WO2023207282A1 - 一种模板生长制备钴酸锂前驱体的方法及其应用 - Google Patents

一种模板生长制备钴酸锂前驱体的方法及其应用 Download PDF

Info

Publication number
WO2023207282A1
WO2023207282A1 PCT/CN2023/077217 CN2023077217W WO2023207282A1 WO 2023207282 A1 WO2023207282 A1 WO 2023207282A1 CN 2023077217 W CN2023077217 W CN 2023077217W WO 2023207282 A1 WO2023207282 A1 WO 2023207282A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
reaction
lithium
vanadium pentoxide
temperature
Prior art date
Application number
PCT/CN2023/077217
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112023000114.6T priority Critical patent/DE112023000114T5/de
Priority to GB2318220.7A priority patent/GB2621290A/en
Priority to HU2400024A priority patent/HUP2400024A1/hu
Publication of WO2023207282A1 publication Critical patent/WO2023207282A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and specifically relates to a method for preparing lithium cobalt oxide precursor through template growth and its application.
  • Lithium-ion batteries have the advantages of high specific energy, light weight, green, environmentally friendly and pollution-free. They are now widely used in digital products, household appliances, electric vehicles, aerospace, satellites and weaponry, in civilian, aerospace-grade military and other fields. play an increasingly important role. As portable electronic devices such as mobile phones, digital cameras, and notebook computers become increasingly smaller and lighter, the market's requirements for the energy density, electrochemical performance, and safety performance of lithium-ion batteries continue to increase.
  • LiCoO2 material has the advantages of high voltage platform, excellent cycle performance, and high compaction density, so it is one of the earliest materials used for commercialization.
  • the Li 1-x CoO 2 deintercalation coefficient x ⁇ 0.5 the internal structure of the material collapses, which will lead to poor charge and discharge cycles under high voltage and high temperature storage performance. Poor and a series of problems. Therefore, in order to increase the discharge capacity and energy density of the battery by increasing the charge cut-off voltage, these cathode materials first need to be modified to solve many problems caused by increasing the charge cut-off voltage.
  • Doping modification of lithium cobalt oxide materials can improve the structural stability of the material before and after charging and discharging, inhibit phase change, increase the degree of delithiation, increase the material capacity, and improve the material conductivity.
  • crystal chemistry theory sometimes trace amounts of foreign component doping leads to crystal defects, which can increase the diffusion rate of ions in the bulk phase; according to the energy band theory, semiconductor compounds can be doped with high-priced or low-priced ions to form p-type or n-type semiconductors. Thereby increasing the crystal conductivity.
  • metal elements Mg, Al, Zr
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a A method for preparing lithium cobalt oxide precursor by template growth and its application. This method uses prefabricated vanadium pentoxide particles as a template agent and performs vanadium doping while co-precipitating to obtain a vanadium-doped lithium cobalt oxide precursor. .
  • a method for preparing lithium cobalt oxide precursor by template growth which includes the following steps:
  • S1 Mix ammonium metavanadate aqueous solution and polyvinylpyrrolidone solution to perform a hydrothermal reaction. The resulting precipitate is calcined in an aerobic atmosphere to obtain a vanadium pentoxide template agent.
  • the polyvinylpyrrolidone solution is composed of polyvinylpyrrolidone dissolved in alcohol. be made of;
  • step S1 the ammonium metavanadate aqueous solution is prepared by dissolving ammonium metavanadate in water, and the ratio of ammonium metavanadate, water, polyvinylpyrrolidone and alcohol is ( 1-3)g: (25-35)mL: (8-12)g: (90-110)mL.
  • step S1 the alcohol is ethylene glycol.
  • step S1 the temperature of the hydrothermal reaction is 170-190°C, and the reaction time is 20-28 hours.
  • the particle size of the vanadium pentoxide template agent is 50-100 nm.
  • the vanadium pentoxide template agent is in the shape of microspheres.
  • the particle size of the vanadium pentoxide template agent cannot be too large or too small.
  • the template agent is too small and dissolves too quickly and cannot have the effect of seed crystals.
  • the particle size of 50-100nm can ensure that vanadium pentoxide acts as a template agent and generates cobalt vanadate precipitation while dissolving.
  • step S1 the calcination temperature is 450-550°C, and the calcination time is 1-3 hours.
  • step S2 the concentration of the cobalt salt solution is 1.0-2.0 mol/L; so The molar ratio of cobalt in the cobalt salt solution to vanadium in the vanadium pentoxide template agent is 10: (0.1-2).
  • the cobalt salt solution is at least one of cobalt sulfate, cobalt nitrate or cobalt chloride.
  • the carbonate solution is a sodium carbonate solution with a concentration of 1.0-2.0 mol/L.
  • the complexing agent in step S2, is ammonia water with a concentration of 6.0-12.0 mol/L.
  • step S2 the pH of the reaction is controlled to be 8-9, the temperature is 70-80°C, and the ammonia concentration is 5-10g/L.
  • step S2 the reaction is carried out at a stirring speed of 200-500 r/min.
  • step S2 the aging time is 48-72 h.
  • the target particle size of the reaction material is 4.0-8.0 ⁇ m.
  • step S3 the precipitate is washed and dried before oxygen-free calcination, the drying temperature is 100-200°C, and the drying time is 10- 30h.
  • the oxygen-free calcination process is as follows: passing in inert gas, heating from room temperature to 200-300°C at a heating rate of 0.5-10°C/min and holding for 4-6 hours. Then raise the temperature to 600-800°C and keep it for 1-2 hours; the aerobic calcination process is as follows: pass oxidizing gas and keep it at 600-800°C for 4-6 hours.
  • the invention also provides the application of the method in preparing lithium cobalt oxide or lithium ion battery.
  • the method for preparing lithium cobalt oxide includes: mixing the lithium cobalt oxide precursor and a lithium source, and calcining in an oxygen atmosphere.
  • the lithium source is at least one of lithium carbonate, lithium hydroxide, lithium nitrate or lithium oxalate.
  • the molar ratio of the cobalt element in the lithium cobalt oxide precursor to the lithium element in the lithium source is 1: (1.0-1.2).
  • the roasting temperature is 900-1200°C, and the roasting time is 6-18 hours.
  • the present invention at least has the following beneficial effects:
  • the present invention first uses ammonium metavanadate to hydrothermally prepare nanoscale vanadium pentoxide template agent, and after mixing vanadium pentoxide and cobalt salt solution, it performs a co-precipitation reaction with carbonate solution and complexing agent, thereby Vanadium-doped basic cobalt carbonate is prepared, and after calcination, a lithium cobalt oxide precursor is obtained.
  • the lithium cobalt oxide precursor can be sintered with the lithium source to obtain the lithium cobalt oxide cathode material.
  • the template agent vanadium pentoxide hardly dissolves in the cobalt salt solution.
  • cobalt ions react with carbonate ions and hydroxide ions to form basic cobalt carbonate, which is then oxidized with the template agent Divanadium is used as a seed crystal for co-precipitation to obtain a cobalt carbonate precipitate with better crystallinity.
  • subsequent sintering is used to prepare lithium cobalt oxide cathode materials, its good crystallinity can be inherited to avoid cracking of the lithium cobalt oxide material and improve the material cycle performance.
  • vanadium pentoxide is easily soluble in alkaline solutions during co-precipitation, forming metavanadate radicals, which further react with cobalt ions in the solution to form cobalt vanadate, allowing vanadium to replace the anions, thereby obtaining vanadium-doped Lithium cobalt oxide precursor.
  • the lithium cobalt oxide precursor is sintered with the lithium source, the cobalt vanadate further undergoes a crystallization reaction to obtain a vanadium-doped lithium cobalt oxide material.
  • the prepared lithium cobalt oxide cathode material Due to the doping of high-priced vanadium, the prepared lithium cobalt oxide cathode material has good lattice stability and high specific capacity during the charge and discharge process.
  • Figure 1 is an SEM image of lithium cobalt oxide prepared in Example 1 of the present invention.
  • Ammonium metavanadate, deionized water, polyvinylpyrrolidone K30, and ethylene glycol were sampled in the ratio of 1g:30mL:10g:100mL.
  • a lithium cobalt oxide cathode material is prepared.
  • the specific process is:
  • Step 1 Add the vanadium pentoxide template agent to the cobalt sulfate solution with a concentration of 2.0 mol/L according to the molar ratio of cobalt to vanadium: 10:0.1, and mix evenly to obtain a mixed solution;
  • Step 2 Prepare a sodium carbonate solution with a concentration of 2.0 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 12.0 mol/L as a complexing agent
  • Step 4 Add the mixed liquid prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 200 r/min, the pH to 8, and the reaction in the kettle. The temperature is 70°C and the ammonia concentration is 5g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 8.0 ⁇ m, stop feeding and age for 48 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, wash the precipitate with pure water, and dry it at 100°C for 30 hours;
  • Step 7 Place the drying material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 10°C/min.
  • the heating gradient is from room temperature to 200°C for 6 hours, then to 600°C for 2 hours. Then change the temperature. Pass the oxidizing gas and continue to maintain the temperature at 600°C for 6 hours. After cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step 7 with lithium carbonate and then roast it in an air atmosphere. The roasting temperature is 900°C and the roasting time is 18 hours. Afterwards, it is crushed and processed. Sieve and remove iron to obtain lithium cobalt oxide cathode material.
  • Figure 1 is an SEM image of the lithium cobalt oxide prepared in this embodiment. It can be seen from the figure that the lithium cobalt oxide particles have a very dense block structure and are not easy to crack.
  • a lithium cobalt oxide cathode material is prepared.
  • the specific process is:
  • Step 1 Add the vanadium pentoxide template agent to the cobalt nitrate solution with a concentration of 1.5 mol/L according to the molar ratio of cobalt to vanadium of 10:1, and mix evenly to obtain a mixed solution;
  • Step 2 Prepare a sodium carbonate solution with a concentration of 1.5 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 9.0 mol/L as a complexing agent
  • Step 4 Add the mixed solution prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 350 r/min, the pH to 8.5, and the reaction in the kettle. The temperature is 75°C and the ammonia concentration is 8g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 6.0 ⁇ m, stop feeding and age for 60 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, then wash the precipitate with pure water and dry it at 150°C for 20 hours;
  • Step 7 Place the dried material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 5°C/min.
  • the heating gradient is from room temperature to 250°C and holding for 5 hours, then to 700°C and holding for 1.5 hours. Then Switch on the oxidizing gas and continue to maintain the temperature at 700°C for 5 hours. After cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1.1, mix the calcined material obtained in step 7 with lithium hydroxide and then roast it in an air atmosphere. The roasting temperature is 1050°C and the roasting time is 12 hours. Afterwards, it is crushed and After sieving and removing iron, the lithium cobalt oxide cathode material is obtained.
  • a lithium cobalt oxide cathode material is prepared.
  • the specific process is:
  • Step 1 Add the vanadium pentoxide template agent to the cobalt chloride solution with a concentration of 1.0 mol/L according to the molar ratio of cobalt to vanadium: 10:2, and mix evenly to obtain a mixed solution;
  • Step 2 Prepare a sodium carbonate solution with a concentration of 1.0 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 6.0 mol/L as a complexing agent
  • Step 4 Add the mixed solution prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia solution prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 500r/min, the pH to 9, and the reaction in the kettle. The temperature is 80°C and the ammonia concentration is 10g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 4.0 ⁇ m, stop feeding and age for 72 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, then wash the precipitate with pure water and dry it at 200°C for 10 hours;
  • Step 7 Place the drying material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 10°C/min.
  • the heating gradient is from room temperature to 300°C and holding for 4 hours, then to 800°C and holding for 1 hour. Then change the temperature. Pass oxidizing gas and continue to maintain the temperature at 800°C for 4 hours. After cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step 7 with lithium nitrate and then roast it in an air atmosphere.
  • the roasting temperature is 1200°C and the roasting time is 6 hours. Afterwards, it is crushed and processed. Sieve and remove iron to obtain lithium cobalt oxide cathode material.
  • This comparative example prepares a lithium cobalt oxide cathode material.
  • the difference between comparative example 1 and example 1 is that the template agent vanadium pentoxide is not added in comparative example 1.
  • the specific process is:
  • Step 1 Prepare a cobalt sulfate solution with a concentration of 2.0 mol/L;
  • Step 2 Prepare a sodium carbonate solution with a concentration of 2.0 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 12.0 mol/L as a complexing agent
  • Step 4 Add the cobalt sulfate solution prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 200 r/min, the pH to 8, and the reaction kettle. The internal temperature is 70°C and the ammonia concentration is 5g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 8.0 ⁇ m, stop feeding and age for 48 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, wash the precipitate with pure water, and dry it at 100°C for 30 hours;
  • Step 7 Place the drying material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 10°C/min.
  • the heating gradient is from room temperature to 200°C for 6 hours, then to 600°C for 2 hours. Then change the temperature. Pass the oxidizing gas and continue to maintain the temperature at 600°C for 6 hours. After cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step 7 with lithium carbonate and then roast it in an air atmosphere.
  • the roasting temperature is 900°C and the roasting time is 18 hours. Afterwards, it is crushed and processed. Sieve and remove iron to obtain lithium cobalt oxide cathode material.
  • a lithium cobalt oxide cathode material was prepared in this comparative example.
  • the difference between Comparative Example 2 and Example 2 is that Comparative Example 2 does not add the template agent vanadium pentoxide.
  • the specific process is:
  • Step 1 prepare a cobalt nitrate solution with a concentration of 1.5mol/L;
  • Step 2 Prepare a sodium carbonate solution with a concentration of 1.5 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 9.0 mol/L as a complexing agent
  • Step 4 Add the cobalt nitrate solution prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 350 r/min, the pH to 8.5, and the reaction kettle. The internal temperature is 75°C and the ammonia concentration is 8g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 6.0 ⁇ m, stop feeding and age for 60 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, then wash the precipitate with pure water and dry it at 150°C for 20 hours;
  • Step 7 Place the dried material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 5°C/min.
  • the heating gradient is from room temperature to 250°C and holding for 5 hours, then to 700°C and holding for 1.5 hours. Then Switch on the oxidizing gas and continue to maintain the temperature at 700°C for 5 hours. After cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1.1, mix the calcined material obtained in step 7 with lithium hydroxide and then roast it in an air atmosphere. The roasting temperature is 1050°C and the roasting time is 12 hours. Afterwards, it is crushed and After sieving and removing iron, the lithium cobalt oxide cathode material is obtained.
  • a lithium cobalt oxide cathode material was prepared in this comparative example.
  • the difference between Comparative Example 3 and Example 3 is that Comparative Example 3 does not add the template agent vanadium pentoxide.
  • the specific process is:
  • Step 1 prepare a cobalt chloride solution with a concentration of 1.0 mol/L
  • Step 2 Prepare a sodium carbonate solution with a concentration of 1.0 mol/L as a precipitant
  • Step 3 Prepare ammonia water with a concentration of 6.0 mol/L as a complexing agent
  • Step 4 Add the cobalt chloride solution prepared in step 1, the sodium carbonate solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel flow for reaction. Control the stirring speed of the reaction kettle to 500 r/min, and the pH to 9. The temperature in the kettle is 80°C and the ammonia concentration is 10g/L;
  • Step 5 When the D50 of the material in the reaction kettle is detected to reach 4.0 ⁇ m, stop feeding and age for 72 hours;
  • Step 6 Separate the materials in the kettle from solid to liquid, then wash the precipitate with pure water and dry it at 200°C for 10 hours;
  • Step 7 Place the drying material in a tube furnace and pass inert gas to protect it.
  • the heating rate is 10°C/min.
  • the heating gradient is from room temperature to 300°C and holding for 4 hours, then to 800°C and holding for 1 hour. Then change the temperature.
  • Pass oxidizing gas Continue to maintain the temperature at 800°C for 4 hours, and after cooling, crushing, and sieving, the lithium cobalt oxide precursor material is obtained;
  • Step 8 According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step 7 with lithium nitrate and then roast it in an air atmosphere.
  • the roasting temperature is 1200°C and the roasting time is 6 hours. Afterwards, it is crushed and processed. Sieve and remove iron to obtain lithium cobalt oxide cathode material.
  • Example 1-3 and Comparative Example 1-3 The lithium cobalt oxide material obtained in Example 1-3 and Comparative Example 1-3 was used as the active material, acetylene black was used as the conductive agent, and PVDF was used as the binder.
  • the active material, conductive agent, and The binder is added with a certain amount of organic solvent NMP, stirred and then coated on aluminum foil to make a positive electrode sheet.
  • the negative electrode is made of metal lithium sheet, and a CR2430 button battery is made in a glove box filled with argon.
  • Conduct electrical performance testing on the CT2001A blue battery testing system. Test conditions: 3.0-4.48V, current density 1C 180mAh/g, test temperature is 25 ⁇ 1°C. The test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种模板生长制备钴酸锂前驱体的方法及应用,该方法包括:S1:将偏钒酸铵水溶液与聚乙烯吡咯烷酮溶液混合,进行水热反应,所得沉淀在有氧氛围下煅烧,得到五氧化二钒模板剂,聚乙烯吡咯烷酮溶液由聚乙烯吡咯烷酮溶于醇制得;S2:将五氧化二钒模板剂加入到钴盐溶液中得到悬浊液,以并流的方式加入所述悬浊液、碳酸盐溶液和络合剂进行反应,当反应物料达到目标粒径时,进行陈化;S3:将陈化后的物料进行固液分离,所得沉淀物先无氧煅烧,再有氧煅烧,即得钴酸锂前驱体。还提供该方法在制备钴酸锂或锂离子电池中的应用。将五氧化二钒作为晶种进行共沉淀,得到结晶性很好的前驱体,提高材料循环性能,同时钒掺杂到钴酸锂材料中,使得材料具备良好的晶格稳定性和较高的比容量。

Description

一种模板生长制备钴酸锂前驱体的方法及其应用 技术领域
本发明属于锂电池正极材料技术领域,具体涉及一种模板生长制备钴酸锂前驱体的方法及其应用。
背景技术
锂离子电池具有比能量高、重量轻、绿色环保无污染等优点,现已被广泛应用在数码产品、家用电器、电动汽车、航天航空、卫星和武器装备等,在民用、航天级军事等领域中发挥着越来越重要的作用。随着手机、数码相机、笔记本电脑等便携式电子设备的日益小型化、轻薄化,市场对锂离子电池的能量密度、电化学性能和安全性能的要求不断提高。
LiCoO2材料具有电压平台高、循环性能优良,压实密度高等优点,因此是最早用于商业化的材料之一。但由于钴酸锂自身结构的原因,当充电电压超过4.2V,Li1-xCoO2脱嵌系数x≥0.5,材料内部结构发生坍塌,会带来高电压下充放电循环差、高温存储性能不佳等一系列问题。因此,为了通过提高充电截止电压来提高电池的放电容量和能量密度,首先就需要对这些正极材料进行改性处理,以解决因为提高充电截止电压而带来的诸多问题。
对钴酸锂材料进行掺杂改性可提高材料在充放电前后结构稳定性,抑制相变产生,提高脱锂度,增大材料容量,提高材料导电率。根据晶体化学理论,有时微量外来组元掺杂导致晶体缺陷,可以提高离子在体相扩散速率;根据能带理论,对于半导体化合物采用高价或低价离子掺杂可形成p型或n型半导体,从而提高晶体导电率。近年来,研究者们探索了不同金属元素(Mg、Al、Zr)掺杂对钴酸锂正极材料电化学性能的影响。但是,微量钒取代的钴酸锂正极材料还鲜有报道。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种 模板生长制备钴酸锂前驱体的方法及其应用,该方法通过将预制五氧化二钒颗粒作为模板剂,在共沉淀的同时进行钒的掺杂,得到掺杂钒元素的钴酸锂前驱体。
根据本发明的一个方面,提出了一种模板生长制备钴酸锂前驱体的方法,包括以下步骤:
S1:将偏钒酸铵水溶液与聚乙烯吡咯烷酮溶液混合,进行水热反应,所得沉淀在有氧氛围下煅烧,得到五氧化二钒模板剂,所述聚乙烯吡咯烷酮溶液由聚乙烯吡咯烷酮溶于醇制得;
S2:将所述五氧化二钒模板剂加入到钴盐溶液中得到悬浊液,以并流的方式加入所述悬浊液、碳酸盐溶液和络合剂进行反应,当反应物料达到目标粒径时,进行陈化;
S3:将所述陈化后的物料进行固液分离,所得沉淀物先无氧煅烧,再有氧煅烧,即得所述钴酸锂前驱体。
在本发明的一些实施方式中,步骤S1中,所述偏钒酸铵水溶液由偏钒酸铵溶于水制得,所述偏钒酸铵、水、聚乙烯吡咯烷酮和醇的配比为(1-3)g:(25-35)mL:(8-12)g:(90-110)mL。
在本发明的一些优选的实施方式中,步骤S1中,所述醇为乙二醇。
在本发明的一些实施方式中,步骤S1中,所述水热反应的温度为170-190℃,反应的时间为20-28h。
在本发明的一些实施方式中,步骤S1中,所述五氧化二钒模板剂的粒径为50-100nm。五氧化二钒模板剂为微球形,五氧化二钒模板剂的粒径不能太大也不能太小,一方面,模板剂太小溶解太快,起不到晶种的效果,另一方面,模板剂太大溶解太慢,生成的钒酸钴就少,因此50-100nm的粒径能保证五氧化二钒在作为模板剂的同时,边溶解边生成钒酸钴沉淀。
在本发明的一些实施方式中,步骤S1中,所述煅烧的温度为450-550℃,煅烧的时间为1-3h。
在本发明的一些实施方式中,步骤S2中,所述钴盐溶液的浓度为1.0-2.0mol/L;所 述钴盐溶液中钴与所述五氧化二钒模板剂中钒的摩尔比为10:(0.1-2)。
在本发明的一些实施方式中,步骤S2中,所述钴盐溶液为硫酸钴、硝酸钴或氯化钴中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述碳酸盐溶液为浓度1.0-2.0mol/L的碳酸钠溶液。
在本发明的一些实施方式中,步骤S2中,所述络合剂为浓度6.0-12.0mol/L的氨水。
在本发明的一些实施方式中,步骤S2中,控制所述反应的pH为8-9,温度为70-80℃,氨浓度为5-10g/L。
在本发明的一些实施方式中,步骤S2中,所述反应在200-500r/min的搅拌速度下进行。
在本发明的一些实施方式中,步骤S2中,所述陈化的时间为48-72h。
在本发明的一些实施方式中,步骤S2中,所述反应物料的目标粒径为4.0-8.0μm
在本发明的一些实施方式中,步骤S3中,所述沉淀物在无氧煅烧前还进行水洗和烘干,所述烘干的温度为100-200℃,所述烘干的时间为10-30h。
在本发明的一些实施方式中,步骤S3中,所述无氧煅烧的过程如下:通入惰性气体,以0.5-10℃/min的升温速率从室温升温至200-300℃保温4-6h,再升温至600-800℃保温1-2h;所述有氧煅烧的过程如下:通氧化性气体在600-800℃下保温4-6h。
本发明还提供所述的方法在制备钴酸锂或锂离子电池中的应用。
在本发明的一些实施方式中,所述制备钴酸锂的方法包括:将所述钴酸锂前驱体与锂源混合,在有氧气氛下焙烧。
在本发明的一些实施方式中,所述锂源为碳酸锂、氢氧化锂、硝酸锂或草酸锂中的至少一种。
在本发明的一些实施方式中,所述钴酸锂前驱体中钴元素与所述锂源中锂元素的摩尔比为1:(1.0-1.2)。
在本发明的一些实施方式中,所述焙烧的温度为900-1200℃,焙烧的时间为6-18h。
根据本发明的一种优选的实施方式,本发明至少具有以下有益效果:
1、本发明先以偏钒酸铵水热制备纳米级五氧化二钒模板剂,并将五氧化二钒与钴盐溶液混合后,与碳酸盐溶液、络合剂进行共沉淀反应,从而制得掺杂钒的碱式碳酸钴,煅烧后得到钴酸锂前驱体。钴酸锂前驱体可与锂源烧结,得到钴酸锂正极材料。
2、模板剂五氧化二钒在钴盐溶液中,几乎不会溶解,在进行共沉淀反应时,钴离子与碳酸根离子、氢氧根离子反应生成碱式碳酸钴,并以模板剂五氧化二钒为晶种进行共沉淀,得到结晶性更好的碳酸钴沉淀,在后续烧结制备钴酸锂正极材料时,可继承其良好的结晶性,避免钴酸锂材料的开裂,提高材料循环性能;同时,五氧化二钒在共沉淀时,易溶于偏碱性的溶液,形成偏钒酸根,与溶液中的钴离子进一步反应生成钒酸钴,使钒取代阴离子,从而得到掺杂钒的钴酸锂前驱体。钴酸锂前驱体在与锂源烧结时,钒酸钴进一步发生结晶反应,得到掺杂钒的钴酸锂材料。
3、由于高价钒的掺杂,制备出的钴酸锂正极材料在充放电过程中具备良好的晶格稳定性和较高的比容量。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的钴酸锂SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
五氧化二钒模板剂的制备:
将偏钒酸铵、去离子水、聚乙烯吡咯烷酮K30、乙二醇按照1g:30mL:10g:100mL的比例取样,先将偏钒酸铵溶于去离子水、聚乙烯吡咯烷酮K30溶于乙二醇,然后,将两者混合后移入水热反应釜中,在180℃下反应24h,所得沉淀经洗涤后,在500℃空气 氛围下煅烧2h,即得颗粒粒径大小为50-100nm的微球形五氧化二钒模板剂。
实施例1
本实施例制备了一种钴酸锂正极材料,具体过程为:
步骤1,按照钴与钒的摩尔比10:0.1,将五氧化二钒模板剂加入到浓度为2.0mol/L的硫酸钴溶液中,混合均匀,得到混合液;
步骤2,配制浓度为2.0mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为12.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的混合液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min、pH为8、釜内温度为70℃、氨浓度为5g/L;
步骤5,当检测到反应釜内物料的D50达到8.0μm时,停止进料,并陈化48h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在100℃下烘干30h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至200℃保温6h,再升温至600℃保温2h,然后换通氧化性气体继续600℃保温6h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1,将步骤7所得煅烧料与碳酸锂混合后在空气气氛下焙烧,焙烧温度为900℃,焙烧时间为18h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。图1为本实施例制备的钴酸锂SEM图,从图中可见钴酸锂颗粒为非常致密的块状结构,不易开裂。
实施例2
本实施例制备了一种钴酸锂正极材料,具体过程为:
步骤1,按照钴与钒的摩尔比10:1,将五氧化二钒模板剂加入到浓度为1.5mol/L的硝酸钴溶液中,混合均匀,得到混合液;
步骤2,配制浓度为1.5mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为9.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的混合液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为350r/min、pH为8.5、釜内温度为75℃、氨浓度为8g/L;
步骤5,当检测到反应釜内物料的D50达到6.0μm时,停止进料,并陈化60h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在150℃下烘干20h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为5℃/min,升温梯度为从室温升温至250℃保温5h,再升温至700℃保温1.5h,然后换通氧化性气体继续700℃保温5h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1.1,将步骤7所得煅烧料与氢氧化锂混合后在空气气氛下焙烧,焙烧温度为1050℃,焙烧时间为12h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
实施例3
本实施例制备了一种钴酸锂正极材料,具体过程为:
步骤1,按照钴与钒的摩尔比10:2,将五氧化二钒模板剂加入到浓度为1.0mol/L的氯化钴溶液中,混合均匀,得到混合液;
步骤2,配制浓度为1.0mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为6.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的混合液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min、pH为9、釜内温度为80℃、氨浓度为10g/L;
步骤5,当检测到反应釜内物料的D50达到4.0μm时,停止进料,并陈化72h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在200℃下烘干10h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至300℃保温4h,再升温至800℃保温1h,然后换通氧化性气体继续800℃保温4h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1,将步骤7所得煅烧料与硝酸锂混合后在空气气氛下焙烧,焙烧温度为1200℃,焙烧时间为6h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
对比例1
本对比例制备了一种钴酸锂正极材料,对比例1与实施例1的区别在于,对比例1不加入模板剂五氧化二钒,具体过程为:
步骤1,配制浓度为2.0mol/L的硫酸钴溶液;
步骤2,配制浓度为2.0mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为12.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的硫酸钴溶液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min、pH为8、釜内温度为70℃、氨浓度为5g/L;
步骤5,当检测到反应釜内物料的D50达到8.0μm时,停止进料,并陈化48h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在100℃下烘干30h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至200℃保温6h,再升温至600℃保温2h,然后换通氧化性气体继续600℃保温6h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1,将步骤7所得煅烧料与碳酸锂混合后在空气气氛下焙烧,焙烧温度为900℃,焙烧时间为18h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
对比例2
本对比例制备了一种钴酸锂正极材料,对比例2与实施例2的区别在于,对比例2不加入模板剂五氧化二钒,具体过程为:
步骤1,配制浓度为1.5mol/L的硝酸钴溶液;
步骤2,配制浓度为1.5mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为9.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的硝酸钴溶液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为350r/min、pH为8.5、釜内温度为75℃、氨浓度为8g/L;
步骤5,当检测到反应釜内物料的D50达到6.0μm时,停止进料,并陈化60h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在150℃下烘干20h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为5℃/min,升温梯度为从室温升温至250℃保温5h,再升温至700℃保温1.5h,然后换通氧化性气体继续700℃保温5h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1.1,将步骤7所得煅烧料与氢氧化锂混合后在空气气氛下焙烧,焙烧温度为1050℃,焙烧时间为12h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
对比例3
本对比例制备了一种钴酸锂正极材料,对比例3与实施例3的区别在于,对比例3不加入模板剂五氧化二钒,具体过程为:
步骤1,配制浓度为1.0mol/L的氯化钴溶液;
步骤2,配制浓度为1.0mol/L的碳酸钠溶液作为沉淀剂;
步骤3,配制浓度为6.0mol/L氨水作为络合剂;
步骤4,将步骤1配制的氯化钴溶液、步骤2配制的碳酸钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min、pH为9、釜内温度为80℃、氨浓度为10g/L;
步骤5,当检测到反应釜内物料的D50达到4.0μm时,停止进料,并陈化72h;
步骤6,将釜内物料进行固液分离,再用纯水洗涤沉淀物,在200℃下烘干10h;
步骤7,将烘干物料置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至300℃保温4h,再升温至800℃保温1h,然后换通氧化性气体 继续800℃保温4h,经冷却、破碎、过筛后,得到钴酸锂前驱体材料;
步骤8,按照钴元素与锂元素的摩尔比为1:1,将步骤7所得煅烧料与硝酸锂混合后在空气气氛下焙烧,焙烧温度为1200℃,焙烧时间为6h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
试验例
以实施例1-3和对比例1-3得到的钴酸锂材料为活性材料,乙炔黑为导电剂,PVDF为粘结剂,以92:4:4的比例称取活性材料、导电剂、粘结剂,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片,在充满氩气的手套箱内制成CR2430型纽扣电池。在CT2001A型蓝电测试系统进行电性能测试。测试条件:3.0-4.48V,电流密度1C=180mAh/g测试温度为25±1℃。测试结果如表1所示。
表1钴酸锂的电化学性能
从表1可见,实施例的放电容量和循环性能明显由于对比例,这是由于实施例加入了模板剂五氧化二钒,一方面,五氧化二钒作为晶种进行共沉淀,得到结晶性很好的前驱体,烧结成钴酸锂正极材料时,继承了前驱体良好的结晶性,使得钴酸锂材料不易开裂,提高材料循环性能,另一方面,五氧化二钒在共沉淀时可溶解形成偏钒酸根,与钴离子反应生成钒酸钴,使钒顺利掺杂到钴酸锂材料中,使得材料具备良好的晶格稳定性和较高的比容量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所 属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种模板生长制备钴酸锂前驱体的方法,其特征在于,包括以下步骤:
    S1:将偏钒酸铵水溶液与聚乙烯吡咯烷酮溶液混合,进行水热反应,所得沉淀在有氧氛围下煅烧,得到五氧化二钒模板剂,所述聚乙烯吡咯烷酮溶液由聚乙烯吡咯烷酮溶于醇制得;
    S2:将所述五氧化二钒模板剂加入到钴盐溶液中得到悬浊液,以并流的方式加入所述悬浊液、碳酸盐溶液和络合剂进行反应,当反应物料达到目标粒径时,进行陈化;
    S3:将所述陈化后的物料进行固液分离,所得沉淀物先无氧煅烧,再有氧煅烧,即得所述钴酸锂前驱体。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述偏钒酸铵水溶液由偏钒酸铵溶于水制得,所述偏钒酸铵、水、聚乙烯吡咯烷酮和醇的配比为(1-3)g:(25-35)mL:(8-12)g:(90-110)mL。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述水热反应的温度为170-190℃,反应的时间为20-28h。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述五氧化二钒模板剂的粒径为50-100nm。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述钴盐溶液的浓度为1.0-2.0mol/L;所述钴盐溶液中钴与所述五氧化二钒模板剂中钒的摩尔比为10:(0.1-2)。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述碳酸盐溶液为浓度1.0-2.0mol/L的碳酸钠溶液。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,控制所述反应的pH为8-9,温度为70-80℃,氨浓度为5-10g/L。
  8. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述陈化的时间为48-72h。
  9. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述无氧煅烧的过程如下:通入惰性气体,以0.5-10℃/min的升温速率从室温升温至200-300℃保温4-6h,再 升温至600-800℃保温1-2h;所述有氧煅烧的过程如下:通氧化性气体在600-800℃下保温4-6h。
  10. 如权利要求1-9中任一项所述的方法在制备钴酸锂或锂离子电池中的应用。
PCT/CN2023/077217 2022-04-25 2023-02-20 一种模板生长制备钴酸锂前驱体的方法及其应用 WO2023207282A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112023000114.6T DE112023000114T5 (de) 2022-04-25 2023-02-20 Verfahren zur Herstellung eines Lithium-Kobalt-Oxid-Vorläufers durch Schablonen-induziertes Wachstum und dessen Verwendung
GB2318220.7A GB2621290A (en) 2022-04-25 2023-02-20 Template growth method for preparing lithium cobaltate precursor and use thereof
HU2400024A HUP2400024A1 (hu) 2022-04-25 2023-02-20 Eljárás lítium-kobalt-oxid prekurzor elõállítására templát-indukált növekedéssel, és annak alkalmazása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210438608.7A CN114735757B (zh) 2022-04-25 2022-04-25 一种模板生长制备钴酸锂前驱体的方法及其应用
CN202210438608.7 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023207282A1 true WO2023207282A1 (zh) 2023-11-02

Family

ID=82283275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077217 WO2023207282A1 (zh) 2022-04-25 2023-02-20 一种模板生长制备钴酸锂前驱体的方法及其应用

Country Status (5)

Country Link
CN (1) CN114735757B (zh)
DE (1) DE112023000114T5 (zh)
GB (1) GB2621290A (zh)
HU (1) HUP2400024A1 (zh)
WO (1) WO2023207282A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735757B (zh) * 2022-04-25 2024-01-05 广东邦普循环科技有限公司 一种模板生长制备钴酸锂前驱体的方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010375A (ja) * 2002-06-04 2004-01-15 Nippon Chem Ind Co Ltd 四酸化三コバルトの製造方法及びコバルト酸リチウムの製造方法
CN105047906A (zh) * 2015-08-21 2015-11-11 湖南杉杉新材料有限公司 锂钴复合氧化物正极材料及其制备方法
US20200227742A1 (en) * 2019-01-16 2020-07-16 Ningde Amperex Technology Limited Precursor of lithium cobalt oxide and preparation method thereof and composite of lithium cobalt oxide prepared from the precursor of lithium cobalt oxide
CN112255279A (zh) * 2020-09-29 2021-01-22 沈阳化工大学 一种花状v2o5微球的制备及其在丙酮气体传感器应用
CN114735757A (zh) * 2022-04-25 2022-07-12 广东邦普循环科技有限公司 一种模板生长制备钴酸锂前驱体的方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115701A (zh) * 2018-10-31 2020-05-08 格林美(江苏)钴业股份有限公司 一种掺杂钒的氧化钴的制备方法
CN112010354A (zh) * 2019-05-30 2020-12-01 格林美股份有限公司 一种钛掺杂四氧化三钴及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010375A (ja) * 2002-06-04 2004-01-15 Nippon Chem Ind Co Ltd 四酸化三コバルトの製造方法及びコバルト酸リチウムの製造方法
CN105047906A (zh) * 2015-08-21 2015-11-11 湖南杉杉新材料有限公司 锂钴复合氧化物正极材料及其制备方法
US20200227742A1 (en) * 2019-01-16 2020-07-16 Ningde Amperex Technology Limited Precursor of lithium cobalt oxide and preparation method thereof and composite of lithium cobalt oxide prepared from the precursor of lithium cobalt oxide
CN112255279A (zh) * 2020-09-29 2021-01-22 沈阳化工大学 一种花状v2o5微球的制备及其在丙酮气体传感器应用
CN114735757A (zh) * 2022-04-25 2022-07-12 广东邦普循环科技有限公司 一种模板生长制备钴酸锂前驱体的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG LIN; ZHAI JING; FOSTER NEIL RUSSELL; PU YUAN: "Preparation and electrochemical performance of V2O5 nanoparticles", JOURNAL OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY (NATURAL SCIENCE EDITION), BEIJING HUAGONG DAXUE, CN, vol. 43, no. 3, 31 May 2016 (2016-05-31), CN , pages 60 - 65, XP009549828, ISSN: 1671-4628 *

Also Published As

Publication number Publication date
GB202318220D0 (en) 2024-01-10
DE112023000114T5 (de) 2024-04-11
GB2621290A (en) 2024-02-07
CN114735757B (zh) 2024-01-05
CN114735757A (zh) 2022-07-12
HUP2400024A1 (hu) 2024-05-28

Similar Documents

Publication Publication Date Title
US11855285B2 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
WO2018113506A1 (zh) 一种三元材料及其制备方法以及电池浆料和正极与锂电池
CN107546383B (zh) 一种高性能核壳结构高镍系材料、其制备方法及在锂离子电池的用途
WO2018095052A1 (zh) 钴酸锂正极材料及其制备方法以及锂离子二次电池
JP5415008B2 (ja) 非水電解質二次電池用活物質および非水電解質二次電池
JP7204049B2 (ja) リチウムマンガンリッチ材料、その製造方法及び使用
CN112928253B (zh) 一种镍锰钛复合材料及其制备方法和应用
CN111403710B (zh) 一种三氟化铝包覆的三元掺杂锰酸锂正极材料及其制备方法
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN105280898B (zh) 钒掺杂锂镍钴锰氧化物纳米材料及其制备方法和应用
JP6303279B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2014190662A1 (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
WO2023179048A1 (zh) 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
WO2023024446A1 (zh) 一种四元正极材料及其制备方法和应用
WO2023221624A1 (zh) 熔融盐制备三元正极材料的方法及其应用
CN112002879A (zh) 一种四氟化锆包覆的氟铝双掺杂锰酸锂正极材料及其制备方法
CN113479944A (zh) 一种改性高镍三元正极材料的制备方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
WO2023173777A1 (zh) 一种锡基钴酸锂前驱体的制备方法及其应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN104009209A (zh) 一种核壳结构锂离子电池正极材料的制备方法
WO2023207282A1 (zh) 一种模板生长制备钴酸锂前驱体的方法及其应用
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202318220

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230220

WWE Wipo information: entry into national phase

Ref document number: P202390221

Country of ref document: ES

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112023000114

Country of ref document: DE