WO2023207151A1 - 新风系统控制方法、装置及空调机组 - Google Patents

新风系统控制方法、装置及空调机组 Download PDF

Info

Publication number
WO2023207151A1
WO2023207151A1 PCT/CN2022/140373 CN2022140373W WO2023207151A1 WO 2023207151 A1 WO2023207151 A1 WO 2023207151A1 CN 2022140373 W CN2022140373 W CN 2022140373W WO 2023207151 A1 WO2023207151 A1 WO 2023207151A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh air
air valve
air system
photoelectric switch
system control
Prior art date
Application number
PCT/CN2022/140373
Other languages
English (en)
French (fr)
Inventor
黄子睿
邓忠文
翁颖达
金国华
黄文帅
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023207151A1 publication Critical patent/WO2023207151A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application is based on the application with CN application number 202210445485.
  • the present disclosure relates to the technical field of air conditioning, and specifically to a fresh air system control method, device and air conditioning unit.
  • Fresh air fans are generally divided into two modes: internal circulation and external circulation. These two modes are switched by switching the two air valves at the air inlet and outlet. There are cases where the air valve is not opened at all or is in a half-open state. However, whether the air valve switch is in place will seriously affect the performance of the fresh air blower.
  • a fresh air system is provided with a damper, and the damper is equipped with a photoelectric switch.
  • the fresh air system control method includes:
  • determining whether the damper switch is in place according to the voltage signal includes: if the number of level changes is greater than or equal to one and the final level state is all low level, then determining that the damper switch is in place, otherwise, determining that the damper switch is faulty .
  • the air valve at least includes a fresh air valve and a return air valve
  • the photoelectric switch at least includes a first photoelectric switch disposed on the fresh air valve and a second photoelectric switch disposed on the return air valve
  • obtaining the switching status of the air valve includes: determining the operating mode of the fresh air system; determining the switching status of the fresh air valve and the return air valve according to the operating mode, wherein the operating mode at least includes an external circulation mode, and the operating mode is an external circulation mode. In circulation mode, both the fresh air valve and the return air valve are open.
  • determining the operating mode of the fresh air system includes: detecting the operating state of the fresh air system, where the operating state at least includes a power-on state; determining the operating mode of the fresh air system according to the operating state, wherein when the operating state is the power-on state, The operating mode is outer loop mode.
  • controlling the operation of the fresh air system based on the judgment results includes: when the fresh air valve and the return air valve switch are in place, obtain the environmental parameters of the room where the fresh air system is located, determine the operating mode of the fresh air system based on the environmental parameters, and determine the operating mode of the fresh air system based on the operating mode. Control the switching status of the fresh air valve and the return air valve, wherein the operating mode at least includes an internal circulation mode. When the operating mode is the internal circulation mode, the switching status of the fresh air valve and the return air valve are both closed.
  • controlling the operation of the fresh air system based on the judgment results includes: controlling the fresh air system to enter standby mode or shutdown mode when the fresh air valve and return air valve switches fail.
  • the method further includes: when the operating mode is the internal circulation mode, after controlling the switching status of the fresh air valve and the return air valve according to the operating mode, detecting the voltage signals of the first photoelectric switch and the second photoelectric switch. ; Determine whether the fresh air valve and the return air valve are switched in place according to the voltage signals of the first photoelectric switch and the second photoelectric switch.
  • the method further includes: when the operating state is the power-on state, before determining the operating mode of the fresh air system according to the operating state, controlling the fresh air valve and the return air valve to reset to the closed state.
  • a fresh air system control device is provided.
  • the fresh air system is provided with an air valve, and the air valve is equipped with a photoelectric switch.
  • the fresh air system control device includes:
  • a detection module used to detect the voltage signal of the photoelectric switch; wherein the voltage signal at least includes the number of level changes and the final level state;
  • the control module is used to judge whether the air valve is switched in place based on the voltage signal, and to control the operation of the fresh air system based on the judgment results.
  • an air conditioning unit including the above-mentioned fresh air system and a fresh air system control device.
  • the fresh air system is provided with a damper, and the damper is equipped with a photoelectric switch.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program when executed by a processor, is used to perform the above-mentioned fresh air system control method.
  • a processor is provided; and a memory coupled to the processor, configured to store instructions that, when executed by the processor, cause the processor to execute
  • the fresh air system control method is as in any of the above embodiments.
  • a computer program including: instructions, which when executed by a processor are used to perform the fresh air system control method as in any of the foregoing embodiments.
  • Figure 1 is an optional schematic diagram of the external circulation mode of the fresh air system according to an embodiment of the present disclosure
  • Figure 2 is an optional schematic diagram of the internal circulation mode of the fresh air system according to an embodiment of the present disclosure
  • Figure 3 is an optional structural block diagram of a fresh air valve or a return air valve according to an embodiment of the present disclosure
  • Figure 4 is an optional schematic diagram of the closed state of the fresh air valve or the return air valve according to an embodiment of the present disclosure
  • Figure 5 is an optional schematic diagram of the half-open state of the fresh air valve or return air valve according to an embodiment of the present disclosure
  • Figure 6 is an optional schematic diagram of the fully open state of the fresh air valve or return air valve according to an embodiment of the present disclosure
  • Figure 7 is an optional flow chart of a fresh air system control method according to an embodiment of the present disclosure.
  • Figure 8 is another optional flow chart of a fresh air system control method according to an embodiment of the present disclosure.
  • Figure 9 is an optional structural block diagram of a fresh air system control device according to an embodiment of the present disclosure.
  • the present disclosure provides a fresh air system control method, device and air conditioning unit to at least solve the problem in the prior art that dual photoelectric switches are required to accurately detect the position of the air valve switch in the fresh air system, resulting in waste of resources.
  • the present disclosure provides a fresh air system control method.
  • the control method is, for example, directly applied to various fresh air systems, or applied to an air conditioning system with a fresh air system function.
  • the side of the fresh air inlet and exhaust air outlet of the fresh air system is the outdoor side, and the side of the fresh air outlet and exhaust air inlet is the indoor side.
  • a fresh air valve is installed at the fresh air inlet, and a return air valve is installed at the exhaust air outlet.
  • the external circulation mode is operated, as shown in Figure 1.
  • both dampers are closed, recirculation mode is operated, as shown in Figure 2.
  • the structure of the fresh air valve or return air valve is shown in Figure 3.
  • the air valve is equipped with a photoelectric switch 1
  • the fresh air valve is equipped with a first photoelectric switch
  • the return air valve is equipped with a second photoelectric switch.
  • the position relationship is shown in Figure 3 (the position in the figure is in the closed state).
  • the rotating shaft is driven by a stepper motor to rotate, which will also cause the position of the baffle to change (the rotating shaft will rotate 90 degrees from closed to open), and will also cause a change in the photoelectric switch signal.
  • the baffle blocks the photoelectric switch, the photoelectric switch feedback circuit will It feeds back a low level, and when it is not blocked, it feeds back a high level.
  • FIG 4 shows an optional schematic diagram of the position of the photoelectric switch and the air valve block.
  • the air valve is in a closed state
  • Figure 5 also shows an optional schematic diagram of the position of the photoelectric switch and the air valve block.
  • the stroke valve is in a half-open state
  • Figure 6 shows another optional schematic diagram of the position of the photoelectric switch and the damper flap.
  • the stroke valve is in a fully-open state.
  • Figure 7 shows a flow chart of some embodiments of the method. As shown in Figure 7, the method includes the following steps S702-S706.
  • step S702 the switch state of the damper is obtained.
  • step S704 the voltage signal of the photoelectric switch is detected; the voltage signal at least includes the number of level changes and the final level state.
  • step S706 it is determined according to the voltage signal whether the damper switch is in place, and the operation of the fresh air system is controlled according to the determination result.
  • a fresh air system control scheme is provided.
  • the air valve of the fresh air system is provided with a photoelectric switch, which detects the voltage signal of the photoelectric switch and determines whether the air valve is switched in place based on the voltage signal.
  • This solution can more accurately detect whether the air valve component switch is in place through a single photoelectric switch. It not only solves the problem of short life of mechanical switches, but also solves the problem of waste of resources of multiple photoelectric switches. It can simply and accurately determine the switch of the air valve component. Whether it is in place and saving costs.
  • the air valve at least includes a fresh air valve and a return air valve
  • the photoelectric switch at least includes a first photoelectric switch disposed on the fresh air valve and a second photoelectric switch disposed on the return air valve.
  • obtaining the switching status of the damper includes: determining the operating mode of the fresh air system; determining the switching status of the damper according to the operating mode.
  • the unit After the unit is powered on, first reset the fresh air valve installed at the fresh air inlet and the return air valve installed at the exhaust air outlet to the closed position (the reset process does not detect whether they can be in place). That is, before determining the operating mode of the fresh air system, it also includes: controlling the fresh air valve and return air valve to be reset to the closed state. After that, if the user's operating system is turned on, the system will first run in the external circulation mode for a period of time (for example, 5 minutes) (that is, both the fresh air valve and the return air valve are opened, in order to introduce outdoor air to determine which mode needs to be run later).
  • a period of time for example, 5 minutes
  • determining the operating mode of the fresh air system includes: detecting the operating status of the fresh air system; where the operating status at least includes the power-on state; determining the operating mode of the fresh air system based on the operating status; where, when the operating status is the power-on state, the operating mode is Outer loop mode.
  • the feedback signal changes of the photoelectric switch can be roughly divided into the following types: low high and low (closed position ⁇ half-open position ⁇ fully open position), high and low (half-open position ⁇ fully open position), high (always stuck in the half-open position), low (Always stuck in the closed position or fully open position), low and high (closed position ⁇ half-open position); the air valve performs the following closing actions: low, high and low (fully open position ⁇ half-open position ⁇ closed position), high-low (half-open position) open position ⁇ closed position), high (always stuck in the half-open position), low (always stuck in the closed position or fully open position), low and high (fully open position ⁇ half-open position).
  • the air valve is in place only when the feedback signal is low, high, low or high. Therefore, when the air valve is reset (the two air valves will be closed when reset), the air valve is in place when it starts to act.
  • the level changes every time and a number is recorded. When the air valve completes the entire process, it is judged that the air valve is in place.
  • the number of recorded level changes is related to the level state of the photoelectric switch in the final state of the damper.
  • detecting the voltage signal of the photoelectric switch includes: detecting the number of level changes and the final level state of the first photoelectric switch and the second photoelectric switch. Determine whether the fresh air valve and return air valve are switched in place according to the voltage signal of the photoelectric switch, including: if the number of level changes is greater than or equal to one and the final level status is low level, then determine that the air valve switch is in place, otherwise, determine that the air valve is in place. Switch failure.
  • the number of level changes of the first photoelectric switch is greater than or equal to one and the final level state is low level, it is determined that the fresh air valve switch is in place, otherwise, it is determined that the fresh air valve switch is faulty; if the level of the second photoelectric switch If the number of changes is greater than or equal to one and the final level status is all low, it is determined that the return air valve switch is in place. Otherwise, it is determined that the return air valve switch is faulty.
  • the judgment result includes at least one of the following: switch in place, switch failure; controlling the operation of the fresh air system according to the judgment result, including: when the fresh air valve and return air valve switches are in place, obtaining the environmental parameters of the room where the fresh air system is located , the environmental parameters mainly include temperature and humidity.
  • the operating mode of the fresh air system is determined according to the environmental parameters, and the switching status of the fresh air valve and the return air valve are controlled according to the operating mode.
  • the operating mode at least includes the internal circulation mode; in the fresh air valve and When the return air valve switch fails, the fresh air system is controlled to enter standby mode or shutdown mode. Of course, for example, if it is detected that the user has not performed a shutdown operation, it will directly enter the inner loop mode.
  • the operation mode is the internal circulation mode and the switching status of the fresh air valve and the return air valve is controlled according to the operation mode, it also includes: detecting the voltage signal of the first photoelectric switch and the second photoelectric switch; The voltage signal of the switch determines whether the fresh air valve and return air valve are switched in place. This process is mainly used to detect whether the fresh air valve and the return air valve have reached the closed position.
  • the operating mode is internal circulation mode , detecting the voltage signal of the first photoelectric switch and the second photoelectric switch, and judging whether the fresh air valve and the return air valve are switched in place according to the voltage signals of the first photoelectric switch and the second photoelectric switch, and when the operation mode is the external circulation mode consistent.
  • Figure 8 shows a flow chart of some embodiments of the method. As shown in Figure 8, the method includes the following steps S801-S814.
  • step S801 start.
  • step S802 power on.
  • step S803 the air valve is reset to the closed position; after the unit is powered on, the fresh air valve installed at the fresh air inlet and the return air valve installed at the exhaust air outlet are reset to the closed position (the reset process does not detect whether they are in place) .
  • step S804 the unit is turned on and the unit is fixed to run external circulation for 5 minutes first. If the user operates the unit to turn it on, the unit will first run in the external circulation mode for 5 minutes (that is, both the fresh air valve and the return air valve are opened to introduce outdoor air to determine which mode needs to be operated later).
  • step S805 the air valve opening position is detected. At this time, it is necessary to judge whether the two air valves are fully opened.
  • the position of the air valve will be as shown in Figure 4 ⁇ Figure 5 ⁇ Figure 6 (in this case, the air valve can reach the closed position after power-on reset) or Figure 5 ⁇ Figure 6 (in this case After power-on reset, the damper can only operate to the half-open position.
  • step S806 the photoelectric switch feedback signal is counted when it changes. This process will cause the photoelectric switch to receive low, high, low or high-low level signals, and it will count as soon as the level changes.
  • step S808 if there is a fault, it is determined that the damper is not fully opened, indicating that the damper switch is faulty, and then enters S811.
  • step S809 run normally according to the outer loop parameters; after running the outer loop for 5 minutes, it will automatically determine whether to run the inner loop or the outer loop according to the introduced environmental parameters (temperature, humidity, etc.). If it is the outer loop, no action is needed to continue running. If it is Internal circulation requires closing two air valves.
  • step S810 manually shut down, determine whether the user shuts down the machine during normal operation, if so, proceed to step S811, otherwise, proceed to step S812;
  • step S811 shut down/standby; then, return to step S814;
  • step S812 run the inner loop; determine whether to run the inner loop mode, if so, proceed to step S813, otherwise, proceed to step S809;
  • step S813 the air valve is closed in place and detected; after that, return to step S807; when running the internal circulation mode, it needs to be judged whether it is closed in place.
  • the closing action is as shown in Figure 6 ⁇ Figure 5 ⁇ Figure 4 (this situation is after the valve is opened in the external circulation mode)
  • the valve is always in the fully open position) or Figure 5 ⁇ Figure 4 (in this case, the valve is opened to the half-open position by external force after the valve is opened in the external circulation mode).
  • This process will cause the photoelectric switch to receive low, high, low or high voltage. flat signal, as soon as the level changes, it will be counted once.
  • the count value and the final level value of the photoelectric switch will be judged. If the count value is greater than or equal to once and the final level state of the photoelectric switch is low, the air valve is considered to be closed. in place, otherwise it will be judged as not being closed in place and will turn to standby or shutdown state;
  • step S81 end.
  • Figure 9 shows a structural block diagram of some embodiments of the device. As shown in Figure 9, the device includes: an acquisition module 902, a detection module 904, and a control module. 906.
  • the acquisition module 902 is used to acquire the switch status of the damper.
  • the detection module 904 is connected to the acquisition module 902 and is used to detect the voltage signal of the photoelectric switch; wherein the voltage signal at least includes the number of level changes and the final level state.
  • the control module 906 is connected to the detection module 904, and is used to determine whether the air valve is switched in place according to the voltage signal, and to control the operation of the fresh air system according to the determination result.
  • a fresh air system control scheme is provided.
  • the air valve of the fresh air system is provided with a photoelectric switch, which detects the voltage signal of the photoelectric switch and determines whether the air valve is switched in place based on the voltage signal.
  • This solution can more accurately detect whether the air valve component switch is in place through a single photoelectric switch. It not only solves the problem of short life of mechanical switches, but also solves the problem of waste of resources of multiple photoelectric switches. It can simply and accurately determine the switch of the air valve component. Whether it is in place and saving costs.
  • the air valve at least includes a fresh air valve and a return air valve
  • the photoelectric switch at least includes a first photoelectric switch disposed on the fresh air valve and a second photoelectric switch disposed on the return air valve.
  • the acquisition module 902 includes: an operating mode determination sub-module, used to determine the operating mode of the fresh air system; a switching state determining sub-module, used to determine the switching states of the fresh air valve and the return air valve according to the operating mode; wherein the operating mode at least includes external circulation mode, when the operating mode is external circulation mode, the switching status of the fresh air valve and the return air valve are both open.
  • the operating mode determination sub-module includes: a detection unit, used to detect the operating status of the fresh air system; wherein the operating status at least includes a power-on state; a determination unit, used to determine the operating mode of the fresh air system based on the operating status; wherein, the operating status is power-on. status, the operating mode is outer loop mode.
  • the control module 906 includes: a determination sub-module, used to determine that the damper switch is in place if the number of level changes is greater than or equal to one and the final level states are all low levels; otherwise, determine that the damper switch is faulty.
  • the control module 906 also includes: a control sub-module used to control the operation of the fresh air system according to the judgment results.
  • the control sub-module is used to obtain the environmental parameters of the room where the fresh air system is located when the fresh air valve and return air valve switches are in place, and determine according to the environmental parameters.
  • the operating mode of the fresh air system and controls the switching status of the fresh air valve and the return air valve according to the operating mode; among which, the operating mode at least also includes: internal circulation mode; when the operating mode is the internal circulation mode, the opening and closing of the fresh air valve and the return air valve The status is all closed; when the fresh air valve and return air valve switches fail, the fresh air system is controlled to enter standby mode or shutdown mode.
  • the device also includes: a detection and judgment module for detecting the voltage signals of the first photoelectric switch and the second photoelectric switch after the operation mode is the internal circulation mode and the switching status of the fresh air valve and the return air valve is controlled according to the operation mode.
  • the voltage signals of the first photoelectric switch and the second photoelectric switch determine whether the fresh air valve and the return air valve are switched in place.
  • the acquisition module 902 also includes: a reset submodule, used to control the fresh air valve and the return air valve to reset to the closed state before determining the operating mode of the fresh air system according to the operating state when the operating state is the power-on state.
  • a reset submodule used to control the fresh air valve and the return air valve to reset to the closed state before determining the operating mode of the fresh air system according to the operating state when the operating state is the power-on state.
  • the present disclosure also provides an air conditioning unit, including a fresh air system and a fresh air system control device as in the above embodiment.
  • a fresh air system control scheme is provided.
  • the air valve of the fresh air system is provided with a photoelectric switch, which detects the voltage signal of the photoelectric switch and determines whether the air valve is switched in place based on the voltage signal.
  • This solution can more accurately detect whether the air valve component switch is in place through a single photoelectric switch. It not only solves the problem of short life of mechanical switches, but also solves the problem of waste of resources of multiple photoelectric switches. It can simply and accurately determine the switch of the air valve component. Whether it is in place and saving costs.
  • the present disclosure also provides a storage medium containing computer-executable instructions, which when executed by a computer processor are used to perform the above-mentioned fresh air system control method.
  • a fresh air system control scheme is provided.
  • the air valve of the fresh air system is provided with a photoelectric switch, which detects the voltage signal of the photoelectric switch and determines whether the air valve is switched in place based on the voltage signal.
  • This solution can more accurately detect whether the air valve component switch is in place through a single photoelectric switch. It not only solves the problem of short life of mechanical switches, but also solves the problem of waste of resources of multiple photoelectric switches. It can simply and accurately determine the switch of the air valve component. Whether it is in place and saving costs.
  • the present disclosure also provides a fresh air system control device, including: a processor; and a memory coupled to the processor for storing instructions.
  • the processor is caused to execute as follows: The fresh air system control method of any of the aforementioned embodiments.
  • the present disclosure also provides a computer program, including: instructions, which when executed by a processor are used to perform the fresh air system control method as in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

一种新风系统控制方法、装置及空调机组,其中,该方法包括:获取风阀的开关状态;检测光电开关(1)的电压信号;其中,电压信号至少包括电平变化次数和最终电平状态;根据电压信号判断风阀是否开关到位,并根据判断结果控制新风系统的运行。

Description

新风系统控制方法、装置及空调机组
相关申请的交叉引用
本申请是以CN申请号为202210445485.X,申请日为2022年4月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调技术领域,具体而言,涉及一种新风系统控制方法、装置及空调机组。
背景技术
新风机一般分为内循环和外循环两种模式,这两种模式通过进风口处和出风口处两个风阀的开关来转换。其中风阀存在完全没打开或处于半开状态的情况,然而风阀开关是否到位会严重影响新风机的性能。
市场上现有的风阀是否开关到位的检测方式,大部分采用机械方式检测风阀是否到位。例如风阀撞击开关,这种方式精度差且寿命短。现有技术中还采用光电检测的方式检测风阀是否到位,这种方式能够提高检测装置的寿命,但是为了更加精准地检测到风阀的位置,一般会在风阀的开启位置和关闭位置都装有关电开关,即一个风阀需要采用双光电开关,即两个光电开关。
发明内容
根据本公开实施例的一个方面,提供了一种新风系统设有风阀,风阀装设有光电开关,该新风系统控制方法包括:
获取风阀的开关状态;
检测光电开关的电压信号;其中,电压信号至少包括电平变化次数和最终电平状态;
根据电压信号判断风阀是否开关到位,并根据判断结果控制新风系统的运行。
在一些实施例中,根据电压信号判断风阀是否开关到位包括:如果电平变化次数大于等于一次且最终电平状态均为低电平,则确定风阀开关到位,否则,确定风阀开关故障。
在一些实施例中,风阀至少包括新风阀和回风阀,光电开关至少包括设置于新风阀的第一光电开关和设置于回风阀的第二光电开关。
在一些实施例中,获取风阀的开关状态包括:确定新风系统的运行模式;根据运行模式确定新风阀和回风阀的开关状态,其中,运行模式至少包括外循环模式,在运行模式为外循环模式时,新风阀和回风阀的开关状态均为开启状态。
在一些实施例中,确定新风系统的运行模式包括:检测新风系统的运行状态,其中,运行状态至少包括开机状态;根据运行状态确定新风系统的运行模式,其中,在运行状态为开机状态时,运行模式为外循环模式。
在一些实施例中,根据判断结果控制新风系统的运行包括:在新风阀和回风阀开关到位时,获取新风系统所在室内的环境参数,根据环境参数确定新风系统的运行模式,并根据运行模式控制新风阀和回风阀的开关状态,其中,运行模式至少还包括内循环模式,在运行模式为内循环模式时,新风阀和回风阀的开关状态均为关闭状态。
在一些实施例中,根据判断结果控制新风系统的运行包括:在新风阀和回风阀开关故障时,控制新风系统进入待机模式或关机模式。
在一些实施例中,该方法还包括:在运行模式为内循环模式的情况下,根据运行模式控制新风阀和回风阀的开关状态之后,检测第一光电开关和第二光电开关的电压信号;根据第一光电开关和第二光电开关的电压信号判断新风阀和回风阀是否开关到位。
在一些实施例中,该方法还包括:在运行状态为开机状态的情况下,在根据运行状态确定新风系统的运行模式之前,控制新风阀和回风阀复位至关闭状态。
根据本公开实施例的又一方面,提供了一种新风系统控制装置,新风系统设有风阀,风阀装设有光电开关,该新风系统控制装置包括:
获取模块,用于获取风阀的开关状态;
检测模块,用于检测光电开关的电压信号;其中,电压信号至少包括电平变化次数和最终电平状态;
控制模块,用于根据电压信号判断风阀是否开关到位,并根据判断结果控制新风系统的运行。
根据本公开实施例的又一方面,提供了一种空调机组,包括如上述的新风系统和新风系统控制装置。
在一些实施例中,所述新风系统设有风阀,所述风阀装设有光电开关。
根据本公开实施例的又一方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序由处理器执行时用于执行如上述的新风系统控制方法。
根据本公开实施例的再一方面,提供了一种处理器;以及耦接至所述处理器的存储器,用于存储指令,所述指令被所述处理器执行时,使所述处理器执行如前述任意实施例的新风系统控制方法。
根据本公开实施例的又一方面,提供了一种计算机程序,包括:指令,所述指令由处理器执行时用于执行如前述任意实施例的新风系统控制方法。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本公开实施例的新风系统外循环模式的一种可选的示意图;
图2是根据本公开实施例的新风系统内循环模式的一种可选的示意图;
图3是根据本公开实施例的新风阀或者回风阀的一种可选的结构框示意图;
图4是根据本公开实施例的新风阀或者回风阀的关闭状态的一种可选的示意图;
图5是根据本公开实施例的新风阀或者回风阀的半开状态的一种可选的示意图;
图6是根据本公开实施例的新风阀或者回风阀的全开状态的一种可选的示意图;
图7是根据本公开实施例的新风系统控制方法的一种可选的流程图;
图8是根据本公开实施例的新风系统控制方法的另一种可选的流程图;
图9是根据本公开实施例的新风系统控制装置的一种可选的结构框图。
附图标记说明:
1、光电开关;2、开到位挡片;3、关到位挡片。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
发明人发现:相关技术中新风系统中为了精准检测风阀开关到位情况,需要采用双光电开关,造成了资源浪费。本公开提供了一种新风系统控制方法、装置及空调机 组,以至少解决现有技术中新风系统中为了精准检测风阀开关到位情况需要采用双光电开关,造成资源浪费的问题。
本公开提供了一种新风系统控制方法,该控制方法例如直接应用至各种新风系统上,或者应用至具有新风系统功能的空调系统上,具体实现时,例如,通过在新风系统安装软件、APP、或者写入控制器相应的程序的方式来实现。
通常新风系统的新风进风口及排风出风口侧为室外侧,新风出风口及排风进风口侧为室内侧。新风进风处装有新风阀,排风出风处装有回风阀。当新风阀和回风阀都打开时,运行外循环模式,如图1中示出的。当两个风阀都关闭时,运行内循环模式,如图2中示出的。
新风阀或者回风阀的结构如图3所示,在风阀转轴上有两个挡片,根据位置的不同分为开到位挡片2及关到位挡片3。风阀上安装有光电开关1,新风阀装设有第一光电开关,回风阀装设有第二光电开关,位置关系如图3所示(图中位置为关闭状态)。转轴由步进电机带动转动,同时会带动挡片的位置改变(由关闭到打开转轴会转动90度),同时也会造成光电开关信号的改变,挡片挡住光电开关时,光电开关反馈电路会反馈回低电平,没有挡住时会反馈回高电平。
新风阀和回风阀的位置状态极为重要,但是风阀有很大可能由于某种原因(如风道存在异物)导致无法精准到达全开位置或者关位置。图4中示出光电开关与风阀挡片位置一种可选的示意图,在图4中风阀为关闭状态;图5中也示出光电开关与风阀挡片位置一种可选的示意图,在图5中风阀为半开状态;图6中示出光电开关与风阀挡片位置另一种可选的示意图,在图6中风阀为全开状态。
基于上述新风系统,本公开提供了一种新风系统控制方法,具体来说,图7示出该方法的一些实施例的流程图,如图7所示,该方法包括如下步骤S702-S706。
在步骤S702中,获取风阀的开关状态。
在步骤S704中,检测光电开关的电压信号;其中,电压信号至少包括电平变化次数和最终电平状态。
在步骤S706中,根据电压信号判断风阀是否开关到位,并根据判断结果控制新风系统的运行。
在上述实施方式中,提供了一种新风系统控制方案,在该新风系统的风阀设有一个光电开关,检测光电开关的电压信号,根据电压信号判断风阀是否开关到位。该方案通过单光电开关就可较为精确检测风阀部件开关是否到位,既解决了机械式开关寿 命短的问题,又解决了多光电开关资源浪费的问题,能够简单、精准地确定风阀部件开关是否到位,并且节约了成本。
如图1中示出的,风阀至少包括新风阀和回风阀,光电开关至少包括设置于新风阀的第一光电开关和设置于回风阀的第二光电开关。当新风阀和回风阀都打开时,运行外循环模式。如图2中示出的,当两个风阀都关闭时,运行内循环模式。在运行模式为外循环模式时,新风阀和回风阀的开关状态均为开启状态。在运行模式为内循环模式时,新风阀和回风阀的开关状态均为关闭状态。
通过上述分析能够确定,新风阀和回风阀的开关状态由新风系统的运行模式确定。因此,获取风阀的开关状态,包括:确定新风系统的运行模式;根据运行模式确定风阀的开关状态。
机组上电之后先对新风进风处装的新风阀和排风出风处装的回风阀,复位到关的位置(复位过程不检测是否能够到位)。即在确定新风系统的运行模式之前,还包括:控制新风阀和回风阀复位至关闭状态。之后,如果用户操作系统开机,系统会先运行一段时间(例如5min)的外循环模式(即新风阀和回风阀都打开,目的为引进室外空气用以判断之后需要运行何种模式)。因此,确定新风系统的运行模式,包括:检测新风系统的运行状态;其中,运行状态至少包括开机状态;根据运行状态确定新风系统的运行模式;其中,在运行状态为开机状态时,运行模式为外循环模式。
光电开关的反馈信号变化大致分为以下几种:低高低(关位置→半开位置→全开位置)、高低(半开位置→全开位置)、高(一直卡在半开位置)、低(一直卡在关位置或者全开位置)、低高(关位置→半开位置);风阀执行关闭动作时有以下:低高低(全开位置→半开位置→关位置)、高低(半开位置→关位置)、高(一直卡在半开位置)、低(一直卡在关位置或者全开位置)、低高(全开位置→半开位置)。综合以上几种风阀的动作位置得出以下结论:不管开阀还是关阀,只有反馈信号为低高低或者高低时为风阀动作到位。因此,当风阀复位(复位时两个风阀会关闭)后,风阀开始动作时检测风阀到位情况,电平每变化一次就记一次数,当风阀整个过程动作完毕之后,判断电平变化记录的次数与风阀最终状态时光电开关的电平状态。如果判断到电平变化次数大于等于一次且风阀动作完成之后光电开关最终电平状态为低电平时,认为风阀已经开到位或者关到位,否则判断为风阀开关故障。
具体地,检测光电开关的电压信号,包括:检测第一光电开关和第二光电开关的电平变化次数和最终电平状态。根据光电开关的电压信号判断新风阀和回风阀是否开 关到位,包括:如果电平变化次数大于等于一次且最终电平状态均为低电平,则确定风阀开关到位,否则,确定风阀开关故障。具体地,如果第一光电开关的电平变化次数大于等于一次且最终电平状态均为低电平,则确定新风阀开关到位,否则,确定新风阀开关故障;如果第二光电开关的电平变化次数大于等于一次且最终电平状态均为低电平,则确定回风阀开关到位,否则,确定回风阀开关故障。
在一些实施例中,判断结果至少包括以下之一:开关到位、开关故障;根据判断结果控制新风系统的运行,包括:在新风阀和回风阀开关到位时,获取新风系统所在室内的环境参数,该环境参数主要包括温度和湿度,根据环境参数确定新风系统的运行模式,并根据运行模式控制新风阀和回风阀的开关状态,其中,运行模式至少还包括内循环模式;在新风阀和回风阀开关故障时,控制新风系统进入待机模式或关机模式。当然,例如,如果检测到用户未执行关机操作,直接进入内循环模式。
在运行模式为内循环模式,并根据运行模式控制新风阀和回风阀的开关状态之后,还包括:检测第一光电开关和第二光电开关的电压信号;根据第一光电开关和第二光电开关的电压信号判断新风阀和回风阀是否开关到位。此过程主要用于检测新风阀和回风阀是否达到关闭位置,通过上述分析能够确定,新风阀和回风阀是否达到关闭位置或达到开启位置的检测原理一致,因此运行模式为内循环模式时,检测第一光电开关和第二光电开关的电压信号,根据第一光电开关和第二光电开关的电压信号判断新风阀和回风阀是否开关到位的实现方案,与运行模式为外循环模式时一致。
本公开还提供了另一种新风系统控制方法,具体来说,图8示出该方法的一些实施例的流程图,如图8所示,该方法包括如下步骤S801-S814。
在步骤S801中,开始。
在步骤S802中,上电。
在步骤S803中,风阀复位到关位置;机组上电之后先对新风进风处装的新风阀和排风出风处装的回风阀复位到关的位置(复位过程不检测是否到位)。
在步骤S804中,开机,机组固定先运行5分钟外循环。如果用户操作机组开机,机组会先运行5min的外循环模式(即新风阀和回风阀都打开,目的为引进室外空气用以判断之后需要运行何种模式)。
在步骤S805中,风阀开到位检测。此时需要判断两个风阀是否开到位,风阀的位置会以图4→图5→图6(此情况为上电复位后风阀能够到关位置)或者图5→图6(此情况为上电复位后风阀只能够到半开位置)运行。
在步骤S806中,光电开关反馈信号变化时计数。这个过程就会使光电开关接收到低高低或者高低的电平信号,只要电平一发生变化就计一次数。
在步骤S807中,确定计数值>=1且停止时为低电平;如果是,则进入步骤S809,否则,进入步骤S808;等到动作完成之后判断计数值以及光电开关最终的电平值,如果计数值大于等于一次且光电开关最终电平状态为低电平时认为风阀打开到位,否者判定为开不到位。
在步骤S808中,故障,判定为风阀开不到位,则说明风阀开关故障,之后进入S811。
在步骤S809中,根据外循环参数正常运行;运行5分钟外循环之后根据引进的环境参数(温度、湿度等)自动判断运行内循环还是外循环,如果为外循环则无需动作继续运行,如果为内循环则需要关闭两个风阀。
在步骤S810中:手动关机,在正常运行中判断用户是否关机,如果是,则进入步骤S811,否则,进入步骤S812;
在步骤S811中,关机/待机;之后,返回步骤S814;
在步骤S812中,运行内循环;判断是否运行内循环模式,如果是,则进入步骤S813,否则,进入步骤S809;
在步骤S813中,风阀关到位检测;之后,返回步骤S807;运行内循环模式,需要判断是否关到位,关闭动作以图6→图5→图4(此情况为运行外循环模式开阀之后阀一直处于全开位置)或者图5→图4(此情况为运行外循环模式开阀之后阀被外力打到半开位置)运行,这个过程就会使光电开关接收到低高低或者高低的电平信号,只要电平一发生变化就计一次数,等到动作完成之后判断计数值以及光电开关最终的电平值,如果计数值大于等于一次且光电开关最终电平状态为低电平时认为风阀关到位,否者判定为关不到位转为待机或关机状态;
在步骤S814中,结束。
实本公开还提供了一种新风系统控制装置,具体地,图9示出该装置的一些实施例的结构框图,如图9所示,该装置包括:获取模块902,检测模块904,控制模块906。
获取模块902,用于获取风阀的开关状态。
检测模块904,与获取模块902连接,用于检测光电开关的电压信号;其中,电压信号至少包括电平变化次数和最终电平状态。
控制模块906,与检测模块904连接,用于根据电压信号判断风阀是否开关到位,并根据判断结果控制新风系统的运行。
在上述实施方式中,提供了一种新风系统控制方案,在该新风系统的风阀设有一个光电开关,检测光电开关的电压信号,根据电压信号判断风阀是否开关到位。该方案通过单光电开关就可较为精确检测风阀部件开关是否到位,既解决了机械式开关寿命短的问题,又解决了多光电开关资源浪费的问题,能够简单、精准地确定风阀部件开关是否到位,并且节约了成本。
风阀至少包括新风阀和回风阀,光电开关至少包括设置于新风阀的第一光电开关和设置于回风阀的第二光电开关。获取模块902包括:运行模式确定子模块,用于确定新风系统的运行模式;开关状态确定子模块,用于根据运行模式确定新风阀和回风阀的开关状态;其中,运行模式至少包括外循环模式,在运行模式为外循环模式时,新风阀和回风阀的开关状态均为开启状态。
运行模式确定子模块包括:检测单元,用于检测新风系统的运行状态;其中,运行状态至少包括开机状态;确定单元,用于根据运行状态确定新风系统的运行模式;其中,在运行状态为开机状态时,运行模式为外循环模式。
控制模块906包括:确定子模块,用于如果电平变化次数大于等于一次且最终电平状态均为低电平,则确定风阀开关到位,否则,确定风阀开关故障。
控制模块906还包括:控制子模块,用于根据判断结果控制新风系统的运行,控制子模块用于在新风阀和回风阀开关到位时,获取新风系统所在室内的环境参数,根据环境参数确定新风系统的运行模式,并根据运行模式控制新风阀和回风阀的开关状态;其中,运行模式至少还包括:内循环模式;在运行模式为内循环模式时,新风阀和回风阀的开关状态均为关闭状态;在新风阀和回风阀开关故障时,控制新风系统进入待机模式或关机模式。
本装置还包括:检测判断模块,用于在运行模式为内循环模式,并根据运行模式控制新风阀和回风阀的开关状态之后,检测第一光电开关和第二光电开关的电压信号,根据第一光电开关和第二光电开关的电压信号判断新风阀和回风阀是否开关到位。
获取模块902还包括:复位子模块,用于在运行状态为开机状态时,在根据运行状态确定新风系统的运行模式之前,控制新风阀和回风阀复位至关闭状态。
关于上述实施例中的装置,其中各个单元、模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供了一种空调机组,包括新风系统和如上述实施例中的新风系统控制装置。
在上述实施方式中,提供了一种新风系统控制方案,在该新风系统的风阀设有一个光电开关,检测光电开关的电压信号,根据电压信号判断风阀是否开关到位。该方案通过单光电开关就可较为精确检测风阀部件开关是否到位,既解决了机械式开关寿命短的问题,又解决了多光电开关资源浪费的问题,能够简单、精准地确定风阀部件开关是否到位,并且节约了成本。
本公开还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如上述的新风系统控制方法。
在上述实施方式中,提供了一种新风系统控制方案,在该新风系统的风阀设有一个光电开关,检测光电开关的电压信号,根据电压信号判断风阀是否开关到位。该方案通过单光电开关就可较为精确检测风阀部件开关是否到位,既解决了机械式开关寿命短的问题,又解决了多光电开关资源浪费的问题,能够简单、精准地确定风阀部件开关是否到位,并且节约了成本。
本公开还提供一种新风系统控制装置,包括:处理器;以及耦接至所述处理器的存储器,用于存储指令,所述指令被所述处理器执行时,使所述处理器执行如前述任意实施例的新风系统控制方法。
本公开还提供一种计算机程序,包括:指令,所述指令由处理器执行时用于执行如前述任意实施例的新风系统控制方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种新风系统控制方法,其中,新风系统设有风阀,所述风阀装设有光电开关,所述新风系统控制方法包括:
    获取所述风阀的开关状态;
    检测所述光电开关的电压信号,其中,所述电压信号至少包括电平变化次数和最终电平状态;
    根据所述电压信号判断所述风阀是否开关到位,并根据判断结果控制所述新风系统的运行。
  2. 根据权利要求1所述的新风系统控制方法,其中,根据所述电压信号判断所述风阀是否开关到位包括:
    如果所述电平变化次数大于等于一次且所述最终电平状态均为低电平,则确定所述风阀开关到位,否则,确定所述风阀开关故障。
  3. 根据权利要求2所述的新风系统控制方法,其中,所述风阀至少包括新风阀和回风阀,所述光电开关至少包括设置于所述新风阀的第一光电开关和设置于所述回风阀的第二光电开关。
  4. 根据权利要求3所述的新风系统控制方法,其中,获取所述风阀的开关状态包括:
    确定所述新风系统的运行模式;
    根据所述运行模式确定所述新风阀和所述回风阀的开关状态,其中,所述运行模式至少包括外循环模式,在所述运行模式为所述外循环模式时,所述新风阀和所述回风阀的开关状态均为开启状态。
  5. 根据权利要求4所述的新风系统控制方法,其中,确定所述新风系统的运行模式包括:
    检测所述新风系统的运行状态,其中,所述运行状态至少包括开机状态;
    根据所述运行状态确定所述新风系统的运行模式,其中,在所述运行状态为所述开机状态时,所述运行模式为所述外循环模式。
  6. 根据权利要求3所述的新风系统控制方法,其中,根据判断结果控制所述新风系统的运行包括:
    在所述新风阀和所述回风阀开关到位时,获取所述新风系统所在室内的环境参数;
    根据所述环境参数确定所述新风系统的运行模式,并根据所述运行模式控制所述新风阀和所述回风阀的开关状态,其中,所述运行模式至少还包括内循环模式,在所述运行模式为所述内循环模式时,所述新风阀和所述回风阀的开关状态均为关闭状态。
  7. 根据权利要求3所述的新风系统控制方法,其中,根据判断结果控制所述新风系统的运行包括:在所述新风阀和所述回风阀开关故障时,控制所述新风系统进入待机模式或关机模式。
  8. 根据权利要求6所述的新风系统控制方法,还包括:在所述运行模式为所述内循环模式的情况下,根据所述运行模式控制所述新风阀和所述回风阀的开关状态之后,
    检测所述第一光电开关和所述第二光电开关的电压信号;
    根据所述第一光电开关和所述第二光电开关的电压信号判断所述新风阀和所述回风阀是否开关到位。
  9. 根据权利要求4所述的新风系统控制方法,还包括:在所述运行状态为所述开机状态的情况下,在根据所述运行状态确定所述新风系统的运行模式之前,控制所述新风阀和所述回风阀复位至关闭状态。
  10. 一种新风系统控制装置,其中,新风系统设有风阀,所述风阀装设有光电开关,所述新风系统控制装置包括:
    获取模块,用于获取所述风阀的开关状态;
    检测模块,用于检测所述光电开关的电压信号;其中,所述电压信号至少包括电平变化次数和最终电平状态;
    控制模块,用于根据所述电压信号判断所述风阀是否开关到位,并根据判断结果控制所述新风系统的运行。
  11. 一种空调机组,包括:新风系统和如权利要求9所述的新风系统控制装置。
  12. 根据权利要求11所述的空调机组,其中,所述新风系统设有风阀,所述风阀装设有光电开关。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序由处理器执行时用于执行如权利要求1至9中任一项所述的新风系统控制方法。
  14. 一种新风系统控制装置,包括:
    处理器;以及
    耦接至所述处理器的存储器,用于存储指令,所述指令被所述处理器执行时,使所述处理器执行如权利要求1-9任一项所述的新风系统控制方法。
  15. 一种计算机程序,包括:指令,所述指令由处理器执行时用于执行如权利要求1至9中任一项所述的新风系统控制方法。
PCT/CN2022/140373 2022-04-26 2022-12-20 新风系统控制方法、装置及空调机组 WO2023207151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210445485.XA CN114719373B (zh) 2022-04-26 2022-04-26 新风系统控制方法、装置及空调机组
CN202210445485.X 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023207151A1 true WO2023207151A1 (zh) 2023-11-02

Family

ID=82245270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140373 WO2023207151A1 (zh) 2022-04-26 2022-12-20 新风系统控制方法、装置及空调机组

Country Status (2)

Country Link
CN (1) CN114719373B (zh)
WO (1) WO2023207151A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719373B (zh) * 2022-04-26 2023-04-14 珠海格力电器股份有限公司 新风系统控制方法、装置及空调机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062263A1 (de) * 1981-03-28 1982-10-13 Karl-Heinz Nowicki Lüftungsgerät für die Zu- bzw. Abführung von Luft
JP2000111655A (ja) * 1998-09-30 2000-04-21 Sunx Ltd 安全装置
CN201330880Y (zh) * 2009-01-16 2009-10-21 珠海格力电器股份有限公司 电动光控风阀
CN102396028A (zh) * 2009-04-24 2012-03-28 日本先锋公司 记录介质再生装置
CN207701888U (zh) * 2017-12-14 2018-08-07 深圳市新嘉拓自动化技术有限公司 一种自动控制风量的电动风阀
CN112824850A (zh) * 2019-11-21 2021-05-21 宁波舜宇光电信息有限公司 可开合工装的状态检测、取放料控制装置和模组检测设备
CN215172468U (zh) * 2021-05-11 2021-12-14 三彡环境科技(北京)有限公司 一种混风阀和新风机
CN114719373A (zh) * 2022-04-26 2022-07-08 珠海格力电器股份有限公司 新风系统控制方法、装置及空调机组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436925B (zh) * 2014-11-25 2016-05-04 阿尔西制冷工程技术(北京)有限公司 一种空气过滤器保护装置
JP6955077B2 (ja) * 2016-06-28 2021-10-27 日立ジョンソンコントロールズ空調株式会社 直流電源装置および空気調和機
US11136007B2 (en) * 2018-04-24 2021-10-05 Kevin Allen Hibbard Tire inflating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062263A1 (de) * 1981-03-28 1982-10-13 Karl-Heinz Nowicki Lüftungsgerät für die Zu- bzw. Abführung von Luft
JP2000111655A (ja) * 1998-09-30 2000-04-21 Sunx Ltd 安全装置
CN201330880Y (zh) * 2009-01-16 2009-10-21 珠海格力电器股份有限公司 电动光控风阀
CN102396028A (zh) * 2009-04-24 2012-03-28 日本先锋公司 记录介质再生装置
CN207701888U (zh) * 2017-12-14 2018-08-07 深圳市新嘉拓自动化技术有限公司 一种自动控制风量的电动风阀
CN112824850A (zh) * 2019-11-21 2021-05-21 宁波舜宇光电信息有限公司 可开合工装的状态检测、取放料控制装置和模组检测设备
CN215172468U (zh) * 2021-05-11 2021-12-14 三彡环境科技(北京)有限公司 一种混风阀和新风机
CN114719373A (zh) * 2022-04-26 2022-07-08 珠海格力电器股份有限公司 新风系统控制方法、装置及空调机组

Also Published As

Publication number Publication date
CN114719373A (zh) 2022-07-08
CN114719373B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP6548285B2 (ja) 空気調和機の制御方法及び空気調和機
CN110387727B (zh) 衣物处理装置及其控制方法
WO2023207151A1 (zh) 新风系统控制方法、装置及空调机组
CN105805892B (zh) 一种空调制热控制方法
US20220042699A1 (en) Determination of stuck reversing valve
JP2002340423A (ja) 車両用空気調和装置
US11725837B2 (en) Detection of a reversing valve fault
US11609046B2 (en) Detecting loss of charge in HVAC systems
WO2023116463A1 (zh) 用于空调器的控制方法及装置、空调器、存储介质
WO2020133915A1 (zh) 空调系统的阀体失效检测方法及空调系统
US20220282885A1 (en) Expansion valve control method for multi-connection air-conditioning system
JPH0835710A (ja) マルチタイプ空気調和機の制御装置
KR20080028216A (ko) 유로전환장치 및 이를 갖춘 환기장치
CN108444074B (zh) 空调中热回收器的加热控制方法、装置及系统
CN113606739A (zh) 空调停机压差平衡的控制方法、装置及多联机
CN115013940B (zh) 电子膨胀阀的安装检测方法、装置、空调器及介质
JP2005061767A (ja) 多室形空気調和機
JP3558182B2 (ja) 空気調和機
JP2003294293A (ja) 空気調和機
CN115200194B (zh) 多联机的室外机的控制方法、装置、空调器及介质
JPWO2019077718A1 (ja) 熱交換換気装置
JP3348597B2 (ja) 空気調和機
JPH0719628A (ja) 多分岐式空気調和機
CN116972489A (zh) 空调器及其控制方法、空调控制器和存储介质
CN116242091A (zh) 用于操作借助易燃制冷剂冷却的实验室设备的物体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939960

Country of ref document: EP

Kind code of ref document: A1