WO2023179048A1 - 一种氟铝共掺杂的钴酸锂正极材料及其制备方法 - Google Patents

一种氟铝共掺杂的钴酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2023179048A1
WO2023179048A1 PCT/CN2022/131686 CN2022131686W WO2023179048A1 WO 2023179048 A1 WO2023179048 A1 WO 2023179048A1 CN 2022131686 W CN2022131686 W CN 2022131686W WO 2023179048 A1 WO2023179048 A1 WO 2023179048A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
fluorine
cobalt oxide
doped lithium
cathode material
Prior art date
Application number
PCT/CN2022/131686
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023179048A1 publication Critical patent/WO2023179048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and particularly relates to a fluorine-aluminum co-doped lithium cobalt oxide cathode material and a preparation method thereof.
  • Lithium-ion batteries have the advantages of high energy density, long cycle life, high operating voltage, small self-discharge, and environmental friendliness. They are widely used in portable electronic products and new energy vehicles.
  • lithium-ion cathode materials lithium cobalt oxide is widely used in portable electronic products due to its advantages such as simple production process, high gram capacity, stable cycle performance, and high compaction density.
  • the theoretical capacity of lithium cobalt oxide is 274mAh/g, but the actual capacity is only about 140mAh/g. This is because the set charge and discharge potential is 2.5-4.2V, and only nearly half of the lithium ions can be released in this voltage range.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a fluorine-aluminum co-doped lithium cobalt oxide cathode material and a preparation method thereof.
  • the cathode material prepared by the preparation method has good cycle stability.
  • a method for preparing fluorine-aluminum co-doped lithium cobalt oxide cathode material including the following steps: (1) Mixing cobalt salt solution, aluminum-base mixed solution and complexing agent to generate a precipitate; (2) Step (1) ), conduct solid-liquid separation of the material, wash the precipitate, and dry it at a specific drying temperature to obtain a dry material, so that the cobalt hydroxide decomposes into cobalt oxide, while the aluminum hydroxide still exists stably; (3) The dried material obtained in step (2) is mixed with ammonium fluoroaluminate, calcined in a protective atmosphere, and then insulated in an oxidizing gas to obtain a calcined material; (4) the calcined material obtained in step (3) is mixed with The lithium compound is mixed and then baked in an oxygen atmosphere to obtain the fluorine-aluminum co-doped lithium cobalt oxide cathode material.
  • the mixing method in step (1) is to flow cobalt salt solution, aluminum-base mixed solution and complexing agent into the reaction vessel for reaction and monitor the D50 of the material in the reaction vessel in real time.
  • the D50 of the material in the reaction vessel When reaching 4.0-8.0 ⁇ m, stop feeding.
  • the stirring speed is controlled to 200-500r/min, the temperature is 70-80°C, the complexing agent concentration is 5-10g/L, and the cobalt addition amount in the cobalt salt is kept to be mixed. 2 times the amount of sodium added to the solution.
  • the drying temperature in step (2) is 160-170°C.
  • the drying time in step (2) is 2-5 hours.
  • step (3) the dry material and ammonium fluoroaluminate are mixed according to a molar ratio of cobalt to aluminum of 10: (0.5-2).
  • the method of calcining in step (3) is to first heat the material under the protection of inert gas, the heating rate is 0.5-10°C/min, and the temperature-raising gradient is from room temperature to 600-800°C and holding for 1-2 hours, and then Then exchange the oxidizing gas and keep it at 600-800°C for 4-6 hours.
  • step (4) the calcined material and the lithium-containing compound are mixed according to a molar ratio of cobalt element to lithium element of 1: (1.0-1.2).
  • the roasting method in step (4) is roasting in an oxygen atmosphere, the roasting temperature is 1050-1200°C, and the roasting time is 6-18 hours.
  • the lithium-containing compound in step (4) is at least one of lithium carbonate, lithium hydroxide, lithium nitrate, and lithium oxalate.
  • the complexing agent in step (1) is ammonia water.
  • the concentration of the ammonia solution in step (1) is 6.0-12.0 mol/L.
  • the cobalt salt in the cobalt salt solution in step (1) is at least one of cobalt sulfate, cobalt nitrate, and cobalt chloride.
  • the concentration of the cobalt salt solution in step (1) is 1.0-2.0 mol/L.
  • the aluminum-base mixed solution in step (1) includes sodium tetrahydroxyaluminate and sodium hydroxide.
  • the concentration of sodium hydroxide in the aluminum-base mixed solution in step (1) is 1.0-4.0 mol/L, and the concentration of sodium tetrahydroxyaluminate is 0.05-0.4 mol/L.
  • a method for preparing a fluorine-aluminum co-doped lithium cobalt oxide cathode material includes the following steps:
  • the cobalt salt is at least one of cobalt sulfate, cobalt nitrate, and cobalt chloride;
  • the preparation concentration is 6.0mol/L-12.0mol/L ammonia water as complexing agent
  • step (7) According to the cobalt-aluminum molar ratio of 10: (0.5-2), mix the dry material obtained in step (6) and ammonium fluoroaluminate evenly, then place it in a tube furnace and pass in inert gas to protect and raise the temperature.
  • the heating rate is 0.5 -10°C/min, the heating gradient is from room temperature to 600-800°C and holding for 1-2h, then switch to oxidizing gas and continue to hold at 600-800°C for 4-6h. After cooling, crushing and sieving, the calcined material is obtained ;
  • the calcined material obtained in step (7) with at least one of lithium carbonate, lithium hydroxide, lithium nitrate, and lithium oxalate, and then Calcining in an air atmosphere, the calcining temperature is 1050-1200°C, the calcining time is 6-18 hours, and then crushed, sieved, and iron removed to obtain the fluorine-aluminum co-doped lithium cobalt oxide cathode material.
  • a fluorine-aluminum co-doped lithium cobalt oxide cathode material is prepared by the above-mentioned preparation method.
  • a battery includes the fluorine-aluminum co-doped lithium cobalt oxide cathode material as described above.
  • the preparation method of the fluorine-aluminum co-doped lithium cobalt oxide cathode material of the present invention is through blending sodium hydroxide and sodium tetrahydroxyaluminate, and then reacting with the cobalt salt to generate cobalt hydroxide and hydrogen under the action of ammonia water.
  • the coprecipitate of aluminum oxide causes aluminum and cobalt to be evenly mixed to form a eutectic; then the precipitate obtained after coprecipitation is dried at 160-170°C to decompose cobalt hydroxide into cobalt oxide, and hydroxide Aluminum still exists stably; then mix the dry material and ammonium fluoroaluminate evenly, and then insulate it at 600-800°C under an inert atmosphere.
  • the fluorine-aluminum co-doped lithium cobalt oxide cathode material of the present invention can improve the order of lithium cobalt oxide, stabilize the spinel structure, and suppress lattice distortion through a specific preparation method, and uses AlF 3 packages
  • the coating material can effectively alleviate the capacity fading, effectively prevent corrosion of the electrolyte, reduce the dissolution of cobalt, and make the resulting cathode material have excellent cycle stability.
  • Figure 1 is an SEM image of the fluorine-aluminum co-doped lithium cobalt oxide cathode material prepared in Example 1 of the present invention.
  • a method for preparing a fluorine-aluminum co-doped lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 6.0mol/L ammonia water as the complexing agent
  • step (7) According to the cobalt-aluminum molar ratio of 10:1, mix the dry material obtained in step (6) and ammonium fluoroaluminate evenly, then place it in a tube furnace and pass in inert gas to protect and raise the temperature.
  • the heating rate is 0.5°C/min.
  • the temperature gradient is from room temperature to 600°C and holding for 2 hours, then switching to oxidizing gas and continuing to hold at 600°C for 6 hours. After cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step (7) with lithium carbonate and then roast it in an air atmosphere.
  • the roasting temperature is 1050°C
  • the roasting time is 18 hours, and then crushed , sieve, and remove iron to obtain the lithium cobalt oxide cathode material co-doped with fluorine and aluminum.
  • a fluorine-aluminum co-doped lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing a fluorine-aluminum co-doped lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 9.0mol/L ammonia water as the complexing agent
  • step (7) According to the cobalt-aluminum molar ratio of 10:1.3, mix the dry material obtained in step (6) and ammonium fluoroaluminate evenly, then place it in a tube furnace and pass in inert gas to protect and raise the temperature.
  • the heating rate is 5°C/min.
  • the temperature gradient is from room temperature to 700°C and holding for 1.5 hours, then switching to oxidizing gas and continuing to hold at 700°C for 5 hours. After cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1.2, mix the calcined material obtained in step (7) with lithium hydroxide and then roast it in an air atmosphere.
  • the roasting temperature is 1100°C and the roasting time is 12 hours. Then, After crushing, sieving and iron removal, the lithium cobalt oxide cathode material co-doped with fluorine and aluminum is obtained.
  • a fluorine-aluminum co-doped lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing a fluorine-aluminum co-doped lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 12.0mol/L ammonia water as the complexing agent
  • step (7) According to the cobalt-aluminum molar ratio of 10:2, mix the dry material obtained in step (6) and ammonium fluoroaluminate evenly, then place it in a tube furnace and pass in inert gas to protect and raise the temperature.
  • the heating rate is 10°C/min.
  • the temperature gradient is from room temperature to 800°C and holding for 1 hour, then switching to oxidizing gas and continuing to hold at 800°C for 4 hours. After cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1.1, mix the calcined material obtained in step (7) with lithium nitrate and then roast it in an air atmosphere.
  • the roasting temperature is 1200°C
  • the roasting time is 6 hours, and then crushed , sieve, and remove iron to obtain the lithium cobalt oxide cathode material co-doped with fluorine and aluminum.
  • a fluorine-aluminum co-doped lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 6.0mol/L ammonia water as the complexing agent
  • step (6) Place the dry material obtained in step (6) in a tube furnace and pass inert gas to protect and heat it up.
  • the heating rate is 0.5°C/min.
  • the temperature rise gradient is from room temperature to 600°C and kept for 2 hours, and then the oxidizing gas is switched. Continue to maintain the temperature at 600°C for 6 hours, and after cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1, mix the calcined material obtained in step (7) with lithium carbonate and then roast it in an air atmosphere.
  • the roasting temperature is 1050°C
  • the roasting time is 18 hours, and then crushed , sieve, and remove iron to obtain the lithium cobalt oxide cathode material.
  • a lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 9.0mol/L ammonia water as the complexing agent
  • step (7) Place the dry material obtained in step (6) in a tube furnace and pass inert gas to protect it.
  • the temperature rise rate is 5°C/min.
  • the temperature rise gradient is from room temperature to 700°C and maintained for 1.5 hours. Then switch to the oxidizing agent.
  • the gas is kept at 700°C for 5 hours. After cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1.2, mix the calcined material obtained in step (7) with lithium hydroxide and then roast it in an air atmosphere.
  • the roasting temperature is 1100°C and the roasting time is 12 hours. Then, After crushing, sieving and iron removal, the lithium cobalt oxide cathode material is obtained.
  • a lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing lithium cobalt oxide cathode material including the following steps:
  • the preparation concentration is 12.0mol/L ammonia water as the complexing agent
  • step (6) Place the dry material obtained in step (6) in a tube furnace and pass inert gas to protect it and heat it up.
  • the heating rate is 10°C/min.
  • the temperature rise gradient is from room temperature to 800°C and kept for 1 hour, and then the oxidizing gas is switched. Continue to maintain the temperature at 800°C for 4 hours, and after cooling, crushing and sieving, the calcined material is obtained;
  • step (8) According to the molar ratio of cobalt element to lithium element being 1:1.1, mix the calcined material obtained in step (7) with lithium nitrate and then roast it in an air atmosphere.
  • the roasting temperature is 1200°C
  • the roasting time is 6 hours, and then crushed , sieve, and remove iron to obtain the lithium cobalt oxide cathode material.
  • a lithium cobalt oxide cathode material is prepared by the above preparation method.
  • the lithium cobalt oxide cathode material prepared in Examples 1-3 and Comparative Examples 1-3 was used as the active material, acetylene black was used as the conductive agent, and PVDF was used as the binder.
  • the active material and conductive agent were weighed in a ratio of 92:4:4 , binder, and add a certain amount of organic solvent NMP, stir and coat on aluminum foil to make a positive electrode sheet, use a metal lithium sheet as the negative electrode, and make a CR2430 button battery in a glove box filled with argon.
  • Conduct electrical performance testing on the CT2001A blue battery testing system. Test conditions: 3.0-4.48V, current density 1C 180mAh/g, test temperature 25 ⁇ 1°C, test results are shown in Table 1.
  • the fluorine-aluminum co-doped lithium cobalt oxide cathode material prepared by the preparation method of the present invention has good cycle stability, and its capacity retention rate is 87% and above after 600 cycles, which is far better than that of Capacity retention rate of lithium cobalt oxide cathode material after 600 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括以下步骤:(1)将钴盐溶液、铝碱混合溶液及络合剂混合,生成沉淀物;(2)将步骤(1)中的物料进行固液分离,洗涤沉淀物,并在特定的烘干温度下烘干得到干燥料,使得其中的氢氧化钴分解为氧化钴,而氢氧化铝仍稳定存在;(3)将步骤(2)得到的干燥料与氟铝酸铵混合后先在保护气氛下煅烧后,然后再在氧化性气体中保温后得到煅烧料;(4)将步骤(3)得到的煅烧料与含锂化合物混合后在有氧气氛下进行焙烧,得到所述氟铝共掺杂的钴酸锂正极材料。该制备方法制备得到的正极材料具有较好的循环稳定性。

Description

一种氟铝共掺杂的钴酸锂正极材料及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,特别涉及一种氟铝共掺杂的钴酸锂正极材料及其制备方法。
背景技术
锂离子电池具有能量密度高、循环寿命长、工作电压高、自放电小、对环境友好等优点,被广泛应用于便携式电子产品及新能源汽车。目前常用的锂离子正极材料中,钴酸锂因其具有生产工艺简单,克容量高,循环性能稳定,压实密度高等优点而被广泛使用于便携式电子产品中。钴酸锂理论容量为274mAh/g,但是实际容量只有140mAh/g左右,这是因为设置的充放电电位为2.5-4.2V,在这电压区间内只能有近一半的锂离子能够脱出。理论上提高钴酸锂的充电截止电压就会有更多的锂离子进行脱嵌,从而获得较大的容量。但是高电压下的钴酸锂由于深度脱出锂离子,使得材料内部结构坍塌,发生不可逆的相变,并伴随着钴的溶出,导致循环性能下降。
目前研究者对钴酸锂的改性方法主要为体相掺杂、表面包覆以及体相掺杂和表面包覆共同改性的方法提高正极材料的电化学性能,但是现有的改性方法所得改性钴酸锂正极材料仍然存在循环稳定性较差的缺点。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种氟铝共掺杂的钴酸锂正极材料及其制备方法,该制备方法制备得到的正极材料具有较好的循环稳定性。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括以下步骤:(1)将钴盐溶液、铝碱混合溶液及络合剂混合,生成沉淀物;(2)将步骤(1)中的物料进行固液分离,洗涤沉淀物,并在特定的烘干温度下烘干得到干燥料,使得其中的氢氧化钴分解为氧化钴,而氢氧化铝仍稳定存在;(3)将步骤(2)得到的干燥料与氟铝酸铵混合后先在保护气氛下煅烧后,然后再在氧化性气体中保温后得到煅烧料;(4)将步骤(3)得到的煅烧料与含锂化合物混合后在有氧气氛下进行焙烧,得到所述氟铝共掺杂的钴酸锂正极材料。
优选的,步骤(1)中的混合方式为将钴盐溶液、铝碱混合溶液及络合剂并流到反应容 器中进行反应并实时监控反应容器中物料的D50,当反应容器中物料的D50达到4.0-8.0μm时,停止进料。
优选的,步骤(1)并流过程中控制搅拌速度为200-500r/min、温度为70-80℃、络合剂浓度为5-10g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍。
优选的,步骤(2)中的烘干温度为160-170℃。
优选的,步骤(2)中的烘干时间为2-5h。
优选的,步骤(3)中干燥料与氟铝酸铵按照钴铝摩尔比10:(0.5-2)进行混合。
优选的,步骤(3)中煅烧的方式为先将物料在惰性气体保护下升温,升温速率为0.5-10℃/min,升温梯度为从室温升温至600-800℃并保温1-2h,然后再换通氧化性气体在600-800℃下保温4-6h。
优选的,步骤(4)中煅烧料与含锂化合物按照钴元素与锂元素的摩尔比为1:(1.0-1.2)进行混合。
优选的,步骤(4)中焙烧的方式为在有氧气氛下焙烧,焙烧温度为1050-1200℃,焙烧时间为6-18h。
优选的,步骤(4)中的含锂化合物为碳酸锂、氢氧化锂、硝酸锂、草酸锂中的至少一种。
优选的,步骤(1)中的络合剂为氨水。
优选的,步骤(1)所述氨水溶液的浓度为6.0-12.0mol/L。
优选的,步骤(1)中钴盐溶液中的钴盐为硫酸钴、硝酸钴、氯化钴中的至少一种。
优选的,步骤(1)中钴盐溶液的浓度为1.0-2.0mol/L。
优选的,步骤(1)中铝碱混合溶液中包括四羟基合铝酸钠及氢氧化钠。
优选的,步骤(1)中铝碱混合溶液中氢氧化钠的浓度为1.0-4.0mol/L,四羟基合铝酸钠的浓度为0.05-0.4mol/L。
优选的,一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.0-2.0mol/L的钴盐溶液,钴盐为硫酸钴、硝酸钴、氯化钴中的至少一种;
(2)配制铝碱混合溶液作为沉淀剂,铝碱混合溶液中氢氧化钠的浓度为1.0-4.0mol/L,四羟基合铝酸钠的浓度为0.05-0.4mol/L;
(3)配制浓度为6.0mol/L-12.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的钴盐溶液、步骤(2)配制的铝碱混合溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为200-500r/min、釜内温度为70-80℃、氨浓度为5-10g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到4.0-8.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在160-170℃下烘干2-5h,得到干燥料;
(7)按照钴铝摩尔比10:(0.5-2),将步骤(6)所得干燥料与氟铝酸铵混合均匀后,置于管式炉中通入惰性气体保护升温,升温速率为0.5-10℃/min,升温梯度为从室温升温至600-800℃保温1-2h,然后换通氧化性气体继续600-800℃保温4-6h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:(1.0-1.2),将步骤(7)所得煅烧料与碳酸锂、氢氧化锂、硝酸锂、草酸锂中的至少一种混合后在空气气氛下焙烧,焙烧温度为1050-1200℃,焙烧时间为6-18h,之后经破碎、过筛、除铁,即得氟铝共掺杂的钴酸锂正极材料。
一种氟铝共掺杂的钴酸锂正极材料,由如上所述的制备方法制备得到。
一种电池,包括如上所述的氟铝共掺杂的钴酸锂正极材料。
本发明的有益效果是:
(1)本发明的氟铝共掺杂的钴酸锂正极材料的制备方法通过氢氧化钠与四羟基合铝酸钠共混后,在氨水的作用下,与钴盐生成氢氧化钴和氢氧化铝的共沉淀物,使铝与钴达到均匀混合,形成共晶体;然后通过共沉淀后得到的沉淀物,在160-170℃下烘干,使得氢氧化钴分解为氧化钴,而氢氧化铝仍稳定存在;然后再将干燥料与氟铝酸铵混合均匀后,先在惰性气氛下600-800℃下保温,发生如下反应:首先,氟铝酸铵与干燥料中的氢氧化铝反应:(NH 4) 3AlF 6+Al(OH) 3=2AlF 3+3NH 3↑+3H 2O↑,形成氟铝共掺杂的钴酸锂前驱体,而后,氟铝酸铵自分解反应:(NH 4) 3AlF 6=AlF 3+3NH 4F↑,从而在钴酸锂前驱体表面形成氟化铝包覆层,在氧化性气氛下600-800℃下保温,发生如下反应:6CoO+O 2=2Co 3O 4,最后与含锂化合物混合后在1050-1200℃进行焙烧,发生如下反应:4Co 3O 4+6Li 2O+O 2=12LiCoO 2
(2)本发明的氟铝共掺杂的钴酸锂正极材料通过特定的制备方法,可提高钴酸锂的有序度,稳定尖晶石结构,并抑制晶格畸变,并使用AlF 3包覆材料,能有效缓解容量衰减,且能够有效防止电解液的腐蚀,减少钴的溶解,使所得正极材料具有优异的循环稳定性。
附图说明
图1为本发明实施例1制备得到的氟铝共掺杂的钴酸锂正极材料的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.0mol/L的硫酸钴溶液;
(2)配制铝碱混合溶液作为沉淀剂,铝碱混合溶液中氢氧化钠的浓度为2.0mol/L,四羟基合铝酸钠的浓度为0.05mol/L;
(3)配制浓度为6.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的硫酸钴溶液、步骤(2)配制的铝碱混合溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min、釜内温度为70℃、氨浓度为5g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到8.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在160℃下烘干5h,得到干燥料;
(7)按照钴铝摩尔比10:1,将步骤(6)所得干燥料与氟铝酸铵混合均匀后,置于管式炉中通入惰性气体保护升温,升温速率为0.5℃/min,升温梯度为从室温升温至600℃保温2h,然后换通氧化性气体继续600℃保温6h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1,将步骤(7)所得煅烧料与碳酸锂混合后在空气气氛下焙烧,焙烧温度为1050℃,焙烧时间为18h,之后经破碎、过筛、除铁,即得氟铝共掺杂的钴酸锂正极材料。
一种氟铝共掺杂的钴酸锂正极材料,由上述的制备方法制备得到。
制备得到的氟铝共掺杂的钴酸锂正极材料的SEM图如图1所示。
实施例2:
一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.5mol/L的硝酸钴溶液;
(2)配制铝碱混合溶液作为沉淀剂,铝碱混合溶液中氢氧化钠的浓度为1.0mol/L,四羟基合铝酸钠的浓度为0.05mol/L;
(3)配制浓度为9.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的硝酸钴溶液、步骤(2)配制的铝碱混合溶液、步骤(3)配制 的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为350r/min、釜内温度为75℃、氨浓度为8g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到6.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在165℃下烘干3h,得到干燥料;
(7)按照钴铝摩尔比10:1.3,将步骤(6)所得干燥料与氟铝酸铵混合均匀后,置于管式炉中通入惰性气体保护升温,升温速率为5℃/min,升温梯度为从室温升温至700℃保温1.5h,然后换通氧化性气体继续700℃保温5h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1.2,将步骤(7)所得煅烧料与氢氧化锂混合后在空气气氛下焙烧,焙烧温度为1100℃,焙烧时间为12h,之后经破碎、过筛、除铁,即得氟铝共掺杂的钴酸锂正极材料。
一种氟铝共掺杂的钴酸锂正极材料,由上述的制备方法制备得到。
实施例3:
一种氟铝共掺杂的钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为2.0mol/L的氯化钴溶液;
(2)配制铝碱混合溶液作为沉淀剂,铝碱混合溶液中氢氧化钠的浓度为4.0mol/L,四羟基合铝酸钠的浓度为0.4mol/L;
(3)配制浓度为12.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的氯化钴溶液、步骤(2)配制的铝碱混合溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min、釜内温度为80℃、氨浓度为10g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到4.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在170℃下烘干2h,得到干燥料;
(7)按照钴铝摩尔比10:2,将步骤(6)所得干燥料与氟铝酸铵混合均匀后,置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至800℃保温1h,然后换通氧化性气体继续800℃保温4h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1.1,将步骤(7)所得煅烧料与硝酸锂混合后在空气气氛下焙烧,焙烧温度为1200℃,焙烧时间为6h,之后经破碎、过筛、除铁,即得氟铝共掺杂的钴酸锂正极材料。
一种氟铝共掺杂的钴酸锂正极材料,由上述的制备方法制备得到。
对比例1:
一种钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.0mol/L的硫酸钴溶液;
(2)配制浓度为2.0mol/L的氢氧化钠溶液;
(3)配制浓度为6.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的硫酸钴溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min、釜内温度为70℃、氨浓度为5g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到8.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在160℃下烘干5h,得到干燥料;
(7)将步骤(6)所得干燥料置于管式炉中通入惰性气体保护升温,升温速率为0.5℃/min,升温梯度为从室温升温至600℃保温2h,然后换通氧化性气体继续600℃保温6h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1,将步骤(7)所得煅烧料与碳酸锂混合后在空气气氛下焙烧,焙烧温度为1050℃,焙烧时间为18h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
一种钴酸锂正极材料,由上述的制备方法制备得到。
对比例2:
一种钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为1.5mol/L的硝酸钴溶液;
(2)配制浓度为1.0mol/L的氢氧化钠溶液;
(3)配制浓度为9.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的硝酸钴溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为350r/min、釜内温度为75℃、氨浓度为8g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到6.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在165℃下烘干3h,得到干燥料;
(7)将步骤(6)所得干燥料置于管式炉中通入惰性气体保护升温,升温速率为5℃/min,升温梯度为从室温升温至700℃保温1.5h,然后换通氧化性气体继续700℃保温5h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1.2,将步骤(7)所得煅烧料与氢氧化锂混合后 在空气气氛下焙烧,焙烧温度为1100℃,焙烧时间为12h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
一种钴酸锂正极材料,由上述的制备方法制备得到。
对比例3:
一种钴酸锂正极材料的制备方法,包括如下步骤:
(1)配制浓度为2.0mol/L的氯化钴溶液;
(2)配制浓度为4.0mol/L的氢氧化钠溶液;
(3)配制浓度为12.0mol/L氨水作为络合剂;
(4)将步骤(1)配制的氯化钴溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min、釜内温度为80℃、氨浓度为10g/L,并保持钴盐中的钴加入量是混合溶液中钠的加入量的2倍;
(5)当检测到反应釜内物料的D50达到4.0μm时,停止进料;
(6)将釜内物料进行固液分离,再用纯水洗涤沉淀物,在170℃下烘干2h,得到干燥料;
(7)将步骤(6)所得干燥料置于管式炉中通入惰性气体保护升温,升温速率为10℃/min,升温梯度为从室温升温至800℃保温1h,然后换通氧化性气体继续800℃保温4h,经冷却、破碎、过筛后,得到煅烧料;
(8)按照钴元素与锂元素的摩尔比为1:1.1,将步骤(7)所得煅烧料与硝酸锂混合后在空气气氛下焙烧,焙烧温度为1200℃,焙烧时间为6h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
一种钴酸锂正极材料,由上述的制备方法制备得到。
试验例
以实施例1-3及对比例1-3制备的钴酸锂正极材料为活性材料,乙炔黑为导电剂,PVDF为粘结剂,以92:4:4的比例称取活性材料、导电剂、粘结剂,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片,在充满氩气的手套箱内制成CR2430型纽扣电池。在CT2001A型蓝电测试系统进行电性能测试。测试条件:3.0-4.48V,电流密度1C=180mAh/g,测试温度为25±1℃,测试结果如表1所示。
表1:电池电性能测试结果
Figure PCTCN2022131686-appb-000001
由表1可知,本发明的制备方法制备得到的氟铝共掺杂的钴酸锂正极材料具有较好的循环稳定性,其循环600次后容量保持率在87%及以上,远优于对比例中钴酸锂正极材料循环600次后的容量保持率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:包括以下步骤:
    (1)将钴盐溶液、铝碱混合溶液及络合剂混合,生成沉淀物;
    (2)将步骤(1)中的物料进行固液分离,洗涤沉淀物,并在特定的烘干温度下烘干得到干燥料,使得其中的氢氧化钴分解为氧化钴,而氢氧化铝仍稳定存在;
    (3)将步骤(2)得到的干燥料与氟铝酸铵混合后先在保护气氛下煅烧后,然后再在氧化性气体中保温后得到煅烧料;
    (4)将步骤(3)得到的煅烧料与含锂化合物混合后在有氧气氛下进行焙烧,得到所述氟铝共掺杂的钴酸锂正极材料。
  2. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(1)中的混合方式为将钴盐溶液、铝碱混合溶液及络合剂并流到反应容器中进行反应并实时监控反应容器中物料的D50,当反应容器中物料的D50达到4.0-8.0μm时,停止进料。
  3. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(2)中的烘干温度为160-170℃。
  4. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(3)中干燥料与氟铝酸铵按照钴铝摩尔比10:(0.5-2)进行混合。
  5. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(3)中煅烧的方式为先将物料在惰性气体保护下升温,升温速率为0.5-10℃/min,升温梯度为从室温升温至600-800℃并保温1-2h,然后再换通氧化性气体在600-800℃下保温4-6h。
  6. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(4)中焙烧的方式为在有氧气氛下焙烧,焙烧温度为1050-1200℃,焙烧时间为6-18h。
  7. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(1)中的络合剂为氨水。
  8. 根据权利要求1所述的一种氟铝共掺杂的钴酸锂正极材料的制备方法,其特征在于:步骤(1)中铝碱混合溶液中包括四羟基合铝酸钠及氢氧化钠。
  9. 一种氟铝共掺杂的钴酸锂正极材料,其特征在于:由权利要求1-8任一项所述的制备方法制备得到。
  10. 一种电池,其特征在于:包括权利要求9所述的氟铝共掺杂的钴酸锂正极材料。
PCT/CN2022/131686 2022-03-25 2022-11-14 一种氟铝共掺杂的钴酸锂正极材料及其制备方法 WO2023179048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210298899.4A CN114695862A (zh) 2022-03-25 2022-03-25 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
CN202210298899.4 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023179048A1 true WO2023179048A1 (zh) 2023-09-28

Family

ID=82139257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131686 WO2023179048A1 (zh) 2022-03-25 2022-11-14 一种氟铝共掺杂的钴酸锂正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114695862A (zh)
WO (1) WO2023179048A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695862A (zh) * 2022-03-25 2022-07-01 广东邦普循环科技有限公司 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
CN115571924B (zh) * 2022-09-28 2024-05-10 广东邦普循环科技有限公司 一种铝氟共掺杂四氧化三钴及其制备方法和应用
CN116332243B (zh) * 2023-02-09 2024-06-14 贵州梅岭电源有限公司 一种氟钒离子共掺杂的纳米钴酸锂正极材料制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173958A (ja) * 1997-06-18 1999-03-16 Sony Corp 正極活物質の製造方法
CN103228575A (zh) * 2011-05-31 2013-07-31 Omg科科拉化学公司 锂钴氧化物材料
US20150210557A1 (en) * 2014-01-24 2015-07-30 Samsung Sdi Co., Ltd. Method of manufacturing composite positive active material, composite positive active material manufactured thereby, and positive electrode and lithium battery including the composite positive active material
CN107968201A (zh) * 2016-10-20 2018-04-27 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其前驱体的制备方法
CN110323432A (zh) * 2019-07-10 2019-10-11 河南电池研究院有限公司 一种阴阳离子共掺杂改性锂离子电池正极材料及其制备方法
CN113948697A (zh) * 2021-09-30 2022-01-18 广东邦普循环科技有限公司 掺杂型磷酸铁钠正极材料及其制备方法和应用
CN114695862A (zh) * 2022-03-25 2022-07-01 广东邦普循环科技有限公司 一种氟铝共掺杂的钴酸锂正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173958A (ja) * 1997-06-18 1999-03-16 Sony Corp 正極活物質の製造方法
CN103228575A (zh) * 2011-05-31 2013-07-31 Omg科科拉化学公司 锂钴氧化物材料
US20150210557A1 (en) * 2014-01-24 2015-07-30 Samsung Sdi Co., Ltd. Method of manufacturing composite positive active material, composite positive active material manufactured thereby, and positive electrode and lithium battery including the composite positive active material
CN107968201A (zh) * 2016-10-20 2018-04-27 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其前驱体的制备方法
CN110323432A (zh) * 2019-07-10 2019-10-11 河南电池研究院有限公司 一种阴阳离子共掺杂改性锂离子电池正极材料及其制备方法
CN113948697A (zh) * 2021-09-30 2022-01-18 广东邦普循环科技有限公司 掺杂型磷酸铁钠正极材料及其制备方法和应用
CN114695862A (zh) * 2022-03-25 2022-07-01 广东邦普循环科技有限公司 一种氟铝共掺杂的钴酸锂正极材料及其制备方法

Also Published As

Publication number Publication date
CN114695862A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023179048A1 (zh) 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
CN103794777B (zh) 一种表面包覆的镍锰酸锂正极材料的制备方法
WO2015027826A1 (zh) 锂离子电池正极材料及其制备方法
CN112993241B (zh) 一种单晶锰酸锂材料的制备方法
WO2023173777A1 (zh) 一种锡基钴酸锂前驱体的制备方法及其应用
CN107302083A (zh) 镍锰酸锂正极材料的一种固相反应法制备方法
WO2023221624A1 (zh) 熔融盐制备三元正极材料的方法及其应用
WO2023024446A1 (zh) 一种四元正极材料及其制备方法和应用
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
WO2023221628A1 (zh) 一种高容量的铜掺杂钴酸锂正极材料及其制备方法和应用
CN110808363A (zh) 一种硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN111769286A (zh) 一种高电压镍锰酸锂正极材料及其制备方法
WO2024124961A1 (zh) 富锂锰基正极材料及其制备方法和应用
WO2023202202A1 (zh) 掺杂并包覆锡的四氧化三钴的制备方法及其应用
CN112786881A (zh) 一种固态锂电池及其制备方法
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN113871589A (zh) 一种熔盐辅助钛酸锂包覆的富锂锰基正极材料及其制备方法
WO2023207247A1 (zh) 一种多孔隙球形钴氧化物颗粒及其制备方法
WO2023207282A1 (zh) 一种模板生长制备钴酸锂前驱体的方法及其应用
WO2024066173A1 (zh) 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用
WO2024082544A1 (zh) 废旧磷酸铁锂电池定向循环制取磷酸铁锂正极材料的方法
WO2023173778A1 (zh) 一种海胆状钴酸锂的制备方法及其应用
CN116435514A (zh) 一种氟钛酸铵改性的富锂锰基正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933099

Country of ref document: EP

Kind code of ref document: A1