に、レーザ加工の位置を変更することで、ストリートStの位置ずれ量Amが増加し始めた効果的なタイミングで、レーザ加工の位置を変更することができるので、ストリートStの位置ずれを補正する回数をより少なくすることができる。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、スキージ部がエキスパンドリングの内側に配置されている例を示したが、本発明はこれに限られない。たとえば、図20~図22に示す変形例のエキスパンドモジュール302は、ベース205と、冷気供給部206と、冷却ユニット207と、エキスパンド部3208と、ベース209と、拡張維持部材210と、ヒートシュリンク部211と、紫外線照射部212と、スキージ部3213と、クランプ部214とを含んでいる。
〈エキスパンド部〉
 エキスパンド部3208は、ウエハリング構造体Wのシート部材W2をエキスパンドすることにより、分割ラインに沿ってウエハW1を分割するように構成されている。
 具体的には、エキスパンド部3208は、エキスパンドリング3281と、Z方向移動機構3282とを有している。
 エキスパンドリング3281は、シート部材W2をZ2方向側から支持することにより、シート部材W2をエキスパンド(拡張)させるように構成されている。エキスパンドリング3281は、平面視においてリング形状を有している。Z方向移動機構3282は、エキスパンドリング3281をZ1方向またはZ2方向に移動させるように構成されている。Z方向移動機構3282は、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。Z方向移動機構3282は、ベース205に取り付けられている。
〈スキージ部〉
 スキージ部3213は、シート部材W2をエキスパンドさせた後、ウエハW1をZ2方向側から押圧することにより、ウエハW1を改質層に沿ってさらに分割させるように構成されている。具体的には、スキージ部3213は、押圧部3213aと、X方向移動機構3213bと、Z方向移動機構3213cと、回動機構3213dとを有している。
 押圧部3213aは、Z方向移動機構3213cによりZ1方向に移動した後、シート部材W2を介してZ2方向側からウエハW1を押圧しつつ、回動機構3213dおよびX方向移動機構3213bにより移動することによって、ウエハW1に曲げ応力を発生させて改質層に沿ってウエハW1を分割するように構成されている。押圧部3213aは、スキージである。押圧部3213aは、回動機構3213dのZ1方向側の端部に取り付けられている。Z方向移動機構3213cは、回動機構3213dをZ1方向またはZ2方向に移動させるように構成されている。Z方向移動機構3213cは、たとえば、シリンダを有している。Z方向移動機構3213cは、X方向移動機構3213bのZ1方向側の端部に取り付けられている。X方向移動機構3213bは、たとえば、リニアコンベアモジュール、または、ボールねじおよびエンコーダ付きモータを有する駆動部を有している。X方向移動機構3213bは、ベース205のZ1方向側の端部に取り付けられている。
 スキージ部3213では、Z方向移動機構3213cによりZ1方向に移動した後、シート部材W2を介してZ2方向側からウエハW1を押圧部3213aが押圧しつつ、X方向移動機構3213bにより押圧部3213aがY方向に移動することにより、ウエハW1が分割される。また、スキージ部3213では、押圧部3213aのY方向への移動が終了した後、回動機構3213dにより押圧部3213aが90度回動する。また、スキージ部3213では、押圧部3213aが90度回動した後、シート部材W2を介してZ2方向側からウエハW1を押圧部3213aが押圧しつつ、X方向移動機構3213bにより押圧部3213aがX方向に移動することにより、ウエハW1が分割される。
 また、上記実施形態では、モジュールが、ダイシングモジュールと、エキスパンドモジュールと、ウエハ供給モジュールとを含む例を示したが、本発明はこれに限られない。本発明では、モジュールが、ダイシングモジュールと、エキスパンドモジュールと、ウエハ供給モジュールと、ウエハをレーザアブレーションするアブレーションレーザモジュールと、ウエハを洗浄する洗浄モジュールと、ウエハをグラインディングするグラインディングモジュールと、のうちの少なくとも1つを含んでいてもよい。これにより、ダイシングモジュールと、エキスパンドモジュールと、ウエハ供給モジュールと、アブレーションレーザモジュールと、洗浄モジュールと、グラインディングモジュールとのうちの少なくとも1つの数を、製品やユーザの要望などに応じて、変更することができる。
 なお、アブレーションレーザモジュールは、ウエハに対してレーザ照射部によりレーザ光を照射することにより、ウエハの表面を溶融・昇華させるレーザアブレーションを行うように構成されている。また、洗浄モジュールは、ウエハに対して洗浄液供給部により洗浄液を供給することにより、ウエハの表面の汚れを洗浄するように構成されている。また、グラインディングモジュールは、ウエハに対してグラインド部により研削を行うことにより、ウエハの厚みを薄くするグラインディングを行うように構成されている。
 また、上記実施形態では、半導体ウエハの加工装置が、リング状部材が設けられたウエハリング構造体のウエハの処理を行う例を示したが、本発明はこれに限られない。本発明では、半導体ウエハの加工装置が、リング状部材が設けられていないウエハ構造体(ウエハとシート部材とのみを含む構造体)のウエハの処理を行ってもよい。
 また、上記実施形態では、同じ種類のモジュールを2つ以上配置可能である例を示したが、本発明はこれに限られない。本発明では、同じ種類のモジュールを1つのみ配置可能であってもよい。
 また、上記実施形態では、ダイシングモジュールとウエハ供給モジュールとが2つずつ設けられる例を示したが、本発明はこれに限られない。本発明では、ダイシングモジュールと、エキスパンドモジュールと、ウエハ供給モジュールと、アブレーションレーザモジュールと、洗浄モジュールと、グラインディングモジュールとは、いくつ設けられていてもよい。
 また、上記実施形態では、ウエハ搬送部が、モジュール間で共通である例を示したが、本発明はこれに限られない。本発明では、ウエハ搬送部が、モジュールごとに設けられていてもよい。
 また、上記実施形態では、ウエハ搬送部が、吸着ハンド部により構成されている例を示したが、本発明はこれに限られない。本発明では、ウエハ搬送部が、吸着ハンド部以外のウエハ搬送部により構成されていてもよい。
 また、上記実施形態では、モジュールが、所定方向に沿って連結される例を示したが、本発明はこれに限られない。本発明では、モジュールが、所定方向および所定方向に直交する方向に沿って連結されてもよい。
 また、上記実施形態では、説明の便宜上、制御処理を、処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明した例について示したが、本発明はこれに限られない。本発明では、制御処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。
 1 ダイシングモジュール
 2 エキスパンドモジュール
 3 ウエハ供給モジュール
 4 吸着ハンド部(ウエハ搬送部)
 14 撮像部
 100 半導体ウエハの加工装置(ウエハ加工装置)
 100a モジュール
 Am 位置ずれ量
 Ch 半導体チップ
 St ストリート
 W1 ウエハ(第1ウエハ、第2ウエハ)
 W2 シート部材

Claims (11)

  1.  複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを備え、
     前記複数のモジュールの各々の数を変更可能である、ウエハ加工装置。
  2.  前記複数のモジュールは、
      前記ウエハをダイシングするダイシングモジュールと、
      前記ウエハが貼り付けられたシート部材をエキスパンドするエキスパンドモジュールと、
      前記ウエハを供給するウエハ供給モジュールと、
      前記ウエハをレーザアブレーションするアブレーションレーザモジュールと、
      前記ウエハを洗浄する洗浄モジュールと、
      前記ウエハをグラインディングするグラインディングモジュールと、
     のうちの少なくとも1つを含む、請求項1に記載のウエハ加工装置。
  3.  同じ種類の前記モジュールを2つ以上配置可能である、請求項1に記載のウエハ加工装置。
  4.  同じ種類の前記モジュールを他の種類の前記モジュールを挟んで一方側と他方側とに配置可能である、請求項3に記載のウエハ加工装置。
  5.  前記モジュールは、所定方向に沿って連結される、請求項1に記載のウエハ加工装置。
  6.  前記複数のモジュールのうちから選択された複数の前記モジュール間で前記所定方向に前記ウエハを搬送する共通のウエハ搬送部をさらに備える、請求項5に記載のウエハ加工装置。
  7.  前記ウエハ搬送部は、前記複数のモジュールのうちから選択されて前記所定方向に沿って連結される複数の前記モジュールの数に応じて、前記所定方向の長さを変更可能である、請求項6に記載のウエハ加工装置。
  8.  前記モジュールは、前記ウエハをダイシングするダイシングモジュールと、前記ウエハが貼り付けられたシート部材をエキスパンドするエキスパンドモジュールとを含み、
     ダイシングする第1ウエハとエキスパンドする第2ウエハとをそれぞれ前記ダイシングモジュールと前記エキスパンドモジュールとに独立して供給し、前記ダイシングモジュールによる前記第1ウエハのダイシングと、前記エキスパンドモジュールによる前記第2ウエハの前記シート部材のエキスパンドとを、独立してかつ並行して行うように構成されている、請求項1に記載のウエハ加工装置。
  9.  前記モジュールは、前記ウエハをダイシングするダイシングモジュールを含み、
     前記ダイシングモジュールは、前記ウエハを撮像する撮像部を有し、
     前記ダイシングモジュールは、
      前記ウエハの一方側からストリートに対してレーザ加工を行うことと、前記ウエハの他方側から前記ストリートに対してレーザ加工を行うこととを繰り返す場合において、
      前記撮像部により前記ウエハを撮像し、
      前記撮像部による前記ウエハの撮像結果に基づいて、レーザ加工による前記ストリートの位置ずれ量を取得し、
      前記ストリートの位置ずれ量に基づいて、前記ウエハの一方側から他方側または他方側から一方側に、レーザ加工の位置を変更する、
     ように構成されている、請求項1に記載のウエハ加工装置。
  10.  複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを設置する工程と、
     設置した前記モジュールを用いて、前記ウエハの処理を行う工程と、を備え、
     前記複数のモジュールの各々の数を変更可能である、半導体チップの製造方法。
  11.  複数の半導体チップが形成されたウエハの互いに異なる種類の処理を行う複数のモジュールのうちから選択されたモジュールを備え、前記複数のモジュールの各々の数を変更可能であるウエハ加工装置により製造される、半導体チップ。
PCT/JP2022/019169 2022-04-27 2022-04-27 ウエハ加工装置、半導体チップの製造方法および半導体チップ WO2023209897A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/019169 WO2023209897A1 (ja) 2022-04-27 2022-04-27 ウエハ加工装置、半導体チップの製造方法および半導体チップ
PCT/JP2023/003610 WO2023210088A1 (ja) 2022-04-27 2023-02-03 ウエハ加工装置、半導体チップの製造方法および半導体チップ
TW112114670A TW202401536A (zh) 2022-04-27 2023-04-20 晶圓加工裝置、半導體晶片之製造方法及半導體晶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019169 WO2023209897A1 (ja) 2022-04-27 2022-04-27 ウエハ加工装置、半導体チップの製造方法および半導体チップ

Publications (1)

Publication Number Publication Date
WO2023209897A1 true WO2023209897A1 (ja) 2023-11-02

Family

ID=88518316

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/019169 WO2023209897A1 (ja) 2022-04-27 2022-04-27 ウエハ加工装置、半導体チップの製造方法および半導体チップ
PCT/JP2023/003610 WO2023210088A1 (ja) 2022-04-27 2023-02-03 ウエハ加工装置、半導体チップの製造方法および半導体チップ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003610 WO2023210088A1 (ja) 2022-04-27 2023-02-03 ウエハ加工装置、半導体チップの製造方法および半導体チップ

Country Status (2)

Country Link
TW (1) TW202401536A (ja)
WO (2) WO2023209897A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109324A (ja) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd レーザーダイシング装置
JP2007235068A (ja) * 2006-03-03 2007-09-13 Tokyo Seimitsu Co Ltd ウェーハ加工方法
JP2010125488A (ja) * 2008-11-28 2010-06-10 Apic Yamada Corp 切断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933507B2 (ja) * 2002-03-25 2007-06-20 大日本スクリーン製造株式会社 基板搬送装置および基板処理装置
JP2005228771A (ja) * 2004-02-10 2005-08-25 Shinko Electric Co Ltd 基板搬送方法、及びその装置
JP2011018731A (ja) * 2009-07-08 2011-01-27 Rayresearch Corp ウェハ分岐搬送装置
JP6703785B2 (ja) * 2016-05-09 2020-06-03 キヤノン株式会社 基板処理装置、および物品製造方法
JP7247743B2 (ja) * 2019-05-20 2023-03-29 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109324A (ja) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd レーザーダイシング装置
JP2007235068A (ja) * 2006-03-03 2007-09-13 Tokyo Seimitsu Co Ltd ウェーハ加工方法
JP2010125488A (ja) * 2008-11-28 2010-06-10 Apic Yamada Corp 切断装置

Also Published As

Publication number Publication date
WO2023210088A1 (ja) 2023-11-02
TW202401536A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
US7417748B2 (en) Method and apparatus for measuring dimensional changes in transparent substrates
US7708855B2 (en) Method for processing a semiconductor wafer
JP6087707B2 (ja) テープ拡張装置
JP6844992B2 (ja) ウェーハの加工方法
TW201839834A (zh) 切割裝置
JP4527559B2 (ja) 露光装置
WO2023209897A1 (ja) ウエハ加工装置、半導体チップの製造方法および半導体チップ
JP2003086543A (ja) 板状物の搬送機構および搬送機構を備えたダイシング装置
KR20220048018A (ko) 접합 장치, 접합 시스템 및 접합 방법
WO2023209901A1 (ja) エキスパンド装置、半導体チップの製造方法および半導体チップ
WO2023209871A1 (ja) ウエハ加工装置、半導体チップの製造方法および半導体チップ
JP2023162982A (ja) ウエハ加工装置、半導体チップの製造方法および半導体チップ
WO2023209891A1 (ja) ウエハ加工装置、半導体チップの製造方法および半導体チップ
WO2023209872A1 (ja) エキスパンド装置、半導体チップの製造方法および半導体チップ
WO2023209909A1 (ja) ダイシング装置、半導体チップの製造方法および半導体チップ
WO2023209873A1 (ja) ダイシング装置、半導体チップの製造方法および半導体チップ
WO2023209887A1 (ja) エキスパンド装置、半導体チップの製造方法および半導体チップ
JP2023162929A (ja) エキスパンド装置、半導体チップの製造方法および半導体チップ
US20240006241A1 (en) Processing method
WO2024062801A1 (ja) 成膜装置及び成膜方法
CN113793827B (zh) 一种晶圆承载结构及半导体检测设备
JP2000156391A (ja) 半導体ウェーハ検査装置
WO2023042259A1 (ja) エキスパンド装置
JP2023162897A (ja) エキスパンド装置、半導体チップの製造方法および半導体チップ
JP7486264B2 (ja) ピックアップ方法、及び、ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940174

Country of ref document: EP

Kind code of ref document: A1