WO2023207019A1 - 一种钕铁硼磁体材料及其制备方法、应用 - Google Patents

一种钕铁硼磁体材料及其制备方法、应用 Download PDF

Info

Publication number
WO2023207019A1
WO2023207019A1 PCT/CN2022/129741 CN2022129741W WO2023207019A1 WO 2023207019 A1 WO2023207019 A1 WO 2023207019A1 CN 2022129741 W CN2022129741 W CN 2022129741W WO 2023207019 A1 WO2023207019 A1 WO 2023207019A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet material
ndfeb magnet
content
percentage
weight percentage
Prior art date
Application number
PCT/CN2022/129741
Other languages
English (en)
French (fr)
Inventor
牟维国
王晨
黄志高
付刚
许德钦
Original Assignee
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省长汀金龙稀土有限公司 filed Critical 福建省长汀金龙稀土有限公司
Publication of WO2023207019A1 publication Critical patent/WO2023207019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to a neodymium iron boron magnet material and its preparation method and application.
  • Permanent magnetic materials were developed as key materials to support electronic devices.
  • R-T-B series permanent magnet materials are known to have the highest performance among permanent magnets and are used in voice coil motors for hard disk drives, motors for electric vehicles, motors for industrial equipment, etc.
  • the intrinsic coercivity of NdFeB magnets without heavy rare earth additions when Br is 14.0kGs is only about 18.3kOe, which is less than 1/3 of the theoretical intrinsic coercivity of NdFeB. Therefore, how to further improve the intrinsic coercive force of R-T-B series permanent magnet materials without using heavy rare earths or using less heavy rare earths is currently a research direction in this field.
  • the technical problem to be solved by the present invention is to overcome the defects in the existing technology that rely on heavy rare earths to improve the intrinsic coercive force of NdFeB magnets, and provide a NdFeB magnet material and its preparation method and application.
  • the present invention suppresses the formation of Nd-O phase with FCC type crystal structure, and controls its volume ratio in the grain boundary phase within 20%, thereby reducing FCC type with higher melting point.
  • the Nd-O phase of the crystal structure hinders the mobility of the Nd-rich phase during the aging process, which is conducive to the formation of a continuous and uniform intergranular Nd-rich phase, thereby enhancing the demagnetizing coupling ability of the grain boundary phase and improving the intrinsic coercivity of the magnet. force consistency.
  • the inventor creatively discovered that the Nd-O phase with FCC type crystal structure in the NdFeB magnet material is not conducive to the formation of a continuous and uniform intergranular Nd-rich phase, and will also consume Nd in the magnet and cause
  • the formation of agglomerates in the intergranular triangular region leads to an increase in the Fe content in the intergranular phase, which further intensifies the alloying between Fe and the main phase, resulting in a decrease in the proportion of the main phase and a decrease in magnet performance.
  • the present invention mainly solves the above technical problems through the following technical solutions.
  • the invention provides a NdFeB magnet material, which includes the following components in terms of weight percentage:
  • R 28.00-32.00wt.%, the R is a rare earth element
  • the balance is Fe, wt.% refers to the weight percentage in the NdFeB magnet material
  • the volume ratio of the volume of the Nd-O phase with the FCC type crystal structure in the intergranular triangular region of the NdFeB magnet material to the grain boundary phase of the NdFeB magnet material is within 20%;
  • the grain boundary phase of the NdFeB magnet material includes a two-grain grain boundary phase and an intergranular triangular region.
  • the content of R can be 28.50-32.00wt.%, such as 28.65wt.%, 29.20wt.%, 29.50wt.%, 29.51wt.%, 30.15wt.%, 30.20wt.%, 30.30 wt.%, 31.31wt.% or 32.00wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the R may be a conventional rare earth element in the art, and may generally include light rare earth elements and/or heavy rare earth elements.
  • the light rare earth element may be Pr and/or Nd.
  • the content of the light rare earth element may be 28.50-32.00wt.%, such as 28.50wt.%, 29.00wt.%, 29.50wt.%, 29.51wt.%, 30.00wt.%, 30.20wt.%, 30.51 wt.% or 32.00wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of the Pr may be 5.00-10.00wt.%, such as 5.40wt.%, 6.50wt.%, 7.38wt.%, 7.50wt.%, 7.63wt.% or 8.00 wt.%, percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Nd may be 20.00-32.00wt.%, such as 22.00wt.%, 22.13wt.%, 22.50wt.%, 22.88wt.%, 23.50wt.%, 24.60 wt.%, 28.50wt.%, 29.00wt.%, 29.50wt.%, 30.20wt.% or 32.00wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the heavy rare earth element may be Dy and/or Tb.
  • the content of the heavy rare earth element may be 0.10-3.00wt.%, such as 0.15wt.%, 0.20wt.%, 0.30wt.% or 0.80wt.%, and the percentage refers to the amount in the NdFeB magnet material. Weight percent.
  • the content of Dy may be 0.10-3.00wt.%, such as 0.15-1.00wt.%, or, for example, 0.15wt.%, 0.20wt.%, 0.30wt.% or 0.80wt. .%, percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Al can be 0.00-0.80wt.%, such as 0.05-0.80wt.%, also such as 0.05wt.%, 0.10wt.%, 0.30wt.%, 0.45wt.%, 0.50wt .% or 0.80wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Cu is preferably 0.13-0.50wt.%, such as 0.15wt.%, 0.20wt.%, 0.30wt.%, 0.35wt.% or 0.40wt.%, and the percentage refers to the content of the neodymium. Weight percentage of iron boron magnet material.
  • the content of B can be 0.86-1.00wt.%, such as 0.86wt.%, 0.92wt.%, 0.94wt.%, 0.96wt.%, 0.98wt.% or 1.00wt.%, percentage It refers to the weight percentage in the NdFeB magnet material.
  • the content of Fe can be 64.50-69.00wt.%, such as 64.72wt.%, 66.24wt.%, 66.33wt.%, 67.06wt.%, 67.14wt.%, 67.18wt.%, 67.52 wt.%, 67.98wt.%, 68.13wt.%, 68.23wt.% or 68.27wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the NdFeB magnet material may also contain one or more of Ga, Co, Zr and Ti.
  • the content of Ga may be 0.00-1.00wt.%, but not 0, such as 0.05-0.80wt.%, or, for example, 0.15wt.%, 0.20wt .%, 0.40wt.%, 0.50wt.% or 0.60wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Co may be 0.20-2.00wt.%, such as 0.30wt.%, 0.40wt.%, 0.50wt.%, 0.80wt.%, 1.00 wt.% or 1.50wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Zr can be 0.05-0.60wt.%, such as 0.08wt.%, 0.10wt.%, 0.15wt.%, 0.30wt.%, 0.40 wt.% or 0.50wt.%, the percentage refers to the weight percentage in the NdFeB magnet material.
  • the content of Ti can be 0.05-0.40wt.%, such as 0.05wt.% or 0.08wt.%, and the percentage refers to the content of the NdFeB magnet material. weight percentage in.
  • the NdFeB magnet material includes the following components in weight percent:
  • R 28.00-32.00wt.%, the R is a rare earth element
  • Ga 0.05-0.80wt.%
  • the balance is Fe.
  • the NdFeB magnet material includes the following components in weight percent:
  • RH 0.10-1.00wt.%; the RH includes Dy and/or Tb;
  • Ga 0.15-0.60wt.%
  • the balance is Fe.
  • the NdFeB magnet material includes the following components in weight percent:
  • R 28.00-32.00wt.%, the R is a rare earth element
  • Ga 0.05-0.80wt.%
  • the balance is Fe.
  • the NdFeB magnet material includes the following components in weight percent:
  • RH 0.10-1.00wt.%; the RH includes Dy and/or Tb;
  • Ga 0.05-0.80wt.%
  • the balance is Fe.
  • the NdFeB magnet material consists of any of the following formulas in terms of weight percentage:
  • the volume ratio of the Nd-O phase with FCC type crystal structure to the grain boundary phase of the NdFeB magnet material is preferably ⁇ 15.0%, such as 1.5%, 1.6%, 1.7%, 2.3 %, 2.3%, 3.4%, 8.9%, 9.5%, 10.0%, 12.0% or 15.0%.
  • the grain boundary phase of the NdFeB magnet material generally also contains an Nd-rich phase.
  • the volume ratio of the Nd-rich phase to the grain boundary phase of the NdFeB magnet material is preferably 9.0-15.0%, such as 9.2%, 9.4%, 9.5%, 9.6%, 10.2%, 10.5%, 10.8% or 14.2%.
  • the oxygen content of the NdFeB magnet material can be ⁇ 600ppm, such as 408ppm, 415ppm, 448ppm, 453ppm, 455ppm, 456ppm, 463ppm, 468ppm, 476ppm or 487ppm.
  • the average grain size of the main phase of the NdFeB magnet material can be 7.0-8.0 ⁇ m, such as 7.0 ⁇ m, 7.1 ⁇ m, 7.2 ⁇ m, 7.3 ⁇ m, 7.5 ⁇ m or 7.6 ⁇ m.
  • the invention also provides a method for preparing NdFeB magnet material, which includes the following steps: sequentially smelting, casting, crushing, molding, sintering and aging treatment of the raw material composition of the NdFeB magnet material to obtain ;in:
  • the raw material composition of the NdFeB magnet material includes the following components:
  • R 28.00-32.00wt.%, the R is a rare earth element
  • the balance is Fe, and wt.% refers to the weight percentage in the raw material composition of the NdFeB magnet material;
  • the particle size D50 of the crushed magnetic powder is 3.8-4.2 ⁇ m
  • the ratio of D90/D10 of the particle size of the crushed magnetic powder is ⁇ 3.8;
  • the oxygen content in the crushed magnetic powder is ⁇ 300 ppm.
  • composition formula of the raw material composition of the NdFeB magnet material can be the same as the composition formula of the NdFeB magnet material.
  • the particle size D50 of the pulverized magnetic powder is preferably 4.0-4.2 ⁇ m, such as 4.0 ⁇ m or 4.1 ⁇ m.
  • the D90/D10 ratio of the particle diameter of the pulverized magnetic powder is preferably ⁇ 3.7, such as 3.4, 3.5, 3.6 or 3.7.
  • the particle size of the pulverized magnetic powder generally refers to the particle size of the magnetic powder after the pulverization and before the molding.
  • the particle size of the pulverized magnetic powder is too small, local oxidation will easily occur during the subsequent pressing and sintering process, causing the proportion of Nd-O compounds to increase to more than 20%; if the particle size of the pulverized magnetic powder is too large, although the proportion of Nd-O phase with FCC type crystal structure can be controlled within 20%, defects inside the main phase particles increase, resulting in a decrease in coercive force.
  • the oxygen element content in the pulverized magnetic powder is preferably ⁇ 300ppm, such as 150ppm, 160ppm, 170ppm, 180ppm, 190ppm, 200ppm, 220ppm, 250ppm, 280ppm or 290ppm.
  • the smelting process may be a conventional smelting process in this field.
  • the vacuum degree of the smelting may be 5 ⁇ 10 -2 Pa (absolute pressure).
  • the melting temperature may be below 1550°C, such as 1510°C.
  • the casting process may be a conventional casting process in this field.
  • the casting process may adopt a rapid solidification casting method.
  • the casting temperature may be 1390-1460°C, such as 1400°C.
  • the thickness of the alloy cast piece obtained after the casting may be 0.25-0.40 mm.
  • the gas atmosphere can be a gas atmosphere with an oxidizing gas content of less than 100 ppm, for example, a gas atmosphere with an oxidizing gas content of 10 ppm, 20 ppm, 30 ppm, 50 ppm, 60 ppm or 70 ppm.
  • the oxidizing gas content refers to The mass percentage of oxygen or moisture in the gas of the gas atmosphere.
  • the crushing process may include hydrogen crushing and jet mill crushing.
  • the hydrogen crushing and crushing process generally includes hydrogen absorption, dehydrogenation and cooling in sequence.
  • the hydrogen absorption can be carried out under the condition of hydrogen pressure of 0.085MPa (absolute pressure).
  • the dehydrogenation can be carried out under the conditions of evacuation and temperature increase.
  • the dehydrogenation temperature may be 300-600°C, such as 500°C.
  • the gas atmosphere can be a gas atmosphere with an oxidizing gas content below 100 ppm, for example, a gas atmosphere with an oxidizing gas content of 10 ppm, 20 ppm, 30 ppm, 50 ppm, 60 ppm or 70 ppm.
  • the oxidizing gas content refers to The mass percentage of oxygen or moisture in the gas of the gas atmosphere.
  • a lubricant such as zinc stearate, may be added to the pulverized magnetic powder before forming.
  • the added amount of the lubricant may be 0.05-0.15%, such as 0.10%, of the mass of the pulverized magnet.
  • the molding may adopt a magnetic field molding method.
  • the magnetic field forming can be performed under a magnetic field intensity of 1.8-2.5T.
  • the sintering process may be a conventional sintering process in this field.
  • the sintering temperature may be 1020-1100°C, such as 1085°C.
  • the sintering time may be 4-8, such as 6 hours.
  • the cooling after sintering can be performed in a protective atmosphere, for example, in an Ar gas atmosphere of 0.05MPa (absolute pressure).
  • the aging treatment may be conventional aging treatment in this field, which generally includes primary aging treatment and secondary aging treatment.
  • the temperature of the first-level aging treatment may be 800-1000°C, such as 900°C.
  • the time of the first-level aging treatment may be 2-6 hours, for example, 3 hours.
  • the temperature of the secondary aging treatment may be 400-600°C, such as 480°C.
  • the time of the secondary aging treatment may be 2-6 hours, for example, 3.5 hours.
  • the invention also provides a neodymium iron boron magnet material prepared by the preparation method of the neodymium iron boron magnet material.
  • the invention also provides a neodymium iron boron magnet material.
  • the volume of the Nd-O phase with an FCC type crystal structure in the intergranular triangular region of the neodymium iron boron magnet material is equal to the grain boundary phase of the neodymium iron boron magnet material.
  • the volume ratio is within 20%;
  • the grain boundary phase of the NdFeB magnet material includes a two-grain grain boundary phase and an intergranular triangular region.
  • the inventor creatively discovered that controlling the proportion of the Nd-O phase with an FCC type crystal structure in the grain boundary phase within 20% can reduce the Nd-O phase with a higher melting point and an FCC type crystal structure.
  • the O phase hinders the mobility of the Nd-rich phase during the aging process and is conducive to the formation of a continuous and uniform intergranular Nd-rich phase, thereby enhancing the demagnetizing coupling ability of the grain boundary phase and improving the consistency of the intrinsic coercive force within the magnet.
  • the oxygen content in the NdFeB magnet material may be less than 600 ppm, such as 448 ppm, 455 ppm or 456 ppm.
  • the average grain size of the NdFeB magnet material may be less than or equal to 7 ⁇ m, or may be 7.0-8.0 ⁇ m, such as 7.0 ⁇ m, 7.2 ⁇ m or 7.6 ⁇ m.
  • the Nd-O phase ratio of the FCC type Nd-O crystal structure within 20%, the average size of the crystal grains is effectively controlled, the volume ratio of the main phase in the magnet is increased, and the The fluidity of the grain boundary phase during heat treatment improves the remanence and coercive force of the magnet.
  • the volume ratio of the Nd-O phase with FCC type crystal structure to the grain boundary phase is preferably ⁇ 15.0%, such as 1.5%, 1.6%, 1.7%, 2.3%, 2.3%, 3.4 %, 8.9%, 9.5%, 10.0%, 12.0% or 15.0%.
  • the invention also provides an application of the neodymium iron boron magnet material as a raw material for preparing electronic components.
  • the grain boundary phase may have the meaning conventionally understood in the art, and generally refers to the collective name for the area formed by the two-granule grain boundary phase and the intergranular triangular zone.
  • the two-particle grain boundary phase is generally the grain boundary phase between two main phase particles.
  • the intergranular triangular region generally refers to an intergranular phase that is in direct contact with three or more main phase grains at the same time.
  • the "D90/D10" mentioned in the present invention represents the degree of concentration of particle distribution. In the magnetic material industry, the smaller the value of D90/D10, the better the concentration of particle size distribution.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the present invention suppresses the formation of the Nd-O phase with FCC type crystal structure, and controls its volume ratio in the grain boundary phase within 20%, thereby reducing the risk of high
  • the melting point Nd-O phase with FCC type crystal structure hinders the mobility of the Nd-rich phase during the aging process, which is conducive to the formation of a continuous and uniform intergranular Nd-rich phase, thereby enhancing the demagnetizing coupling ability of the grain boundary phase and Improve the consistency of the intrinsic coercivity of the magnet.
  • the NdFeB magnet material in the present invention has excellent performance.
  • Br 13.65kGs
  • the intrinsic coercivity is ⁇ 16.4kOe
  • the consistency is good
  • Hk/Hcj ⁇ 0.98
  • the mechanical properties are excellent
  • the bending strength is ⁇ 465MPa .
  • Figure 1 is a TEM pattern of the NdFeB magnet in Example 1, in which the black arrow indicates the Nd-O phase with an FCC type crystal structure.
  • Figure 2 is a transmission electron microscope diffraction spot of the NdFeB magnet in Example 1, in which the bright spots represent the Nd-O phase with an FCC type crystal structure.
  • step (2) The alloy cast pieces in step (2) are pulverized by hydrogen crushing and jet mill in sequence.
  • the hydrogen crushing and crushing process includes hydrogen absorption, dehydrogenation, and cooling. Among them: hydrogen absorption is carried out under the condition of hydrogen pressure 0.085MPa (absolute pressure); dehydrogenation is carried out under the condition of vacuuming and heating at the same time, and the dehydrogenation temperature is 500°C.
  • the air flow mill grinding process is carried out when the oxidizing gas content is less than 100 ppm.
  • the oxidizing gas content refers to the mass percentage of oxygen and/or moisture content in the gas for "jet mill pulverization".
  • the grinding chamber pressure of jet mill is 0.70MPa (absolute pressure).
  • the lubricant zinc stearate is added to the powder in an amount of 0.10% of the weight of the mixed powder.
  • step (4) The pressed powder in step (4) is sintered and cooled under vacuum conditions of 5 ⁇ 10 -3 Pa (absolute pressure). Among them: the sintering process conditions are: sintering at 1085°C for 6 hours; before cooling, Ar gas can be introduced to make the gas pressure reach 0.05MPa (absolute pressure).
  • step (5) Aging treatment: The magnet material sintered in step (5) is subjected to primary aging treatment and secondary aging treatment in sequence.
  • the temperature of primary aging is 900°C and the time is 3 hours; the temperature of secondary aging is 480°C, time is 3.5h.
  • the proportion unit of each element in Table 1 is wt.%, which represents the percentage of each element in the total mass of NdFeB magnet material.
  • the powder particle size testing equipment in Table 3 is the MS3000 Malvern laser particle size analyzer, the powder oxygen content tester is the HORIBA EMGA-830 oxygen and carbon combined analyzer, and the oxidizing gas content testing instrument is the DH-2100 type. Electrochemical trace oxygen analyzer.
  • Example 1 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 margin
  • Example 2 22.13 7.38 0.05 0.15 0.15 0.80 0.10 0.05 0.96 margin
  • Example 3 22.88 7.63 0.80 0.45 0.15 0.15 0.50 0.15 / 0.96 margin
  • Example 4 32.00 / / 0.80 0.15 0.15 1.0 0.10 0.08 1.00 margin
  • Example 5 29.00 / 0.20 0.10 0.40 0.20 1.5 0.08 0.08 0.92 margin
  • Example 6 28.50 / 0.15 0.10 0.40 0.20 1.5 0.08 0.08 0.86 margin
  • Example 7 22.5 7.5 0.15 0.30 0.35 0.4 0.4 0.30 / 0.92 margin
  • Example 8 30.2 / / 0.50 0.20 0.6 0.8 0.50 / 0.96 margin
  • Example 9 22.00 8.00 0.15 / 0.20 0.15 0.30 0.30 / 0.92 margin
  • Example 10 23.50 6.50 0.30 / 0.30 0.40 0.50 0.40 / 0.96 margin
  • Example 11 24
  • the value of the Fe content in the NdFeB magnet materials in the above examples and comparative examples is 100% minus the content of each element. Those skilled in the art know that the Fe content includes some unavoidable elements introduced during the preparation process. Impurities.
  • the NdFeB magnet materials in Examples 1-11 and Comparative Examples 1-7 were tested using the NIM-62000 closed-loop demagnetization curve testing equipment prepared by the China Institute of Metrology.
  • the test temperature was 20°C, and the residual magnetism was obtained ( Br), intrinsic coercive force (Hcj), maximum magnetic energy product (BHmax) and squareness (Hk/Hcj) data, the test results are shown in Table 4 below.
  • the NdFeB magnet material in Example 1 was taken and subjected to TEM detection. Its microstructure is shown in Figure 1. According to Figure 1, it can be seen that the area of the Nd-O phase with the FCC type crystal structure is the area of the Nd-O phase with the FCC type crystal structure in the cross section of the NdFeB magnet material (the aforementioned vertical orientation plane) and the area of the cross section. The ratio of the total area of the Nd-rich phase at the grain boundary is about 1.5% (the Nd-O phase with FCC type crystal structure is identified through the transmission electron microscope diffraction spot, as shown in Figure 2; further, by determining the Nd-O phase on the high-resolution spectrum proportion).
  • the volume percentage of the Nd-O phase with FCC type crystal structure refers to: the volume of the Nd-O phase with FCC type crystal structure/the volume of the magnet grain boundary phase * 100%; the volume of the Nd-rich phase The percentage refers to: the volume of the Nd-rich phase/the volume of the magnet grain boundary phase * 100%; the average grain size of the magnet refers to the average grain size of the main phase grains; the magnet oxygen content tester is HORIBA EMGA-830 oxygen carbon Hydrogen combined analyzer.
  • the NdFeB magnet material in Examples 1-11 has excellent performance. When Br ⁇ 13.65kGs, the intrinsic coercive force is ⁇ 16.4kOe; the consistency is good, Hk/Hcj ⁇ 0.98. Moreover, the Nd-O phase with FCC type crystal structure accounts for ⁇ 15% in the magnet grain boundary phase. The oxygen content of NdFeB magnet materials is low, and the average grain size can be less than or equal to 7.6 ⁇ m.
  • the Cu content in the NdFeB magnet material is ⁇ 0.12wt.%, which is 0.06wt%.
  • the magnet has low coercive force, poor consistency, and poor mechanical properties.
  • the Cu content in the NdFeB magnet material is >0.40wt%, which is 0.5wt%, and the volume ratio of the Nd-O phase with FCC type crystal structure in the magnet grain boundary phase exceeds 20%. Magnets have low coercivity, poor consistency, and poor mechanical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种钕铁硼磁体材料及其制备方法、应用。以重量百分比计,该钕铁硼磁体材料包括以下组分:R:28.00-32.00wt.%,所述R为稀土元素;Al:0.00-1.00wt.%;Cu:0.12-0.50wt.%;B:0.85-1.10wt.%;余量为Fe,wt.%是指在所述钕铁硼磁体材料中的重量百分比;所述钕铁硼磁体材料的晶间三角区中具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比在20%以内。本发明通过减少具有FCC型晶体结构的Nd-O相的比例,增强了晶界相的去磁耦合能力并提高了磁体内禀矫顽力的一致性。

Description

一种钕铁硼磁体材料及其制备方法、应用 技术领域
本发明涉及一种钕铁硼磁体材料及其制备方法、应用。
背景技术
永磁材料作为支撑电子器件的关键材料被开发出来。R-T-B系永磁材料已知为永久磁铁中性能最高的磁铁,被用于硬盘驱动器的音圈电机、电动车用电机、工业设备用电机等。
目前无重稀土添加的钕铁硼磁体在Br为14.0kGs时的内禀矫顽力仅有18.3kOe左右,不到NdFeB理论内禀矫顽力的1/3。因此,如何在不使用重稀土或少使用重稀土的情况下进一步提高R-T-B系永磁材料的内禀矫顽力,是目前本领域内一直在研究的方向。
现有技术中公开了通过降低磁粉粒径来提升矫顽力的方法,例如CN111968813A中所公开的,在氢破碎工序之后没有进行脱氢处理,所得NdFeB系磁粉的晶界相为富稀土相且氧含量较低,有利于降低烧结磁体稀土元素的损失以及抑制烧结过程中晶粒长大,改善烧结磁体的组织结构,提升烧结磁体的磁性能和力学性能。然而,该方法提升内禀矫顽力的程度有限,在Br为14.6kGs时的内禀矫顽力仅有14.42kOe左右;并且,还存在烧结脱氢过程,容易在磁体内部形成微裂纹从而导致磁体抗弯强度下降的缺陷。
因此,如何进一步优化磁体材料的配方,得到磁性能更优异的钕铁硼磁体材料是亟需解决的技术问题。
发明内容
本发明所要解决的技术问题在于克服现有技术中依赖于重稀土提高钕铁硼磁体内禀矫顽力的缺陷,而提供了一种钕铁硼磁体材料及其制备方法、应用。本发明通过成分以及制造工艺控制,抑制了具有FCC型晶体结构的 Nd-O相的形成,并将其在晶界相中的体积比控制在20%以内,从而减少具有较高熔点的FCC型晶体结构的Nd-O相在时效过程中对富Nd相流动性的阻碍,有利于形成连续均匀的晶间富Nd相,从而通过增强晶界相的去磁耦合能力并提高磁体内禀矫顽力的一致性。
发明人在研发过程中创造性地发现,钕铁硼磁体材料中的具有FCC型晶体结构的Nd-O相不利于形成连续均匀的晶间富Nd相,并且,还会消耗磁体中的Nd并在晶间三角区域形成团聚物,导致晶间相中Fe含量的增加,进一步导致Fe-主相之间的合金化作用加剧,导致主相比例下降、磁体性能下降。
本发明主要是通过以下技术方案解决以上技术问题的。
本发明提供了一种钕铁硼磁体材料,以重量百分比计,其包括以下组分:
R:28.00-32.00wt.%,所述R为稀土元素;
Al:0.00-1.00wt.%;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
余量为Fe,wt.%是指在所述钕铁硼磁体材料中的重量百分比;
所述钕铁硼磁体材料的晶间三角区中具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比在20%以内;
所述钕铁硼磁体材料的晶界相包括二颗粒晶界相和晶间三角区。
本发明中,所述R的含量可为28.50-32.00wt.%,例如28.65wt.%、29.20wt.%、29.50wt.%、29.51wt.%、30.15wt.%、30.20wt.%、30.30wt.%、31.31wt.%或32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述R可为本领域常规的稀土元素,一般可包括轻稀土元素和/或重稀土元素。
其中,所述轻稀土元素可为Pr和/或Nd。
其中,所述轻稀土元素的含量可为28.50-32.00wt.%,例如28.50wt.%、29.00wt.%、29.50wt.%、29.51wt.%、30.00wt.%、30.20wt.%、30.51wt.%或 32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述R中包括Pr时,所述Pr的含量可为5.00-10.00wt.%,例如5.40wt.%、6.50wt.%、7.38wt.%、7.50wt.%、7.63wt.%或8.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述R中包括Nd时,所述Nd的含量可为20.00-32.00wt.%,例如22.00wt.%、22.13wt.%、22.50wt.%、22.88wt.%、23.50wt.%、24.60wt.%、28.50wt.%、29.00wt.%、29.50wt.%、30.20wt.%或32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
其中,所述重稀土元素可为Dy和/或Tb。
所述重稀土元素的含量可为0.10-3.00wt.%,例如0.15wt.%、0.20wt.%、0.30wt.%或0.80wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述R中包括Dy时,所述Dy的含量可为0.10-3.00wt.%,例如0.15-1.00wt.%,还例如0.15wt.%、0.20wt.%、0.30wt.%或0.80wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述Al的含量可为0.00-0.80wt.%,例如0.05-0.80wt.%,还例如0.05wt.%、0.10wt.%、0.30wt.%、0.45wt.%、0.50wt.%或0.80wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述Cu的含量优选为0.13-0.50wt%,例如0.15wt.%、0.20wt.%、0.30wt.%、0.35wt.%或0.40wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述B的含量可为0.86-1.00wt.%,例如0.86wt.%、0.92wt.%、0.94wt.%、0.96wt.%、0.98wt.%或1.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述Fe的含量可为64.50-69.00wt.%,例如64.72wt.%、66.24wt.%、66.33wt.%、67.06wt.%、67.14wt.%、67.18wt.%、67.52wt.%、67.98wt.%、68.13wt.%、68.23wt.%或68.27wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
本发明中,所述钕铁硼磁体材料中,还可包含Ga、Co、Zr和Ti中的一种或多种。
当所述钕铁硼磁体材料中还包含Ga时,所述Ga的含量可为0.00-1.00wt.%、但不为0,例如0.05-0.80wt.%,还例如0.15wt.%、0.20wt.%、0.40wt.%、0.50wt.%或0.60wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述钕铁硼磁体材料中还包含Co时,所述Co的含量可为0.20-2.00wt.%,例如0.30wt.%、0.40wt.%、0.50wt.%、0.80wt.%、1.00wt.%或1.50wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述钕铁硼磁体材料中还包含Zr时,所述Zr的含量可为0.05-0.60wt.%,例如0.08wt.%、0.10wt.%、0.15wt.%、0.30wt.%、0.40wt.%或0.50wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
当所述钕铁硼磁体材料中还包含Ti时,所述Ti的含量可为0.05-0.40wt.%,例如0.05wt.%或0.08wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
在本发明一优选实施方式中,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
R:28.00-32.00wt.%,所述R为稀土元素;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
Co:0.20-2.00wt.%;
Ga:0.05-0.80wt.%;
Zr:0.05-0.60wt.%;
余量为Fe。
在本发明一优选实施方式中,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
Nd:22.00-25.00wt.%;
Pr:5.00-10.00wt.%;
RH:0.10-1.00wt.%;所述RH包括Dy和/或Tb;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
Co:0.20-2.00wt.%;
Ga:0.15-0.60wt.%;
Zr:0.05-0.50wt.%;
余量为Fe。
在本发明一优选实施方式中,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
R:28.00-32.00wt.%,所述R为稀土元素;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
Al:0.05-0.80wt.%;
Co:0.20-2.00wt.%;
Ga:0.05-0.80wt.%;
Zr:0.05-0.60wt.%;
余量为Fe。
在本发明一优选实施方式中,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
Nd:22.00-32.00wt.%;
Pr:5.00-10.00wt.%;
RH:0.10-1.00wt.%;所述RH包括Dy和/或Tb;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
Al:0.05-0.80wt.%;
Co:0.20-2.00wt.%;
Ga:0.05-0.80wt.%;
Zr:0.05-0.60wt.%;
Ti:0.05-0.40wt.%;
余量为Fe。
在本发明一优选实施方式中,以重量百分比计,所述钕铁硼磁体材料由以下任一配方组成:
Figure PCTCN2022129741-appb-000001
本发明中,所述具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比优选为≤15.0%,例如1.5%、1.6%、1.7%、2.3%、2.3%、3.4%、8.9%、9.5%、10.0%、12.0%或15.0%。
本发明中,所述钕铁硼磁体材料的晶界相一般还包含富Nd相。
其中,所述富Nd相的体积与所述钕铁硼磁体材料的晶界相的体积比优选为9.0-15.0%,例如9.2%、9.4%、9.5%、9.6%、10.2%、10.5%、10.8%或14.2%。
本发明中,所述钕铁硼磁体材料的氧含量可≤600ppm,例如408ppm、415ppm、448ppm、453ppm、455ppm、456ppm、463ppm、468ppm、476ppm或487ppm。
本发明中,所述钕铁硼磁体材料的主相平均晶粒尺寸可为7.0-8.0μm,例如7.0μm、7.1μm、7.2μm、7.3μm、7.5μm或7.6μm。
本发明还提供了一种钕铁硼磁体材料的制备方法,其包括以下步骤:将所述钕铁硼磁体材料的原料组合物依次经熔炼、铸造、粉碎、成型、烧结和时效处理后即得;其中:
(1)所述钕铁硼磁体材料的原料组合物包括以下组分:
R:28.00-32.00wt.%,所述R为稀土元素;
Al:0.00-1.00wt.%;
Cu:0.12-0.50wt.%;
B:0.85-1.10wt.%;
余量为Fe,wt.%是指在所述钕铁硼磁体材料的原料组合物中的重量百分比;
(2)所述粉碎后的磁粉的粒径D50为3.8-4.2μm;
所述粉碎后的磁粉的粒径的D90/D10的比值≤3.8;
所述粉碎后的磁粉中,氧元素含量≤300ppm。
本发明中,所述钕铁硼磁体材料的原料组合物的组成配方可同所述钕铁硼磁体材料的组成配方。
本发明中,所述粉碎后的磁粉的粒径D50优选为4.0-4.2μm,例如4.0μm或4.1μm。
本发明中,所述粉碎后的磁粉的粒径的D90/D10的比值优选≤3.7,例如3.4、3.5、3.6或3.7。
本发明中,所述粉碎后的磁粉的粒径一般是指所述粉碎后、所述成型前的磁粉的粒径。
本发明中,若粉碎后的磁粉的粒径过小,则在后续压制烧结过程中容易 发生局部氧化导致Nd-O化物的比例增加至20%以上;若粉碎后的磁粉的粒径过大,虽然具有FCC型晶体结构的Nd-O相的比例可以控制在20%以内,但主相颗粒内部的缺陷增加从而导致矫顽力下降。
本发明中,所述粉碎后的磁粉中,氧元素含量优选≤300ppm,例如150ppm、160ppm、170ppm、180ppm、190ppm、200ppm、220ppm、250ppm、280ppm或290ppm。
本发明中,所述熔炼的工艺可为本领域常规的熔炼工艺。
其中,所述熔炼的真空度可为5×10 -2Pa(绝对压力)。
其中,所述熔炼的温度可在1550℃以下,例如1510℃。
本发明中,所述铸造的工艺可为本领域常规的铸造工艺。
其中,所述铸造的工艺可采用速凝铸片法。
其中,所述铸造的温度可为1390-1460℃,例如1400℃。
其中,所述铸造之后得到的合金铸片的厚度可为0.25-0.40mm。
本发明中,所述粉碎时,气体氛围可为氧化气体含量在100ppm以下的气体氛围,例如氧化气体含量为10ppm、20ppm、30ppm、50ppm、60ppm或70ppm的气体氛围,所述氧化气体含量是指氧气或水分在所述气体氛围的气体中的质量百分含量。
本发明中,所述粉碎的工艺可包括氢破粉碎和气流磨粉碎。
其中,所述氢破粉碎的工艺一般可为依次经吸氢、脱氢和冷却处理。
所述吸氢可在氢气压力0.085MPa(绝对压力)的条件下进行。
所述脱氢可在边抽真空边升温的条件下进行。所述脱氢的温度可为300-600℃,例如500℃。
其中,所述气流磨粉碎时,气体氛围可为氧化气体含量在100ppm以下的气体氛围,例如氧化气体含量为10ppm、20ppm、30ppm、50ppm、60ppm或70ppm的气体氛围,所述氧化气体含量是指氧气或水分在所述气体氛围的气体中的质量百分含量。
本发明中,所述粉碎后的磁粉,在所述成型前,还可添加润滑剂,例如 硬脂酸锌。所述润滑剂的添加量可为所述粉碎后的磁体质量的0.05-0.15%,例如0.10%。
本发明中,所述成型可采用磁场成型法。
其中,所述磁场成型可在1.8-2.5T的磁场强度下进行。
本发明中,所述烧结的工艺可为本领域常规的烧结工艺。
其中,所述烧结的温度可为1020-1100℃,例如1085℃。
其中,所述烧结的时间可为4-8,例如6h。
其中,所述烧结后的冷却可在保护气氛中进行,例如在0.05MPa(绝对压力)Ar气体气氛中冷却。
本发明中,所述时效处理可为本领域常规的时效处理,一般包括一级时效处理和二级时效处理。
其中,所述一级时效处理的温度可为800-1000℃,例如900℃。
其中,所述一级时效处理的时间可为2-6h,例如3h。
其中,所述二级时效处理的温度可为400-600℃,例如480℃。
其中,所述二级时效处理的时间可为2-6h,例如3.5h。
本发明还提供了一种所述钕铁硼磁体材料的制备方法制得的钕铁硼磁体材料。
本发明还提供了一种钕铁硼磁体材料,所述钕铁硼磁体材料的晶间三角区中具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比在20%以内;
所述钕铁硼磁体材料的晶界相包括二颗粒晶界相和晶间三角区。
发明人在研发过程中创造性地发现,将具有FCC型晶体结构的Nd-O相在晶界相的占比控制在20%以内,能减少具有较高熔点的、具有FCC型晶体结构的Nd-O相对富Nd相在时效过程中流动性的阻碍、有利于形成连续均匀的晶间富Nd相,从而通过增强晶界相的去磁耦合能力并提高磁体内禀矫顽力的一致性。
本发明中,所述钕铁硼磁体材料中氧含量可小于600ppm,例如448ppm、 455ppm或456ppm。
本发明中,所述钕铁硼磁体材料的平均晶粒可尺寸小于或等于7μm,也可为7.0-8.0μm,例如7.0μm、7.2μm或7.6μm。
本发明中,通过将FCC型Nd-O晶体结构的Nd-O相比例控制在20%以内,有效地控制了晶粒的平均尺寸,提高了主相在磁体中地体积占比,并提高了晶界相在热处理过程中的流动性,从而提高磁体的剩磁和矫顽力。
本发明中,所述具有FCC型晶体结构的Nd-O相的体积与所述晶界相的体积比优选为≤15.0%,例如1.5%、1.6%、1.7%、2.3%、2.3%、3.4%、8.9%、9.5%、10.0%、12.0%或15.0%。
本发明还提供了一种所述钕铁硼磁体材料作为制备电子元件原料的应用。
本发明中,所述的晶界相可为本领域常规理解的含义,一般是指二颗粒晶界相和晶间三角区形成的区域的统称。所述二颗粒晶界相一般为两个主相颗粒之间的晶界相。所述晶间三角区一般是指同时与三个及三个以上主相晶粒直接接触的晶间相。
本发明中所提及的“D90/D10”表示颗粒的分布集中程度,在磁性材料行业中,D90/D10的数值越小,粒度分布集中度越好。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明通过成分控制以及制造工艺控制,抑制了具有FCC型晶体结构的Nd-O相的形成,并将其在晶界相中的体积比控制在20%以内,从而减少具有较高熔点的、具有FCC型晶体结构的Nd-O相在时效过程中对富Nd相流动性的阻碍,有利于形成连续均匀的晶间富Nd相,从而通过增强晶界相的去磁耦合能力并提高磁体内禀矫顽力的一致性。
(2)本发明中的钕铁硼磁体材料性能优异,在Br≥13.65kGs时,内禀 矫顽力≥16.4kOe;一致性好,Hk/Hcj≥0.98;力学性能优异,抗弯强度≥465MPa。
附图说明
图1为实施例1中的钕铁硼磁体的TEM图谱,其中黑色箭头所示为具有FCC型晶体结构的Nd-O相。
图2为实施例1中的钕铁硼磁体的透射电镜衍射斑,其中,亮斑表示具有FCC型晶体结构的Nd-O相。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
按照表1所示的钕铁硼磁体材料的成分配置原料,按照下述步骤制备钕铁硼磁体材料:
(1)熔炼:将配制好的原料放入真空度为5×10 -2Pa(绝对压力)的高频真空感应熔炼炉中,在1510℃温度下熔炼成熔融液。
(2)铸造:采用速凝铸片法,获得合金铸片,浇铸的温度为1400℃。合金铸片的厚度为0.25-0.40mm。
(3)粉碎:将步骤(2)中的合金铸片依次进行氢破粉碎和气流磨粉碎。
氢破粉碎过程包括吸氢、脱氢、冷却处理。其中:吸氢在氢气压力0.085MPa(绝对压力)的条件下进行;脱氢在边抽真空边升温的条件下进行,脱氢温度为500℃。
气流磨粉碎过程为在氧化气体含量100ppm以下进行,经气流磨粉粉碎得到的粉体的粒径D50为4.1μm,D90/D10=0.37。氧化气体含量是指氧气和或水分含量在进行“气流磨粉碎”的气体中的质量百分含量。气流磨粉碎的 研磨室压力为0.70MPa(绝对压力)。粉碎后,粉体中添加润滑剂硬脂酸锌,添加量为混合后粉末重量的0.10%。
(4)磁场成型:在1.8-2.5T的磁场强度和氮气气氛保护下,将步骤(3)中经气流磨粉碎后的粉体压制成型。
(5)烧结:在5×10 -3Pa(绝对压力)真空条件下,将步骤(4)中的压制成型的粉体经烧结、冷却。其中:烧结的工艺条件为:在1085℃下烧结6h;冷却前可通入Ar气体使气压达到0.05MPa(绝对压力)。
(6)时效处理:将步骤(5)中经烧结后的磁体材料依次经一级时效处理、二级时效处理,其中一级时效的温度为900℃、时间为3h;二级时效的温度为480℃、时间为3.5h。
实施例2-11、对比例1-7
按照如下表1所示的配方配制原料,步骤(3)中氧化气体含量、气流磨粉碎后粉体的粒径D50、D90/D10、氧含量如下表2所示,步骤(6)中二级时效的温度如下表2所示,其他制备工艺同实施例1。
表1
Figure PCTCN2022129741-appb-000002
Figure PCTCN2022129741-appb-000003
注:表1中各元素的比例单位为wt.%,表示各元素占钕铁硼磁体材料总质量的百分比。
表2
编号 D50 D90/D10 氧化气体含量/ppm 粉体氧含量/ppm 二级时效的温度/℃
实施例1 4.1 3.7 20 150 480
实施例2 4.1 3.6 10 180 490
实施例3 4.0 3.5 10 220 480
实施例4 4.1 3.5 20 200 480
实施例5 4.1 3.4 10 160 480
实施例6 4.1 3.5 30 250 480
实施例7 4.0 3.5 50 280 490
实施例8 4.0 3.6 60 290 480
实施例9 4.1 3.5 10 170 490
实施例10 4.0 3.6 20 190 480
实施例11 4.0 3.5 70 290 480
对比例1 3.2 3.7 20 150 480
对比例2 4.1 3.7 120 500 480
对比例3 4.1 4.0 10 150 480
对比例4 4.1 3.7 15 160 480
对比例5 4.1 3.8 80 280 480
对比例6 4.5 3.8 10 160 480
对比例7 4.1 3.7 20 150 480
注:表3中粉体粒径的检测设备为MS3000型马尔文激光粒度仪,粉体氧含量测试仪为HORIBA EMGA-830型氧碳氢联合测定仪,氧化气体含量测试仪器为DH-2100型电化学微量氧分析仪。
效果实施例1
1、成分测定:对实施例1-11和对比例1-7中的R-T-B磁体使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。测试结果如下表3所示。
表3
编号 Nd Pr Dy Al Cu Ga Co Zr Ti B Fe
实施例1 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
实施例2 22.13 7.38   0.05 0.15 0.15 0.80 0.10 0.05 0.96 余量
实施例3 22.88 7.63 0.80 0.45 0.15 0.15 0.50 0.15 / 0.96 余量
实施例4 32.00 / / 0.80 0.15 0.15 1.0 0.10 0.08 1.00 余量
实施例5 29.00 / 0.20 0.10 0.40 0.20 1.5 0.08 0.08 0.92 余量
实施例6 28.50 / 0.15 0.10 0.40 0.20 1.5 0.08 0.08 0.86 余量
实施例7 22.5 7.5 0.15 0.30 0.35 0.4 0.4 0.30 / 0.92 余量
实施例8 30.2 / / 0.50 0.20 0.6 0.8 0.50 / 0.96 余量
实施例9 22.00 8.00 0.15 / 0.20 0.15 0.30 0.30 / 0.92 余量
实施例10 23.50 6.50 0.30 / 0.30 0.40 0.50 0.40 / 0.96 余量
实施例11 24.60 5.40 0.20 / 0.40 0.50 0.40 0.50 / 0.94 余量
对比例1 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
对比例2 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
对比例3 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
对比例4 29.50 / / 0.05 0.06 0.15 0.80 0.10 / 0.98 余量
对比例5 33.00 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
对比例6 29.50 / / 0.05 0.15 0.15 0.80 0.10 / 0.98 余量
对比例7 29.50 / / 0.05 0.60 0.15 0.80 0.10 / 0.98 余量
注:“/”表示未添加且未检测到该元素;
上述实施例和对比例中的钕铁硼磁体材料中Fe的含量的数值为100%减去各元素的含量,本领域技术人员知晓,Fe的含量中包含在制备过程中引入的不可避免的一些杂质。
2、磁性能的测试
实施例1-11和对比例1-7中的钕铁硼磁体材料使用由中国计量科学研究院制备的NIM-62000闭合回路式退磁曲线测试设备进行测试,测试温度为20℃,得到剩磁(Br)、内禀矫顽力(Hcj)、最大磁能积(BHmax)和方形度(Hk/Hcj)的数据,测试结果如下表4所示。
表4
Figure PCTCN2022129741-appb-000004
3、微观结构的表征
取实施例1中的钕铁硼磁体材料,进行TEM检测,其微观结构如图1所示。根据图1可知,具有FCC型晶体结构的Nd-O相的面积为在检测钕铁硼磁体材料的截面(前述的垂直取向面)具有FCC型晶体结构的Nd-O相的面积与该截面的晶界富Nd相总面积的比为约1.5%(通过透射电镜衍射斑辨 识具有FCC型晶体结构的Nd-O相,如图2所示;进一步地,通过在高分辨图谱上确定Nd-O相占比)。
表5
Figure PCTCN2022129741-appb-000005
注:表5中,具有FCC型晶体结构的Nd-O相的体积百分比是指:具有FCC型晶体结构的Nd-O相的体积/磁体晶界相的体积*100%;富Nd相的体积百分比是指:富Nd相的体积/磁体晶界相的体积*100%;磁体平均晶粒尺寸是指主相晶粒的平均晶粒尺寸;磁体氧含量测试仪为HORIBA EMGA-830型氧碳氢联合测定仪。
根据表4和表5可知:
(1)实施例1-11中的钕铁硼磁体材料性能优异,在Br≥13.65kGs时,内禀矫顽力≥16.4kOe;一致性好,Hk/Hcj≥0.98。并且,具有FCC型晶体结构的Nd-O相在磁体晶界相中的占比≤15%,钕铁硼磁体材料氧含量低, 平均晶粒可尺寸小于或等于7.6μm。
(2)对比例1中,经气流磨粉碎后,粉体D50<3.8μm,为3.2μm,具有FCC型晶体结构的Nd-O相在磁体晶界相中的体积比超过20%,磁体氧含量高,磁性能差。
(3)对比例2中,经气流磨粉碎后,粉体氧含量超过300ppm,具有FCC型晶体结构的Nd-O相在磁体晶界相中的体积比超过20%,磁体氧含量高,磁性能差。
(4)对比例3中,经气流磨粉碎后,粉体D90/D10≥3.8,为4.0,具有FCC型晶体结构的Nd-O相在磁体晶界相中的体积比超过20%,磁体氧含量高,磁性能差。
(5)对比例4中,钕铁硼磁体材料中的Cu含量≤0.12wt.%,为0.06wt%,磁体矫顽力低,一致性差,且力学性能也较差。
(6)对比例5中,RE为33wt%,其稀土元素含量>32.00wt.%,导致其抗氧化能力降低,从而导致磁体氧含量≥600ppm,磁体矫顽力低,一致性差,且力学性能也较差。
(7)对比例6中,经气流磨粉碎后,粉体D50>4.2μm,为4.5μm,磁体中主相晶粒的平均粒度为10μm;磁体矫顽力低,且力学性能差。
(8)对比例7中,钕铁硼磁体材料中的Cu含量>0.40wt%,为0.5wt%,具有FCC型晶体结构的Nd-O相在磁体晶界相中的体积比超过20%,磁体矫顽力低,一致性差,且力学性能也较差。

Claims (10)

  1. 一种钕铁硼磁体材料,其特征在于,以重量百分比计,其包括以下组分:
    R:28.00-32.00wt.%,所述R为稀土元素;
    Al:0.00-1.00wt.%;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    余量为Fe,wt.%是指在所述钕铁硼磁体材料中的重量百分比;
    所述钕铁硼磁体材料的晶间三角区中具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比在20%以内;
    所述钕铁硼磁体材料的晶界相包括二颗粒晶界相和晶间三角区。
  2. 如权利要求1所述的钕铁硼磁体材料,其特征在于,所述钕铁硼磁体材料满足下述条件中的一种或多种:
    ①所述R的含量为28.50-32.00wt.%,例如28.65wt.%、29.20wt.%、29.50wt.%、29.51wt.%、30.15wt.%、30.20wt.%、30.30wt.%、31.31wt.%或32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ②所述R包括轻稀土元素和/或重稀土元素;
    所述轻稀土元素可为Pr和/或Nd;
    所述轻稀土元素的含量可为28.50-32.00wt.%,例如28.50wt.%、29.00wt.%、29.50wt.%、29.51wt.%、30.00wt.%、30.20wt.%、30.51wt.%或32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    所述重稀土元素可为Dy和/或Tb;
    所述重稀土元素的含量可为0.10-3.00wt.%,例如0.15wt.%、0.20wt.%、0.30wt.%或0.80wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ③所述Al的含量为0.00-0.80wt.%,例如0.05-0.80wt.%,还例如0.05wt.%、0.10wt.%、0.30wt.%、0.45wt.%、0.50wt.%或0.80wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ④所述Cu的含量为0.13-0.50wt%,例如0.15wt.%、0.20wt.%、0.30wt.%、 0.35wt.%或0.40wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ⑤所述B的含量为0.86-1.00wt.%,例如0.86wt.%、0.92wt.%、0.94wt.%、0.96wt.%、0.98wt.%或1.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ⑥所述钕铁硼磁体材料中,还包含Ga、Co、Zr和Ti中的一种或多种;
    ⑦所述具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比为≤15.0%,例如1.5%、1.6%、1.7%、2.3%、2.3%、3.4%、8.9%、9.5%、10.0%、12.0%或15.0%;
    ⑧所述钕铁硼磁体材料的晶界相还包含富Nd相;
    其中,所述富Nd相的体积与所述钕铁硼磁体材料的晶界相的体积比优选为9.0-15.0%,例如9.2%、9.4%、9.5%、9.6%、10.2%、10.5%、10.8%或14.2%;
    ⑨所述钕铁硼磁体材料的氧含量≤600ppm,例如408ppm、415ppm、448ppm、453ppm、455ppm、456ppm、463ppm、468ppm、476ppm或487ppm;
    和⑩所述钕铁硼磁体材料的主相平均晶粒尺寸为7.0-8.0μm,例如7.0μm、7.1μm、7.2μm、7.3μm、7.5μm或7.6μm。
  3. 如权利要求2所述的钕铁硼磁体材料,其特征在于,所述钕铁硼磁体材料满足下述条件中的一种或多种:
    ①当所述R中包括Pr时,所述Pr的含量为5.00-10.00wt.%,例如5.40wt.%、6.50wt.%、7.38wt.%、7.50wt.%、7.63wt.%或8.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ②当所述R中包括Nd时,所述Nd的含量为20.00-32.00wt.%,例如22.00wt.%、22.13wt.%、22.50wt.%、22.88wt.%、23.50wt.%、24.60wt.%、28.50wt.%、29.00wt.%、29.50wt.%、30.20wt.%或32.00wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ③当所述R中包括Dy时,所述Dy的含量为0.10-3.00wt.%,例如0.15-1.00wt.%,还例如0.15wt.%、0.20wt.%、0.30wt.%或0.80wt.%,百分比 是指在所述钕铁硼磁体材料中的重量百分比;
    ④当所述钕铁硼磁体材料中还包含Ga时,所述Ga的含量为0.00-1.00wt.%、但不为0,例如0.05-0.80wt.%,还例如0.15wt.%、0.20wt.%、0.40wt.%、0.50wt.%或0.60wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ⑤当所述钕铁硼磁体材料中还包含Co时,所述Co的含量为0.20-2.00wt.%,例如0.30wt.%、0.40wt.%、0.50wt.%、0.80wt.%、1.00wt.%或1.50wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;
    ⑥当所述钕铁硼磁体材料中还包含Zr时,所述Zr的含量为0.05-0.60wt.%,例如0.08wt.%、0.10wt.%、0.15wt.%、0.30wt.%、0.40wt.%或0.50wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比;和
    ⑦当所述钕铁硼磁体材料中还包含Ti时,所述Ti的含量为0.05-0.40wt.%,例如0.05wt.%或0.08wt.%,百分比是指在所述钕铁硼磁体材料中的重量百分比。
  4. 如权利要求1所述的钕铁硼磁体材料,其特征在于,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
    R:28.00-32.00wt.%,所述R为稀土元素;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    Co:0.20-2.00wt.%;
    Ga:0.05-0.80wt.%;
    Zr:0.05-0.60wt.%;
    余量为Fe;
    或者,
    以重量百分比计,所述钕铁硼磁体材料包括以下组分:
    Nd:22.00-25.00wt.%;
    Pr:5.00-10.00wt.%;
    RH:0.10-1.00wt.%;所述RH包括Dy和/或Tb;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    Co:0.20-2.00wt.%;
    Ga:0.15-0.60wt.%;
    Zr:0.05-0.50wt.%;
    余量为Fe;
    或者,
    以重量百分比计,所述钕铁硼磁体材料包括以下组分:
    R:28.00-32.00wt.%,所述R为稀土元素;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    Al:0.05-0.80wt.%;
    Co:0.20-2.00wt.%;
    Ga:0.05-0.80wt.%;
    Zr:0.05-0.60wt.%;
    余量为Fe;
    或者,以重量百分比计,所述钕铁硼磁体材料包括以下组分:
    Nd:22.00-32.00wt.%;
    Pr:5.00-10.00wt.%;
    RH:0.10-1.00wt.%;所述RH包括Dy和/或Tb;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    Al:0.05-0.80wt.%;
    Co:0.20-2.00wt.%;
    Ga:0.05-0.80wt.%;
    Zr:0.05-0.60wt.%;
    Ti:0.05-0.40wt.%;
    余量为Fe。
  5. 一种钕铁硼磁体材料的制备方法,其特征在于,其包括以下步骤:将如权利要求1-4中任一项所述钕铁硼磁体材料的原料组合物依次经熔炼、铸造、粉碎、成型、烧结和时效处理后即得;其中:
    (1)所述钕铁硼磁体材料的原料组合物包括以下组分:
    R:28.00-32.00wt.%,所述R为稀土元素;
    Al:0.00-1.00wt.%;
    Cu:0.12-0.50wt.%;
    B:0.85-1.10wt.%;
    余量为Fe,wt.%是指在所述钕铁硼磁体材料的原料组合物中的重量百分比;
    (2)所述粉碎后的磁粉的粒径D50为3.8-4.2μm;
    所述粉碎后的磁粉的粒径的D90/D10的比值≤3.8;
    所述粉碎后的磁粉中,氧元素含量≤300ppm。
  6. 如权利要求5所述的钕铁硼磁体材料的制备方法,其特征在于,所述钕铁硼磁体材料的制备方法满足下述条件中的一种或多种:
    ①所述粉碎后的磁粉的粒径D50为4.0-4.2μm,例如4.0μm或4.1μm;
    ②所述粉碎后的磁粉的粒径的D90/D10的比值≤3.7,例如3.4、3.5、3.6或3.7;
    ③所述粉碎后的磁粉中,氧元素含量≤300ppm,例如150ppm、160ppm、170ppm、180ppm、190ppm、200ppm、220ppm、250ppm、280ppm或290ppm;
    ④所述粉碎时,气体氛围为氧化气体含量在100ppm以下的气体氛围,例如氧化气体含量为10ppm、20ppm、30ppm、50ppm、60ppm或70ppm的气体氛围,所述氧化气体含量是指氧气或水分在所述气体氛围的气体中的质量百分含量;
    ⑤所述粉碎的工艺包括氢破粉碎和气流磨粉碎;
    ⑥所述烧结的温度为1020-1100℃,例如1085℃;
    ⑦所述烧结的时间为4-8,例如6h;和
    ⑧所述时效处理包括一级时效处理和二级时效处理。
  7. 如权利要求6所述的钕铁硼磁体材料的制备方法,其特征在于,所述钕铁硼磁体材料的制备方法满足下述条件中的一种或多种:
    ①所述氢破粉碎的工艺为依次经吸氢、脱氢和冷却处理;
    所述吸氢可在氢气压力0.085MPa的条件下进行;
    所述脱氢可在边抽真空边升温的条件下进行;所述脱氢的温度可为300-600℃,例如500℃;
    ②所述气流磨粉碎时,气体氛围可为氧化气体含量在100ppm以下的气体氛围,例如氧化气体含量为10ppm、20ppm、30ppm、50ppm、60ppm或70ppm的气体氛围,所述氧化气体含量是指氧气或水分在所述气体氛围的气体中的质量百分含量;
    ③所述一级时效处理的温度为800-1000℃,例如900℃;
    ④所述一级时效处理的时间为2-6h,例如3h;
    ⑤所述二级时效处理的温度为400-600℃,例如480℃;和
    ⑥所述二级时效处理的时间为2-6h,例如3.5h。
  8. 一种如权利要求5-7中任一项所述的钕铁硼磁体材料的制备方法制得的钕铁硼磁体材料。
  9. 一种钕铁硼磁体材料,所述钕铁硼磁体材料的晶间三角区中具有FCC型晶体结构的Nd-O相的体积与所述钕铁硼磁体材料的晶界相的体积比在20%以内;
    所述钕铁硼磁体材料的晶界相包括二颗粒晶界相和晶间三角区。
  10. 一种如权利要求1-4、8和9中任一项所述的钕铁硼磁体材料作为制备电子元件原料的应用。
PCT/CN2022/129741 2022-04-29 2022-11-04 一种钕铁硼磁体材料及其制备方法、应用 WO2023207019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210475096.1 2022-04-29
CN202210475096.1A CN117012486A (zh) 2022-04-29 2022-04-29 一种钕铁硼磁体材料及其制备方法、应用

Publications (1)

Publication Number Publication Date
WO2023207019A1 true WO2023207019A1 (zh) 2023-11-02

Family

ID=88517162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129741 WO2023207019A1 (zh) 2022-04-29 2022-11-04 一种钕铁硼磁体材料及其制备方法、应用

Country Status (3)

Country Link
CN (1) CN117012486A (zh)
TW (1) TW202342782A (zh)
WO (1) WO2023207019A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652821A (zh) * 2007-07-02 2010-02-17 日立金属株式会社 F-Fe-B系稀土类烧结磁铁及其制造方法
CN102667978A (zh) * 2009-10-10 2012-09-12 株式会社丰田中央研究所 稀土磁铁材料及其制造方法
WO2014054163A1 (ja) * 2012-10-05 2014-04-10 株式会社 日立製作所 焼結磁石及びその製造方法
CN104380397A (zh) * 2012-06-13 2015-02-25 株式会社日立制作所 烧结磁铁及其制造方法
CN104575901A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种添加铽粉的钕铁硼磁体及其制备方法
CN105206412A (zh) * 2015-07-01 2015-12-30 浙江东阳东磁稀土有限公司 一种改善烧结钕铁硼磁体晶界的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652821A (zh) * 2007-07-02 2010-02-17 日立金属株式会社 F-Fe-B系稀土类烧结磁铁及其制造方法
CN102667978A (zh) * 2009-10-10 2012-09-12 株式会社丰田中央研究所 稀土磁铁材料及其制造方法
CN104380397A (zh) * 2012-06-13 2015-02-25 株式会社日立制作所 烧结磁铁及其制造方法
WO2014054163A1 (ja) * 2012-10-05 2014-04-10 株式会社 日立製作所 焼結磁石及びその製造方法
CN104575901A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种添加铽粉的钕铁硼磁体及其制备方法
CN105206412A (zh) * 2015-07-01 2015-12-30 浙江东阳东磁稀土有限公司 一种改善烧结钕铁硼磁体晶界的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKAGAWA, T.: "The Effect of Oxygen on the Surface Coercivity of Nd-coated Nd–Fe–B", JOURNAL OF APPLIED PHYSICS, vol. 105, 9 March 2009 (2009-03-09), XP012124305, DOI: 10.1063/1.3073941 *

Also Published As

Publication number Publication date
TW202342782A (zh) 2023-11-01
CN117012486A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2020015389A1 (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021135144A1 (zh) 一种钕铁硼永磁材料、制备方法、应用
WO2021169891A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN112992463B (zh) 一种r-t-b磁体及其制备方法
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
TWI832167B (zh) 一種釹鐵硼磁體材料及其製備方法和應用
WO2021169894A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169906A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TWI806464B (zh) 一種釹鐵硼磁體材料及其製備方法和應用
CN111312462B (zh) 一种钕铁硼材料及其制备方法和应用
CN111312463B (zh) 一种稀土永磁材料及其制备方法和应用
WO2023207019A1 (zh) 一种钕铁硼磁体材料及其制备方法、应用
TWI816317B (zh) 一種r-t-b磁體及其製備方法
WO2022193818A1 (zh) 一种r-t-b磁体及其制备方法
WO2021169901A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TW202238634A (zh) 一種r-t-b磁體及其製備方法
WO2023207021A1 (zh) 钕铁硼磁体材料及其制备方法、应用、电机
WO2023207020A1 (zh) 钕铁硼磁体材料及其制备方法、应用
WO2023124527A1 (zh) 一种晶界扩散材料、r-t-b磁体及其制备方法
WO2024114167A1 (zh) 一种烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939836

Country of ref document: EP

Kind code of ref document: A1